| 1 | // Copyright Mozilla Foundation. See the COPYRIGHT |
| 2 | // file at the top-level directory of this distribution. |
| 3 | // |
| 4 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| 5 | // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 6 | // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
| 7 | // option. This file may not be copied, modified, or distributed |
| 8 | // except according to those terms. |
| 9 | |
| 10 | // It's assumed that in due course Rust will have explicit SIMD but will not |
| 11 | // be good at run-time selection of SIMD vs. no-SIMD. In such a future, |
| 12 | // x86_64 will always use SSE2 and 32-bit x86 will use SSE2 when compiled with |
| 13 | // a Mozilla-shipped rustc. SIMD support and especially detection on ARM is a |
| 14 | // mess. Under the circumstances, it seems to make sense to optimize the ALU |
| 15 | // case for ARMv7 rather than x86. Annoyingly, I was unable to get useful |
| 16 | // numbers of the actual ARMv7 CPU I have access to, because (thermal?) |
| 17 | // throttling kept interfering. Since Raspberry Pi 3 (ARMv8 core but running |
| 18 | // ARMv7 code) produced reproducible performance numbers, that's the ARM |
| 19 | // computer that this code ended up being optimized for in the ALU case. |
| 20 | // Less popular CPU architectures simply get the approach that was chosen based |
| 21 | // on Raspberry Pi 3 measurements. The UTF-16 and UTF-8 ALU cases take |
| 22 | // different approaches based on benchmarking on Raspberry Pi 3. |
| 23 | |
| 24 | #[cfg (all( |
| 25 | feature = "simd-accel" , |
| 26 | any( |
| 27 | target_feature = "sse2" , |
| 28 | all(target_endian = "little" , target_arch = "aarch64" ), |
| 29 | all(target_endian = "little" , target_feature = "neon" ) |
| 30 | ) |
| 31 | ))] |
| 32 | use crate::simd_funcs::*; |
| 33 | |
| 34 | cfg_if! { |
| 35 | if #[cfg(feature = "simd-accel" )] { |
| 36 | #[allow(unused_imports)] |
| 37 | use ::core::intrinsics::unlikely; |
| 38 | #[allow(unused_imports)] |
| 39 | use ::core::intrinsics::likely; |
| 40 | } else { |
| 41 | #[allow (dead_code)] |
| 42 | #[inline (always)] |
| 43 | fn unlikely(b: bool) -> bool { |
| 44 | b |
| 45 | } |
| 46 | #[allow (dead_code)] |
| 47 | #[inline (always)] |
| 48 | fn likely(b: bool) -> bool { |
| 49 | b |
| 50 | } |
| 51 | } |
| 52 | } |
| 53 | |
| 54 | // Safety invariants for masks: data & mask = 0 for valid ASCII or basic latin utf-16 |
| 55 | |
| 56 | // `as` truncates, so works on 32-bit, too. |
| 57 | #[allow (dead_code)] |
| 58 | pub const ASCII_MASK: usize = 0x8080_8080_8080_8080u64 as usize; |
| 59 | |
| 60 | // `as` truncates, so works on 32-bit, too. |
| 61 | #[allow (dead_code)] |
| 62 | pub const BASIC_LATIN_MASK: usize = 0xFF80_FF80_FF80_FF80u64 as usize; |
| 63 | |
| 64 | #[allow (unused_macros)] |
| 65 | macro_rules! ascii_naive { |
| 66 | ($name:ident, $src_unit:ty, $dst_unit:ty) => { |
| 67 | /// Safety: src and dst must have len_unit elements and be aligned |
| 68 | /// Safety-usable invariant: will return Some() when it fails |
| 69 | /// to convert. The first value will be a u8 that is > 127. |
| 70 | #[inline(always)] |
| 71 | pub unsafe fn $name( |
| 72 | src: *const $src_unit, |
| 73 | dst: *mut $dst_unit, |
| 74 | len: usize, |
| 75 | ) -> Option<($src_unit, usize)> { |
| 76 | // Yes, manually omitting the bound check here matters |
| 77 | // a lot for perf. |
| 78 | for i in 0..len { |
| 79 | // Safety: len invariant used here |
| 80 | let code_unit = *(src.add(i)); |
| 81 | // Safety: Upholds safety-usable invariant here |
| 82 | if code_unit > 127 { |
| 83 | return Some((code_unit, i)); |
| 84 | } |
| 85 | // Safety: len invariant used here |
| 86 | *(dst.add(i)) = code_unit as $dst_unit; |
| 87 | } |
| 88 | return None; |
| 89 | } |
| 90 | }; |
| 91 | } |
| 92 | |
| 93 | #[allow (unused_macros)] |
| 94 | macro_rules! ascii_alu { |
| 95 | ($name:ident, |
| 96 | // safety invariant: src/dst MUST be u8 |
| 97 | $src_unit:ty, |
| 98 | $dst_unit:ty, |
| 99 | // Safety invariant: stride_fn must consume and produce two usizes, and return the index of the first non-ascii when it fails |
| 100 | $stride_fn:ident) => { |
| 101 | /// Safety: src and dst must have len elements, src is valid for read, dst is valid for |
| 102 | /// write |
| 103 | /// Safety-usable invariant: will return Some() when it fails |
| 104 | /// to convert. The first value will be a u8 that is > 127. |
| 105 | #[cfg_attr(feature = "cargo-clippy" , allow(never_loop, cast_ptr_alignment))] |
| 106 | #[inline(always)] |
| 107 | pub unsafe fn $name( |
| 108 | src: *const $src_unit, |
| 109 | dst: *mut $dst_unit, |
| 110 | len: usize, |
| 111 | ) -> Option<($src_unit, usize)> { |
| 112 | let mut offset = 0usize; |
| 113 | // This loop is only broken out of as a `goto` forward |
| 114 | loop { |
| 115 | // Safety: until_alignment becomes the number of bytes we need to munch until we are aligned to usize |
| 116 | let mut until_alignment = { |
| 117 | // Check if the other unit aligns if we move the narrower unit |
| 118 | // to alignment. |
| 119 | // if ::core::mem::size_of::<$src_unit>() == ::core::mem::size_of::<$dst_unit>() { |
| 120 | // ascii_to_ascii |
| 121 | let src_alignment = (src as usize) & ALU_ALIGNMENT_MASK; |
| 122 | let dst_alignment = (dst as usize) & ALU_ALIGNMENT_MASK; |
| 123 | if src_alignment != dst_alignment { |
| 124 | // Safety: bails early and ends up in the naïve branch where usize-alignment doesn't matter |
| 125 | break; |
| 126 | } |
| 127 | (ALU_ALIGNMENT - src_alignment) & ALU_ALIGNMENT_MASK |
| 128 | // } else if ::core::mem::size_of::<$src_unit>() < ::core::mem::size_of::<$dst_unit>() { |
| 129 | // ascii_to_basic_latin |
| 130 | // let src_until_alignment = (ALIGNMENT - ((src as usize) & ALIGNMENT_MASK)) & ALIGNMENT_MASK; |
| 131 | // if (dst.add(src_until_alignment) as usize) & ALIGNMENT_MASK != 0 { |
| 132 | // break; |
| 133 | // } |
| 134 | // src_until_alignment |
| 135 | // } else { |
| 136 | // basic_latin_to_ascii |
| 137 | // let dst_until_alignment = (ALIGNMENT - ((dst as usize) & ALIGNMENT_MASK)) & ALIGNMENT_MASK; |
| 138 | // if (src.add(dst_until_alignment) as usize) & ALIGNMENT_MASK != 0 { |
| 139 | // break; |
| 140 | // } |
| 141 | // dst_until_alignment |
| 142 | // } |
| 143 | }; |
| 144 | if until_alignment + ALU_STRIDE_SIZE <= len { |
| 145 | // Moving pointers to alignment seems to be a pessimization on |
| 146 | // x86_64 for operations that have UTF-16 as the internal |
| 147 | // Unicode representation. However, since it seems to be a win |
| 148 | // on ARM (tested ARMv7 code running on ARMv8 [rpi3]), except |
| 149 | // mixed results when encoding from UTF-16 and since x86 and |
| 150 | // x86_64 should be using SSE2 in due course, keeping the move |
| 151 | // to alignment here. It would be good to test on more ARM CPUs |
| 152 | // and on real MIPS and POWER hardware. |
| 153 | // |
| 154 | // Safety: This is the naïve code once again, for `until_alignment` bytes |
| 155 | while until_alignment != 0 { |
| 156 | let code_unit = *(src.add(offset)); |
| 157 | if code_unit > 127 { |
| 158 | // Safety: Upholds safety-usable invariant here |
| 159 | return Some((code_unit, offset)); |
| 160 | } |
| 161 | *(dst.add(offset)) = code_unit as $dst_unit; |
| 162 | // Safety: offset is the number of bytes copied so far |
| 163 | offset += 1; |
| 164 | until_alignment -= 1; |
| 165 | } |
| 166 | let len_minus_stride = len - ALU_STRIDE_SIZE; |
| 167 | loop { |
| 168 | // Safety: num_ascii is known to be a byte index of a non-ascii byte due to stride_fn's invariant |
| 169 | if let Some(num_ascii) = $stride_fn( |
| 170 | // Safety: These are known to be valid and aligned since we have at |
| 171 | // least ALU_STRIDE_SIZE data in these buffers, and offset is the |
| 172 | // number of elements copied so far, which according to the |
| 173 | // until_alignment calculation above will cause both src and dst to be |
| 174 | // aligned to usize after this add |
| 175 | src.add(offset) as *const usize, |
| 176 | dst.add(offset) as *mut usize, |
| 177 | ) { |
| 178 | offset += num_ascii; |
| 179 | // Safety: Upholds safety-usable invariant here by indexing into non-ascii byte |
| 180 | return Some((*(src.add(offset)), offset)); |
| 181 | } |
| 182 | // Safety: offset continues to be the number of bytes copied so far, and |
| 183 | // maintains usize alignment for the next loop iteration |
| 184 | offset += ALU_STRIDE_SIZE; |
| 185 | // Safety: This is `offset > len - stride. This loop will continue as long as |
| 186 | // `offset <= len - stride`, which means there are `stride` bytes to still be read. |
| 187 | if offset > len_minus_stride { |
| 188 | break; |
| 189 | } |
| 190 | } |
| 191 | } |
| 192 | break; |
| 193 | } |
| 194 | |
| 195 | // Safety: This is the naïve code, same as ascii_naive, and has no requirements |
| 196 | // other than src/dst being valid for the the right lens |
| 197 | while offset < len { |
| 198 | // Safety: len invariant used here |
| 199 | let code_unit = *(src.add(offset)); |
| 200 | if code_unit > 127 { |
| 201 | // Safety: Upholds safety-usable invariant here |
| 202 | return Some((code_unit, offset)); |
| 203 | } |
| 204 | // Safety: len invariant used here |
| 205 | *(dst.add(offset)) = code_unit as $dst_unit; |
| 206 | offset += 1; |
| 207 | } |
| 208 | None |
| 209 | } |
| 210 | }; |
| 211 | } |
| 212 | |
| 213 | #[allow (unused_macros)] |
| 214 | macro_rules! basic_latin_alu { |
| 215 | ($name:ident, |
| 216 | // safety invariant: use u8 for src/dest for ascii, and u16 for basic_latin |
| 217 | $src_unit:ty, |
| 218 | $dst_unit:ty, |
| 219 | // safety invariant: stride function must munch ALU_STRIDE_SIZE*size(src_unit) bytes off of src and |
| 220 | // write ALU_STRIDE_SIZE*size(dst_unit) bytes to dst |
| 221 | $stride_fn:ident) => { |
| 222 | /// Safety: src and dst must have len elements, src is valid for read, dst is valid for |
| 223 | /// write |
| 224 | /// Safety-usable invariant: will return Some() when it fails |
| 225 | /// to convert. The first value will be a u8 that is > 127. |
| 226 | #[cfg_attr( |
| 227 | feature = "cargo-clippy" , |
| 228 | allow(never_loop, cast_ptr_alignment, cast_lossless) |
| 229 | )] |
| 230 | #[inline(always)] |
| 231 | pub unsafe fn $name( |
| 232 | src: *const $src_unit, |
| 233 | dst: *mut $dst_unit, |
| 234 | len: usize, |
| 235 | ) -> Option<($src_unit, usize)> { |
| 236 | let mut offset = 0usize; |
| 237 | // This loop is only broken out of as a `goto` forward |
| 238 | loop { |
| 239 | // Safety: until_alignment becomes the number of bytes we need to munch from src/dest until we are aligned to usize |
| 240 | // We ensure basic-latin has the same alignment as ascii, starting with ascii since it is smaller. |
| 241 | let mut until_alignment = { |
| 242 | // Check if the other unit aligns if we move the narrower unit |
| 243 | // to alignment. |
| 244 | // if ::core::mem::size_of::<$src_unit>() == ::core::mem::size_of::<$dst_unit>() { |
| 245 | // ascii_to_ascii |
| 246 | // let src_alignment = (src as usize) & ALIGNMENT_MASK; |
| 247 | // let dst_alignment = (dst as usize) & ALIGNMENT_MASK; |
| 248 | // if src_alignment != dst_alignment { |
| 249 | // break; |
| 250 | // } |
| 251 | // (ALIGNMENT - src_alignment) & ALIGNMENT_MASK |
| 252 | // } else |
| 253 | if ::core::mem::size_of::<$src_unit>() < ::core::mem::size_of::<$dst_unit>() { |
| 254 | // ascii_to_basic_latin |
| 255 | let src_until_alignment = (ALU_ALIGNMENT |
| 256 | - ((src as usize) & ALU_ALIGNMENT_MASK)) |
| 257 | & ALU_ALIGNMENT_MASK; |
| 258 | if (dst.wrapping_add(src_until_alignment) as usize) & ALU_ALIGNMENT_MASK |
| 259 | != 0 |
| 260 | { |
| 261 | break; |
| 262 | } |
| 263 | src_until_alignment |
| 264 | } else { |
| 265 | // basic_latin_to_ascii |
| 266 | let dst_until_alignment = (ALU_ALIGNMENT |
| 267 | - ((dst as usize) & ALU_ALIGNMENT_MASK)) |
| 268 | & ALU_ALIGNMENT_MASK; |
| 269 | if (src.wrapping_add(dst_until_alignment) as usize) & ALU_ALIGNMENT_MASK |
| 270 | != 0 |
| 271 | { |
| 272 | break; |
| 273 | } |
| 274 | dst_until_alignment |
| 275 | } |
| 276 | }; |
| 277 | if until_alignment + ALU_STRIDE_SIZE <= len { |
| 278 | // Moving pointers to alignment seems to be a pessimization on |
| 279 | // x86_64 for operations that have UTF-16 as the internal |
| 280 | // Unicode representation. However, since it seems to be a win |
| 281 | // on ARM (tested ARMv7 code running on ARMv8 [rpi3]), except |
| 282 | // mixed results when encoding from UTF-16 and since x86 and |
| 283 | // x86_64 should be using SSE2 in due course, keeping the move |
| 284 | // to alignment here. It would be good to test on more ARM CPUs |
| 285 | // and on real MIPS and POWER hardware. |
| 286 | // |
| 287 | // Safety: This is the naïve code once again, for `until_alignment` bytes |
| 288 | while until_alignment != 0 { |
| 289 | let code_unit = *(src.add(offset)); |
| 290 | if code_unit > 127 { |
| 291 | // Safety: Upholds safety-usable invariant here |
| 292 | return Some((code_unit, offset)); |
| 293 | } |
| 294 | *(dst.add(offset)) = code_unit as $dst_unit; |
| 295 | // Safety: offset is the number of bytes copied so far |
| 296 | offset += 1; |
| 297 | until_alignment -= 1; |
| 298 | } |
| 299 | let len_minus_stride = len - ALU_STRIDE_SIZE; |
| 300 | loop { |
| 301 | if !$stride_fn( |
| 302 | // Safety: These are known to be valid and aligned since we have at |
| 303 | // least ALU_STRIDE_SIZE data in these buffers, and offset is the |
| 304 | // number of elements copied so far, which according to the |
| 305 | // until_alignment calculation above will cause both src and dst to be |
| 306 | // aligned to usize after this add |
| 307 | src.add(offset) as *const usize, |
| 308 | dst.add(offset) as *mut usize, |
| 309 | ) { |
| 310 | break; |
| 311 | } |
| 312 | // Safety: offset continues to be the number of bytes copied so far, and |
| 313 | // maintains usize alignment for the next loop iteration |
| 314 | offset += ALU_STRIDE_SIZE; |
| 315 | // Safety: This is `offset > len - stride. This loop will continue as long as |
| 316 | // `offset <= len - stride`, which means there are `stride` bytes to still be read. |
| 317 | if offset > len_minus_stride { |
| 318 | break; |
| 319 | } |
| 320 | } |
| 321 | } |
| 322 | break; |
| 323 | } |
| 324 | // Safety: This is the naïve code once again, for leftover bytes |
| 325 | while offset < len { |
| 326 | // Safety: len invariant used here |
| 327 | let code_unit = *(src.add(offset)); |
| 328 | if code_unit > 127 { |
| 329 | // Safety: Upholds safety-usable invariant here |
| 330 | return Some((code_unit, offset)); |
| 331 | } |
| 332 | // Safety: len invariant used here |
| 333 | *(dst.add(offset)) = code_unit as $dst_unit; |
| 334 | offset += 1; |
| 335 | } |
| 336 | None |
| 337 | } |
| 338 | }; |
| 339 | } |
| 340 | |
| 341 | #[allow (unused_macros)] |
| 342 | macro_rules! latin1_alu { |
| 343 | // safety invariant: stride function must munch ALU_STRIDE_SIZE*size(src_unit) bytes off of src and |
| 344 | // write ALU_STRIDE_SIZE*size(dst_unit) bytes to dst |
| 345 | ($name:ident, $src_unit:ty, $dst_unit:ty, $stride_fn:ident) => { |
| 346 | /// Safety: src and dst must have len elements, src is valid for read, dst is valid for |
| 347 | /// write |
| 348 | #[cfg_attr( |
| 349 | feature = "cargo-clippy" , |
| 350 | allow(never_loop, cast_ptr_alignment, cast_lossless) |
| 351 | )] |
| 352 | #[inline(always)] |
| 353 | pub unsafe fn $name(src: *const $src_unit, dst: *mut $dst_unit, len: usize) { |
| 354 | let mut offset = 0usize; |
| 355 | // This loop is only broken out of as a `goto` forward |
| 356 | loop { |
| 357 | // Safety: until_alignment becomes the number of bytes we need to munch from src/dest until we are aligned to usize |
| 358 | // We ensure the UTF-16 side has the same alignment as the Latin-1 side, starting with Latin-1 since it is smaller. |
| 359 | let mut until_alignment = { |
| 360 | if ::core::mem::size_of::<$src_unit>() < ::core::mem::size_of::<$dst_unit>() { |
| 361 | // unpack |
| 362 | let src_until_alignment = (ALU_ALIGNMENT |
| 363 | - ((src as usize) & ALU_ALIGNMENT_MASK)) |
| 364 | & ALU_ALIGNMENT_MASK; |
| 365 | if (dst.wrapping_add(src_until_alignment) as usize) & ALU_ALIGNMENT_MASK |
| 366 | != 0 |
| 367 | { |
| 368 | break; |
| 369 | } |
| 370 | src_until_alignment |
| 371 | } else { |
| 372 | // pack |
| 373 | let dst_until_alignment = (ALU_ALIGNMENT |
| 374 | - ((dst as usize) & ALU_ALIGNMENT_MASK)) |
| 375 | & ALU_ALIGNMENT_MASK; |
| 376 | if (src.wrapping_add(dst_until_alignment) as usize) & ALU_ALIGNMENT_MASK |
| 377 | != 0 |
| 378 | { |
| 379 | break; |
| 380 | } |
| 381 | dst_until_alignment |
| 382 | } |
| 383 | }; |
| 384 | if until_alignment + ALU_STRIDE_SIZE <= len { |
| 385 | // Safety: This is the naïve code once again, for `until_alignment` bytes |
| 386 | while until_alignment != 0 { |
| 387 | let code_unit = *(src.add(offset)); |
| 388 | *(dst.add(offset)) = code_unit as $dst_unit; |
| 389 | // Safety: offset is the number of bytes copied so far |
| 390 | offset += 1; |
| 391 | until_alignment -= 1; |
| 392 | } |
| 393 | let len_minus_stride = len - ALU_STRIDE_SIZE; |
| 394 | loop { |
| 395 | $stride_fn( |
| 396 | // Safety: These are known to be valid and aligned since we have at |
| 397 | // least ALU_STRIDE_SIZE data in these buffers, and offset is the |
| 398 | // number of elements copied so far, which according to the |
| 399 | // until_alignment calculation above will cause both src and dst to be |
| 400 | // aligned to usize after this add |
| 401 | src.add(offset) as *const usize, |
| 402 | dst.add(offset) as *mut usize, |
| 403 | ); |
| 404 | // Safety: offset continues to be the number of bytes copied so far, and |
| 405 | // maintains usize alignment for the next loop iteration |
| 406 | offset += ALU_STRIDE_SIZE; |
| 407 | // Safety: This is `offset > len - stride. This loop will continue as long as |
| 408 | // `offset <= len - stride`, which means there are `stride` bytes to still be read. |
| 409 | if offset > len_minus_stride { |
| 410 | break; |
| 411 | } |
| 412 | } |
| 413 | } |
| 414 | break; |
| 415 | } |
| 416 | // Safety: This is the naïve code once again, for leftover bytes |
| 417 | while offset < len { |
| 418 | // Safety: len invariant used here |
| 419 | let code_unit = *(src.add(offset)); |
| 420 | *(dst.add(offset)) = code_unit as $dst_unit; |
| 421 | offset += 1; |
| 422 | } |
| 423 | } |
| 424 | }; |
| 425 | } |
| 426 | |
| 427 | #[allow (unused_macros)] |
| 428 | macro_rules! ascii_simd_check_align { |
| 429 | ( |
| 430 | $name:ident, |
| 431 | $src_unit:ty, |
| 432 | $dst_unit:ty, |
| 433 | // Safety: This function must require aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
| 434 | $stride_both_aligned:ident, |
| 435 | // Safety: This function must require aligned/unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
| 436 | $stride_src_aligned:ident, |
| 437 | // Safety: This function must require unaligned/aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
| 438 | $stride_dst_aligned:ident, |
| 439 | // Safety: This function must require unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
| 440 | $stride_neither_aligned:ident |
| 441 | ) => { |
| 442 | /// Safety: src/dst must be valid for reads/writes of `len` elements of their units. |
| 443 | /// |
| 444 | /// Safety-usable invariant: will return Some() when it encounters non-ASCII, with the first element in the Some being |
| 445 | /// guaranteed to be non-ASCII (> 127), and the second being the offset where it is found |
| 446 | #[inline(always)] |
| 447 | pub unsafe fn $name( |
| 448 | src: *const $src_unit, |
| 449 | dst: *mut $dst_unit, |
| 450 | len: usize, |
| 451 | ) -> Option<($src_unit, usize)> { |
| 452 | let mut offset = 0usize; |
| 453 | // Safety: if this check succeeds we're valid for reading/writing at least `SIMD_STRIDE_SIZE` elements. |
| 454 | if SIMD_STRIDE_SIZE <= len { |
| 455 | let len_minus_stride = len - SIMD_STRIDE_SIZE; |
| 456 | // XXX Should we first process one stride unconditionally as unaligned to |
| 457 | // avoid the cost of the branchiness below if the first stride fails anyway? |
| 458 | // XXX Should we just use unaligned SSE2 access unconditionally? It seems that |
| 459 | // on Haswell, it would make sense to just use unaligned and not bother |
| 460 | // checking. Need to benchmark older architectures before deciding. |
| 461 | let dst_masked = (dst as usize) & SIMD_ALIGNMENT_MASK; |
| 462 | // Safety: checking whether src is aligned |
| 463 | if ((src as usize) & SIMD_ALIGNMENT_MASK) == 0 { |
| 464 | // Safety: Checking whether dst is aligned |
| 465 | if dst_masked == 0 { |
| 466 | loop { |
| 467 | // Safety: We're valid to read/write SIMD_STRIDE_SIZE elements and have the appropriate alignments |
| 468 | if !$stride_both_aligned(src.add(offset), dst.add(offset)) { |
| 469 | break; |
| 470 | } |
| 471 | offset += SIMD_STRIDE_SIZE; |
| 472 | // Safety: This is `offset > len - SIMD_STRIDE_SIZE` which means we always have at least `SIMD_STRIDE_SIZE` elements to munch next time. |
| 473 | if offset > len_minus_stride { |
| 474 | break; |
| 475 | } |
| 476 | } |
| 477 | } else { |
| 478 | loop { |
| 479 | // Safety: We're valid to read/write SIMD_STRIDE_SIZE elements and have the appropriate alignments |
| 480 | if !$stride_src_aligned(src.add(offset), dst.add(offset)) { |
| 481 | break; |
| 482 | } |
| 483 | offset += SIMD_STRIDE_SIZE; |
| 484 | // Safety: This is `offset > len - SIMD_STRIDE_SIZE` which means we always have at least `SIMD_STRIDE_SIZE` elements to munch next time. |
| 485 | if offset > len_minus_stride { |
| 486 | break; |
| 487 | } |
| 488 | } |
| 489 | } |
| 490 | } else { |
| 491 | if dst_masked == 0 { |
| 492 | loop { |
| 493 | // Safety: We're valid to read/write SIMD_STRIDE_SIZE elements and have the appropriate alignments |
| 494 | if !$stride_dst_aligned(src.add(offset), dst.add(offset)) { |
| 495 | break; |
| 496 | } |
| 497 | offset += SIMD_STRIDE_SIZE; |
| 498 | // Safety: This is `offset > len - SIMD_STRIDE_SIZE` which means we always have at least `SIMD_STRIDE_SIZE` elements to munch next time. |
| 499 | if offset > len_minus_stride { |
| 500 | break; |
| 501 | } |
| 502 | } |
| 503 | } else { |
| 504 | loop { |
| 505 | // Safety: We're valid to read/write SIMD_STRIDE_SIZE elements and have the appropriate alignments |
| 506 | if !$stride_neither_aligned(src.add(offset), dst.add(offset)) { |
| 507 | break; |
| 508 | } |
| 509 | offset += SIMD_STRIDE_SIZE; |
| 510 | // Safety: This is `offset > len - SIMD_STRIDE_SIZE` which means we always have at least `SIMD_STRIDE_SIZE` elements to munch next time. |
| 511 | if offset > len_minus_stride { |
| 512 | break; |
| 513 | } |
| 514 | } |
| 515 | } |
| 516 | } |
| 517 | } |
| 518 | while offset < len { |
| 519 | // Safety: uses len invariant here and below |
| 520 | let code_unit = *(src.add(offset)); |
| 521 | if code_unit > 127 { |
| 522 | // Safety: upholds safety-usable invariant |
| 523 | return Some((code_unit, offset)); |
| 524 | } |
| 525 | *(dst.add(offset)) = code_unit as $dst_unit; |
| 526 | offset += 1; |
| 527 | } |
| 528 | None |
| 529 | } |
| 530 | }; |
| 531 | } |
| 532 | |
| 533 | #[allow (unused_macros)] |
| 534 | macro_rules! ascii_simd_check_align_unrolled { |
| 535 | ( |
| 536 | $name:ident, |
| 537 | $src_unit:ty, |
| 538 | $dst_unit:ty, |
| 539 | // Safety: This function must require aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
| 540 | $stride_both_aligned:ident, |
| 541 | // Safety: This function must require aligned/unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
| 542 | $stride_src_aligned:ident, |
| 543 | // Safety: This function must require unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
| 544 | $stride_neither_aligned:ident, |
| 545 | // Safety: This function must require aligned src/dest that are valid for reading/writing 2*SIMD_STRIDE_SIZE src_unit/dst_unit |
| 546 | $double_stride_both_aligned:ident, |
| 547 | // Safety: This function must require aligned/unaligned src/dest that are valid for reading/writing 2*SIMD_STRIDE_SIZE src_unit/dst_unit |
| 548 | $double_stride_src_aligned:ident |
| 549 | ) => { |
| 550 | /// Safety: src/dst must be valid for reads/writes of `len` elements of their units. |
| 551 | /// |
| 552 | /// Safety-usable invariant: will return Some() when it encounters non-ASCII, with the first element in the Some being |
| 553 | /// guaranteed to be non-ASCII (> 127), and the second being the offset where it is found #[inline(always)] |
| 554 | pub unsafe fn $name( |
| 555 | src: *const $src_unit, |
| 556 | dst: *mut $dst_unit, |
| 557 | len: usize, |
| 558 | ) -> Option<($src_unit, usize)> { |
| 559 | let unit_size = ::core::mem::size_of::<$src_unit>(); |
| 560 | let mut offset = 0usize; |
| 561 | // This loop is only broken out of as a goto forward without |
| 562 | // actually looping |
| 563 | 'outer: loop { |
| 564 | // Safety: if this check succeeds we're valid for reading/writing at least `SIMD_STRIDE_SIZE` elements. |
| 565 | if SIMD_STRIDE_SIZE <= len { |
| 566 | // First, process one unaligned |
| 567 | // Safety: this is safe to call since we're valid for this read/write |
| 568 | if !$stride_neither_aligned(src, dst) { |
| 569 | break 'outer; |
| 570 | } |
| 571 | offset = SIMD_STRIDE_SIZE; |
| 572 | |
| 573 | // We have now seen 16 ASCII bytes. Let's guess that |
| 574 | // there will be enough more to justify more expense |
| 575 | // in the case of non-ASCII. |
| 576 | // Use aligned reads for the sake of old microachitectures. |
| 577 | // |
| 578 | // Safety: this correctly calculates the number of src_units that need to be read before the remaining list is aligned. |
| 579 | // This is less that SIMD_ALIGNMENT, which is also SIMD_STRIDE_SIZE (as documented) |
| 580 | let until_alignment = ((SIMD_ALIGNMENT |
| 581 | - ((src.add(offset) as usize) & SIMD_ALIGNMENT_MASK)) |
| 582 | & SIMD_ALIGNMENT_MASK) |
| 583 | / unit_size; |
| 584 | // Safety: This addition won't overflow, because even in the 32-bit PAE case the |
| 585 | // address space holds enough code that the slice length can't be that |
| 586 | // close to address space size. |
| 587 | // offset now equals SIMD_STRIDE_SIZE, hence times 3 below. |
| 588 | // |
| 589 | // Safety: if this check succeeds we're valid for reading/writing at least `2 * SIMD_STRIDE_SIZE` elements plus `until_alignment`. |
| 590 | // The extra SIMD_STRIDE_SIZE in the condition is because `offset` is already `SIMD_STRIDE_SIZE`. |
| 591 | if until_alignment + (SIMD_STRIDE_SIZE * 3) <= len { |
| 592 | if until_alignment != 0 { |
| 593 | // Safety: this is safe to call since we're valid for this read/write (and more), and don't care about alignment |
| 594 | // This will copy over bytes that get decoded twice since it's not incrementing `offset` by SIMD_STRIDE_SIZE. This is fine. |
| 595 | if !$stride_neither_aligned(src.add(offset), dst.add(offset)) { |
| 596 | break; |
| 597 | } |
| 598 | offset += until_alignment; |
| 599 | } |
| 600 | // Safety: At this point we're valid for reading/writing 2*SIMD_STRIDE_SIZE elements |
| 601 | // Safety: Now `offset` is aligned for `src` |
| 602 | let len_minus_stride_times_two = len - (SIMD_STRIDE_SIZE * 2); |
| 603 | // Safety: This is whether dst is aligned |
| 604 | let dst_masked = (dst.add(offset) as usize) & SIMD_ALIGNMENT_MASK; |
| 605 | if dst_masked == 0 { |
| 606 | loop { |
| 607 | // Safety: both are aligned, we can call the aligned function. We're valid for reading/writing double stride from the initial condition |
| 608 | // and the loop break condition below |
| 609 | if let Some(advance) = |
| 610 | $double_stride_both_aligned(src.add(offset), dst.add(offset)) |
| 611 | { |
| 612 | offset += advance; |
| 613 | let code_unit = *(src.add(offset)); |
| 614 | // Safety: uses safety-usable invariant on ascii_to_ascii_simd_double_stride to return |
| 615 | // guaranteed non-ascii |
| 616 | return Some((code_unit, offset)); |
| 617 | } |
| 618 | offset += SIMD_STRIDE_SIZE * 2; |
| 619 | // Safety: This is `offset > len - 2 * SIMD_STRIDE_SIZE` which means we always have at least `2 * SIMD_STRIDE_SIZE` elements to munch next time. |
| 620 | if offset > len_minus_stride_times_two { |
| 621 | break; |
| 622 | } |
| 623 | } |
| 624 | // Safety: We're valid for reading/writing one more, and can still assume alignment |
| 625 | if offset + SIMD_STRIDE_SIZE <= len { |
| 626 | if !$stride_both_aligned(src.add(offset), dst.add(offset)) { |
| 627 | break 'outer; |
| 628 | } |
| 629 | offset += SIMD_STRIDE_SIZE; |
| 630 | } |
| 631 | } else { |
| 632 | loop { |
| 633 | // Safety: only src is aligned here. We're valid for reading/writing double stride from the initial condition |
| 634 | // and the loop break condition below |
| 635 | if let Some(advance) = |
| 636 | $double_stride_src_aligned(src.add(offset), dst.add(offset)) |
| 637 | { |
| 638 | offset += advance; |
| 639 | let code_unit = *(src.add(offset)); |
| 640 | // Safety: uses safety-usable invariant on ascii_to_ascii_simd_double_stride to return |
| 641 | // guaranteed non-ascii |
| 642 | return Some((code_unit, offset)); |
| 643 | } |
| 644 | offset += SIMD_STRIDE_SIZE * 2; |
| 645 | // Safety: This is `offset > len - 2 * SIMD_STRIDE_SIZE` which means we always have at least `2 * SIMD_STRIDE_SIZE` elements to munch next time. |
| 646 | |
| 647 | if offset > len_minus_stride_times_two { |
| 648 | break; |
| 649 | } |
| 650 | } |
| 651 | // Safety: We're valid for reading/writing one more, and can still assume alignment |
| 652 | if offset + SIMD_STRIDE_SIZE <= len { |
| 653 | if !$stride_src_aligned(src.add(offset), dst.add(offset)) { |
| 654 | break 'outer; |
| 655 | } |
| 656 | offset += SIMD_STRIDE_SIZE; |
| 657 | } |
| 658 | } |
| 659 | } else { |
| 660 | // At most two iterations, so unroll |
| 661 | if offset + SIMD_STRIDE_SIZE <= len { |
| 662 | // Safety: The check above ensures we're allowed to read/write this, and we don't use alignment |
| 663 | if !$stride_neither_aligned(src.add(offset), dst.add(offset)) { |
| 664 | break; |
| 665 | } |
| 666 | offset += SIMD_STRIDE_SIZE; |
| 667 | if offset + SIMD_STRIDE_SIZE <= len { |
| 668 | // Safety: The check above ensures we're allowed to read/write this, and we don't use alignment |
| 669 | if !$stride_neither_aligned(src.add(offset), dst.add(offset)) { |
| 670 | break; |
| 671 | } |
| 672 | offset += SIMD_STRIDE_SIZE; |
| 673 | } |
| 674 | } |
| 675 | } |
| 676 | } |
| 677 | break 'outer; |
| 678 | } |
| 679 | while offset < len { |
| 680 | // Safety: relies straightforwardly on the `len` invariant |
| 681 | let code_unit = *(src.add(offset)); |
| 682 | if code_unit > 127 { |
| 683 | // Safety-usable invariant upheld here |
| 684 | return Some((code_unit, offset)); |
| 685 | } |
| 686 | *(dst.add(offset)) = code_unit as $dst_unit; |
| 687 | offset += 1; |
| 688 | } |
| 689 | None |
| 690 | } |
| 691 | }; |
| 692 | } |
| 693 | |
| 694 | #[allow (unused_macros)] |
| 695 | macro_rules! latin1_simd_check_align { |
| 696 | ( |
| 697 | $name:ident, |
| 698 | $src_unit:ty, |
| 699 | $dst_unit:ty, |
| 700 | // Safety: This function must require aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
| 701 | $stride_both_aligned:ident, |
| 702 | // Safety: This function must require aligned/unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
| 703 | $stride_src_aligned:ident, |
| 704 | // Safety: This function must require unaligned/aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
| 705 | $stride_dst_aligned:ident, |
| 706 | // Safety: This function must require unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
| 707 | $stride_neither_aligned:ident |
| 708 | |
| 709 | ) => { |
| 710 | /// Safety: src/dst must be valid for reads/writes of `len` elements of their units. |
| 711 | #[inline(always)] |
| 712 | pub unsafe fn $name(src: *const $src_unit, dst: *mut $dst_unit, len: usize) { |
| 713 | let mut offset = 0usize; |
| 714 | // Safety: if this check succeeds we're valid for reading/writing at least `SIMD_STRIDE_SIZE` elements. |
| 715 | if SIMD_STRIDE_SIZE <= len { |
| 716 | let len_minus_stride = len - SIMD_STRIDE_SIZE; |
| 717 | // Whether dst is aligned |
| 718 | let dst_masked = (dst as usize) & SIMD_ALIGNMENT_MASK; |
| 719 | // Whether src is aligned |
| 720 | if ((src as usize) & SIMD_ALIGNMENT_MASK) == 0 { |
| 721 | if dst_masked == 0 { |
| 722 | loop { |
| 723 | // Safety: Both were aligned, we can use the aligned function |
| 724 | $stride_both_aligned(src.add(offset), dst.add(offset)); |
| 725 | offset += SIMD_STRIDE_SIZE; |
| 726 | // Safety: This is `offset > len - SIMD_STRIDE_SIZE`, which means in the next iteration we're valid for |
| 727 | // reading/writing at least SIMD_STRIDE_SIZE elements. |
| 728 | if offset > len_minus_stride { |
| 729 | break; |
| 730 | } |
| 731 | } |
| 732 | } else { |
| 733 | loop { |
| 734 | // Safety: src was aligned, dst was not |
| 735 | $stride_src_aligned(src.add(offset), dst.add(offset)); |
| 736 | offset += SIMD_STRIDE_SIZE; |
| 737 | // Safety: This is `offset > len - SIMD_STRIDE_SIZE`, which means in the next iteration we're valid for |
| 738 | // reading/writing at least SIMD_STRIDE_SIZE elements. |
| 739 | if offset > len_minus_stride { |
| 740 | break; |
| 741 | } |
| 742 | } |
| 743 | } |
| 744 | } else { |
| 745 | if dst_masked == 0 { |
| 746 | loop { |
| 747 | // Safety: src was aligned, dst was not |
| 748 | $stride_dst_aligned(src.add(offset), dst.add(offset)); |
| 749 | offset += SIMD_STRIDE_SIZE; |
| 750 | // Safety: This is `offset > len - SIMD_STRIDE_SIZE`, which means in the next iteration we're valid for |
| 751 | // reading/writing at least SIMD_STRIDE_SIZE elements. |
| 752 | if offset > len_minus_stride { |
| 753 | break; |
| 754 | } |
| 755 | } |
| 756 | } else { |
| 757 | loop { |
| 758 | // Safety: Neither were aligned |
| 759 | $stride_neither_aligned(src.add(offset), dst.add(offset)); |
| 760 | offset += SIMD_STRIDE_SIZE; |
| 761 | // Safety: This is `offset > len - SIMD_STRIDE_SIZE`, which means in the next iteration we're valid for |
| 762 | // reading/writing at least SIMD_STRIDE_SIZE elements. |
| 763 | if offset > len_minus_stride { |
| 764 | break; |
| 765 | } |
| 766 | } |
| 767 | } |
| 768 | } |
| 769 | } |
| 770 | while offset < len { |
| 771 | // Safety: relies straightforwardly on the `len` invariant |
| 772 | let code_unit = *(src.add(offset)); |
| 773 | *(dst.add(offset)) = code_unit as $dst_unit; |
| 774 | offset += 1; |
| 775 | } |
| 776 | } |
| 777 | }; |
| 778 | } |
| 779 | |
| 780 | #[allow (unused_macros)] |
| 781 | macro_rules! latin1_simd_check_align_unrolled { |
| 782 | ( |
| 783 | $name:ident, |
| 784 | $src_unit:ty, |
| 785 | $dst_unit:ty, |
| 786 | // Safety: This function must require aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
| 787 | $stride_both_aligned:ident, |
| 788 | // Safety: This function must require aligned/unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
| 789 | $stride_src_aligned:ident, |
| 790 | // Safety: This function must require unaligned/aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
| 791 | $stride_dst_aligned:ident, |
| 792 | // Safety: This function must require unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
| 793 | $stride_neither_aligned:ident |
| 794 | ) => { |
| 795 | /// Safety: src/dst must be valid for reads/writes of `len` elements of their units. |
| 796 | #[inline(always)] |
| 797 | pub unsafe fn $name(src: *const $src_unit, dst: *mut $dst_unit, len: usize) { |
| 798 | let unit_size = ::core::mem::size_of::<$src_unit>(); |
| 799 | let mut offset = 0usize; |
| 800 | // Safety: if this check succeeds we're valid for reading/writing at least `SIMD_STRIDE_SIZE` elements. |
| 801 | if SIMD_STRIDE_SIZE <= len { |
| 802 | // Safety: this correctly calculates the number of src_units that need to be read before the remaining list is aligned. |
| 803 | // This is by definition less than SIMD_STRIDE_SIZE. |
| 804 | let mut until_alignment = ((SIMD_STRIDE_SIZE |
| 805 | - ((src as usize) & SIMD_ALIGNMENT_MASK)) |
| 806 | & SIMD_ALIGNMENT_MASK) |
| 807 | / unit_size; |
| 808 | while until_alignment != 0 { |
| 809 | // Safety: This is a straightforward copy, since until_alignment is < SIMD_STRIDE_SIZE < len, this is in-bounds |
| 810 | *(dst.add(offset)) = *(src.add(offset)) as $dst_unit; |
| 811 | offset += 1; |
| 812 | until_alignment -= 1; |
| 813 | } |
| 814 | // Safety: here offset will be `until_alignment`, i.e. enough to align `src`. |
| 815 | let len_minus_stride = len - SIMD_STRIDE_SIZE; |
| 816 | // Safety: if this check succeeds we're valid for reading/writing at least `2 * SIMD_STRIDE_SIZE` elements. |
| 817 | if offset + SIMD_STRIDE_SIZE * 2 <= len { |
| 818 | let len_minus_stride_times_two = len_minus_stride - SIMD_STRIDE_SIZE; |
| 819 | // Safety: at this point src is known to be aligned at offset, dst is not. |
| 820 | if (dst.add(offset) as usize) & SIMD_ALIGNMENT_MASK == 0 { |
| 821 | loop { |
| 822 | // Safety: We checked alignment of dst above, we can use the alignment functions. We're allowed to read/write 2*SIMD_STRIDE_SIZE elements, which we do. |
| 823 | $stride_both_aligned(src.add(offset), dst.add(offset)); |
| 824 | offset += SIMD_STRIDE_SIZE; |
| 825 | $stride_both_aligned(src.add(offset), dst.add(offset)); |
| 826 | offset += SIMD_STRIDE_SIZE; |
| 827 | // Safety: This is `offset > len - 2 * SIMD_STRIDE_SIZE` which means we always have at least `2 * SIMD_STRIDE_SIZE` elements to munch next time. |
| 828 | if offset > len_minus_stride_times_two { |
| 829 | break; |
| 830 | } |
| 831 | } |
| 832 | } else { |
| 833 | loop { |
| 834 | // Safety: we ensured alignment of src already. |
| 835 | $stride_src_aligned(src.add(offset), dst.add(offset)); |
| 836 | offset += SIMD_STRIDE_SIZE; |
| 837 | $stride_src_aligned(src.add(offset), dst.add(offset)); |
| 838 | offset += SIMD_STRIDE_SIZE; |
| 839 | // Safety: This is `offset > len - 2 * SIMD_STRIDE_SIZE` which means we always have at least `2 * SIMD_STRIDE_SIZE` elements to munch next time. |
| 840 | if offset > len_minus_stride_times_two { |
| 841 | break; |
| 842 | } |
| 843 | } |
| 844 | } |
| 845 | } |
| 846 | // Safety: This is `offset > len - SIMD_STRIDE_SIZE` which means we are valid to munch SIMD_STRIDE_SIZE more elements, which we do |
| 847 | if offset < len_minus_stride { |
| 848 | $stride_src_aligned(src.add(offset), dst.add(offset)); |
| 849 | offset += SIMD_STRIDE_SIZE; |
| 850 | } |
| 851 | } |
| 852 | while offset < len { |
| 853 | // Safety: uses len invariant here and below |
| 854 | let code_unit = *(src.add(offset)); |
| 855 | // On x86_64, this loop autovectorizes but in the pack |
| 856 | // case there are instructions whose purpose is to make sure |
| 857 | // each u16 in the vector is truncated before packing. However, |
| 858 | // since we don't care about saturating behavior of SSE2 packing |
| 859 | // when the input isn't Latin1, those instructions are useless. |
| 860 | // Unfortunately, using the `assume` intrinsic to lie to the |
| 861 | // optimizer doesn't make LLVM omit the trunctation that we |
| 862 | // don't need. Possibly this loop could be manually optimized |
| 863 | // to do the sort of thing that LLVM does but without the |
| 864 | // ANDing the read vectors of u16 with a constant that discards |
| 865 | // the high half of each u16. As far as I can tell, the |
| 866 | // optimization assumes that doing a SIMD read past the end of |
| 867 | // the array is OK. |
| 868 | *(dst.add(offset)) = code_unit as $dst_unit; |
| 869 | offset += 1; |
| 870 | } |
| 871 | } |
| 872 | }; |
| 873 | } |
| 874 | |
| 875 | #[allow (unused_macros)] |
| 876 | macro_rules! ascii_simd_unalign { |
| 877 | // Safety: stride_neither_aligned must be a function that requires src/dest be valid for unaligned reads/writes for SIMD_STRIDE_SIZE elements of type src_unit/dest_unit |
| 878 | ($name:ident, $src_unit:ty, $dst_unit:ty, $stride_neither_aligned:ident) => { |
| 879 | /// Safety: src and dst must be valid for reads/writes of len elements of type src_unit/dst_unit |
| 880 | /// |
| 881 | /// Safety-usable invariant: will return Some() when it encounters non-ASCII, with the first element in the Some being |
| 882 | /// guaranteed to be non-ASCII (> 127), and the second being the offset where it is found |
| 883 | #[inline(always)] |
| 884 | pub unsafe fn $name( |
| 885 | src: *const $src_unit, |
| 886 | dst: *mut $dst_unit, |
| 887 | len: usize, |
| 888 | ) -> Option<($src_unit, usize)> { |
| 889 | let mut offset = 0usize; |
| 890 | // Safety: if this check succeeds we're valid for reading/writing at least `stride` elements. |
| 891 | if SIMD_STRIDE_SIZE <= len { |
| 892 | let len_minus_stride = len - SIMD_STRIDE_SIZE; |
| 893 | loop { |
| 894 | // Safety: We know we're valid for `stride` reads/writes, so we can call this function. We don't need alignment. |
| 895 | if !$stride_neither_aligned(src.add(offset), dst.add(offset)) { |
| 896 | break; |
| 897 | } |
| 898 | offset += SIMD_STRIDE_SIZE; |
| 899 | // This is `offset > len - stride` which means we always have at least `stride` elements to munch next time. |
| 900 | if offset > len_minus_stride { |
| 901 | break; |
| 902 | } |
| 903 | } |
| 904 | } |
| 905 | while offset < len { |
| 906 | // Safety: Uses len invariant here and below |
| 907 | let code_unit = *(src.add(offset)); |
| 908 | if code_unit > 127 { |
| 909 | // Safety-usable invariant upheld here |
| 910 | return Some((code_unit, offset)); |
| 911 | } |
| 912 | *(dst.add(offset)) = code_unit as $dst_unit; |
| 913 | offset += 1; |
| 914 | } |
| 915 | None |
| 916 | } |
| 917 | }; |
| 918 | } |
| 919 | |
| 920 | #[allow (unused_macros)] |
| 921 | macro_rules! latin1_simd_unalign { |
| 922 | // Safety: stride_neither_aligned must be a function that requires src/dest be valid for unaligned reads/writes for SIMD_STRIDE_SIZE elements of type src_unit/dest_unit |
| 923 | ($name:ident, $src_unit:ty, $dst_unit:ty, $stride_neither_aligned:ident) => { |
| 924 | /// Safety: src and dst must be valid for unaligned reads/writes of len elements of type src_unit/dst_unit |
| 925 | #[inline(always)] |
| 926 | pub unsafe fn $name(src: *const $src_unit, dst: *mut $dst_unit, len: usize) { |
| 927 | let mut offset = 0usize; |
| 928 | // Safety: if this check succeeds we're valid for reading/writing at least `stride` elements. |
| 929 | if SIMD_STRIDE_SIZE <= len { |
| 930 | let len_minus_stride = len - SIMD_STRIDE_SIZE; |
| 931 | loop { |
| 932 | // Safety: We know we're valid for `stride` reads/writes, so we can call this function. We don't need alignment. |
| 933 | $stride_neither_aligned(src.add(offset), dst.add(offset)); |
| 934 | offset += SIMD_STRIDE_SIZE; |
| 935 | // This is `offset > len - stride` which means we always have at least `stride` elements to munch next time. |
| 936 | if offset > len_minus_stride { |
| 937 | break; |
| 938 | } |
| 939 | } |
| 940 | } |
| 941 | while offset < len { |
| 942 | // Safety: Uses len invariant here |
| 943 | let code_unit = *(src.add(offset)); |
| 944 | *(dst.add(offset)) = code_unit as $dst_unit; |
| 945 | offset += 1; |
| 946 | } |
| 947 | } |
| 948 | }; |
| 949 | } |
| 950 | |
| 951 | #[allow (unused_macros)] |
| 952 | macro_rules! ascii_to_ascii_simd_stride { |
| 953 | // Safety: load/store must be valid for 16 bytes of read/write, which may be unaligned. (candidates: `(load|store)(16|8)_(unaligned|aligned)` functions) |
| 954 | ($name:ident, $load:ident, $store:ident) => { |
| 955 | /// Safety: src and dst must be valid for 16 bytes of read/write according to |
| 956 | /// the $load/$store fn, which may allow for unaligned reads/writes or require |
| 957 | /// alignment to either 16x8 or u8x16. |
| 958 | #[inline(always)] |
| 959 | pub unsafe fn $name(src: *const u8, dst: *mut u8) -> bool { |
| 960 | let simd = $load(src); |
| 961 | if !simd_is_ascii(simd) { |
| 962 | return false; |
| 963 | } |
| 964 | $store(dst, simd); |
| 965 | true |
| 966 | } |
| 967 | }; |
| 968 | } |
| 969 | |
| 970 | #[allow (unused_macros)] |
| 971 | macro_rules! ascii_to_ascii_simd_double_stride { |
| 972 | // Safety: store must be valid for 32 bytes of write, which may be unaligned (candidates: `store(8|16)_(aligned|unaligned)`) |
| 973 | ($name:ident, $store:ident) => { |
| 974 | /// Safety: src must be valid for 32 bytes of aligned u8x16 read |
| 975 | /// dst must be valid for 32 bytes of unaligned write according to |
| 976 | /// the $store fn, which may allow for unaligned writes or require |
| 977 | /// alignment to either 16x8 or u8x16. |
| 978 | /// |
| 979 | /// Safety-usable invariant: Returns Some(index) if the element at `index` is invalid ASCII |
| 980 | #[inline(always)] |
| 981 | pub unsafe fn $name(src: *const u8, dst: *mut u8) -> Option<usize> { |
| 982 | let first = load16_aligned(src); |
| 983 | let second = load16_aligned(src.add(SIMD_STRIDE_SIZE)); |
| 984 | $store(dst, first); |
| 985 | if unlikely(!simd_is_ascii(first | second)) { |
| 986 | // Safety: mask_ascii produces a mask of all the high bits. |
| 987 | let mask_first = mask_ascii(first); |
| 988 | if mask_first != 0 { |
| 989 | // Safety: on little endian systems this will be the number of ascii bytes |
| 990 | // before the first non-ascii, i.e. valid for indexing src |
| 991 | // TODO SAFETY: What about big-endian systems? |
| 992 | return Some(mask_first.trailing_zeros() as usize); |
| 993 | } |
| 994 | $store(dst.add(SIMD_STRIDE_SIZE), second); |
| 995 | let mask_second = mask_ascii(second); |
| 996 | // Safety: on little endian systems this will be the number of ascii bytes |
| 997 | // before the first non-ascii, i.e. valid for indexing src |
| 998 | return Some(SIMD_STRIDE_SIZE + mask_second.trailing_zeros() as usize); |
| 999 | } |
| 1000 | $store(dst.add(SIMD_STRIDE_SIZE), second); |
| 1001 | None |
| 1002 | } |
| 1003 | }; |
| 1004 | } |
| 1005 | |
| 1006 | #[allow (unused_macros)] |
| 1007 | macro_rules! ascii_to_basic_latin_simd_stride { |
| 1008 | // Safety: load/store must be valid for 16 bytes of read/write, which may be unaligned. (candidates: `(load|store)(16|8)_(unaligned|aligned)` functions) |
| 1009 | ($name:ident, $load:ident, $store:ident) => { |
| 1010 | /// Safety: src and dst must be valid for 16/32 bytes of read/write according to |
| 1011 | /// the $load/$store fn, which may allow for unaligned reads/writes or require |
| 1012 | /// alignment to either 16x8 or u8x16. |
| 1013 | #[inline(always)] |
| 1014 | pub unsafe fn $name(src: *const u8, dst: *mut u16) -> bool { |
| 1015 | let simd = $load(src); |
| 1016 | if !simd_is_ascii(simd) { |
| 1017 | return false; |
| 1018 | } |
| 1019 | let (first, second) = simd_unpack(simd); |
| 1020 | $store(dst, first); |
| 1021 | $store(dst.add(8), second); |
| 1022 | true |
| 1023 | } |
| 1024 | }; |
| 1025 | } |
| 1026 | |
| 1027 | #[allow (unused_macros)] |
| 1028 | macro_rules! ascii_to_basic_latin_simd_double_stride { |
| 1029 | // Safety: store must be valid for 16 bytes of write, which may be unaligned |
| 1030 | ($name:ident, $store:ident) => { |
| 1031 | /// Safety: src must be valid for 2*SIMD_STRIDE_SIZE bytes of aligned reads, |
| 1032 | /// aligned to either 16x8 or u8x16. |
| 1033 | /// dst must be valid for 2*SIMD_STRIDE_SIZE bytes of aligned or unaligned reads |
| 1034 | #[inline(always)] |
| 1035 | pub unsafe fn $name(src: *const u8, dst: *mut u16) -> Option<usize> { |
| 1036 | let first = load16_aligned(src); |
| 1037 | let second = load16_aligned(src.add(SIMD_STRIDE_SIZE)); |
| 1038 | let (a, b) = simd_unpack(first); |
| 1039 | $store(dst, a); |
| 1040 | // Safety: divide by 2 since it's a u16 pointer |
| 1041 | $store(dst.add(SIMD_STRIDE_SIZE / 2), b); |
| 1042 | if unlikely(!simd_is_ascii(first | second)) { |
| 1043 | let mask_first = mask_ascii(first); |
| 1044 | if mask_first != 0 { |
| 1045 | return Some(mask_first.trailing_zeros() as usize); |
| 1046 | } |
| 1047 | let (c, d) = simd_unpack(second); |
| 1048 | $store(dst.add(SIMD_STRIDE_SIZE), c); |
| 1049 | $store(dst.add(SIMD_STRIDE_SIZE + (SIMD_STRIDE_SIZE / 2)), d); |
| 1050 | let mask_second = mask_ascii(second); |
| 1051 | return Some(SIMD_STRIDE_SIZE + mask_second.trailing_zeros() as usize); |
| 1052 | } |
| 1053 | let (c, d) = simd_unpack(second); |
| 1054 | $store(dst.add(SIMD_STRIDE_SIZE), c); |
| 1055 | $store(dst.add(SIMD_STRIDE_SIZE + (SIMD_STRIDE_SIZE / 2)), d); |
| 1056 | None |
| 1057 | } |
| 1058 | }; |
| 1059 | } |
| 1060 | |
| 1061 | #[allow (unused_macros)] |
| 1062 | macro_rules! unpack_simd_stride { |
| 1063 | // Safety: load/store must be valid for 16 bytes of read/write, which may be unaligned. (candidates: `(load|store)(16|8)_(unaligned|aligned)` functions) |
| 1064 | ($name:ident, $load:ident, $store:ident) => { |
| 1065 | /// Safety: src and dst must be valid for 16 bytes of read/write according to |
| 1066 | /// the $load/$store fn, which may allow for unaligned reads/writes or require |
| 1067 | /// alignment to either 16x8 or u8x16. |
| 1068 | #[inline(always)] |
| 1069 | pub unsafe fn $name(src: *const u8, dst: *mut u16) { |
| 1070 | let simd = $load(src); |
| 1071 | let (first, second) = simd_unpack(simd); |
| 1072 | $store(dst, first); |
| 1073 | $store(dst.add(8), second); |
| 1074 | } |
| 1075 | }; |
| 1076 | } |
| 1077 | |
| 1078 | #[allow (unused_macros)] |
| 1079 | macro_rules! basic_latin_to_ascii_simd_stride { |
| 1080 | // Safety: load/store must be valid for 16 bytes of read/write, which may be unaligned. (candidates: `(load|store)(16|8)_(unaligned|aligned)` functions) |
| 1081 | ($name:ident, $load:ident, $store:ident) => { |
| 1082 | /// Safety: src and dst must be valid for 32/16 bytes of read/write according to |
| 1083 | /// the $load/$store fn, which may allow for unaligned reads/writes or require |
| 1084 | /// alignment to either 16x8 or u8x16. |
| 1085 | #[inline(always)] |
| 1086 | pub unsafe fn $name(src: *const u16, dst: *mut u8) -> bool { |
| 1087 | let first = $load(src); |
| 1088 | let second = $load(src.add(8)); |
| 1089 | if simd_is_basic_latin(first | second) { |
| 1090 | $store(dst, simd_pack(first, second)); |
| 1091 | true |
| 1092 | } else { |
| 1093 | false |
| 1094 | } |
| 1095 | } |
| 1096 | }; |
| 1097 | } |
| 1098 | |
| 1099 | #[allow (unused_macros)] |
| 1100 | macro_rules! pack_simd_stride { |
| 1101 | // Safety: load/store must be valid for 16 bytes of read/write, which may be unaligned. (candidates: `(load|store)(16|8)_(unaligned|aligned)` functions) |
| 1102 | ($name:ident, $load:ident, $store:ident) => { |
| 1103 | /// Safety: src and dst must be valid for 32/16 bytes of read/write according to |
| 1104 | /// the $load/$store fn, which may allow for unaligned reads/writes or require |
| 1105 | /// alignment to either 16x8 or u8x16. |
| 1106 | #[inline(always)] |
| 1107 | pub unsafe fn $name(src: *const u16, dst: *mut u8) { |
| 1108 | let first = $load(src); |
| 1109 | let second = $load(src.add(8)); |
| 1110 | $store(dst, simd_pack(first, second)); |
| 1111 | } |
| 1112 | }; |
| 1113 | } |
| 1114 | |
| 1115 | cfg_if! { |
| 1116 | if #[cfg(all(feature = "simd-accel" , target_endian = "little" , target_arch = "aarch64" ))] { |
| 1117 | // SIMD with the same instructions for aligned and unaligned loads and stores |
| 1118 | |
| 1119 | pub const SIMD_STRIDE_SIZE: usize = 16; |
| 1120 | |
| 1121 | pub const MAX_STRIDE_SIZE: usize = 16; |
| 1122 | |
| 1123 | // pub const ALIGNMENT: usize = 8; |
| 1124 | |
| 1125 | pub const ALU_STRIDE_SIZE: usize = 16; |
| 1126 | |
| 1127 | pub const ALU_ALIGNMENT: usize = 8; |
| 1128 | |
| 1129 | pub const ALU_ALIGNMENT_MASK: usize = 7; |
| 1130 | |
| 1131 | // Safety for stride macros: We stick to the load8_aligned/etc family of functions. We consistently produce |
| 1132 | // neither_unaligned variants using only unaligned inputs. |
| 1133 | ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_neither_aligned, load16_unaligned, store16_unaligned); |
| 1134 | |
| 1135 | ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_neither_aligned, load16_unaligned, store8_unaligned); |
| 1136 | unpack_simd_stride!(unpack_stride_neither_aligned, load16_unaligned, store8_unaligned); |
| 1137 | |
| 1138 | basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_neither_aligned, load8_unaligned, store16_unaligned); |
| 1139 | pack_simd_stride!(pack_stride_neither_aligned, load8_unaligned, store16_unaligned); |
| 1140 | |
| 1141 | // Safety for conversion macros: We use the unalign macro with unalign functions above. All stride functions were produced |
| 1142 | // by stride macros that universally munch a single SIMD_STRIDE_SIZE worth of elements. |
| 1143 | ascii_simd_unalign!(ascii_to_ascii, u8, u8, ascii_to_ascii_stride_neither_aligned); |
| 1144 | ascii_simd_unalign!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_neither_aligned); |
| 1145 | ascii_simd_unalign!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_neither_aligned); |
| 1146 | latin1_simd_unalign!(unpack_latin1, u8, u16, unpack_stride_neither_aligned); |
| 1147 | latin1_simd_unalign!(pack_latin1, u16, u8, pack_stride_neither_aligned); |
| 1148 | } else if #[cfg(all(feature = "simd-accel" , target_endian = "little" , target_feature = "neon" ))] { |
| 1149 | // SIMD with different instructions for aligned and unaligned loads and stores. |
| 1150 | // |
| 1151 | // Newer microarchitectures are not supposed to have a performance difference between |
| 1152 | // aligned and unaligned SSE2 loads and stores when the address is actually aligned, |
| 1153 | // but the benchmark results I see don't agree. |
| 1154 | |
| 1155 | pub const SIMD_STRIDE_SIZE: usize = 16; |
| 1156 | |
| 1157 | pub const MAX_STRIDE_SIZE: usize = 16; |
| 1158 | |
| 1159 | pub const SIMD_ALIGNMENT_MASK: usize = 15; |
| 1160 | |
| 1161 | // Safety for stride macros: We stick to the load8_aligned/etc family of functions. We consistently name |
| 1162 | // aligned/unaligned functions according to src/dst being aligned/unaligned |
| 1163 | |
| 1164 | ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_both_aligned, load16_aligned, store16_aligned); |
| 1165 | ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_src_aligned, load16_aligned, store16_unaligned); |
| 1166 | ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_dst_aligned, load16_unaligned, store16_aligned); |
| 1167 | ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_neither_aligned, load16_unaligned, store16_unaligned); |
| 1168 | |
| 1169 | ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_both_aligned, load16_aligned, store8_aligned); |
| 1170 | ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_src_aligned, load16_aligned, store8_unaligned); |
| 1171 | ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_dst_aligned, load16_unaligned, store8_aligned); |
| 1172 | ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_neither_aligned, load16_unaligned, store8_unaligned); |
| 1173 | |
| 1174 | unpack_simd_stride!(unpack_stride_both_aligned, load16_aligned, store8_aligned); |
| 1175 | unpack_simd_stride!(unpack_stride_src_aligned, load16_aligned, store8_unaligned); |
| 1176 | unpack_simd_stride!(unpack_stride_dst_aligned, load16_unaligned, store8_aligned); |
| 1177 | unpack_simd_stride!(unpack_stride_neither_aligned, load16_unaligned, store8_unaligned); |
| 1178 | |
| 1179 | basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_both_aligned, load8_aligned, store16_aligned); |
| 1180 | basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_src_aligned, load8_aligned, store16_unaligned); |
| 1181 | basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_dst_aligned, load8_unaligned, store16_aligned); |
| 1182 | basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_neither_aligned, load8_unaligned, store16_unaligned); |
| 1183 | |
| 1184 | pack_simd_stride!(pack_stride_both_aligned, load8_aligned, store16_aligned); |
| 1185 | pack_simd_stride!(pack_stride_src_aligned, load8_aligned, store16_unaligned); |
| 1186 | pack_simd_stride!(pack_stride_dst_aligned, load8_unaligned, store16_aligned); |
| 1187 | pack_simd_stride!(pack_stride_neither_aligned, load8_unaligned, store16_unaligned); |
| 1188 | |
| 1189 | // Safety for conversion macros: We use the correct pattern of both/src/dst/neither here. All stride functions were produced |
| 1190 | // by stride macros that universally munch a single SIMD_STRIDE_SIZE worth of elements. |
| 1191 | |
| 1192 | ascii_simd_check_align!(ascii_to_ascii, u8, u8, ascii_to_ascii_stride_both_aligned, ascii_to_ascii_stride_src_aligned, ascii_to_ascii_stride_dst_aligned, ascii_to_ascii_stride_neither_aligned); |
| 1193 | ascii_simd_check_align!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_both_aligned, ascii_to_basic_latin_stride_src_aligned, ascii_to_basic_latin_stride_dst_aligned, ascii_to_basic_latin_stride_neither_aligned); |
| 1194 | ascii_simd_check_align!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_both_aligned, basic_latin_to_ascii_stride_src_aligned, basic_latin_to_ascii_stride_dst_aligned, basic_latin_to_ascii_stride_neither_aligned); |
| 1195 | latin1_simd_check_align!(unpack_latin1, u8, u16, unpack_stride_both_aligned, unpack_stride_src_aligned, unpack_stride_dst_aligned, unpack_stride_neither_aligned); |
| 1196 | latin1_simd_check_align!(pack_latin1, u16, u8, pack_stride_both_aligned, pack_stride_src_aligned, pack_stride_dst_aligned, pack_stride_neither_aligned); |
| 1197 | } else if #[cfg(all(feature = "simd-accel" , target_feature = "sse2" ))] { |
| 1198 | // SIMD with different instructions for aligned and unaligned loads and stores. |
| 1199 | // |
| 1200 | // Newer microarchitectures are not supposed to have a performance difference between |
| 1201 | // aligned and unaligned SSE2 loads and stores when the address is actually aligned, |
| 1202 | // but the benchmark results I see don't agree. |
| 1203 | |
| 1204 | pub const SIMD_STRIDE_SIZE: usize = 16; |
| 1205 | |
| 1206 | /// Safety-usable invariant: This should be identical to SIMD_STRIDE_SIZE (used by ascii_simd_check_align_unrolled) |
| 1207 | pub const SIMD_ALIGNMENT: usize = 16; |
| 1208 | |
| 1209 | pub const MAX_STRIDE_SIZE: usize = 16; |
| 1210 | |
| 1211 | pub const SIMD_ALIGNMENT_MASK: usize = 15; |
| 1212 | |
| 1213 | // Safety for stride macros: We stick to the load8_aligned/etc family of functions. We consistently name |
| 1214 | // aligned/unaligned functions according to src/dst being aligned/unaligned |
| 1215 | |
| 1216 | ascii_to_ascii_simd_double_stride!(ascii_to_ascii_simd_double_stride_both_aligned, store16_aligned); |
| 1217 | ascii_to_ascii_simd_double_stride!(ascii_to_ascii_simd_double_stride_src_aligned, store16_unaligned); |
| 1218 | |
| 1219 | ascii_to_basic_latin_simd_double_stride!(ascii_to_basic_latin_simd_double_stride_both_aligned, store8_aligned); |
| 1220 | ascii_to_basic_latin_simd_double_stride!(ascii_to_basic_latin_simd_double_stride_src_aligned, store8_unaligned); |
| 1221 | |
| 1222 | ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_both_aligned, load16_aligned, store16_aligned); |
| 1223 | ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_src_aligned, load16_aligned, store16_unaligned); |
| 1224 | ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_neither_aligned, load16_unaligned, store16_unaligned); |
| 1225 | |
| 1226 | ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_both_aligned, load16_aligned, store8_aligned); |
| 1227 | ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_src_aligned, load16_aligned, store8_unaligned); |
| 1228 | ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_neither_aligned, load16_unaligned, store8_unaligned); |
| 1229 | |
| 1230 | unpack_simd_stride!(unpack_stride_both_aligned, load16_aligned, store8_aligned); |
| 1231 | unpack_simd_stride!(unpack_stride_src_aligned, load16_aligned, store8_unaligned); |
| 1232 | |
| 1233 | basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_both_aligned, load8_aligned, store16_aligned); |
| 1234 | basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_src_aligned, load8_aligned, store16_unaligned); |
| 1235 | basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_dst_aligned, load8_unaligned, store16_aligned); |
| 1236 | basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_neither_aligned, load8_unaligned, store16_unaligned); |
| 1237 | |
| 1238 | pack_simd_stride!(pack_stride_both_aligned, load8_aligned, store16_aligned); |
| 1239 | pack_simd_stride!(pack_stride_src_aligned, load8_aligned, store16_unaligned); |
| 1240 | |
| 1241 | // Safety for conversion macros: We use the correct pattern of both/src/dst/neither/double_both/double_src here. All stride functions were produced |
| 1242 | // by stride macros that universally munch a single SIMD_STRIDE_SIZE worth of elements. |
| 1243 | |
| 1244 | ascii_simd_check_align_unrolled!(ascii_to_ascii, u8, u8, ascii_to_ascii_stride_both_aligned, ascii_to_ascii_stride_src_aligned, ascii_to_ascii_stride_neither_aligned, ascii_to_ascii_simd_double_stride_both_aligned, ascii_to_ascii_simd_double_stride_src_aligned); |
| 1245 | ascii_simd_check_align_unrolled!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_both_aligned, ascii_to_basic_latin_stride_src_aligned, ascii_to_basic_latin_stride_neither_aligned, ascii_to_basic_latin_simd_double_stride_both_aligned, ascii_to_basic_latin_simd_double_stride_src_aligned); |
| 1246 | |
| 1247 | ascii_simd_check_align!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_both_aligned, basic_latin_to_ascii_stride_src_aligned, basic_latin_to_ascii_stride_dst_aligned, basic_latin_to_ascii_stride_neither_aligned); |
| 1248 | latin1_simd_check_align_unrolled!(unpack_latin1, u8, u16, unpack_stride_both_aligned, unpack_stride_src_aligned, unpack_stride_dst_aligned, unpack_stride_neither_aligned); |
| 1249 | latin1_simd_check_align_unrolled!(pack_latin1, u16, u8, pack_stride_both_aligned, pack_stride_src_aligned, pack_stride_dst_aligned, pack_stride_neither_aligned); |
| 1250 | } else if #[cfg(all(target_endian = "little" , target_pointer_width = "64" ))] { |
| 1251 | // Aligned ALU word, little-endian, 64-bit |
| 1252 | |
| 1253 | /// Safety invariant: this is the amount of bytes consumed by |
| 1254 | /// unpack_alu. This will be twice the pointer width, as it consumes two usizes. |
| 1255 | /// This is also the number of bytes produced by pack_alu. |
| 1256 | /// This is also the number of u16 code units produced/consumed by unpack_alu/pack_alu respectively. |
| 1257 | pub const ALU_STRIDE_SIZE: usize = 16; |
| 1258 | |
| 1259 | pub const MAX_STRIDE_SIZE: usize = 16; |
| 1260 | |
| 1261 | // Safety invariant: this is the pointer width in bytes |
| 1262 | pub const ALU_ALIGNMENT: usize = 8; |
| 1263 | |
| 1264 | // Safety invariant: this is a mask for getting the bits of a pointer not aligned to ALU_ALIGNMENT |
| 1265 | pub const ALU_ALIGNMENT_MASK: usize = 7; |
| 1266 | |
| 1267 | /// Safety: dst must point to valid space for writing four `usize`s |
| 1268 | #[inline (always)] |
| 1269 | unsafe fn unpack_alu(word: usize, second_word: usize, dst: *mut usize) { |
| 1270 | let first = ((0x0000_0000_FF00_0000usize & word) << 24) | |
| 1271 | ((0x0000_0000_00FF_0000usize & word) << 16) | |
| 1272 | ((0x0000_0000_0000_FF00usize & word) << 8) | |
| 1273 | (0x0000_0000_0000_00FFusize & word); |
| 1274 | let second = ((0xFF00_0000_0000_0000usize & word) >> 8) | |
| 1275 | ((0x00FF_0000_0000_0000usize & word) >> 16) | |
| 1276 | ((0x0000_FF00_0000_0000usize & word) >> 24) | |
| 1277 | ((0x0000_00FF_0000_0000usize & word) >> 32); |
| 1278 | let third = ((0x0000_0000_FF00_0000usize & second_word) << 24) | |
| 1279 | ((0x0000_0000_00FF_0000usize & second_word) << 16) | |
| 1280 | ((0x0000_0000_0000_FF00usize & second_word) << 8) | |
| 1281 | (0x0000_0000_0000_00FFusize & second_word); |
| 1282 | let fourth = ((0xFF00_0000_0000_0000usize & second_word) >> 8) | |
| 1283 | ((0x00FF_0000_0000_0000usize & second_word) >> 16) | |
| 1284 | ((0x0000_FF00_0000_0000usize & second_word) >> 24) | |
| 1285 | ((0x0000_00FF_0000_0000usize & second_word) >> 32); |
| 1286 | // Safety: fn invariant used here |
| 1287 | *dst = first; |
| 1288 | *(dst.add(1)) = second; |
| 1289 | *(dst.add(2)) = third; |
| 1290 | *(dst.add(3)) = fourth; |
| 1291 | } |
| 1292 | |
| 1293 | /// Safety: dst must point to valid space for writing two `usize`s |
| 1294 | #[inline (always)] |
| 1295 | unsafe fn pack_alu(first: usize, second: usize, third: usize, fourth: usize, dst: *mut usize) { |
| 1296 | let word = ((0x00FF_0000_0000_0000usize & second) << 8) | |
| 1297 | ((0x0000_00FF_0000_0000usize & second) << 16) | |
| 1298 | ((0x0000_0000_00FF_0000usize & second) << 24) | |
| 1299 | ((0x0000_0000_0000_00FFusize & second) << 32) | |
| 1300 | ((0x00FF_0000_0000_0000usize & first) >> 24) | |
| 1301 | ((0x0000_00FF_0000_0000usize & first) >> 16) | |
| 1302 | ((0x0000_0000_00FF_0000usize & first) >> 8) | |
| 1303 | (0x0000_0000_0000_00FFusize & first); |
| 1304 | let second_word = ((0x00FF_0000_0000_0000usize & fourth) << 8) | |
| 1305 | ((0x0000_00FF_0000_0000usize & fourth) << 16) | |
| 1306 | ((0x0000_0000_00FF_0000usize & fourth) << 24) | |
| 1307 | ((0x0000_0000_0000_00FFusize & fourth) << 32) | |
| 1308 | ((0x00FF_0000_0000_0000usize & third) >> 24) | |
| 1309 | ((0x0000_00FF_0000_0000usize & third) >> 16) | |
| 1310 | ((0x0000_0000_00FF_0000usize & third) >> 8) | |
| 1311 | (0x0000_0000_0000_00FFusize & third); |
| 1312 | // Safety: fn invariant used here |
| 1313 | *dst = word; |
| 1314 | *(dst.add(1)) = second_word; |
| 1315 | } |
| 1316 | } else if #[cfg(all(target_endian = "little" , target_pointer_width = "32" ))] { |
| 1317 | // Aligned ALU word, little-endian, 32-bit |
| 1318 | |
| 1319 | /// Safety invariant: this is the amount of bytes consumed by |
| 1320 | /// unpack_alu. This will be twice the pointer width, as it consumes two usizes. |
| 1321 | /// This is also the number of bytes produced by pack_alu. |
| 1322 | /// This is also the number of u16 code units produced/consumed by unpack_alu/pack_alu respectively. |
| 1323 | pub const ALU_STRIDE_SIZE: usize = 8; |
| 1324 | |
| 1325 | pub const MAX_STRIDE_SIZE: usize = 8; |
| 1326 | |
| 1327 | // Safety invariant: this is the pointer width in bytes |
| 1328 | pub const ALU_ALIGNMENT: usize = 4; |
| 1329 | |
| 1330 | // Safety invariant: this is a mask for getting the bits of a pointer not aligned to ALU_ALIGNMENT |
| 1331 | pub const ALU_ALIGNMENT_MASK: usize = 3; |
| 1332 | |
| 1333 | /// Safety: dst must point to valid space for writing four `usize`s |
| 1334 | #[inline(always)] |
| 1335 | unsafe fn unpack_alu(word: usize, second_word: usize, dst: *mut usize) { |
| 1336 | let first = ((0x0000_FF00usize & word) << 8) | |
| 1337 | (0x0000_00FFusize & word); |
| 1338 | let second = ((0xFF00_0000usize & word) >> 8) | |
| 1339 | ((0x00FF_0000usize & word) >> 16); |
| 1340 | let third = ((0x0000_FF00usize & second_word) << 8) | |
| 1341 | (0x0000_00FFusize & second_word); |
| 1342 | let fourth = ((0xFF00_0000usize & second_word) >> 8) | |
| 1343 | ((0x00FF_0000usize & second_word) >> 16); |
| 1344 | // Safety: fn invariant used here |
| 1345 | *dst = first; |
| 1346 | *(dst.add(1)) = second; |
| 1347 | *(dst.add(2)) = third; |
| 1348 | *(dst.add(3)) = fourth; |
| 1349 | } |
| 1350 | |
| 1351 | /// Safety: dst must point to valid space for writing two `usize`s |
| 1352 | #[inline(always)] |
| 1353 | unsafe fn pack_alu(first: usize, second: usize, third: usize, fourth: usize, dst: *mut usize) { |
| 1354 | let word = ((0x00FF_0000usize & second) << 8) | |
| 1355 | ((0x0000_00FFusize & second) << 16) | |
| 1356 | ((0x00FF_0000usize & first) >> 8) | |
| 1357 | (0x0000_00FFusize & first); |
| 1358 | let second_word = ((0x00FF_0000usize & fourth) << 8) | |
| 1359 | ((0x0000_00FFusize & fourth) << 16) | |
| 1360 | ((0x00FF_0000usize & third) >> 8) | |
| 1361 | (0x0000_00FFusize & third); |
| 1362 | // Safety: fn invariant used here |
| 1363 | *dst = word; |
| 1364 | *(dst.add(1)) = second_word; |
| 1365 | } |
| 1366 | } else if #[cfg(all(target_endian = "big" , target_pointer_width = "64" ))] { |
| 1367 | // Aligned ALU word, big-endian, 64-bit |
| 1368 | |
| 1369 | /// Safety invariant: this is the amount of bytes consumed by |
| 1370 | /// unpack_alu. This will be twice the pointer width, as it consumes two usizes. |
| 1371 | /// This is also the number of bytes produced by pack_alu. |
| 1372 | /// This is also the number of u16 code units produced/consumed by unpack_alu/pack_alu respectively. |
| 1373 | pub const ALU_STRIDE_SIZE: usize = 16; |
| 1374 | |
| 1375 | pub const MAX_STRIDE_SIZE: usize = 16; |
| 1376 | |
| 1377 | // Safety invariant: this is the pointer width in bytes |
| 1378 | pub const ALU_ALIGNMENT: usize = 8; |
| 1379 | |
| 1380 | // Safety invariant: this is a mask for getting the bits of a pointer not aligned to ALU_ALIGNMENT |
| 1381 | pub const ALU_ALIGNMENT_MASK: usize = 7; |
| 1382 | |
| 1383 | /// Safety: dst must point to valid space for writing four `usize`s |
| 1384 | #[inline(always)] |
| 1385 | unsafe fn unpack_alu(word: usize, second_word: usize, dst: *mut usize) { |
| 1386 | let first = ((0xFF00_0000_0000_0000usize & word) >> 8) | |
| 1387 | ((0x00FF_0000_0000_0000usize & word) >> 16) | |
| 1388 | ((0x0000_FF00_0000_0000usize & word) >> 24) | |
| 1389 | ((0x0000_00FF_0000_0000usize & word) >> 32); |
| 1390 | let second = ((0x0000_0000_FF00_0000usize & word) << 24) | |
| 1391 | ((0x0000_0000_00FF_0000usize & word) << 16) | |
| 1392 | ((0x0000_0000_0000_FF00usize & word) << 8) | |
| 1393 | (0x0000_0000_0000_00FFusize & word); |
| 1394 | let third = ((0xFF00_0000_0000_0000usize & second_word) >> 8) | |
| 1395 | ((0x00FF_0000_0000_0000usize & second_word) >> 16) | |
| 1396 | ((0x0000_FF00_0000_0000usize & second_word) >> 24) | |
| 1397 | ((0x0000_00FF_0000_0000usize & second_word) >> 32); |
| 1398 | let fourth = ((0x0000_0000_FF00_0000usize & second_word) << 24) | |
| 1399 | ((0x0000_0000_00FF_0000usize & second_word) << 16) | |
| 1400 | ((0x0000_0000_0000_FF00usize & second_word) << 8) | |
| 1401 | (0x0000_0000_0000_00FFusize & second_word); |
| 1402 | // Safety: fn invariant used here |
| 1403 | *dst = first; |
| 1404 | *(dst.add(1)) = second; |
| 1405 | *(dst.add(2)) = third; |
| 1406 | *(dst.add(3)) = fourth; |
| 1407 | } |
| 1408 | |
| 1409 | /// Safety: dst must point to valid space for writing two `usize`s |
| 1410 | #[inline(always)] |
| 1411 | unsafe fn pack_alu(first: usize, second: usize, third: usize, fourth: usize, dst: *mut usize) { |
| 1412 | let word = ((0x00FF0000_00000000usize & first) << 8) | |
| 1413 | ((0x000000FF_00000000usize & first) << 16) | |
| 1414 | ((0x00000000_00FF0000usize & first) << 24) | |
| 1415 | ((0x00000000_000000FFusize & first) << 32) | |
| 1416 | ((0x00FF0000_00000000usize & second) >> 24) | |
| 1417 | ((0x000000FF_00000000usize & second) >> 16) | |
| 1418 | ((0x00000000_00FF0000usize & second) >> 8) | |
| 1419 | (0x00000000_000000FFusize & second); |
| 1420 | let second_word = ((0x00FF0000_00000000usize & third) << 8) | |
| 1421 | ((0x000000FF_00000000usize & third) << 16) | |
| 1422 | ((0x00000000_00FF0000usize & third) << 24) | |
| 1423 | ((0x00000000_000000FFusize & third) << 32) | |
| 1424 | ((0x00FF0000_00000000usize & fourth) >> 24) | |
| 1425 | ((0x000000FF_00000000usize & fourth) >> 16) | |
| 1426 | ((0x00000000_00FF0000usize & fourth) >> 8) | |
| 1427 | (0x00000000_000000FFusize & fourth); |
| 1428 | // Safety: fn invariant used here |
| 1429 | *dst = word; |
| 1430 | *(dst.add(1)) = second_word; |
| 1431 | } |
| 1432 | } else if #[cfg(all(target_endian = "big" , target_pointer_width = "32" ))] { |
| 1433 | // Aligned ALU word, big-endian, 32-bit |
| 1434 | |
| 1435 | /// Safety invariant: this is the amount of bytes consumed by |
| 1436 | /// unpack_alu. This will be twice the pointer width, as it consumes two usizes. |
| 1437 | /// This is also the number of bytes produced by pack_alu. |
| 1438 | /// This is also the number of u16 code units produced/consumed by unpack_alu/pack_alu respectively. |
| 1439 | pub const ALU_STRIDE_SIZE: usize = 8; |
| 1440 | |
| 1441 | pub const MAX_STRIDE_SIZE: usize = 8; |
| 1442 | |
| 1443 | // Safety invariant: this is the pointer width in bytes |
| 1444 | pub const ALU_ALIGNMENT: usize = 4; |
| 1445 | |
| 1446 | // Safety invariant: this is a mask for getting the bits of a pointer not aligned to ALU_ALIGNMENT |
| 1447 | pub const ALU_ALIGNMENT_MASK: usize = 3; |
| 1448 | |
| 1449 | /// Safety: dst must point to valid space for writing four `usize`s |
| 1450 | #[inline(always)] |
| 1451 | unsafe fn unpack_alu(word: usize, second_word: usize, dst: *mut usize) { |
| 1452 | let first = ((0xFF00_0000usize & word) >> 8) | |
| 1453 | ((0x00FF_0000usize & word) >> 16); |
| 1454 | let second = ((0x0000_FF00usize & word) << 8) | |
| 1455 | (0x0000_00FFusize & word); |
| 1456 | let third = ((0xFF00_0000usize & second_word) >> 8) | |
| 1457 | ((0x00FF_0000usize & second_word) >> 16); |
| 1458 | let fourth = ((0x0000_FF00usize & second_word) << 8) | |
| 1459 | (0x0000_00FFusize & second_word); |
| 1460 | // Safety: fn invariant used here |
| 1461 | *dst = first; |
| 1462 | *(dst.add(1)) = second; |
| 1463 | *(dst.add(2)) = third; |
| 1464 | *(dst.add(3)) = fourth; |
| 1465 | } |
| 1466 | |
| 1467 | /// Safety: dst must point to valid space for writing two `usize`s |
| 1468 | #[inline(always)] |
| 1469 | unsafe fn pack_alu(first: usize, second: usize, third: usize, fourth: usize, dst: *mut usize) { |
| 1470 | let word = ((0x00FF_0000usize & first) << 8) | |
| 1471 | ((0x0000_00FFusize & first) << 16) | |
| 1472 | ((0x00FF_0000usize & second) >> 8) | |
| 1473 | (0x0000_00FFusize & second); |
| 1474 | let second_word = ((0x00FF_0000usize & third) << 8) | |
| 1475 | ((0x0000_00FFusize & third) << 16) | |
| 1476 | ((0x00FF_0000usize & fourth) >> 8) | |
| 1477 | (0x0000_00FFusize & fourth); |
| 1478 | // Safety: fn invariant used here |
| 1479 | *dst = word; |
| 1480 | *(dst.add(1)) = second_word; |
| 1481 | } |
| 1482 | } else { |
| 1483 | ascii_naive!(ascii_to_ascii, u8, u8); |
| 1484 | ascii_naive!(ascii_to_basic_latin, u8, u16); |
| 1485 | ascii_naive!(basic_latin_to_ascii, u16, u8); |
| 1486 | } |
| 1487 | } |
| 1488 | |
| 1489 | cfg_if! { |
| 1490 | // Safety-usable invariant: this counts the zeroes from the "first byte" of utf-8 data packed into a usize |
| 1491 | // with the target endianness |
| 1492 | if #[cfg(target_endian = "little" )] { |
| 1493 | #[allow (dead_code)] |
| 1494 | #[inline (always)] |
| 1495 | fn count_zeros(word: usize) -> u32 { |
| 1496 | word.trailing_zeros() |
| 1497 | } |
| 1498 | } else { |
| 1499 | #[allow(dead_code)] |
| 1500 | #[inline(always)] |
| 1501 | fn count_zeros(word: usize) -> u32 { |
| 1502 | word.leading_zeros() |
| 1503 | } |
| 1504 | } |
| 1505 | } |
| 1506 | |
| 1507 | cfg_if! { |
| 1508 | if #[cfg(all(feature = "simd-accel" , target_endian = "little" , target_arch = "disabled" ))] { |
| 1509 | /// Safety-usable invariant: Will return the value and position of the first non-ASCII byte in the slice in a Some if found. |
| 1510 | /// In other words, the first element of the Some is always `> 127` |
| 1511 | #[inline(always)] |
| 1512 | pub fn validate_ascii(slice: &[u8]) -> Option<(u8, usize)> { |
| 1513 | let src = slice.as_ptr(); |
| 1514 | let len = slice.len(); |
| 1515 | let mut offset = 0usize; |
| 1516 | // Safety: if this check succeeds we're valid for reading/writing at least `stride` elements. |
| 1517 | if SIMD_STRIDE_SIZE <= len { |
| 1518 | let len_minus_stride = len - SIMD_STRIDE_SIZE; |
| 1519 | loop { |
| 1520 | // Safety: src at offset is valid for a `SIMD_STRIDE_SIZE` read |
| 1521 | let simd = unsafe { load16_unaligned(src.add(offset)) }; |
| 1522 | if !simd_is_ascii(simd) { |
| 1523 | break; |
| 1524 | } |
| 1525 | offset += SIMD_STRIDE_SIZE; |
| 1526 | // This is `offset > len - SIMD_STRIDE_SIZE` which means we always have at least `SIMD_STRIDE_SIZE` elements to munch next time. |
| 1527 | if offset > len_minus_stride { |
| 1528 | break; |
| 1529 | } |
| 1530 | } |
| 1531 | } |
| 1532 | while offset < len { |
| 1533 | let code_unit = slice[offset]; |
| 1534 | if code_unit > 127 { |
| 1535 | // Safety: Safety-usable invariant upheld here |
| 1536 | return Some((code_unit, offset)); |
| 1537 | } |
| 1538 | offset += 1; |
| 1539 | } |
| 1540 | None |
| 1541 | } |
| 1542 | } else if #[cfg(all(feature = "simd-accel" , target_feature = "sse2" ))] { |
| 1543 | /// Safety-usable invariant: will return Some() when it encounters non-ASCII, with the first element in the Some being |
| 1544 | /// guaranteed to be non-ASCII (> 127), and the second being the offset where it is found |
| 1545 | #[inline(always)] |
| 1546 | pub fn validate_ascii(slice: &[u8]) -> Option<(u8, usize)> { |
| 1547 | let src = slice.as_ptr(); |
| 1548 | let len = slice.len(); |
| 1549 | let mut offset = 0usize; |
| 1550 | // Safety: if this check succeeds we're valid for reading at least `stride` elements. |
| 1551 | if SIMD_STRIDE_SIZE <= len { |
| 1552 | // First, process one unaligned vector |
| 1553 | // Safety: src is valid for a `SIMD_STRIDE_SIZE` read |
| 1554 | let simd = unsafe { load16_unaligned(src) }; |
| 1555 | let mask = mask_ascii(simd); |
| 1556 | if mask != 0 { |
| 1557 | offset = mask.trailing_zeros() as usize; |
| 1558 | let non_ascii = unsafe { *src.add(offset) }; |
| 1559 | return Some((non_ascii, offset)); |
| 1560 | } |
| 1561 | offset = SIMD_STRIDE_SIZE; |
| 1562 | // Safety: Now that offset has changed we don't yet know how much it is valid for |
| 1563 | |
| 1564 | // We have now seen 16 ASCII bytes. Let's guess that |
| 1565 | // there will be enough more to justify more expense |
| 1566 | // in the case of non-ASCII. |
| 1567 | // Use aligned reads for the sake of old microachitectures. |
| 1568 | // Safety: this correctly calculates the number of src_units that need to be read before the remaining list is aligned. |
| 1569 | // This is by definition less than SIMD_ALIGNMENT, which is defined to be equal to SIMD_STRIDE_SIZE. |
| 1570 | let until_alignment = unsafe { (SIMD_ALIGNMENT - ((src.add(offset) as usize) & SIMD_ALIGNMENT_MASK)) & SIMD_ALIGNMENT_MASK }; |
| 1571 | // This addition won't overflow, because even in the 32-bit PAE case the |
| 1572 | // address space holds enough code that the slice length can't be that |
| 1573 | // close to address space size. |
| 1574 | // offset now equals SIMD_STRIDE_SIZE, hence times 3 below. |
| 1575 | // |
| 1576 | // Safety: if this check succeeds we're valid for reading at least `2 * SIMD_STRIDE_SIZE` elements plus `until_alignment`. |
| 1577 | // The extra SIMD_STRIDE_SIZE in the condition is because `offset` is already `SIMD_STRIDE_SIZE`. |
| 1578 | if until_alignment + (SIMD_STRIDE_SIZE * 3) <= len { |
| 1579 | if until_alignment != 0 { |
| 1580 | // Safety: this is safe to call since we're valid for this read (and more), and don't care about alignment |
| 1581 | // This will copy over bytes that get decoded twice since it's not incrementing `offset` by SIMD_STRIDE_SIZE. This is fine. |
| 1582 | let simd = unsafe { load16_unaligned(src.add(offset)) }; |
| 1583 | let mask = mask_ascii(simd); |
| 1584 | if mask != 0 { |
| 1585 | offset += mask.trailing_zeros() as usize; |
| 1586 | let non_ascii = unsafe { *src.add(offset) }; |
| 1587 | return Some((non_ascii, offset)); |
| 1588 | } |
| 1589 | offset += until_alignment; |
| 1590 | } |
| 1591 | // Safety: At this point we're valid for reading 2*SIMD_STRIDE_SIZE elements |
| 1592 | // Safety: Now `offset` is aligned for `src` |
| 1593 | let len_minus_stride_times_two = len - (SIMD_STRIDE_SIZE * 2); |
| 1594 | loop { |
| 1595 | // Safety: We were valid for this read, and were aligned. |
| 1596 | let first = unsafe { load16_aligned(src.add(offset)) }; |
| 1597 | let second = unsafe { load16_aligned(src.add(offset + SIMD_STRIDE_SIZE)) }; |
| 1598 | if !simd_is_ascii(first | second) { |
| 1599 | // Safety: mask_ascii produces a mask of all the high bits. |
| 1600 | let mask_first = mask_ascii(first); |
| 1601 | if mask_first != 0 { |
| 1602 | // Safety: on little endian systems this will be the number of ascii bytes |
| 1603 | // before the first non-ascii, i.e. valid for indexing src |
| 1604 | // TODO SAFETY: What about big-endian systems? |
| 1605 | offset += mask_first.trailing_zeros() as usize; |
| 1606 | } else { |
| 1607 | let mask_second = mask_ascii(second); |
| 1608 | // Safety: on little endian systems this will be the number of ascii bytes |
| 1609 | // before the first non-ascii, i.e. valid for indexing src |
| 1610 | offset += SIMD_STRIDE_SIZE + mask_second.trailing_zeros() as usize; |
| 1611 | } |
| 1612 | // Safety: We know this is non-ASCII, and can uphold the safety-usable invariant here |
| 1613 | let non_ascii = unsafe { *src.add(offset) }; |
| 1614 | |
| 1615 | return Some((non_ascii, offset)); |
| 1616 | } |
| 1617 | offset += SIMD_STRIDE_SIZE * 2; |
| 1618 | // Safety: This is `offset > len - 2 * SIMD_STRIDE_SIZE` which means we always have at least `2 * SIMD_STRIDE_SIZE` elements to munch next time. |
| 1619 | if offset > len_minus_stride_times_two { |
| 1620 | break; |
| 1621 | } |
| 1622 | } |
| 1623 | // Safety: if this check succeeds we're valid for reading at least `SIMD_STRIDE_SIZE` |
| 1624 | if offset + SIMD_STRIDE_SIZE <= len { |
| 1625 | // Safety: We were valid for this read, and were aligned. |
| 1626 | let simd = unsafe { load16_aligned(src.add(offset)) }; |
| 1627 | // Safety: mask_ascii produces a mask of all the high bits. |
| 1628 | let mask = mask_ascii(simd); |
| 1629 | if mask != 0 { |
| 1630 | // Safety: on little endian systems this will be the number of ascii bytes |
| 1631 | // before the first non-ascii, i.e. valid for indexing src |
| 1632 | offset += mask.trailing_zeros() as usize; |
| 1633 | let non_ascii = unsafe { *src.add(offset) }; |
| 1634 | // Safety: We know this is non-ASCII, and can uphold the safety-usable invariant here |
| 1635 | return Some((non_ascii, offset)); |
| 1636 | } |
| 1637 | offset += SIMD_STRIDE_SIZE; |
| 1638 | } |
| 1639 | } else { |
| 1640 | // Safety: this is the unaligned branch |
| 1641 | // At most two iterations, so unroll |
| 1642 | // Safety: if this check succeeds we're valid for reading at least `SIMD_STRIDE_SIZE` |
| 1643 | if offset + SIMD_STRIDE_SIZE <= len { |
| 1644 | // Safety: We're valid for this read but must use an unaligned read |
| 1645 | let simd = unsafe { load16_unaligned(src.add(offset)) }; |
| 1646 | let mask = mask_ascii(simd); |
| 1647 | if mask != 0 { |
| 1648 | offset += mask.trailing_zeros() as usize; |
| 1649 | let non_ascii = unsafe { *src.add(offset) }; |
| 1650 | // Safety-usable invariant upheld here (same as above) |
| 1651 | return Some((non_ascii, offset)); |
| 1652 | } |
| 1653 | offset += SIMD_STRIDE_SIZE; |
| 1654 | // Safety: if this check succeeds we're valid for reading at least `SIMD_STRIDE_SIZE` |
| 1655 | if offset + SIMD_STRIDE_SIZE <= len { |
| 1656 | // Safety: We're valid for this read but must use an unaligned read |
| 1657 | let simd = unsafe { load16_unaligned(src.add(offset)) }; |
| 1658 | let mask = mask_ascii(simd); |
| 1659 | if mask != 0 { |
| 1660 | offset += mask.trailing_zeros() as usize; |
| 1661 | let non_ascii = unsafe { *src.add(offset) }; |
| 1662 | // Safety-usable invariant upheld here (same as above) |
| 1663 | return Some((non_ascii, offset)); |
| 1664 | } |
| 1665 | offset += SIMD_STRIDE_SIZE; |
| 1666 | } |
| 1667 | } |
| 1668 | } |
| 1669 | } |
| 1670 | while offset < len { |
| 1671 | // Safety: relies straightforwardly on the `len` invariant |
| 1672 | let code_unit = unsafe { *(src.add(offset)) }; |
| 1673 | if code_unit > 127 { |
| 1674 | // Safety-usable invariant upheld here |
| 1675 | return Some((code_unit, offset)); |
| 1676 | } |
| 1677 | offset += 1; |
| 1678 | } |
| 1679 | None |
| 1680 | } |
| 1681 | } else { |
| 1682 | // Safety-usable invariant: returns byte index of first non-ascii byte |
| 1683 | #[inline (always)] |
| 1684 | fn find_non_ascii(word: usize, second_word: usize) -> Option<usize> { |
| 1685 | let word_masked = word & ASCII_MASK; |
| 1686 | let second_masked = second_word & ASCII_MASK; |
| 1687 | if (word_masked | second_masked) == 0 { |
| 1688 | // Both are ascii, invariant upheld |
| 1689 | return None; |
| 1690 | } |
| 1691 | if word_masked != 0 { |
| 1692 | let zeros = count_zeros(word_masked); |
| 1693 | // `zeros` now contains 0 to 7 (for the seven bits of masked ASCII in little endian, |
| 1694 | // or up to 7 bits of non-ASCII in big endian if the first byte is non-ASCII) |
| 1695 | // plus 8 times the number of ASCII in text order before the |
| 1696 | // non-ASCII byte in the little-endian case or 8 times the number of ASCII in |
| 1697 | // text order before the non-ASCII byte in the big-endian case. |
| 1698 | let num_ascii = (zeros >> 3) as usize; |
| 1699 | // Safety-usable invariant upheld here |
| 1700 | return Some(num_ascii); |
| 1701 | } |
| 1702 | let zeros = count_zeros(second_masked); |
| 1703 | // `zeros` now contains 0 to 7 (for the seven bits of masked ASCII in little endian, |
| 1704 | // or up to 7 bits of non-ASCII in big endian if the first byte is non-ASCII) |
| 1705 | // plus 8 times the number of ASCII in text order before the |
| 1706 | // non-ASCII byte in the little-endian case or 8 times the number of ASCII in |
| 1707 | // text order before the non-ASCII byte in the big-endian case. |
| 1708 | let num_ascii = (zeros >> 3) as usize; |
| 1709 | // Safety-usable invariant upheld here |
| 1710 | Some(ALU_ALIGNMENT + num_ascii) |
| 1711 | } |
| 1712 | |
| 1713 | /// Safety: `src` must be valid for the reads of two `usize`s |
| 1714 | /// |
| 1715 | /// Safety-usable invariant: will return byte index of first non-ascii byte |
| 1716 | #[inline (always)] |
| 1717 | unsafe fn validate_ascii_stride(src: *const usize) -> Option<usize> { |
| 1718 | let word = *src; |
| 1719 | let second_word = *(src.add(1)); |
| 1720 | find_non_ascii(word, second_word) |
| 1721 | } |
| 1722 | |
| 1723 | /// Safety-usable invariant: will return Some() when it encounters non-ASCII, with the first element in the Some being |
| 1724 | /// guaranteed to be non-ASCII (> 127), and the second being the offset where it is found |
| 1725 | #[cfg_attr (feature = "cargo-clippy" , allow(cast_ptr_alignment))] |
| 1726 | #[inline (always)] |
| 1727 | pub fn validate_ascii(slice: &[u8]) -> Option<(u8, usize)> { |
| 1728 | let src = slice.as_ptr(); |
| 1729 | let len = slice.len(); |
| 1730 | let mut offset = 0usize; |
| 1731 | let mut until_alignment = (ALU_ALIGNMENT - ((src as usize) & ALU_ALIGNMENT_MASK)) & ALU_ALIGNMENT_MASK; |
| 1732 | // Safety: If this check fails we're valid to read `until_alignment + ALU_STRIDE_SIZE` elements |
| 1733 | if until_alignment + ALU_STRIDE_SIZE <= len { |
| 1734 | while until_alignment != 0 { |
| 1735 | let code_unit = slice[offset]; |
| 1736 | if code_unit > 127 { |
| 1737 | // Safety-usable invairant upheld here |
| 1738 | return Some((code_unit, offset)); |
| 1739 | } |
| 1740 | offset += 1; |
| 1741 | until_alignment -= 1; |
| 1742 | } |
| 1743 | // Safety: At this point we have read until_alignment elements and |
| 1744 | // are valid for `ALU_STRIDE_SIZE` more. |
| 1745 | let len_minus_stride = len - ALU_STRIDE_SIZE; |
| 1746 | loop { |
| 1747 | // Safety: we were valid for this read |
| 1748 | let ptr = unsafe { src.add(offset) as *const usize }; |
| 1749 | if let Some(num_ascii) = unsafe { validate_ascii_stride(ptr) } { |
| 1750 | offset += num_ascii; |
| 1751 | // Safety-usable invairant upheld here using the invariant from validate_ascii_stride() |
| 1752 | return Some((unsafe { *(src.add(offset)) }, offset)); |
| 1753 | } |
| 1754 | offset += ALU_STRIDE_SIZE; |
| 1755 | // Safety: This is `offset > ALU_STRIDE_SIZE` which means we always have at least `2 * ALU_STRIDE_SIZE` elements to munch next time. |
| 1756 | if offset > len_minus_stride { |
| 1757 | break; |
| 1758 | } |
| 1759 | } |
| 1760 | } |
| 1761 | while offset < len { |
| 1762 | let code_unit = slice[offset]; |
| 1763 | if code_unit > 127 { |
| 1764 | // Safety-usable invairant upheld here |
| 1765 | return Some((code_unit, offset)); |
| 1766 | } |
| 1767 | offset += 1; |
| 1768 | } |
| 1769 | None |
| 1770 | } |
| 1771 | |
| 1772 | } |
| 1773 | } |
| 1774 | |
| 1775 | cfg_if! { |
| 1776 | if #[cfg(all(feature = "simd-accel" , any(target_feature = "sse2" , all(target_endian = "little" , target_arch = "aarch64" ))))] { |
| 1777 | |
| 1778 | } else if #[cfg(all(feature = "simd-accel" , target_endian = "little" , target_feature = "neon" ))] { |
| 1779 | // Even with NEON enabled, we use the ALU path for ASCII validation, because testing |
| 1780 | // on Exynos 5 indicated that using NEON isn't worthwhile where there are only |
| 1781 | // vector reads without vector writes. |
| 1782 | |
| 1783 | pub const ALU_STRIDE_SIZE: usize = 8; |
| 1784 | |
| 1785 | pub const ALU_ALIGNMENT: usize = 4; |
| 1786 | |
| 1787 | pub const ALU_ALIGNMENT_MASK: usize = 3; |
| 1788 | } else { |
| 1789 | // Safety: src points to two valid `usize`s, dst points to four valid `usize`s |
| 1790 | #[inline (always)] |
| 1791 | unsafe fn unpack_latin1_stride_alu(src: *const usize, dst: *mut usize) { |
| 1792 | // Safety: src safety invariant used here |
| 1793 | let word = *src; |
| 1794 | let second_word = *(src.add(1)); |
| 1795 | // Safety: dst safety invariant passed down |
| 1796 | unpack_alu(word, second_word, dst); |
| 1797 | } |
| 1798 | |
| 1799 | // Safety: src points to four valid `usize`s, dst points to two valid `usize`s |
| 1800 | #[inline (always)] |
| 1801 | unsafe fn pack_latin1_stride_alu(src: *const usize, dst: *mut usize) { |
| 1802 | // Safety: src safety invariant used here |
| 1803 | let first = *src; |
| 1804 | let second = *(src.add(1)); |
| 1805 | let third = *(src.add(2)); |
| 1806 | let fourth = *(src.add(3)); |
| 1807 | // Safety: dst safety invariant passed down |
| 1808 | pack_alu(first, second, third, fourth, dst); |
| 1809 | } |
| 1810 | |
| 1811 | // Safety: src points to two valid `usize`s, dst points to four valid `usize`s |
| 1812 | #[inline (always)] |
| 1813 | unsafe fn ascii_to_basic_latin_stride_alu(src: *const usize, dst: *mut usize) -> bool { |
| 1814 | // Safety: src safety invariant used here |
| 1815 | let word = *src; |
| 1816 | let second_word = *(src.add(1)); |
| 1817 | // Check if the words contains non-ASCII |
| 1818 | if (word & ASCII_MASK) | (second_word & ASCII_MASK) != 0 { |
| 1819 | return false; |
| 1820 | } |
| 1821 | // Safety: dst safety invariant passed down |
| 1822 | unpack_alu(word, second_word, dst); |
| 1823 | true |
| 1824 | } |
| 1825 | |
| 1826 | // Safety: src points four valid `usize`s, dst points to two valid `usize`s |
| 1827 | #[inline (always)] |
| 1828 | unsafe fn basic_latin_to_ascii_stride_alu(src: *const usize, dst: *mut usize) -> bool { |
| 1829 | // Safety: src safety invariant used here |
| 1830 | let first = *src; |
| 1831 | let second = *(src.add(1)); |
| 1832 | let third = *(src.add(2)); |
| 1833 | let fourth = *(src.add(3)); |
| 1834 | if (first & BASIC_LATIN_MASK) | (second & BASIC_LATIN_MASK) | (third & BASIC_LATIN_MASK) | (fourth & BASIC_LATIN_MASK) != 0 { |
| 1835 | return false; |
| 1836 | } |
| 1837 | // Safety: dst safety invariant passed down |
| 1838 | pack_alu(first, second, third, fourth, dst); |
| 1839 | true |
| 1840 | } |
| 1841 | |
| 1842 | // Safety: src, dst both point to two valid `usize`s each |
| 1843 | // Safety-usable invariant: Will return byte index of first non-ascii byte. |
| 1844 | #[inline (always)] |
| 1845 | unsafe fn ascii_to_ascii_stride(src: *const usize, dst: *mut usize) -> Option<usize> { |
| 1846 | // Safety: src safety invariant used here |
| 1847 | let word = *src; |
| 1848 | let second_word = *(src.add(1)); |
| 1849 | // Safety: src safety invariant used here |
| 1850 | *dst = word; |
| 1851 | *(dst.add(1)) = second_word; |
| 1852 | // Relies on safety-usable invariant here |
| 1853 | find_non_ascii(word, second_word) |
| 1854 | } |
| 1855 | |
| 1856 | basic_latin_alu!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_alu); |
| 1857 | basic_latin_alu!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_alu); |
| 1858 | latin1_alu!(unpack_latin1, u8, u16, unpack_latin1_stride_alu); |
| 1859 | latin1_alu!(pack_latin1, u16, u8, pack_latin1_stride_alu); |
| 1860 | // Safety invariant upheld: ascii_to_ascii_stride will return byte index of first non-ascii if found |
| 1861 | ascii_alu!(ascii_to_ascii, u8, u8, ascii_to_ascii_stride); |
| 1862 | } |
| 1863 | } |
| 1864 | |
| 1865 | pub fn ascii_valid_up_to(bytes: &[u8]) -> usize { |
| 1866 | match validate_ascii(slice:bytes) { |
| 1867 | None => bytes.len(), |
| 1868 | Some((_, num_valid: usize)) => num_valid, |
| 1869 | } |
| 1870 | } |
| 1871 | |
| 1872 | pub fn iso_2022_jp_ascii_valid_up_to(bytes: &[u8]) -> usize { |
| 1873 | for (i: usize, b_ref: &u8) in bytes.iter().enumerate() { |
| 1874 | let b: u8 = *b_ref; |
| 1875 | if b >= 0x80 || b == 0x1B || b == 0x0E || b == 0x0F { |
| 1876 | return i; |
| 1877 | } |
| 1878 | } |
| 1879 | bytes.len() |
| 1880 | } |
| 1881 | |
| 1882 | // Any copyright to the test code below this comment is dedicated to the |
| 1883 | // Public Domain. http://creativecommons.org/publicdomain/zero/1.0/ |
| 1884 | |
| 1885 | #[cfg (all(test, feature = "alloc" ))] |
| 1886 | mod tests { |
| 1887 | use super::*; |
| 1888 | use alloc::vec::Vec; |
| 1889 | |
| 1890 | macro_rules! test_ascii { |
| 1891 | ($test_name:ident, $fn_tested:ident, $src_unit:ty, $dst_unit:ty) => { |
| 1892 | #[test] |
| 1893 | fn $test_name() { |
| 1894 | let mut src: Vec<$src_unit> = Vec::with_capacity(32); |
| 1895 | let mut dst: Vec<$dst_unit> = Vec::with_capacity(32); |
| 1896 | for i in 0..32 { |
| 1897 | src.clear(); |
| 1898 | dst.clear(); |
| 1899 | dst.resize(32, 0); |
| 1900 | for j in 0..32 { |
| 1901 | let c = if i == j { 0xAA } else { j + 0x40 }; |
| 1902 | src.push(c as $src_unit); |
| 1903 | } |
| 1904 | match unsafe { $fn_tested(src.as_ptr(), dst.as_mut_ptr(), 32) } { |
| 1905 | None => unreachable!("Should always find non-ASCII" ), |
| 1906 | Some((non_ascii, num_ascii)) => { |
| 1907 | assert_eq!(non_ascii, 0xAA); |
| 1908 | assert_eq!(num_ascii, i); |
| 1909 | for j in 0..i { |
| 1910 | assert_eq!(dst[j], (j + 0x40) as $dst_unit); |
| 1911 | } |
| 1912 | } |
| 1913 | } |
| 1914 | } |
| 1915 | } |
| 1916 | }; |
| 1917 | } |
| 1918 | |
| 1919 | test_ascii!(test_ascii_to_ascii, ascii_to_ascii, u8, u8); |
| 1920 | test_ascii!(test_ascii_to_basic_latin, ascii_to_basic_latin, u8, u16); |
| 1921 | test_ascii!(test_basic_latin_to_ascii, basic_latin_to_ascii, u16, u8); |
| 1922 | } |
| 1923 | |