1 | use core::future::poll_fn; |
2 | use core::marker::PhantomData; |
3 | use core::slice; |
4 | use core::sync::atomic::{AtomicBool, AtomicU8, Ordering}; |
5 | use core::task::Poll; |
6 | |
7 | use embassy_embedded_hal::SetConfig; |
8 | use embassy_hal_internal::atomic_ring_buffer::RingBuffer; |
9 | use embassy_hal_internal::{Peripheral, PeripheralRef}; |
10 | use embassy_sync::waitqueue::AtomicWaker; |
11 | |
12 | #[cfg (not(any(usart_v1, usart_v2)))] |
13 | use super::DePin; |
14 | use super::{ |
15 | clear_interrupt_flags, configure, half_duplex_set_rx_tx_before_write, rdr, reconfigure, send_break, set_baudrate, |
16 | sr, tdr, Config, ConfigError, CtsPin, Duplex, Error, HalfDuplexConfig, HalfDuplexReadback, Info, Instance, Regs, |
17 | RtsPin, RxPin, TxPin, |
18 | }; |
19 | use crate::gpio::{AfType, AnyPin, OutputType, Pull, SealedPin as _, Speed}; |
20 | use crate::interrupt::{self, InterruptExt}; |
21 | use crate::time::Hertz; |
22 | |
23 | /// Interrupt handler. |
24 | pub struct InterruptHandler<T: Instance> { |
25 | _phantom: PhantomData<T>, |
26 | } |
27 | |
28 | impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> { |
29 | unsafe fn on_interrupt() { |
30 | on_interrupt(T::info().regs, T::buffered_state()) |
31 | } |
32 | } |
33 | |
34 | unsafe fn on_interrupt(r: Regs, state: &'static State) { |
35 | // RX |
36 | let sr_val = sr(r).read(); |
37 | // On v1 & v2, reading DR clears the rxne, error and idle interrupt |
38 | // flags. Keep this close to the SR read to reduce the chance of a |
39 | // flag being set in-between. |
40 | let dr = if sr_val.rxne() || cfg!(any(usart_v1, usart_v2)) && (sr_val.ore() || sr_val.idle()) { |
41 | Some(rdr(r).read_volatile()) |
42 | } else { |
43 | None |
44 | }; |
45 | clear_interrupt_flags(r, sr_val); |
46 | |
47 | if sr_val.pe() { |
48 | warn!("Parity error" ); |
49 | } |
50 | if sr_val.fe() { |
51 | warn!("Framing error" ); |
52 | } |
53 | if sr_val.ne() { |
54 | warn!("Noise error" ); |
55 | } |
56 | if sr_val.ore() { |
57 | warn!("Overrun error" ); |
58 | } |
59 | if sr_val.rxne() { |
60 | let mut rx_writer = state.rx_buf.writer(); |
61 | let buf = rx_writer.push_slice(); |
62 | if !buf.is_empty() { |
63 | if let Some(byte) = dr { |
64 | buf[0] = byte; |
65 | rx_writer.push_done(1); |
66 | } |
67 | } else { |
68 | // FIXME: Should we disable any further RX interrupts when the buffer becomes full. |
69 | } |
70 | |
71 | if !state.rx_buf.is_empty() { |
72 | state.rx_waker.wake(); |
73 | } |
74 | } |
75 | |
76 | if sr_val.idle() { |
77 | state.rx_waker.wake(); |
78 | } |
79 | |
80 | // With `usart_v4` hardware FIFO is enabled and Transmission complete (TC) |
81 | // indicates that all bytes are pushed out from the FIFO. |
82 | // For other usart variants it shows that last byte from the buffer was just sent. |
83 | if sr_val.tc() { |
84 | // For others it is cleared above with `clear_interrupt_flags`. |
85 | #[cfg (any(usart_v1, usart_v2))] |
86 | sr(r).modify(|w| w.set_tc(false)); |
87 | |
88 | r.cr1().modify(|w| { |
89 | w.set_tcie(false); |
90 | }); |
91 | |
92 | state.tx_done.store(true, Ordering::Release); |
93 | state.tx_waker.wake(); |
94 | } |
95 | |
96 | // TX |
97 | if sr(r).read().txe() { |
98 | let mut tx_reader = state.tx_buf.reader(); |
99 | let buf = tx_reader.pop_slice(); |
100 | if !buf.is_empty() { |
101 | r.cr1().modify(|w| { |
102 | w.set_txeie(true); |
103 | }); |
104 | |
105 | // Enable transmission complete interrupt when last byte is going to be sent out. |
106 | if buf.len() == 1 { |
107 | r.cr1().modify(|w| { |
108 | w.set_tcie(true); |
109 | }); |
110 | } |
111 | |
112 | half_duplex_set_rx_tx_before_write(&r, state.half_duplex_readback.load(Ordering::Relaxed)); |
113 | |
114 | tdr(r).write_volatile(buf[0].into()); |
115 | tx_reader.pop_done(1); |
116 | } else { |
117 | // Disable interrupt until we have something to transmit again. |
118 | r.cr1().modify(|w| { |
119 | w.set_txeie(false); |
120 | }); |
121 | } |
122 | } |
123 | } |
124 | |
125 | pub(super) struct State { |
126 | rx_waker: AtomicWaker, |
127 | rx_buf: RingBuffer, |
128 | tx_waker: AtomicWaker, |
129 | tx_buf: RingBuffer, |
130 | tx_done: AtomicBool, |
131 | tx_rx_refcount: AtomicU8, |
132 | half_duplex_readback: AtomicBool, |
133 | } |
134 | |
135 | impl State { |
136 | pub(super) const fn new() -> Self { |
137 | Self { |
138 | rx_buf: RingBuffer::new(), |
139 | tx_buf: RingBuffer::new(), |
140 | rx_waker: AtomicWaker::new(), |
141 | tx_waker: AtomicWaker::new(), |
142 | tx_done: AtomicBool::new(true), |
143 | tx_rx_refcount: AtomicU8::new(0), |
144 | half_duplex_readback: AtomicBool::new(false), |
145 | } |
146 | } |
147 | } |
148 | |
149 | /// Bidirectional buffered UART |
150 | pub struct BufferedUart<'d> { |
151 | rx: BufferedUartRx<'d>, |
152 | tx: BufferedUartTx<'d>, |
153 | } |
154 | |
155 | /// Tx-only buffered UART |
156 | /// |
157 | /// Created with [BufferedUart::split] |
158 | pub struct BufferedUartTx<'d> { |
159 | info: &'static Info, |
160 | state: &'static State, |
161 | kernel_clock: Hertz, |
162 | tx: Option<PeripheralRef<'d, AnyPin>>, |
163 | cts: Option<PeripheralRef<'d, AnyPin>>, |
164 | de: Option<PeripheralRef<'d, AnyPin>>, |
165 | is_borrowed: bool, |
166 | } |
167 | |
168 | /// Rx-only buffered UART |
169 | /// |
170 | /// Created with [BufferedUart::split] |
171 | pub struct BufferedUartRx<'d> { |
172 | info: &'static Info, |
173 | state: &'static State, |
174 | kernel_clock: Hertz, |
175 | rx: Option<PeripheralRef<'d, AnyPin>>, |
176 | rts: Option<PeripheralRef<'d, AnyPin>>, |
177 | is_borrowed: bool, |
178 | } |
179 | |
180 | impl<'d> SetConfig for BufferedUart<'d> { |
181 | type Config = Config; |
182 | type ConfigError = ConfigError; |
183 | |
184 | fn set_config(&mut self, config: &Self::Config) -> Result<(), Self::ConfigError> { |
185 | self.set_config(config) |
186 | } |
187 | } |
188 | |
189 | impl<'d> SetConfig for BufferedUartRx<'d> { |
190 | type Config = Config; |
191 | type ConfigError = ConfigError; |
192 | |
193 | fn set_config(&mut self, config: &Self::Config) -> Result<(), Self::ConfigError> { |
194 | self.set_config(config) |
195 | } |
196 | } |
197 | |
198 | impl<'d> SetConfig for BufferedUartTx<'d> { |
199 | type Config = Config; |
200 | type ConfigError = ConfigError; |
201 | |
202 | fn set_config(&mut self, config: &Self::Config) -> Result<(), Self::ConfigError> { |
203 | self.set_config(config) |
204 | } |
205 | } |
206 | |
207 | impl<'d> BufferedUart<'d> { |
208 | /// Create a new bidirectional buffered UART driver |
209 | pub fn new<T: Instance>( |
210 | peri: impl Peripheral<P = T> + 'd, |
211 | _irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd, |
212 | rx: impl Peripheral<P = impl RxPin<T>> + 'd, |
213 | tx: impl Peripheral<P = impl TxPin<T>> + 'd, |
214 | tx_buffer: &'d mut [u8], |
215 | rx_buffer: &'d mut [u8], |
216 | config: Config, |
217 | ) -> Result<Self, ConfigError> { |
218 | Self::new_inner( |
219 | peri, |
220 | new_pin!(rx, AfType::input(config.rx_pull)), |
221 | new_pin!(tx, AfType::output(OutputType::PushPull, Speed::Medium)), |
222 | None, |
223 | None, |
224 | None, |
225 | tx_buffer, |
226 | rx_buffer, |
227 | config, |
228 | ) |
229 | } |
230 | |
231 | /// Create a new bidirectional buffered UART driver with request-to-send and clear-to-send pins |
232 | pub fn new_with_rtscts<T: Instance>( |
233 | peri: impl Peripheral<P = T> + 'd, |
234 | _irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd, |
235 | rx: impl Peripheral<P = impl RxPin<T>> + 'd, |
236 | tx: impl Peripheral<P = impl TxPin<T>> + 'd, |
237 | rts: impl Peripheral<P = impl RtsPin<T>> + 'd, |
238 | cts: impl Peripheral<P = impl CtsPin<T>> + 'd, |
239 | tx_buffer: &'d mut [u8], |
240 | rx_buffer: &'d mut [u8], |
241 | config: Config, |
242 | ) -> Result<Self, ConfigError> { |
243 | Self::new_inner( |
244 | peri, |
245 | new_pin!(rx, AfType::input(Pull::None)), |
246 | new_pin!(tx, AfType::output(OutputType::PushPull, Speed::Medium)), |
247 | new_pin!(rts, AfType::output(OutputType::PushPull, Speed::Medium)), |
248 | new_pin!(cts, AfType::input(Pull::None)), |
249 | None, |
250 | tx_buffer, |
251 | rx_buffer, |
252 | config, |
253 | ) |
254 | } |
255 | |
256 | /// Create a new bidirectional buffered UART driver with only the RTS pin as the DE pin |
257 | pub fn new_with_rts_as_de<T: Instance>( |
258 | peri: impl Peripheral<P = T> + 'd, |
259 | _irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd, |
260 | rx: impl Peripheral<P = impl RxPin<T>> + 'd, |
261 | tx: impl Peripheral<P = impl TxPin<T>> + 'd, |
262 | rts: impl Peripheral<P = impl RtsPin<T>> + 'd, |
263 | tx_buffer: &'d mut [u8], |
264 | rx_buffer: &'d mut [u8], |
265 | config: Config, |
266 | ) -> Result<Self, ConfigError> { |
267 | Self::new_inner( |
268 | peri, |
269 | new_pin!(rx, AfType::input(Pull::None)), |
270 | new_pin!(tx, AfType::output(OutputType::PushPull, Speed::Medium)), |
271 | None, |
272 | None, |
273 | new_pin!(rts, AfType::input(Pull::None)), // RTS mapped used as DE |
274 | tx_buffer, |
275 | rx_buffer, |
276 | config, |
277 | ) |
278 | } |
279 | |
280 | /// Create a new bidirectional buffered UART driver with only the request-to-send pin |
281 | pub fn new_with_rts<T: Instance>( |
282 | peri: impl Peripheral<P = T> + 'd, |
283 | _irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd, |
284 | rx: impl Peripheral<P = impl RxPin<T>> + 'd, |
285 | tx: impl Peripheral<P = impl TxPin<T>> + 'd, |
286 | rts: impl Peripheral<P = impl RtsPin<T>> + 'd, |
287 | tx_buffer: &'d mut [u8], |
288 | rx_buffer: &'d mut [u8], |
289 | config: Config, |
290 | ) -> Result<Self, ConfigError> { |
291 | Self::new_inner( |
292 | peri, |
293 | new_pin!(rx, AfType::input(Pull::None)), |
294 | new_pin!(tx, AfType::output(OutputType::PushPull, Speed::Medium)), |
295 | new_pin!(rts, AfType::input(Pull::None)), |
296 | None, // no CTS |
297 | None, // no DE |
298 | tx_buffer, |
299 | rx_buffer, |
300 | config, |
301 | ) |
302 | } |
303 | |
304 | /// Create a new bidirectional buffered UART driver with a driver-enable pin |
305 | #[cfg (not(any(usart_v1, usart_v2)))] |
306 | pub fn new_with_de<T: Instance>( |
307 | peri: impl Peripheral<P = T> + 'd, |
308 | _irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd, |
309 | rx: impl Peripheral<P = impl RxPin<T>> + 'd, |
310 | tx: impl Peripheral<P = impl TxPin<T>> + 'd, |
311 | de: impl Peripheral<P = impl DePin<T>> + 'd, |
312 | tx_buffer: &'d mut [u8], |
313 | rx_buffer: &'d mut [u8], |
314 | config: Config, |
315 | ) -> Result<Self, ConfigError> { |
316 | Self::new_inner( |
317 | peri, |
318 | new_pin!(rx, AfType::input(config.rx_pull)), |
319 | new_pin!(tx, AfType::output(OutputType::PushPull, Speed::Medium)), |
320 | None, |
321 | None, |
322 | new_pin!(de, AfType::output(OutputType::PushPull, Speed::Medium)), |
323 | tx_buffer, |
324 | rx_buffer, |
325 | config, |
326 | ) |
327 | } |
328 | |
329 | /// Create a single-wire half-duplex Uart transceiver on a single Tx pin. |
330 | /// |
331 | /// See [`new_half_duplex_on_rx`][`Self::new_half_duplex_on_rx`] if you would prefer to use an Rx pin |
332 | /// (when it is available for your chip). There is no functional difference between these methods, as both |
333 | /// allow bidirectional communication. |
334 | /// |
335 | /// The TX pin is always released when no data is transmitted. Thus, it acts as a standard |
336 | /// I/O in idle or in reception. It means that the I/O must be configured so that TX is |
337 | /// configured as alternate function open-drain with an external pull-up |
338 | /// Apart from this, the communication protocol is similar to normal USART mode. Any conflict |
339 | /// on the line must be managed by software (for instance by using a centralized arbiter). |
340 | #[doc (alias("HDSEL" ))] |
341 | pub fn new_half_duplex<T: Instance>( |
342 | peri: impl Peripheral<P = T> + 'd, |
343 | tx: impl Peripheral<P = impl TxPin<T>> + 'd, |
344 | _irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd, |
345 | tx_buffer: &'d mut [u8], |
346 | rx_buffer: &'d mut [u8], |
347 | mut config: Config, |
348 | readback: HalfDuplexReadback, |
349 | half_duplex: HalfDuplexConfig, |
350 | ) -> Result<Self, ConfigError> { |
351 | #[cfg (not(any(usart_v1, usart_v2)))] |
352 | { |
353 | config.swap_rx_tx = false; |
354 | } |
355 | config.duplex = Duplex::Half(readback); |
356 | |
357 | Self::new_inner( |
358 | peri, |
359 | None, |
360 | new_pin!(tx, half_duplex.af_type()), |
361 | None, |
362 | None, |
363 | None, |
364 | tx_buffer, |
365 | rx_buffer, |
366 | config, |
367 | ) |
368 | } |
369 | |
370 | /// Create a single-wire half-duplex Uart transceiver on a single Rx pin. |
371 | /// |
372 | /// See [`new_half_duplex`][`Self::new_half_duplex`] if you would prefer to use an Tx pin. |
373 | /// There is no functional difference between these methods, as both allow bidirectional communication. |
374 | /// |
375 | /// The pin is always released when no data is transmitted. Thus, it acts as a standard |
376 | /// I/O in idle or in reception. |
377 | /// Apart from this, the communication protocol is similar to normal USART mode. Any conflict |
378 | /// on the line must be managed by software (for instance by using a centralized arbiter). |
379 | #[cfg (not(any(usart_v1, usart_v2)))] |
380 | #[doc (alias("HDSEL" ))] |
381 | pub fn new_half_duplex_on_rx<T: Instance>( |
382 | peri: impl Peripheral<P = T> + 'd, |
383 | rx: impl Peripheral<P = impl RxPin<T>> + 'd, |
384 | _irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd, |
385 | tx_buffer: &'d mut [u8], |
386 | rx_buffer: &'d mut [u8], |
387 | mut config: Config, |
388 | readback: HalfDuplexReadback, |
389 | half_duplex: HalfDuplexConfig, |
390 | ) -> Result<Self, ConfigError> { |
391 | config.swap_rx_tx = true; |
392 | config.duplex = Duplex::Half(readback); |
393 | |
394 | Self::new_inner( |
395 | peri, |
396 | new_pin!(rx, half_duplex.af_type()), |
397 | None, |
398 | None, |
399 | None, |
400 | None, |
401 | tx_buffer, |
402 | rx_buffer, |
403 | config, |
404 | ) |
405 | } |
406 | |
407 | fn new_inner<T: Instance>( |
408 | _peri: impl Peripheral<P = T> + 'd, |
409 | rx: Option<PeripheralRef<'d, AnyPin>>, |
410 | tx: Option<PeripheralRef<'d, AnyPin>>, |
411 | rts: Option<PeripheralRef<'d, AnyPin>>, |
412 | cts: Option<PeripheralRef<'d, AnyPin>>, |
413 | de: Option<PeripheralRef<'d, AnyPin>>, |
414 | tx_buffer: &'d mut [u8], |
415 | rx_buffer: &'d mut [u8], |
416 | config: Config, |
417 | ) -> Result<Self, ConfigError> { |
418 | let info = T::info(); |
419 | let state = T::buffered_state(); |
420 | let kernel_clock = T::frequency(); |
421 | |
422 | state.half_duplex_readback.store( |
423 | config.duplex == Duplex::Half(HalfDuplexReadback::Readback), |
424 | Ordering::Relaxed, |
425 | ); |
426 | |
427 | let mut this = Self { |
428 | rx: BufferedUartRx { |
429 | info, |
430 | state, |
431 | kernel_clock, |
432 | rx, |
433 | rts, |
434 | is_borrowed: false, |
435 | }, |
436 | tx: BufferedUartTx { |
437 | info, |
438 | state, |
439 | kernel_clock, |
440 | tx, |
441 | cts, |
442 | de, |
443 | is_borrowed: false, |
444 | }, |
445 | }; |
446 | this.enable_and_configure(tx_buffer, rx_buffer, &config)?; |
447 | Ok(this) |
448 | } |
449 | |
450 | fn enable_and_configure( |
451 | &mut self, |
452 | tx_buffer: &'d mut [u8], |
453 | rx_buffer: &'d mut [u8], |
454 | config: &Config, |
455 | ) -> Result<(), ConfigError> { |
456 | let info = self.rx.info; |
457 | let state = self.rx.state; |
458 | state.tx_rx_refcount.store(2, Ordering::Relaxed); |
459 | |
460 | info.rcc.enable_and_reset(); |
461 | |
462 | let len = tx_buffer.len(); |
463 | unsafe { state.tx_buf.init(tx_buffer.as_mut_ptr(), len) }; |
464 | let len = rx_buffer.len(); |
465 | unsafe { state.rx_buf.init(rx_buffer.as_mut_ptr(), len) }; |
466 | |
467 | info.regs.cr3().write(|w| { |
468 | w.set_rtse(self.rx.rts.is_some()); |
469 | w.set_ctse(self.tx.cts.is_some()); |
470 | #[cfg (not(any(usart_v1, usart_v2)))] |
471 | w.set_dem(self.tx.de.is_some()); |
472 | w.set_hdsel(config.duplex.is_half()); |
473 | }); |
474 | configure(info, self.rx.kernel_clock, &config, true, true)?; |
475 | |
476 | info.regs.cr1().modify(|w| { |
477 | w.set_rxneie(true); |
478 | w.set_idleie(true); |
479 | |
480 | if config.duplex.is_half() { |
481 | // The te and re bits will be set by write, read and flush methods. |
482 | // Receiver should be enabled by default for Half-Duplex. |
483 | w.set_te(false); |
484 | w.set_re(true); |
485 | } |
486 | }); |
487 | |
488 | info.interrupt.unpend(); |
489 | unsafe { info.interrupt.enable() }; |
490 | |
491 | Ok(()) |
492 | } |
493 | |
494 | /// Split the driver into a Tx and Rx part (useful for sending to separate tasks) |
495 | pub fn split(self) -> (BufferedUartTx<'d>, BufferedUartRx<'d>) { |
496 | (self.tx, self.rx) |
497 | } |
498 | |
499 | /// Split the Uart into a transmitter and receiver, |
500 | /// which is particularly useful when having two tasks correlating to |
501 | /// transmitting and receiving. |
502 | pub fn split_ref(&mut self) -> (BufferedUartTx<'_>, BufferedUartRx<'_>) { |
503 | ( |
504 | BufferedUartTx { |
505 | info: self.tx.info, |
506 | state: self.tx.state, |
507 | kernel_clock: self.tx.kernel_clock, |
508 | tx: self.tx.tx.as_mut().map(PeripheralRef::reborrow), |
509 | cts: self.tx.cts.as_mut().map(PeripheralRef::reborrow), |
510 | de: self.tx.de.as_mut().map(PeripheralRef::reborrow), |
511 | is_borrowed: true, |
512 | }, |
513 | BufferedUartRx { |
514 | info: self.rx.info, |
515 | state: self.rx.state, |
516 | kernel_clock: self.rx.kernel_clock, |
517 | rx: self.rx.rx.as_mut().map(PeripheralRef::reborrow), |
518 | rts: self.rx.rts.as_mut().map(PeripheralRef::reborrow), |
519 | is_borrowed: true, |
520 | }, |
521 | ) |
522 | } |
523 | |
524 | /// Reconfigure the driver |
525 | pub fn set_config(&mut self, config: &Config) -> Result<(), ConfigError> { |
526 | reconfigure(self.rx.info, self.rx.kernel_clock, config)?; |
527 | |
528 | self.rx.info.regs.cr1().modify(|w| { |
529 | w.set_rxneie(true); |
530 | w.set_idleie(true); |
531 | }); |
532 | |
533 | Ok(()) |
534 | } |
535 | |
536 | /// Send break character |
537 | pub fn send_break(&self) { |
538 | self.tx.send_break() |
539 | } |
540 | |
541 | /// Set baudrate |
542 | pub fn set_baudrate(&self, baudrate: u32) -> Result<(), ConfigError> { |
543 | self.tx.set_baudrate(baudrate)?; |
544 | self.rx.set_baudrate(baudrate)?; |
545 | Ok(()) |
546 | } |
547 | } |
548 | |
549 | impl<'d> BufferedUartRx<'d> { |
550 | async fn read(&self, buf: &mut [u8]) -> Result<usize, Error> { |
551 | poll_fn(move |cx| { |
552 | let state = self.state; |
553 | let mut rx_reader = unsafe { state.rx_buf.reader() }; |
554 | let data = rx_reader.pop_slice(); |
555 | |
556 | if !data.is_empty() { |
557 | let len = data.len().min(buf.len()); |
558 | buf[..len].copy_from_slice(&data[..len]); |
559 | |
560 | let do_pend = state.rx_buf.is_full(); |
561 | rx_reader.pop_done(len); |
562 | |
563 | if do_pend { |
564 | self.info.interrupt.pend(); |
565 | } |
566 | |
567 | return Poll::Ready(Ok(len)); |
568 | } |
569 | |
570 | state.rx_waker.register(cx.waker()); |
571 | Poll::Pending |
572 | }) |
573 | .await |
574 | } |
575 | |
576 | fn blocking_read(&self, buf: &mut [u8]) -> Result<usize, Error> { |
577 | loop { |
578 | let state = self.state; |
579 | let mut rx_reader = unsafe { state.rx_buf.reader() }; |
580 | let data = rx_reader.pop_slice(); |
581 | |
582 | if !data.is_empty() { |
583 | let len = data.len().min(buf.len()); |
584 | buf[..len].copy_from_slice(&data[..len]); |
585 | |
586 | let do_pend = state.rx_buf.is_full(); |
587 | rx_reader.pop_done(len); |
588 | |
589 | if do_pend { |
590 | self.info.interrupt.pend(); |
591 | } |
592 | |
593 | return Ok(len); |
594 | } |
595 | } |
596 | } |
597 | |
598 | async fn fill_buf(&self) -> Result<&[u8], Error> { |
599 | poll_fn(move |cx| { |
600 | let state = self.state; |
601 | let mut rx_reader = unsafe { state.rx_buf.reader() }; |
602 | let (p, n) = rx_reader.pop_buf(); |
603 | if n == 0 { |
604 | state.rx_waker.register(cx.waker()); |
605 | return Poll::Pending; |
606 | } |
607 | |
608 | let buf = unsafe { slice::from_raw_parts(p, n) }; |
609 | Poll::Ready(Ok(buf)) |
610 | }) |
611 | .await |
612 | } |
613 | |
614 | fn consume(&self, amt: usize) { |
615 | let state = self.state; |
616 | let mut rx_reader = unsafe { state.rx_buf.reader() }; |
617 | let full = state.rx_buf.is_full(); |
618 | rx_reader.pop_done(amt); |
619 | if full { |
620 | self.info.interrupt.pend(); |
621 | } |
622 | } |
623 | |
624 | /// we are ready to read if there is data in the buffer |
625 | fn read_ready(&mut self) -> Result<bool, Error> { |
626 | let state = self.state; |
627 | Ok(!state.rx_buf.is_empty()) |
628 | } |
629 | |
630 | /// Reconfigure the driver |
631 | pub fn set_config(&mut self, config: &Config) -> Result<(), ConfigError> { |
632 | reconfigure(self.info, self.kernel_clock, config)?; |
633 | |
634 | self.info.regs.cr1().modify(|w| { |
635 | w.set_rxneie(true); |
636 | w.set_idleie(true); |
637 | }); |
638 | |
639 | Ok(()) |
640 | } |
641 | |
642 | /// Set baudrate |
643 | pub fn set_baudrate(&self, baudrate: u32) -> Result<(), ConfigError> { |
644 | set_baudrate(self.info, self.kernel_clock, baudrate) |
645 | } |
646 | } |
647 | |
648 | impl<'d> BufferedUartTx<'d> { |
649 | async fn write(&self, buf: &[u8]) -> Result<usize, Error> { |
650 | poll_fn(move |cx| { |
651 | let state = self.state; |
652 | state.tx_done.store(false, Ordering::Release); |
653 | |
654 | let empty = state.tx_buf.is_empty(); |
655 | |
656 | let mut tx_writer = unsafe { state.tx_buf.writer() }; |
657 | let data = tx_writer.push_slice(); |
658 | if data.is_empty() { |
659 | state.tx_waker.register(cx.waker()); |
660 | return Poll::Pending; |
661 | } |
662 | |
663 | let n = data.len().min(buf.len()); |
664 | data[..n].copy_from_slice(&buf[..n]); |
665 | tx_writer.push_done(n); |
666 | |
667 | if empty { |
668 | self.info.interrupt.pend(); |
669 | } |
670 | |
671 | Poll::Ready(Ok(n)) |
672 | }) |
673 | .await |
674 | } |
675 | |
676 | async fn flush(&self) -> Result<(), Error> { |
677 | poll_fn(move |cx| { |
678 | let state = self.state; |
679 | |
680 | if !state.tx_done.load(Ordering::Acquire) { |
681 | state.tx_waker.register(cx.waker()); |
682 | return Poll::Pending; |
683 | } |
684 | |
685 | Poll::Ready(Ok(())) |
686 | }) |
687 | .await |
688 | } |
689 | |
690 | fn blocking_write(&self, buf: &[u8]) -> Result<usize, Error> { |
691 | loop { |
692 | let state = self.state; |
693 | let empty = state.tx_buf.is_empty(); |
694 | |
695 | let mut tx_writer = unsafe { state.tx_buf.writer() }; |
696 | let data = tx_writer.push_slice(); |
697 | if !data.is_empty() { |
698 | let n = data.len().min(buf.len()); |
699 | data[..n].copy_from_slice(&buf[..n]); |
700 | tx_writer.push_done(n); |
701 | |
702 | if empty { |
703 | self.info.interrupt.pend(); |
704 | } |
705 | |
706 | return Ok(n); |
707 | } |
708 | } |
709 | } |
710 | |
711 | fn blocking_flush(&self) -> Result<(), Error> { |
712 | loop { |
713 | let state = self.state; |
714 | if state.tx_buf.is_empty() { |
715 | return Ok(()); |
716 | } |
717 | } |
718 | } |
719 | |
720 | /// Reconfigure the driver |
721 | pub fn set_config(&mut self, config: &Config) -> Result<(), ConfigError> { |
722 | reconfigure(self.info, self.kernel_clock, config)?; |
723 | |
724 | self.info.regs.cr1().modify(|w| { |
725 | w.set_rxneie(true); |
726 | w.set_idleie(true); |
727 | }); |
728 | |
729 | Ok(()) |
730 | } |
731 | |
732 | /// Send break character |
733 | pub fn send_break(&self) { |
734 | send_break(&self.info.regs); |
735 | } |
736 | |
737 | /// Set baudrate |
738 | pub fn set_baudrate(&self, baudrate: u32) -> Result<(), ConfigError> { |
739 | set_baudrate(self.info, self.kernel_clock, baudrate) |
740 | } |
741 | } |
742 | |
743 | impl<'d> Drop for BufferedUartRx<'d> { |
744 | fn drop(&mut self) { |
745 | if !self.is_borrowed { |
746 | let state: &'static State = self.state; |
747 | unsafe { |
748 | state.rx_buf.deinit(); |
749 | |
750 | // TX is inactive if the the buffer is not available. |
751 | // We can now unregister the interrupt handler |
752 | if state.tx_buf.len() == 0 { |
753 | self.info.interrupt.disable(); |
754 | } |
755 | } |
756 | |
757 | self.rx.as_ref().map(|x: &PeripheralRef<'_, AnyPin>| x.set_as_disconnected()); |
758 | self.rts.as_ref().map(|x: &PeripheralRef<'_, AnyPin>| x.set_as_disconnected()); |
759 | drop_tx_rx(self.info, state); |
760 | } |
761 | } |
762 | } |
763 | |
764 | impl<'d> Drop for BufferedUartTx<'d> { |
765 | fn drop(&mut self) { |
766 | if !self.is_borrowed { |
767 | let state: &'static State = self.state; |
768 | unsafe { |
769 | state.tx_buf.deinit(); |
770 | |
771 | // RX is inactive if the the buffer is not available. |
772 | // We can now unregister the interrupt handler |
773 | if state.rx_buf.len() == 0 { |
774 | self.info.interrupt.disable(); |
775 | } |
776 | } |
777 | |
778 | self.tx.as_ref().map(|x: &PeripheralRef<'_, AnyPin>| x.set_as_disconnected()); |
779 | self.cts.as_ref().map(|x: &PeripheralRef<'_, AnyPin>| x.set_as_disconnected()); |
780 | self.de.as_ref().map(|x: &PeripheralRef<'_, AnyPin>| x.set_as_disconnected()); |
781 | drop_tx_rx(self.info, state); |
782 | } |
783 | } |
784 | } |
785 | |
786 | fn drop_tx_rx(info: &Info, state: &State) { |
787 | // We cannot use atomic subtraction here, because it's not supported for all targets |
788 | let is_last_drop: bool = critical_section::with(|_| { |
789 | let refcount: u8 = state.tx_rx_refcount.load(order:Ordering::Relaxed); |
790 | assert!(refcount >= 1); |
791 | state.tx_rx_refcount.store(val:refcount - 1, order:Ordering::Relaxed); |
792 | refcount == 1 |
793 | }); |
794 | if is_last_drop { |
795 | info.rcc.disable(); |
796 | } |
797 | } |
798 | |
799 | impl<'d> embedded_io_async::ErrorType for BufferedUart<'d> { |
800 | type Error = Error; |
801 | } |
802 | |
803 | impl<'d> embedded_io_async::ErrorType for BufferedUartRx<'d> { |
804 | type Error = Error; |
805 | } |
806 | |
807 | impl<'d> embedded_io_async::ErrorType for BufferedUartTx<'d> { |
808 | type Error = Error; |
809 | } |
810 | |
811 | impl<'d> embedded_io_async::Read for BufferedUart<'d> { |
812 | async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> { |
813 | self.rx.read(buf).await |
814 | } |
815 | } |
816 | |
817 | impl<'d> embedded_io_async::Read for BufferedUartRx<'d> { |
818 | async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> { |
819 | Self::read(self, buf).await |
820 | } |
821 | } |
822 | |
823 | impl<'d> embedded_io_async::ReadReady for BufferedUart<'d> { |
824 | fn read_ready(&mut self) -> Result<bool, Self::Error> { |
825 | BufferedUartRx::<'d>::read_ready(&mut self.rx) |
826 | } |
827 | } |
828 | |
829 | impl<'d> embedded_io_async::ReadReady for BufferedUartRx<'d> { |
830 | fn read_ready(&mut self) -> Result<bool, Self::Error> { |
831 | Self::read_ready(self) |
832 | } |
833 | } |
834 | |
835 | impl<'d> embedded_io_async::BufRead for BufferedUart<'d> { |
836 | async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> { |
837 | self.rx.fill_buf().await |
838 | } |
839 | |
840 | fn consume(&mut self, amt: usize) { |
841 | self.rx.consume(amt) |
842 | } |
843 | } |
844 | |
845 | impl<'d> embedded_io_async::BufRead for BufferedUartRx<'d> { |
846 | async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> { |
847 | Self::fill_buf(self).await |
848 | } |
849 | |
850 | fn consume(&mut self, amt: usize) { |
851 | Self::consume(self, amt) |
852 | } |
853 | } |
854 | |
855 | impl<'d> embedded_io_async::Write for BufferedUart<'d> { |
856 | async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> { |
857 | self.tx.write(buf).await |
858 | } |
859 | |
860 | async fn flush(&mut self) -> Result<(), Self::Error> { |
861 | self.tx.flush().await |
862 | } |
863 | } |
864 | |
865 | impl<'d> embedded_io_async::Write for BufferedUartTx<'d> { |
866 | async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> { |
867 | Self::write(self, buf).await |
868 | } |
869 | |
870 | async fn flush(&mut self) -> Result<(), Self::Error> { |
871 | Self::flush(self).await |
872 | } |
873 | } |
874 | |
875 | impl<'d> embedded_io::Read for BufferedUart<'d> { |
876 | fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> { |
877 | self.rx.blocking_read(buf) |
878 | } |
879 | } |
880 | |
881 | impl<'d> embedded_io::Read for BufferedUartRx<'d> { |
882 | fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> { |
883 | self.blocking_read(buf) |
884 | } |
885 | } |
886 | |
887 | impl<'d> embedded_io::Write for BufferedUart<'d> { |
888 | fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> { |
889 | self.tx.blocking_write(buf) |
890 | } |
891 | |
892 | fn flush(&mut self) -> Result<(), Self::Error> { |
893 | self.tx.blocking_flush() |
894 | } |
895 | } |
896 | |
897 | impl<'d> embedded_io::Write for BufferedUartTx<'d> { |
898 | fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> { |
899 | Self::blocking_write(self, buf) |
900 | } |
901 | |
902 | fn flush(&mut self) -> Result<(), Self::Error> { |
903 | Self::blocking_flush(self) |
904 | } |
905 | } |
906 | |
907 | impl<'d> embedded_hal_02::serial::Read<u8> for BufferedUartRx<'d> { |
908 | type Error = Error; |
909 | |
910 | fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> { |
911 | let r = self.info.regs; |
912 | unsafe { |
913 | let sr = sr(r).read(); |
914 | if sr.pe() { |
915 | rdr(r).read_volatile(); |
916 | Err(nb::Error::Other(Error::Parity)) |
917 | } else if sr.fe() { |
918 | rdr(r).read_volatile(); |
919 | Err(nb::Error::Other(Error::Framing)) |
920 | } else if sr.ne() { |
921 | rdr(r).read_volatile(); |
922 | Err(nb::Error::Other(Error::Noise)) |
923 | } else if sr.ore() { |
924 | rdr(r).read_volatile(); |
925 | Err(nb::Error::Other(Error::Overrun)) |
926 | } else if sr.rxne() { |
927 | Ok(rdr(r).read_volatile()) |
928 | } else { |
929 | Err(nb::Error::WouldBlock) |
930 | } |
931 | } |
932 | } |
933 | } |
934 | |
935 | impl<'d> embedded_hal_02::blocking::serial::Write<u8> for BufferedUartTx<'d> { |
936 | type Error = Error; |
937 | |
938 | fn bwrite_all(&mut self, mut buffer: &[u8]) -> Result<(), Self::Error> { |
939 | while !buffer.is_empty() { |
940 | match self.blocking_write(buf:buffer) { |
941 | Ok(0) => panic!("zero-length write." ), |
942 | Ok(n: usize) => buffer = &buffer[n..], |
943 | Err(e: Error) => return Err(e), |
944 | } |
945 | } |
946 | Ok(()) |
947 | } |
948 | |
949 | fn bflush(&mut self) -> Result<(), Self::Error> { |
950 | self.blocking_flush() |
951 | } |
952 | } |
953 | |
954 | impl<'d> embedded_hal_02::serial::Read<u8> for BufferedUart<'d> { |
955 | type Error = Error; |
956 | |
957 | fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> { |
958 | embedded_hal_02::serial::Read::read(&mut self.rx) |
959 | } |
960 | } |
961 | |
962 | impl<'d> embedded_hal_02::blocking::serial::Write<u8> for BufferedUart<'d> { |
963 | type Error = Error; |
964 | |
965 | fn bwrite_all(&mut self, mut buffer: &[u8]) -> Result<(), Self::Error> { |
966 | while !buffer.is_empty() { |
967 | match self.tx.blocking_write(buf:buffer) { |
968 | Ok(0) => panic!("zero-length write." ), |
969 | Ok(n: usize) => buffer = &buffer[n..], |
970 | Err(e: Error) => return Err(e), |
971 | } |
972 | } |
973 | Ok(()) |
974 | } |
975 | |
976 | fn bflush(&mut self) -> Result<(), Self::Error> { |
977 | self.tx.blocking_flush() |
978 | } |
979 | } |
980 | |
981 | impl<'d> embedded_hal_nb::serial::ErrorType for BufferedUart<'d> { |
982 | type Error = Error; |
983 | } |
984 | |
985 | impl<'d> embedded_hal_nb::serial::ErrorType for BufferedUartTx<'d> { |
986 | type Error = Error; |
987 | } |
988 | |
989 | impl<'d> embedded_hal_nb::serial::ErrorType for BufferedUartRx<'d> { |
990 | type Error = Error; |
991 | } |
992 | |
993 | impl<'d> embedded_hal_nb::serial::Read for BufferedUartRx<'d> { |
994 | fn read(&mut self) -> nb::Result<u8, Self::Error> { |
995 | embedded_hal_02::serial::Read::read(self) |
996 | } |
997 | } |
998 | |
999 | impl<'d> embedded_hal_nb::serial::Write for BufferedUartTx<'d> { |
1000 | fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> { |
1001 | self.blocking_write(&[char]).map(drop).map_err(op:nb::Error::Other) |
1002 | } |
1003 | |
1004 | fn flush(&mut self) -> nb::Result<(), Self::Error> { |
1005 | self.blocking_flush().map_err(op:nb::Error::Other) |
1006 | } |
1007 | } |
1008 | |
1009 | impl<'d> embedded_hal_nb::serial::Read for BufferedUart<'d> { |
1010 | fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> { |
1011 | embedded_hal_02::serial::Read::read(&mut self.rx) |
1012 | } |
1013 | } |
1014 | |
1015 | impl<'d> embedded_hal_nb::serial::Write for BufferedUart<'d> { |
1016 | fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> { |
1017 | self.tx.blocking_write(&[char]).map(drop).map_err(op:nb::Error::Other) |
1018 | } |
1019 | |
1020 | fn flush(&mut self) -> nb::Result<(), Self::Error> { |
1021 | self.tx.blocking_flush().map_err(op:nb::Error::Other) |
1022 | } |
1023 | } |
1024 | |