| 1 | //! Hash generator (HASH) |
| 2 | use core::cmp::min; |
| 3 | #[cfg (hash_v2)] |
| 4 | use core::future::poll_fn; |
| 5 | use core::marker::PhantomData; |
| 6 | #[cfg (hash_v2)] |
| 7 | use core::ptr; |
| 8 | #[cfg (hash_v2)] |
| 9 | use core::task::Poll; |
| 10 | |
| 11 | use embassy_hal_internal::{into_ref, PeripheralRef}; |
| 12 | use embassy_sync::waitqueue::AtomicWaker; |
| 13 | use stm32_metapac::hash::regs::*; |
| 14 | |
| 15 | use crate::dma::NoDma; |
| 16 | #[cfg (hash_v2)] |
| 17 | use crate::dma::Transfer; |
| 18 | use crate::interrupt::typelevel::Interrupt; |
| 19 | use crate::peripherals::HASH; |
| 20 | use crate::{interrupt, pac, peripherals, rcc, Peripheral}; |
| 21 | |
| 22 | #[cfg (hash_v1)] |
| 23 | const NUM_CONTEXT_REGS: usize = 51; |
| 24 | #[cfg (hash_v3)] |
| 25 | const NUM_CONTEXT_REGS: usize = 103; |
| 26 | #[cfg (any(hash_v2, hash_v4))] |
| 27 | const NUM_CONTEXT_REGS: usize = 54; |
| 28 | |
| 29 | const HASH_BUFFER_LEN: usize = 132; |
| 30 | const DIGEST_BLOCK_SIZE: usize = 128; |
| 31 | |
| 32 | static HASH_WAKER: AtomicWaker = AtomicWaker::new(); |
| 33 | |
| 34 | /// HASH interrupt handler. |
| 35 | pub struct InterruptHandler<T: Instance> { |
| 36 | _phantom: PhantomData<T>, |
| 37 | } |
| 38 | |
| 39 | impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> { |
| 40 | unsafe fn on_interrupt() { |
| 41 | let bits: Sr = T::regs().sr().read(); |
| 42 | if bits.dinis() { |
| 43 | T::regs().imr().modify(|reg: &mut Imr| reg.set_dinie(val:false)); |
| 44 | HASH_WAKER.wake(); |
| 45 | } |
| 46 | if bits.dcis() { |
| 47 | T::regs().imr().modify(|reg: &mut Imr| reg.set_dcie(val:false)); |
| 48 | HASH_WAKER.wake(); |
| 49 | } |
| 50 | } |
| 51 | } |
| 52 | |
| 53 | ///Hash algorithm selection |
| 54 | #[derive (Clone, Copy, PartialEq)] |
| 55 | pub enum Algorithm { |
| 56 | /// SHA-1 Algorithm |
| 57 | SHA1 = 0, |
| 58 | |
| 59 | #[cfg (any(hash_v1, hash_v2, hash_v4))] |
| 60 | /// MD5 Algorithm |
| 61 | MD5 = 1, |
| 62 | |
| 63 | /// SHA-224 Algorithm |
| 64 | SHA224 = 2, |
| 65 | |
| 66 | /// SHA-256 Algorithm |
| 67 | SHA256 = 3, |
| 68 | |
| 69 | #[cfg (hash_v3)] |
| 70 | /// SHA-384 Algorithm |
| 71 | SHA384 = 12, |
| 72 | |
| 73 | #[cfg (hash_v3)] |
| 74 | /// SHA-512/224 Algorithm |
| 75 | SHA512_224 = 13, |
| 76 | |
| 77 | #[cfg (hash_v3)] |
| 78 | /// SHA-512/256 Algorithm |
| 79 | SHA512_256 = 14, |
| 80 | |
| 81 | #[cfg (hash_v3)] |
| 82 | /// SHA-256 Algorithm |
| 83 | SHA512 = 15, |
| 84 | } |
| 85 | |
| 86 | /// Input data width selection |
| 87 | #[repr (u8)] |
| 88 | #[derive (Clone, Copy)] |
| 89 | pub enum DataType { |
| 90 | ///32-bit data, no data is swapped. |
| 91 | Width32 = 0, |
| 92 | ///16-bit data, each half-word is swapped. |
| 93 | Width16 = 1, |
| 94 | ///8-bit data, all bytes are swapped. |
| 95 | Width8 = 2, |
| 96 | ///1-bit data, all bits are swapped. |
| 97 | Width1 = 3, |
| 98 | } |
| 99 | |
| 100 | /// Stores the state of the HASH peripheral for suspending/resuming |
| 101 | /// digest calculation. |
| 102 | pub struct Context<'c> { |
| 103 | first_word_sent: bool, |
| 104 | key_sent: bool, |
| 105 | buffer: [u8; HASH_BUFFER_LEN], |
| 106 | buflen: usize, |
| 107 | algo: Algorithm, |
| 108 | format: DataType, |
| 109 | imr: u32, |
| 110 | str: u32, |
| 111 | cr: u32, |
| 112 | csr: [u32; NUM_CONTEXT_REGS], |
| 113 | key: HmacKey<'c>, |
| 114 | } |
| 115 | |
| 116 | type HmacKey<'k> = Option<&'k [u8]>; |
| 117 | |
| 118 | /// HASH driver. |
| 119 | pub struct Hash<'d, T: Instance, D = NoDma> { |
| 120 | _peripheral: PeripheralRef<'d, T>, |
| 121 | #[allow (dead_code)] |
| 122 | dma: PeripheralRef<'d, D>, |
| 123 | } |
| 124 | |
| 125 | impl<'d, T: Instance, D> Hash<'d, T, D> { |
| 126 | /// Instantiates, resets, and enables the HASH peripheral. |
| 127 | pub fn new( |
| 128 | peripheral: impl Peripheral<P = T> + 'd, |
| 129 | dma: impl Peripheral<P = D> + 'd, |
| 130 | _irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd, |
| 131 | ) -> Self { |
| 132 | rcc::enable_and_reset::<HASH>(); |
| 133 | into_ref!(peripheral, dma); |
| 134 | let instance = Self { |
| 135 | _peripheral: peripheral, |
| 136 | dma: dma, |
| 137 | }; |
| 138 | |
| 139 | T::Interrupt::unpend(); |
| 140 | unsafe { T::Interrupt::enable() }; |
| 141 | |
| 142 | instance |
| 143 | } |
| 144 | |
| 145 | /// Starts computation of a new hash and returns the saved peripheral state. |
| 146 | pub fn start<'c>(&mut self, algorithm: Algorithm, format: DataType, key: HmacKey<'c>) -> Context<'c> { |
| 147 | // Define a context for this new computation. |
| 148 | let mut ctx = Context { |
| 149 | first_word_sent: false, |
| 150 | key_sent: false, |
| 151 | buffer: [0; HASH_BUFFER_LEN], |
| 152 | buflen: 0, |
| 153 | algo: algorithm, |
| 154 | format: format, |
| 155 | imr: 0, |
| 156 | str: 0, |
| 157 | cr: 0, |
| 158 | csr: [0; NUM_CONTEXT_REGS], |
| 159 | key, |
| 160 | }; |
| 161 | |
| 162 | // Set the data type in the peripheral. |
| 163 | T::regs().cr().modify(|w| w.set_datatype(ctx.format as u8)); |
| 164 | |
| 165 | // Select the algorithm. |
| 166 | #[cfg (hash_v1)] |
| 167 | if ctx.algo == Algorithm::MD5 { |
| 168 | T::regs().cr().modify(|w| w.set_algo(true)); |
| 169 | } |
| 170 | |
| 171 | #[cfg (hash_v2)] |
| 172 | { |
| 173 | // Select the algorithm. |
| 174 | let mut algo0 = false; |
| 175 | let mut algo1 = false; |
| 176 | if ctx.algo == Algorithm::MD5 || ctx.algo == Algorithm::SHA256 { |
| 177 | algo0 = true; |
| 178 | } |
| 179 | if ctx.algo == Algorithm::SHA224 || ctx.algo == Algorithm::SHA256 { |
| 180 | algo1 = true; |
| 181 | } |
| 182 | T::regs().cr().modify(|w| w.set_algo0(algo0)); |
| 183 | T::regs().cr().modify(|w| w.set_algo1(algo1)); |
| 184 | } |
| 185 | |
| 186 | #[cfg (any(hash_v3, hash_v4))] |
| 187 | T::regs().cr().modify(|w| w.set_algo(ctx.algo as u8)); |
| 188 | |
| 189 | // Configure HMAC mode if a key is provided. |
| 190 | if let Some(key) = ctx.key { |
| 191 | T::regs().cr().modify(|w| w.set_mode(true)); |
| 192 | if key.len() > 64 { |
| 193 | T::regs().cr().modify(|w| w.set_lkey(true)); |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | T::regs().cr().modify(|w| w.set_init(true)); |
| 198 | |
| 199 | // Store and return the state of the peripheral. |
| 200 | self.store_context(&mut ctx); |
| 201 | ctx |
| 202 | } |
| 203 | |
| 204 | /// Restores the peripheral state using the given context, |
| 205 | /// then updates the state with the provided data. |
| 206 | /// Peripheral state is saved upon return. |
| 207 | pub fn update_blocking<'c>(&mut self, ctx: &mut Context<'c>, input: &[u8]) { |
| 208 | // Restore the peripheral state. |
| 209 | self.load_context(&ctx); |
| 210 | |
| 211 | // Load the HMAC key if provided. |
| 212 | if !ctx.key_sent { |
| 213 | if let Some(key) = ctx.key { |
| 214 | self.accumulate_blocking(key); |
| 215 | T::regs().str().write(|w| w.set_dcal(true)); |
| 216 | // Block waiting for digest. |
| 217 | while !T::regs().sr().read().dinis() {} |
| 218 | } |
| 219 | ctx.key_sent = true; |
| 220 | } |
| 221 | |
| 222 | let mut data_waiting = input.len() + ctx.buflen; |
| 223 | if data_waiting < DIGEST_BLOCK_SIZE || (data_waiting < ctx.buffer.len() && !ctx.first_word_sent) { |
| 224 | // There isn't enough data to digest a block, so append it to the buffer. |
| 225 | ctx.buffer[ctx.buflen..ctx.buflen + input.len()].copy_from_slice(input); |
| 226 | ctx.buflen += input.len(); |
| 227 | self.store_context(ctx); |
| 228 | return; |
| 229 | } |
| 230 | |
| 231 | let mut ilen_remaining = input.len(); |
| 232 | let mut input_start = 0; |
| 233 | |
| 234 | // Handle first block. |
| 235 | if !ctx.first_word_sent { |
| 236 | let empty_len = ctx.buffer.len() - ctx.buflen; |
| 237 | let copy_len = min(empty_len, ilen_remaining); |
| 238 | // Fill the buffer. |
| 239 | if copy_len > 0 { |
| 240 | ctx.buffer[ctx.buflen..ctx.buflen + copy_len].copy_from_slice(&input[0..copy_len]); |
| 241 | ctx.buflen += copy_len; |
| 242 | ilen_remaining -= copy_len; |
| 243 | input_start += copy_len; |
| 244 | } |
| 245 | self.accumulate_blocking(ctx.buffer.as_slice()); |
| 246 | data_waiting -= ctx.buflen; |
| 247 | ctx.buflen = 0; |
| 248 | ctx.first_word_sent = true; |
| 249 | } |
| 250 | |
| 251 | if data_waiting < DIGEST_BLOCK_SIZE { |
| 252 | // There isn't enough data remaining to process another block, so store it. |
| 253 | ctx.buffer[0..ilen_remaining].copy_from_slice(&input[input_start..input_start + ilen_remaining]); |
| 254 | ctx.buflen += ilen_remaining; |
| 255 | } else { |
| 256 | // First ingest the data in the buffer. |
| 257 | let empty_len = DIGEST_BLOCK_SIZE - ctx.buflen; |
| 258 | if empty_len > 0 { |
| 259 | let copy_len = min(empty_len, ilen_remaining); |
| 260 | ctx.buffer[ctx.buflen..ctx.buflen + copy_len] |
| 261 | .copy_from_slice(&input[input_start..input_start + copy_len]); |
| 262 | ctx.buflen += copy_len; |
| 263 | ilen_remaining -= copy_len; |
| 264 | input_start += copy_len; |
| 265 | } |
| 266 | self.accumulate_blocking(&ctx.buffer[0..DIGEST_BLOCK_SIZE]); |
| 267 | ctx.buflen = 0; |
| 268 | |
| 269 | // Move any extra data to the now-empty buffer. |
| 270 | let leftovers = ilen_remaining % 64; |
| 271 | if leftovers > 0 { |
| 272 | ctx.buffer[0..leftovers].copy_from_slice(&input[input.len() - leftovers..input.len()]); |
| 273 | ctx.buflen += leftovers; |
| 274 | ilen_remaining -= leftovers; |
| 275 | } |
| 276 | |
| 277 | // Hash the remaining data. |
| 278 | self.accumulate_blocking(&input[input_start..input_start + ilen_remaining]); |
| 279 | } |
| 280 | |
| 281 | // Save the peripheral context. |
| 282 | self.store_context(ctx); |
| 283 | } |
| 284 | |
| 285 | /// Restores the peripheral state using the given context, |
| 286 | /// then updates the state with the provided data. |
| 287 | /// Peripheral state is saved upon return. |
| 288 | #[cfg (hash_v2)] |
| 289 | pub async fn update<'c>(&mut self, ctx: &mut Context<'c>, input: &[u8]) |
| 290 | where |
| 291 | D: crate::hash::Dma<T>, |
| 292 | { |
| 293 | // Restore the peripheral state. |
| 294 | self.load_context(&ctx); |
| 295 | |
| 296 | // Load the HMAC key if provided. |
| 297 | if !ctx.key_sent { |
| 298 | if let Some(key) = ctx.key { |
| 299 | self.accumulate(key).await; |
| 300 | } |
| 301 | ctx.key_sent = true; |
| 302 | } |
| 303 | |
| 304 | let data_waiting = input.len() + ctx.buflen; |
| 305 | if data_waiting < DIGEST_BLOCK_SIZE { |
| 306 | // There isn't enough data to digest a block, so append it to the buffer. |
| 307 | ctx.buffer[ctx.buflen..ctx.buflen + input.len()].copy_from_slice(input); |
| 308 | ctx.buflen += input.len(); |
| 309 | self.store_context(ctx); |
| 310 | return; |
| 311 | } |
| 312 | |
| 313 | // Enable multiple DMA transfers. |
| 314 | T::regs().cr().modify(|w| w.set_mdmat(true)); |
| 315 | |
| 316 | let mut ilen_remaining = input.len(); |
| 317 | let mut input_start = 0; |
| 318 | |
| 319 | // First ingest the data in the buffer. |
| 320 | let empty_len = DIGEST_BLOCK_SIZE - ctx.buflen; |
| 321 | if empty_len > 0 { |
| 322 | let copy_len = min(empty_len, ilen_remaining); |
| 323 | ctx.buffer[ctx.buflen..ctx.buflen + copy_len].copy_from_slice(&input[input_start..input_start + copy_len]); |
| 324 | ctx.buflen += copy_len; |
| 325 | ilen_remaining -= copy_len; |
| 326 | input_start += copy_len; |
| 327 | } |
| 328 | self.accumulate(&ctx.buffer[..DIGEST_BLOCK_SIZE]).await; |
| 329 | ctx.buflen = 0; |
| 330 | |
| 331 | // Move any extra data to the now-empty buffer. |
| 332 | let leftovers = ilen_remaining % DIGEST_BLOCK_SIZE; |
| 333 | if leftovers > 0 { |
| 334 | assert!(ilen_remaining >= leftovers); |
| 335 | ctx.buffer[0..leftovers].copy_from_slice(&input[input.len() - leftovers..input.len()]); |
| 336 | ctx.buflen += leftovers; |
| 337 | ilen_remaining -= leftovers; |
| 338 | } else { |
| 339 | ctx.buffer |
| 340 | .copy_from_slice(&input[input.len() - DIGEST_BLOCK_SIZE..input.len()]); |
| 341 | ctx.buflen += DIGEST_BLOCK_SIZE; |
| 342 | ilen_remaining -= DIGEST_BLOCK_SIZE; |
| 343 | } |
| 344 | |
| 345 | // Hash the remaining data. |
| 346 | self.accumulate(&input[input_start..input_start + ilen_remaining]).await; |
| 347 | |
| 348 | // Save the peripheral context. |
| 349 | self.store_context(ctx); |
| 350 | } |
| 351 | |
| 352 | /// Computes a digest for the given context. |
| 353 | /// The digest buffer must be large enough to accomodate a digest for the selected algorithm. |
| 354 | /// The largest returned digest size is 128 bytes for SHA-512. |
| 355 | /// Panics if the supplied digest buffer is too short. |
| 356 | pub fn finish_blocking<'c>(&mut self, mut ctx: Context<'c>, digest: &mut [u8]) -> usize { |
| 357 | // Restore the peripheral state. |
| 358 | self.load_context(&ctx); |
| 359 | |
| 360 | // Hash the leftover bytes, if any. |
| 361 | self.accumulate_blocking(&ctx.buffer[0..ctx.buflen]); |
| 362 | ctx.buflen = 0; |
| 363 | |
| 364 | //Start the digest calculation. |
| 365 | T::regs().str().write(|w| w.set_dcal(true)); |
| 366 | |
| 367 | // Load the HMAC key if provided. |
| 368 | if let Some(key) = ctx.key { |
| 369 | while !T::regs().sr().read().dinis() {} |
| 370 | self.accumulate_blocking(key); |
| 371 | T::regs().str().write(|w| w.set_dcal(true)); |
| 372 | } |
| 373 | |
| 374 | // Block until digest computation is complete. |
| 375 | while !T::regs().sr().read().dcis() {} |
| 376 | |
| 377 | // Return the digest. |
| 378 | let digest_words = match ctx.algo { |
| 379 | Algorithm::SHA1 => 5, |
| 380 | #[cfg (any(hash_v1, hash_v2, hash_v4))] |
| 381 | Algorithm::MD5 => 4, |
| 382 | Algorithm::SHA224 => 7, |
| 383 | Algorithm::SHA256 => 8, |
| 384 | #[cfg (hash_v3)] |
| 385 | Algorithm::SHA384 => 12, |
| 386 | #[cfg (hash_v3)] |
| 387 | Algorithm::SHA512_224 => 7, |
| 388 | #[cfg (hash_v3)] |
| 389 | Algorithm::SHA512_256 => 8, |
| 390 | #[cfg (hash_v3)] |
| 391 | Algorithm::SHA512 => 16, |
| 392 | }; |
| 393 | |
| 394 | let digest_len_bytes = digest_words * 4; |
| 395 | // Panics if the supplied digest buffer is too short. |
| 396 | if digest.len() < digest_len_bytes { |
| 397 | panic!("Digest buffer must be at least {} bytes long." , digest_words * 4); |
| 398 | } |
| 399 | |
| 400 | let mut i = 0; |
| 401 | while i < digest_words { |
| 402 | let word = T::regs().hr(i).read(); |
| 403 | digest[(i * 4)..((i * 4) + 4)].copy_from_slice(word.to_be_bytes().as_slice()); |
| 404 | i += 1; |
| 405 | } |
| 406 | digest_len_bytes |
| 407 | } |
| 408 | |
| 409 | /// Computes a digest for the given context. |
| 410 | /// The digest buffer must be large enough to accomodate a digest for the selected algorithm. |
| 411 | /// The largest returned digest size is 128 bytes for SHA-512. |
| 412 | /// Panics if the supplied digest buffer is too short. |
| 413 | #[cfg (hash_v2)] |
| 414 | pub async fn finish<'c>(&mut self, mut ctx: Context<'c>, digest: &mut [u8]) -> usize |
| 415 | where |
| 416 | D: crate::hash::Dma<T>, |
| 417 | { |
| 418 | // Restore the peripheral state. |
| 419 | self.load_context(&ctx); |
| 420 | |
| 421 | // Must be cleared prior to the last DMA transfer. |
| 422 | T::regs().cr().modify(|w| w.set_mdmat(false)); |
| 423 | |
| 424 | // Hash the leftover bytes, if any. |
| 425 | self.accumulate(&ctx.buffer[0..ctx.buflen]).await; |
| 426 | ctx.buflen = 0; |
| 427 | |
| 428 | // Load the HMAC key if provided. |
| 429 | if let Some(key) = ctx.key { |
| 430 | self.accumulate(key).await; |
| 431 | } |
| 432 | |
| 433 | // Wait for completion. |
| 434 | poll_fn(|cx| { |
| 435 | // Check if already done. |
| 436 | let bits = T::regs().sr().read(); |
| 437 | if bits.dcis() { |
| 438 | return Poll::Ready(()); |
| 439 | } |
| 440 | // Register waker, then enable interrupts. |
| 441 | HASH_WAKER.register(cx.waker()); |
| 442 | T::regs().imr().modify(|reg| reg.set_dcie(true)); |
| 443 | // Check for completion. |
| 444 | let bits = T::regs().sr().read(); |
| 445 | if bits.dcis() { |
| 446 | Poll::Ready(()) |
| 447 | } else { |
| 448 | Poll::Pending |
| 449 | } |
| 450 | }) |
| 451 | .await; |
| 452 | |
| 453 | // Return the digest. |
| 454 | let digest_words = match ctx.algo { |
| 455 | Algorithm::SHA1 => 5, |
| 456 | #[cfg (any(hash_v1, hash_v2, hash_v4))] |
| 457 | Algorithm::MD5 => 4, |
| 458 | Algorithm::SHA224 => 7, |
| 459 | Algorithm::SHA256 => 8, |
| 460 | #[cfg (hash_v3)] |
| 461 | Algorithm::SHA384 => 12, |
| 462 | #[cfg (hash_v3)] |
| 463 | Algorithm::SHA512_224 => 7, |
| 464 | #[cfg (hash_v3)] |
| 465 | Algorithm::SHA512_256 => 8, |
| 466 | #[cfg (hash_v3)] |
| 467 | Algorithm::SHA512 => 16, |
| 468 | }; |
| 469 | |
| 470 | let digest_len_bytes = digest_words * 4; |
| 471 | // Panics if the supplied digest buffer is too short. |
| 472 | if digest.len() < digest_len_bytes { |
| 473 | panic!("Digest buffer must be at least {} bytes long." , digest_words * 4); |
| 474 | } |
| 475 | |
| 476 | let mut i = 0; |
| 477 | while i < digest_words { |
| 478 | let word = T::regs().hr(i).read(); |
| 479 | digest[(i * 4)..((i * 4) + 4)].copy_from_slice(word.to_be_bytes().as_slice()); |
| 480 | i += 1; |
| 481 | } |
| 482 | digest_len_bytes |
| 483 | } |
| 484 | |
| 485 | /// Push data into the hash core. |
| 486 | fn accumulate_blocking(&mut self, input: &[u8]) { |
| 487 | // Set the number of valid bits. |
| 488 | let num_valid_bits: u8 = (8 * (input.len() % 4)) as u8; |
| 489 | T::regs().str().modify(|w| w.set_nblw(num_valid_bits)); |
| 490 | |
| 491 | let mut i = 0; |
| 492 | while i < input.len() { |
| 493 | let mut word: [u8; 4] = [0; 4]; |
| 494 | let copy_idx = min(i + 4, input.len()); |
| 495 | word[0..copy_idx - i].copy_from_slice(&input[i..copy_idx]); |
| 496 | T::regs().din().write_value(u32::from_ne_bytes(word)); |
| 497 | i += 4; |
| 498 | } |
| 499 | } |
| 500 | |
| 501 | /// Push data into the hash core. |
| 502 | #[cfg (hash_v2)] |
| 503 | async fn accumulate(&mut self, input: &[u8]) |
| 504 | where |
| 505 | D: crate::hash::Dma<T>, |
| 506 | { |
| 507 | // Ignore an input length of 0. |
| 508 | if input.len() == 0 { |
| 509 | return; |
| 510 | } |
| 511 | |
| 512 | // Set the number of valid bits. |
| 513 | let num_valid_bits: u8 = (8 * (input.len() % 4)) as u8; |
| 514 | T::regs().str().modify(|w| w.set_nblw(num_valid_bits)); |
| 515 | |
| 516 | // Configure DMA to transfer input to hash core. |
| 517 | let dma_request = self.dma.request(); |
| 518 | let dst_ptr = T::regs().din().as_ptr(); |
| 519 | let mut num_words = input.len() / 4; |
| 520 | if input.len() % 4 > 0 { |
| 521 | num_words += 1; |
| 522 | } |
| 523 | let src_ptr = ptr::slice_from_raw_parts(input.as_ptr().cast(), num_words); |
| 524 | let dma_transfer = |
| 525 | unsafe { Transfer::new_write_raw(&mut self.dma, dma_request, src_ptr, dst_ptr, Default::default()) }; |
| 526 | T::regs().cr().modify(|w| w.set_dmae(true)); |
| 527 | |
| 528 | // Wait for the transfer to complete. |
| 529 | dma_transfer.await; |
| 530 | } |
| 531 | |
| 532 | /// Save the peripheral state to a context. |
| 533 | fn store_context<'c>(&mut self, ctx: &mut Context<'c>) { |
| 534 | // Block waiting for data in ready. |
| 535 | while !T::regs().sr().read().dinis() {} |
| 536 | |
| 537 | // Store peripheral context. |
| 538 | ctx.imr = T::regs().imr().read().0; |
| 539 | ctx.str = T::regs().str().read().0; |
| 540 | ctx.cr = T::regs().cr().read().0; |
| 541 | let mut i = 0; |
| 542 | while i < NUM_CONTEXT_REGS { |
| 543 | ctx.csr[i] = T::regs().csr(i).read(); |
| 544 | i += 1; |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | /// Restore the peripheral state from a context. |
| 549 | fn load_context(&mut self, ctx: &Context) { |
| 550 | // Restore the peripheral state from the context. |
| 551 | T::regs().imr().write_value(Imr { 0: ctx.imr }); |
| 552 | T::regs().str().write_value(Str { 0: ctx.str }); |
| 553 | T::regs().cr().write_value(Cr { 0: ctx.cr }); |
| 554 | T::regs().cr().modify(|w| w.set_init(true)); |
| 555 | let mut i = 0; |
| 556 | while i < NUM_CONTEXT_REGS { |
| 557 | T::regs().csr(i).write_value(ctx.csr[i]); |
| 558 | i += 1; |
| 559 | } |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | trait SealedInstance { |
| 564 | fn regs() -> pac::hash::Hash; |
| 565 | } |
| 566 | |
| 567 | /// HASH instance trait. |
| 568 | #[allow (private_bounds)] |
| 569 | pub trait Instance: SealedInstance + Peripheral<P = Self> + crate::rcc::RccPeripheral + 'static + Send { |
| 570 | /// Interrupt for this HASH instance. |
| 571 | type Interrupt: interrupt::typelevel::Interrupt; |
| 572 | } |
| 573 | |
| 574 | foreach_interrupt!( |
| 575 | ($inst:ident, hash, HASH, GLOBAL, $irq:ident) => { |
| 576 | impl Instance for peripherals::$inst { |
| 577 | type Interrupt = crate::interrupt::typelevel::$irq; |
| 578 | } |
| 579 | |
| 580 | impl SealedInstance for peripherals::$inst { |
| 581 | fn regs() -> crate::pac::hash::Hash { |
| 582 | crate::pac::$inst |
| 583 | } |
| 584 | } |
| 585 | }; |
| 586 | ); |
| 587 | |
| 588 | dma_trait!(Dma, Instance); |
| 589 | |