1 | // Copyright Mozilla Foundation. See the COPYRIGHT |
2 | // file at the top-level directory of this distribution. |
3 | // |
4 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
5 | // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
6 | // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
7 | // option. This file may not be copied, modified, or distributed |
8 | // except according to those terms. |
9 | |
10 | // It's assumed that in due course Rust will have explicit SIMD but will not |
11 | // be good at run-time selection of SIMD vs. no-SIMD. In such a future, |
12 | // x86_64 will always use SSE2 and 32-bit x86 will use SSE2 when compiled with |
13 | // a Mozilla-shipped rustc. SIMD support and especially detection on ARM is a |
14 | // mess. Under the circumstances, it seems to make sense to optimize the ALU |
15 | // case for ARMv7 rather than x86. Annoyingly, I was unable to get useful |
16 | // numbers of the actual ARMv7 CPU I have access to, because (thermal?) |
17 | // throttling kept interfering. Since Raspberry Pi 3 (ARMv8 core but running |
18 | // ARMv7 code) produced reproducible performance numbers, that's the ARM |
19 | // computer that this code ended up being optimized for in the ALU case. |
20 | // Less popular CPU architectures simply get the approach that was chosen based |
21 | // on Raspberry Pi 3 measurements. The UTF-16 and UTF-8 ALU cases take |
22 | // different approaches based on benchmarking on Raspberry Pi 3. |
23 | |
24 | #[cfg (all( |
25 | feature = "simd-accel" , |
26 | any( |
27 | target_feature = "sse2" , |
28 | all(target_endian = "little" , target_arch = "aarch64" ), |
29 | all(target_endian = "little" , target_feature = "neon" ) |
30 | ) |
31 | ))] |
32 | use crate::simd_funcs::*; |
33 | |
34 | cfg_if! { |
35 | if #[cfg(feature = "simd-accel" )] { |
36 | #[allow(unused_imports)] |
37 | use ::core::intrinsics::unlikely; |
38 | #[allow(unused_imports)] |
39 | use ::core::intrinsics::likely; |
40 | } else { |
41 | #[allow (dead_code)] |
42 | #[inline (always)] |
43 | fn unlikely(b: bool) -> bool { |
44 | b |
45 | } |
46 | #[allow (dead_code)] |
47 | #[inline (always)] |
48 | fn likely(b: bool) -> bool { |
49 | b |
50 | } |
51 | } |
52 | } |
53 | |
54 | // Safety invariants for masks: data & mask = 0 for valid ASCII or basic latin utf-16 |
55 | |
56 | // `as` truncates, so works on 32-bit, too. |
57 | #[allow (dead_code)] |
58 | pub const ASCII_MASK: usize = 0x8080_8080_8080_8080u64 as usize; |
59 | |
60 | // `as` truncates, so works on 32-bit, too. |
61 | #[allow (dead_code)] |
62 | pub const BASIC_LATIN_MASK: usize = 0xFF80_FF80_FF80_FF80u64 as usize; |
63 | |
64 | #[allow (unused_macros)] |
65 | macro_rules! ascii_naive { |
66 | ($name:ident, $src_unit:ty, $dst_unit:ty) => { |
67 | /// Safety: src and dst must have len_unit elements and be aligned |
68 | /// Safety-usable invariant: will return Some() when it fails |
69 | /// to convert. The first value will be a u8 that is > 127. |
70 | #[inline(always)] |
71 | pub unsafe fn $name( |
72 | src: *const $src_unit, |
73 | dst: *mut $dst_unit, |
74 | len: usize, |
75 | ) -> Option<($src_unit, usize)> { |
76 | // Yes, manually omitting the bound check here matters |
77 | // a lot for perf. |
78 | for i in 0..len { |
79 | // Safety: len invariant used here |
80 | let code_unit = *(src.add(i)); |
81 | // Safety: Upholds safety-usable invariant here |
82 | if code_unit > 127 { |
83 | return Some((code_unit, i)); |
84 | } |
85 | // Safety: len invariant used here |
86 | *(dst.add(i)) = code_unit as $dst_unit; |
87 | } |
88 | return None; |
89 | } |
90 | }; |
91 | } |
92 | |
93 | #[allow (unused_macros)] |
94 | macro_rules! ascii_alu { |
95 | ($name:ident, |
96 | // safety invariant: src/dst MUST be u8 |
97 | $src_unit:ty, |
98 | $dst_unit:ty, |
99 | // Safety invariant: stride_fn must consume and produce two usizes, and return the index of the first non-ascii when it fails |
100 | $stride_fn:ident) => { |
101 | /// Safety: src and dst must have len elements, src is valid for read, dst is valid for |
102 | /// write |
103 | /// Safety-usable invariant: will return Some() when it fails |
104 | /// to convert. The first value will be a u8 that is > 127. |
105 | #[cfg_attr(feature = "cargo-clippy" , allow(never_loop, cast_ptr_alignment))] |
106 | #[inline(always)] |
107 | pub unsafe fn $name( |
108 | src: *const $src_unit, |
109 | dst: *mut $dst_unit, |
110 | len: usize, |
111 | ) -> Option<($src_unit, usize)> { |
112 | let mut offset = 0usize; |
113 | // This loop is only broken out of as a `goto` forward |
114 | loop { |
115 | // Safety: until_alignment becomes the number of bytes we need to munch until we are aligned to usize |
116 | let mut until_alignment = { |
117 | // Check if the other unit aligns if we move the narrower unit |
118 | // to alignment. |
119 | // if ::core::mem::size_of::<$src_unit>() == ::core::mem::size_of::<$dst_unit>() { |
120 | // ascii_to_ascii |
121 | let src_alignment = (src as usize) & ALU_ALIGNMENT_MASK; |
122 | let dst_alignment = (dst as usize) & ALU_ALIGNMENT_MASK; |
123 | if src_alignment != dst_alignment { |
124 | // Safety: bails early and ends up in the naïve branch where usize-alignment doesn't matter |
125 | break; |
126 | } |
127 | (ALU_ALIGNMENT - src_alignment) & ALU_ALIGNMENT_MASK |
128 | // } else if ::core::mem::size_of::<$src_unit>() < ::core::mem::size_of::<$dst_unit>() { |
129 | // ascii_to_basic_latin |
130 | // let src_until_alignment = (ALIGNMENT - ((src as usize) & ALIGNMENT_MASK)) & ALIGNMENT_MASK; |
131 | // if (dst.add(src_until_alignment) as usize) & ALIGNMENT_MASK != 0 { |
132 | // break; |
133 | // } |
134 | // src_until_alignment |
135 | // } else { |
136 | // basic_latin_to_ascii |
137 | // let dst_until_alignment = (ALIGNMENT - ((dst as usize) & ALIGNMENT_MASK)) & ALIGNMENT_MASK; |
138 | // if (src.add(dst_until_alignment) as usize) & ALIGNMENT_MASK != 0 { |
139 | // break; |
140 | // } |
141 | // dst_until_alignment |
142 | // } |
143 | }; |
144 | if until_alignment + ALU_STRIDE_SIZE <= len { |
145 | // Moving pointers to alignment seems to be a pessimization on |
146 | // x86_64 for operations that have UTF-16 as the internal |
147 | // Unicode representation. However, since it seems to be a win |
148 | // on ARM (tested ARMv7 code running on ARMv8 [rpi3]), except |
149 | // mixed results when encoding from UTF-16 and since x86 and |
150 | // x86_64 should be using SSE2 in due course, keeping the move |
151 | // to alignment here. It would be good to test on more ARM CPUs |
152 | // and on real MIPS and POWER hardware. |
153 | // |
154 | // Safety: This is the naïve code once again, for `until_alignment` bytes |
155 | while until_alignment != 0 { |
156 | let code_unit = *(src.add(offset)); |
157 | if code_unit > 127 { |
158 | // Safety: Upholds safety-usable invariant here |
159 | return Some((code_unit, offset)); |
160 | } |
161 | *(dst.add(offset)) = code_unit as $dst_unit; |
162 | // Safety: offset is the number of bytes copied so far |
163 | offset += 1; |
164 | until_alignment -= 1; |
165 | } |
166 | let len_minus_stride = len - ALU_STRIDE_SIZE; |
167 | loop { |
168 | // Safety: num_ascii is known to be a byte index of a non-ascii byte due to stride_fn's invariant |
169 | if let Some(num_ascii) = $stride_fn( |
170 | // Safety: These are known to be valid and aligned since we have at |
171 | // least ALU_STRIDE_SIZE data in these buffers, and offset is the |
172 | // number of elements copied so far, which according to the |
173 | // until_alignment calculation above will cause both src and dst to be |
174 | // aligned to usize after this add |
175 | src.add(offset) as *const usize, |
176 | dst.add(offset) as *mut usize, |
177 | ) { |
178 | offset += num_ascii; |
179 | // Safety: Upholds safety-usable invariant here by indexing into non-ascii byte |
180 | return Some((*(src.add(offset)), offset)); |
181 | } |
182 | // Safety: offset continues to be the number of bytes copied so far, and |
183 | // maintains usize alignment for the next loop iteration |
184 | offset += ALU_STRIDE_SIZE; |
185 | // Safety: This is `offset > len - stride. This loop will continue as long as |
186 | // `offset <= len - stride`, which means there are `stride` bytes to still be read. |
187 | if offset > len_minus_stride { |
188 | break; |
189 | } |
190 | } |
191 | } |
192 | break; |
193 | } |
194 | |
195 | // Safety: This is the naïve code, same as ascii_naive, and has no requirements |
196 | // other than src/dst being valid for the the right lens |
197 | while offset < len { |
198 | // Safety: len invariant used here |
199 | let code_unit = *(src.add(offset)); |
200 | if code_unit > 127 { |
201 | // Safety: Upholds safety-usable invariant here |
202 | return Some((code_unit, offset)); |
203 | } |
204 | // Safety: len invariant used here |
205 | *(dst.add(offset)) = code_unit as $dst_unit; |
206 | offset += 1; |
207 | } |
208 | None |
209 | } |
210 | }; |
211 | } |
212 | |
213 | #[allow (unused_macros)] |
214 | macro_rules! basic_latin_alu { |
215 | ($name:ident, |
216 | // safety invariant: use u8 for src/dest for ascii, and u16 for basic_latin |
217 | $src_unit:ty, |
218 | $dst_unit:ty, |
219 | // safety invariant: stride function must munch ALU_STRIDE_SIZE*size(src_unit) bytes off of src and |
220 | // write ALU_STRIDE_SIZE*size(dst_unit) bytes to dst |
221 | $stride_fn:ident) => { |
222 | /// Safety: src and dst must have len elements, src is valid for read, dst is valid for |
223 | /// write |
224 | /// Safety-usable invariant: will return Some() when it fails |
225 | /// to convert. The first value will be a u8 that is > 127. |
226 | #[cfg_attr( |
227 | feature = "cargo-clippy" , |
228 | allow(never_loop, cast_ptr_alignment, cast_lossless) |
229 | )] |
230 | #[inline(always)] |
231 | pub unsafe fn $name( |
232 | src: *const $src_unit, |
233 | dst: *mut $dst_unit, |
234 | len: usize, |
235 | ) -> Option<($src_unit, usize)> { |
236 | let mut offset = 0usize; |
237 | // This loop is only broken out of as a `goto` forward |
238 | loop { |
239 | // Safety: until_alignment becomes the number of bytes we need to munch from src/dest until we are aligned to usize |
240 | // We ensure basic-latin has the same alignment as ascii, starting with ascii since it is smaller. |
241 | let mut until_alignment = { |
242 | // Check if the other unit aligns if we move the narrower unit |
243 | // to alignment. |
244 | // if ::core::mem::size_of::<$src_unit>() == ::core::mem::size_of::<$dst_unit>() { |
245 | // ascii_to_ascii |
246 | // let src_alignment = (src as usize) & ALIGNMENT_MASK; |
247 | // let dst_alignment = (dst as usize) & ALIGNMENT_MASK; |
248 | // if src_alignment != dst_alignment { |
249 | // break; |
250 | // } |
251 | // (ALIGNMENT - src_alignment) & ALIGNMENT_MASK |
252 | // } else |
253 | if ::core::mem::size_of::<$src_unit>() < ::core::mem::size_of::<$dst_unit>() { |
254 | // ascii_to_basic_latin |
255 | let src_until_alignment = (ALU_ALIGNMENT |
256 | - ((src as usize) & ALU_ALIGNMENT_MASK)) |
257 | & ALU_ALIGNMENT_MASK; |
258 | if (dst.wrapping_add(src_until_alignment) as usize) & ALU_ALIGNMENT_MASK |
259 | != 0 |
260 | { |
261 | break; |
262 | } |
263 | src_until_alignment |
264 | } else { |
265 | // basic_latin_to_ascii |
266 | let dst_until_alignment = (ALU_ALIGNMENT |
267 | - ((dst as usize) & ALU_ALIGNMENT_MASK)) |
268 | & ALU_ALIGNMENT_MASK; |
269 | if (src.wrapping_add(dst_until_alignment) as usize) & ALU_ALIGNMENT_MASK |
270 | != 0 |
271 | { |
272 | break; |
273 | } |
274 | dst_until_alignment |
275 | } |
276 | }; |
277 | if until_alignment + ALU_STRIDE_SIZE <= len { |
278 | // Moving pointers to alignment seems to be a pessimization on |
279 | // x86_64 for operations that have UTF-16 as the internal |
280 | // Unicode representation. However, since it seems to be a win |
281 | // on ARM (tested ARMv7 code running on ARMv8 [rpi3]), except |
282 | // mixed results when encoding from UTF-16 and since x86 and |
283 | // x86_64 should be using SSE2 in due course, keeping the move |
284 | // to alignment here. It would be good to test on more ARM CPUs |
285 | // and on real MIPS and POWER hardware. |
286 | // |
287 | // Safety: This is the naïve code once again, for `until_alignment` bytes |
288 | while until_alignment != 0 { |
289 | let code_unit = *(src.add(offset)); |
290 | if code_unit > 127 { |
291 | // Safety: Upholds safety-usable invariant here |
292 | return Some((code_unit, offset)); |
293 | } |
294 | *(dst.add(offset)) = code_unit as $dst_unit; |
295 | // Safety: offset is the number of bytes copied so far |
296 | offset += 1; |
297 | until_alignment -= 1; |
298 | } |
299 | let len_minus_stride = len - ALU_STRIDE_SIZE; |
300 | loop { |
301 | if !$stride_fn( |
302 | // Safety: These are known to be valid and aligned since we have at |
303 | // least ALU_STRIDE_SIZE data in these buffers, and offset is the |
304 | // number of elements copied so far, which according to the |
305 | // until_alignment calculation above will cause both src and dst to be |
306 | // aligned to usize after this add |
307 | src.add(offset) as *const usize, |
308 | dst.add(offset) as *mut usize, |
309 | ) { |
310 | break; |
311 | } |
312 | // Safety: offset continues to be the number of bytes copied so far, and |
313 | // maintains usize alignment for the next loop iteration |
314 | offset += ALU_STRIDE_SIZE; |
315 | // Safety: This is `offset > len - stride. This loop will continue as long as |
316 | // `offset <= len - stride`, which means there are `stride` bytes to still be read. |
317 | if offset > len_minus_stride { |
318 | break; |
319 | } |
320 | } |
321 | } |
322 | break; |
323 | } |
324 | // Safety: This is the naïve code once again, for leftover bytes |
325 | while offset < len { |
326 | // Safety: len invariant used here |
327 | let code_unit = *(src.add(offset)); |
328 | if code_unit > 127 { |
329 | // Safety: Upholds safety-usable invariant here |
330 | return Some((code_unit, offset)); |
331 | } |
332 | // Safety: len invariant used here |
333 | *(dst.add(offset)) = code_unit as $dst_unit; |
334 | offset += 1; |
335 | } |
336 | None |
337 | } |
338 | }; |
339 | } |
340 | |
341 | #[allow (unused_macros)] |
342 | macro_rules! latin1_alu { |
343 | // safety invariant: stride function must munch ALU_STRIDE_SIZE*size(src_unit) bytes off of src and |
344 | // write ALU_STRIDE_SIZE*size(dst_unit) bytes to dst |
345 | ($name:ident, $src_unit:ty, $dst_unit:ty, $stride_fn:ident) => { |
346 | /// Safety: src and dst must have len elements, src is valid for read, dst is valid for |
347 | /// write |
348 | #[cfg_attr( |
349 | feature = "cargo-clippy" , |
350 | allow(never_loop, cast_ptr_alignment, cast_lossless) |
351 | )] |
352 | #[inline(always)] |
353 | pub unsafe fn $name(src: *const $src_unit, dst: *mut $dst_unit, len: usize) { |
354 | let mut offset = 0usize; |
355 | // This loop is only broken out of as a `goto` forward |
356 | loop { |
357 | // Safety: until_alignment becomes the number of bytes we need to munch from src/dest until we are aligned to usize |
358 | // We ensure the UTF-16 side has the same alignment as the Latin-1 side, starting with Latin-1 since it is smaller. |
359 | let mut until_alignment = { |
360 | if ::core::mem::size_of::<$src_unit>() < ::core::mem::size_of::<$dst_unit>() { |
361 | // unpack |
362 | let src_until_alignment = (ALU_ALIGNMENT |
363 | - ((src as usize) & ALU_ALIGNMENT_MASK)) |
364 | & ALU_ALIGNMENT_MASK; |
365 | if (dst.wrapping_add(src_until_alignment) as usize) & ALU_ALIGNMENT_MASK |
366 | != 0 |
367 | { |
368 | break; |
369 | } |
370 | src_until_alignment |
371 | } else { |
372 | // pack |
373 | let dst_until_alignment = (ALU_ALIGNMENT |
374 | - ((dst as usize) & ALU_ALIGNMENT_MASK)) |
375 | & ALU_ALIGNMENT_MASK; |
376 | if (src.wrapping_add(dst_until_alignment) as usize) & ALU_ALIGNMENT_MASK |
377 | != 0 |
378 | { |
379 | break; |
380 | } |
381 | dst_until_alignment |
382 | } |
383 | }; |
384 | if until_alignment + ALU_STRIDE_SIZE <= len { |
385 | // Safety: This is the naïve code once again, for `until_alignment` bytes |
386 | while until_alignment != 0 { |
387 | let code_unit = *(src.add(offset)); |
388 | *(dst.add(offset)) = code_unit as $dst_unit; |
389 | // Safety: offset is the number of bytes copied so far |
390 | offset += 1; |
391 | until_alignment -= 1; |
392 | } |
393 | let len_minus_stride = len - ALU_STRIDE_SIZE; |
394 | loop { |
395 | $stride_fn( |
396 | // Safety: These are known to be valid and aligned since we have at |
397 | // least ALU_STRIDE_SIZE data in these buffers, and offset is the |
398 | // number of elements copied so far, which according to the |
399 | // until_alignment calculation above will cause both src and dst to be |
400 | // aligned to usize after this add |
401 | src.add(offset) as *const usize, |
402 | dst.add(offset) as *mut usize, |
403 | ); |
404 | // Safety: offset continues to be the number of bytes copied so far, and |
405 | // maintains usize alignment for the next loop iteration |
406 | offset += ALU_STRIDE_SIZE; |
407 | // Safety: This is `offset > len - stride. This loop will continue as long as |
408 | // `offset <= len - stride`, which means there are `stride` bytes to still be read. |
409 | if offset > len_minus_stride { |
410 | break; |
411 | } |
412 | } |
413 | } |
414 | break; |
415 | } |
416 | // Safety: This is the naïve code once again, for leftover bytes |
417 | while offset < len { |
418 | // Safety: len invariant used here |
419 | let code_unit = *(src.add(offset)); |
420 | *(dst.add(offset)) = code_unit as $dst_unit; |
421 | offset += 1; |
422 | } |
423 | } |
424 | }; |
425 | } |
426 | |
427 | #[allow (unused_macros)] |
428 | macro_rules! ascii_simd_check_align { |
429 | ( |
430 | $name:ident, |
431 | $src_unit:ty, |
432 | $dst_unit:ty, |
433 | // Safety: This function must require aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
434 | $stride_both_aligned:ident, |
435 | // Safety: This function must require aligned/unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
436 | $stride_src_aligned:ident, |
437 | // Safety: This function must require unaligned/aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
438 | $stride_dst_aligned:ident, |
439 | // Safety: This function must require unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
440 | $stride_neither_aligned:ident |
441 | ) => { |
442 | /// Safety: src/dst must be valid for reads/writes of `len` elements of their units. |
443 | /// |
444 | /// Safety-usable invariant: will return Some() when it encounters non-ASCII, with the first element in the Some being |
445 | /// guaranteed to be non-ASCII (> 127), and the second being the offset where it is found |
446 | #[inline(always)] |
447 | pub unsafe fn $name( |
448 | src: *const $src_unit, |
449 | dst: *mut $dst_unit, |
450 | len: usize, |
451 | ) -> Option<($src_unit, usize)> { |
452 | let mut offset = 0usize; |
453 | // Safety: if this check succeeds we're valid for reading/writing at least `SIMD_STRIDE_SIZE` elements. |
454 | if SIMD_STRIDE_SIZE <= len { |
455 | let len_minus_stride = len - SIMD_STRIDE_SIZE; |
456 | // XXX Should we first process one stride unconditionally as unaligned to |
457 | // avoid the cost of the branchiness below if the first stride fails anyway? |
458 | // XXX Should we just use unaligned SSE2 access unconditionally? It seems that |
459 | // on Haswell, it would make sense to just use unaligned and not bother |
460 | // checking. Need to benchmark older architectures before deciding. |
461 | let dst_masked = (dst as usize) & SIMD_ALIGNMENT_MASK; |
462 | // Safety: checking whether src is aligned |
463 | if ((src as usize) & SIMD_ALIGNMENT_MASK) == 0 { |
464 | // Safety: Checking whether dst is aligned |
465 | if dst_masked == 0 { |
466 | loop { |
467 | // Safety: We're valid to read/write SIMD_STRIDE_SIZE elements and have the appropriate alignments |
468 | if !$stride_both_aligned(src.add(offset), dst.add(offset)) { |
469 | break; |
470 | } |
471 | offset += SIMD_STRIDE_SIZE; |
472 | // Safety: This is `offset > len - SIMD_STRIDE_SIZE` which means we always have at least `SIMD_STRIDE_SIZE` elements to munch next time. |
473 | if offset > len_minus_stride { |
474 | break; |
475 | } |
476 | } |
477 | } else { |
478 | loop { |
479 | // Safety: We're valid to read/write SIMD_STRIDE_SIZE elements and have the appropriate alignments |
480 | if !$stride_src_aligned(src.add(offset), dst.add(offset)) { |
481 | break; |
482 | } |
483 | offset += SIMD_STRIDE_SIZE; |
484 | // Safety: This is `offset > len - SIMD_STRIDE_SIZE` which means we always have at least `SIMD_STRIDE_SIZE` elements to munch next time. |
485 | if offset > len_minus_stride { |
486 | break; |
487 | } |
488 | } |
489 | } |
490 | } else { |
491 | if dst_masked == 0 { |
492 | loop { |
493 | // Safety: We're valid to read/write SIMD_STRIDE_SIZE elements and have the appropriate alignments |
494 | if !$stride_dst_aligned(src.add(offset), dst.add(offset)) { |
495 | break; |
496 | } |
497 | offset += SIMD_STRIDE_SIZE; |
498 | // Safety: This is `offset > len - SIMD_STRIDE_SIZE` which means we always have at least `SIMD_STRIDE_SIZE` elements to munch next time. |
499 | if offset > len_minus_stride { |
500 | break; |
501 | } |
502 | } |
503 | } else { |
504 | loop { |
505 | // Safety: We're valid to read/write SIMD_STRIDE_SIZE elements and have the appropriate alignments |
506 | if !$stride_neither_aligned(src.add(offset), dst.add(offset)) { |
507 | break; |
508 | } |
509 | offset += SIMD_STRIDE_SIZE; |
510 | // Safety: This is `offset > len - SIMD_STRIDE_SIZE` which means we always have at least `SIMD_STRIDE_SIZE` elements to munch next time. |
511 | if offset > len_minus_stride { |
512 | break; |
513 | } |
514 | } |
515 | } |
516 | } |
517 | } |
518 | while offset < len { |
519 | // Safety: uses len invariant here and below |
520 | let code_unit = *(src.add(offset)); |
521 | if code_unit > 127 { |
522 | // Safety: upholds safety-usable invariant |
523 | return Some((code_unit, offset)); |
524 | } |
525 | *(dst.add(offset)) = code_unit as $dst_unit; |
526 | offset += 1; |
527 | } |
528 | None |
529 | } |
530 | }; |
531 | } |
532 | |
533 | #[allow (unused_macros)] |
534 | macro_rules! ascii_simd_check_align_unrolled { |
535 | ( |
536 | $name:ident, |
537 | $src_unit:ty, |
538 | $dst_unit:ty, |
539 | // Safety: This function must require aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
540 | $stride_both_aligned:ident, |
541 | // Safety: This function must require aligned/unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
542 | $stride_src_aligned:ident, |
543 | // Safety: This function must require unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
544 | $stride_neither_aligned:ident, |
545 | // Safety: This function must require aligned src/dest that are valid for reading/writing 2*SIMD_STRIDE_SIZE src_unit/dst_unit |
546 | $double_stride_both_aligned:ident, |
547 | // Safety: This function must require aligned/unaligned src/dest that are valid for reading/writing 2*SIMD_STRIDE_SIZE src_unit/dst_unit |
548 | $double_stride_src_aligned:ident |
549 | ) => { |
550 | /// Safety: src/dst must be valid for reads/writes of `len` elements of their units. |
551 | /// |
552 | /// Safety-usable invariant: will return Some() when it encounters non-ASCII, with the first element in the Some being |
553 | /// guaranteed to be non-ASCII (> 127), and the second being the offset where it is found #[inline(always)] |
554 | pub unsafe fn $name( |
555 | src: *const $src_unit, |
556 | dst: *mut $dst_unit, |
557 | len: usize, |
558 | ) -> Option<($src_unit, usize)> { |
559 | let unit_size = ::core::mem::size_of::<$src_unit>(); |
560 | let mut offset = 0usize; |
561 | // This loop is only broken out of as a goto forward without |
562 | // actually looping |
563 | 'outer: loop { |
564 | // Safety: if this check succeeds we're valid for reading/writing at least `SIMD_STRIDE_SIZE` elements. |
565 | if SIMD_STRIDE_SIZE <= len { |
566 | // First, process one unaligned |
567 | // Safety: this is safe to call since we're valid for this read/write |
568 | if !$stride_neither_aligned(src, dst) { |
569 | break 'outer; |
570 | } |
571 | offset = SIMD_STRIDE_SIZE; |
572 | |
573 | // We have now seen 16 ASCII bytes. Let's guess that |
574 | // there will be enough more to justify more expense |
575 | // in the case of non-ASCII. |
576 | // Use aligned reads for the sake of old microachitectures. |
577 | // |
578 | // Safety: this correctly calculates the number of src_units that need to be read before the remaining list is aligned. |
579 | // This is less that SIMD_ALIGNMENT, which is also SIMD_STRIDE_SIZE (as documented) |
580 | let until_alignment = ((SIMD_ALIGNMENT |
581 | - ((src.add(offset) as usize) & SIMD_ALIGNMENT_MASK)) |
582 | & SIMD_ALIGNMENT_MASK) |
583 | / unit_size; |
584 | // Safety: This addition won't overflow, because even in the 32-bit PAE case the |
585 | // address space holds enough code that the slice length can't be that |
586 | // close to address space size. |
587 | // offset now equals SIMD_STRIDE_SIZE, hence times 3 below. |
588 | // |
589 | // Safety: if this check succeeds we're valid for reading/writing at least `2 * SIMD_STRIDE_SIZE` elements plus `until_alignment`. |
590 | // The extra SIMD_STRIDE_SIZE in the condition is because `offset` is already `SIMD_STRIDE_SIZE`. |
591 | if until_alignment + (SIMD_STRIDE_SIZE * 3) <= len { |
592 | if until_alignment != 0 { |
593 | // Safety: this is safe to call since we're valid for this read/write (and more), and don't care about alignment |
594 | // This will copy over bytes that get decoded twice since it's not incrementing `offset` by SIMD_STRIDE_SIZE. This is fine. |
595 | if !$stride_neither_aligned(src.add(offset), dst.add(offset)) { |
596 | break; |
597 | } |
598 | offset += until_alignment; |
599 | } |
600 | // Safety: At this point we're valid for reading/writing 2*SIMD_STRIDE_SIZE elements |
601 | // Safety: Now `offset` is aligned for `src` |
602 | let len_minus_stride_times_two = len - (SIMD_STRIDE_SIZE * 2); |
603 | // Safety: This is whether dst is aligned |
604 | let dst_masked = (dst.add(offset) as usize) & SIMD_ALIGNMENT_MASK; |
605 | if dst_masked == 0 { |
606 | loop { |
607 | // Safety: both are aligned, we can call the aligned function. We're valid for reading/writing double stride from the initial condition |
608 | // and the loop break condition below |
609 | if let Some(advance) = |
610 | $double_stride_both_aligned(src.add(offset), dst.add(offset)) |
611 | { |
612 | offset += advance; |
613 | let code_unit = *(src.add(offset)); |
614 | // Safety: uses safety-usable invariant on ascii_to_ascii_simd_double_stride to return |
615 | // guaranteed non-ascii |
616 | return Some((code_unit, offset)); |
617 | } |
618 | offset += SIMD_STRIDE_SIZE * 2; |
619 | // Safety: This is `offset > len - 2 * SIMD_STRIDE_SIZE` which means we always have at least `2 * SIMD_STRIDE_SIZE` elements to munch next time. |
620 | if offset > len_minus_stride_times_two { |
621 | break; |
622 | } |
623 | } |
624 | // Safety: We're valid for reading/writing one more, and can still assume alignment |
625 | if offset + SIMD_STRIDE_SIZE <= len { |
626 | if !$stride_both_aligned(src.add(offset), dst.add(offset)) { |
627 | break 'outer; |
628 | } |
629 | offset += SIMD_STRIDE_SIZE; |
630 | } |
631 | } else { |
632 | loop { |
633 | // Safety: only src is aligned here. We're valid for reading/writing double stride from the initial condition |
634 | // and the loop break condition below |
635 | if let Some(advance) = |
636 | $double_stride_src_aligned(src.add(offset), dst.add(offset)) |
637 | { |
638 | offset += advance; |
639 | let code_unit = *(src.add(offset)); |
640 | // Safety: uses safety-usable invariant on ascii_to_ascii_simd_double_stride to return |
641 | // guaranteed non-ascii |
642 | return Some((code_unit, offset)); |
643 | } |
644 | offset += SIMD_STRIDE_SIZE * 2; |
645 | // Safety: This is `offset > len - 2 * SIMD_STRIDE_SIZE` which means we always have at least `2 * SIMD_STRIDE_SIZE` elements to munch next time. |
646 | |
647 | if offset > len_minus_stride_times_two { |
648 | break; |
649 | } |
650 | } |
651 | // Safety: We're valid for reading/writing one more, and can still assume alignment |
652 | if offset + SIMD_STRIDE_SIZE <= len { |
653 | if !$stride_src_aligned(src.add(offset), dst.add(offset)) { |
654 | break 'outer; |
655 | } |
656 | offset += SIMD_STRIDE_SIZE; |
657 | } |
658 | } |
659 | } else { |
660 | // At most two iterations, so unroll |
661 | if offset + SIMD_STRIDE_SIZE <= len { |
662 | // Safety: The check above ensures we're allowed to read/write this, and we don't use alignment |
663 | if !$stride_neither_aligned(src.add(offset), dst.add(offset)) { |
664 | break; |
665 | } |
666 | offset += SIMD_STRIDE_SIZE; |
667 | if offset + SIMD_STRIDE_SIZE <= len { |
668 | // Safety: The check above ensures we're allowed to read/write this, and we don't use alignment |
669 | if !$stride_neither_aligned(src.add(offset), dst.add(offset)) { |
670 | break; |
671 | } |
672 | offset += SIMD_STRIDE_SIZE; |
673 | } |
674 | } |
675 | } |
676 | } |
677 | break 'outer; |
678 | } |
679 | while offset < len { |
680 | // Safety: relies straightforwardly on the `len` invariant |
681 | let code_unit = *(src.add(offset)); |
682 | if code_unit > 127 { |
683 | // Safety-usable invariant upheld here |
684 | return Some((code_unit, offset)); |
685 | } |
686 | *(dst.add(offset)) = code_unit as $dst_unit; |
687 | offset += 1; |
688 | } |
689 | None |
690 | } |
691 | }; |
692 | } |
693 | |
694 | #[allow (unused_macros)] |
695 | macro_rules! latin1_simd_check_align { |
696 | ( |
697 | $name:ident, |
698 | $src_unit:ty, |
699 | $dst_unit:ty, |
700 | // Safety: This function must require aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
701 | $stride_both_aligned:ident, |
702 | // Safety: This function must require aligned/unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
703 | $stride_src_aligned:ident, |
704 | // Safety: This function must require unaligned/aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
705 | $stride_dst_aligned:ident, |
706 | // Safety: This function must require unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
707 | $stride_neither_aligned:ident |
708 | |
709 | ) => { |
710 | /// Safety: src/dst must be valid for reads/writes of `len` elements of their units. |
711 | #[inline(always)] |
712 | pub unsafe fn $name(src: *const $src_unit, dst: *mut $dst_unit, len: usize) { |
713 | let mut offset = 0usize; |
714 | // Safety: if this check succeeds we're valid for reading/writing at least `SIMD_STRIDE_SIZE` elements. |
715 | if SIMD_STRIDE_SIZE <= len { |
716 | let len_minus_stride = len - SIMD_STRIDE_SIZE; |
717 | // Whether dst is aligned |
718 | let dst_masked = (dst as usize) & SIMD_ALIGNMENT_MASK; |
719 | // Whether src is aligned |
720 | if ((src as usize) & SIMD_ALIGNMENT_MASK) == 0 { |
721 | if dst_masked == 0 { |
722 | loop { |
723 | // Safety: Both were aligned, we can use the aligned function |
724 | $stride_both_aligned(src.add(offset), dst.add(offset)); |
725 | offset += SIMD_STRIDE_SIZE; |
726 | // Safety: This is `offset > len - SIMD_STRIDE_SIZE`, which means in the next iteration we're valid for |
727 | // reading/writing at least SIMD_STRIDE_SIZE elements. |
728 | if offset > len_minus_stride { |
729 | break; |
730 | } |
731 | } |
732 | } else { |
733 | loop { |
734 | // Safety: src was aligned, dst was not |
735 | $stride_src_aligned(src.add(offset), dst.add(offset)); |
736 | offset += SIMD_STRIDE_SIZE; |
737 | // Safety: This is `offset > len - SIMD_STRIDE_SIZE`, which means in the next iteration we're valid for |
738 | // reading/writing at least SIMD_STRIDE_SIZE elements. |
739 | if offset > len_minus_stride { |
740 | break; |
741 | } |
742 | } |
743 | } |
744 | } else { |
745 | if dst_masked == 0 { |
746 | loop { |
747 | // Safety: src was aligned, dst was not |
748 | $stride_dst_aligned(src.add(offset), dst.add(offset)); |
749 | offset += SIMD_STRIDE_SIZE; |
750 | // Safety: This is `offset > len - SIMD_STRIDE_SIZE`, which means in the next iteration we're valid for |
751 | // reading/writing at least SIMD_STRIDE_SIZE elements. |
752 | if offset > len_minus_stride { |
753 | break; |
754 | } |
755 | } |
756 | } else { |
757 | loop { |
758 | // Safety: Neither were aligned |
759 | $stride_neither_aligned(src.add(offset), dst.add(offset)); |
760 | offset += SIMD_STRIDE_SIZE; |
761 | // Safety: This is `offset > len - SIMD_STRIDE_SIZE`, which means in the next iteration we're valid for |
762 | // reading/writing at least SIMD_STRIDE_SIZE elements. |
763 | if offset > len_minus_stride { |
764 | break; |
765 | } |
766 | } |
767 | } |
768 | } |
769 | } |
770 | while offset < len { |
771 | // Safety: relies straightforwardly on the `len` invariant |
772 | let code_unit = *(src.add(offset)); |
773 | *(dst.add(offset)) = code_unit as $dst_unit; |
774 | offset += 1; |
775 | } |
776 | } |
777 | }; |
778 | } |
779 | |
780 | #[allow (unused_macros)] |
781 | macro_rules! latin1_simd_check_align_unrolled { |
782 | ( |
783 | $name:ident, |
784 | $src_unit:ty, |
785 | $dst_unit:ty, |
786 | // Safety: This function must require aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
787 | $stride_both_aligned:ident, |
788 | // Safety: This function must require aligned/unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
789 | $stride_src_aligned:ident, |
790 | // Safety: This function must require unaligned/aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
791 | $stride_dst_aligned:ident, |
792 | // Safety: This function must require unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit |
793 | $stride_neither_aligned:ident |
794 | ) => { |
795 | /// Safety: src/dst must be valid for reads/writes of `len` elements of their units. |
796 | #[inline(always)] |
797 | pub unsafe fn $name(src: *const $src_unit, dst: *mut $dst_unit, len: usize) { |
798 | let unit_size = ::core::mem::size_of::<$src_unit>(); |
799 | let mut offset = 0usize; |
800 | // Safety: if this check succeeds we're valid for reading/writing at least `SIMD_STRIDE_SIZE` elements. |
801 | if SIMD_STRIDE_SIZE <= len { |
802 | // Safety: this correctly calculates the number of src_units that need to be read before the remaining list is aligned. |
803 | // This is by definition less than SIMD_STRIDE_SIZE. |
804 | let mut until_alignment = ((SIMD_STRIDE_SIZE |
805 | - ((src as usize) & SIMD_ALIGNMENT_MASK)) |
806 | & SIMD_ALIGNMENT_MASK) |
807 | / unit_size; |
808 | while until_alignment != 0 { |
809 | // Safety: This is a straightforward copy, since until_alignment is < SIMD_STRIDE_SIZE < len, this is in-bounds |
810 | *(dst.add(offset)) = *(src.add(offset)) as $dst_unit; |
811 | offset += 1; |
812 | until_alignment -= 1; |
813 | } |
814 | // Safety: here offset will be `until_alignment`, i.e. enough to align `src`. |
815 | let len_minus_stride = len - SIMD_STRIDE_SIZE; |
816 | // Safety: if this check succeeds we're valid for reading/writing at least `2 * SIMD_STRIDE_SIZE` elements. |
817 | if offset + SIMD_STRIDE_SIZE * 2 <= len { |
818 | let len_minus_stride_times_two = len_minus_stride - SIMD_STRIDE_SIZE; |
819 | // Safety: at this point src is known to be aligned at offset, dst is not. |
820 | if (dst.add(offset) as usize) & SIMD_ALIGNMENT_MASK == 0 { |
821 | loop { |
822 | // Safety: We checked alignment of dst above, we can use the alignment functions. We're allowed to read/write 2*SIMD_STRIDE_SIZE elements, which we do. |
823 | $stride_both_aligned(src.add(offset), dst.add(offset)); |
824 | offset += SIMD_STRIDE_SIZE; |
825 | $stride_both_aligned(src.add(offset), dst.add(offset)); |
826 | offset += SIMD_STRIDE_SIZE; |
827 | // Safety: This is `offset > len - 2 * SIMD_STRIDE_SIZE` which means we always have at least `2 * SIMD_STRIDE_SIZE` elements to munch next time. |
828 | if offset > len_minus_stride_times_two { |
829 | break; |
830 | } |
831 | } |
832 | } else { |
833 | loop { |
834 | // Safety: we ensured alignment of src already. |
835 | $stride_src_aligned(src.add(offset), dst.add(offset)); |
836 | offset += SIMD_STRIDE_SIZE; |
837 | $stride_src_aligned(src.add(offset), dst.add(offset)); |
838 | offset += SIMD_STRIDE_SIZE; |
839 | // Safety: This is `offset > len - 2 * SIMD_STRIDE_SIZE` which means we always have at least `2 * SIMD_STRIDE_SIZE` elements to munch next time. |
840 | if offset > len_minus_stride_times_two { |
841 | break; |
842 | } |
843 | } |
844 | } |
845 | } |
846 | // Safety: This is `offset > len - SIMD_STRIDE_SIZE` which means we are valid to munch SIMD_STRIDE_SIZE more elements, which we do |
847 | if offset < len_minus_stride { |
848 | $stride_src_aligned(src.add(offset), dst.add(offset)); |
849 | offset += SIMD_STRIDE_SIZE; |
850 | } |
851 | } |
852 | while offset < len { |
853 | // Safety: uses len invariant here and below |
854 | let code_unit = *(src.add(offset)); |
855 | // On x86_64, this loop autovectorizes but in the pack |
856 | // case there are instructions whose purpose is to make sure |
857 | // each u16 in the vector is truncated before packing. However, |
858 | // since we don't care about saturating behavior of SSE2 packing |
859 | // when the input isn't Latin1, those instructions are useless. |
860 | // Unfortunately, using the `assume` intrinsic to lie to the |
861 | // optimizer doesn't make LLVM omit the trunctation that we |
862 | // don't need. Possibly this loop could be manually optimized |
863 | // to do the sort of thing that LLVM does but without the |
864 | // ANDing the read vectors of u16 with a constant that discards |
865 | // the high half of each u16. As far as I can tell, the |
866 | // optimization assumes that doing a SIMD read past the end of |
867 | // the array is OK. |
868 | *(dst.add(offset)) = code_unit as $dst_unit; |
869 | offset += 1; |
870 | } |
871 | } |
872 | }; |
873 | } |
874 | |
875 | #[allow (unused_macros)] |
876 | macro_rules! ascii_simd_unalign { |
877 | // Safety: stride_neither_aligned must be a function that requires src/dest be valid for unaligned reads/writes for SIMD_STRIDE_SIZE elements of type src_unit/dest_unit |
878 | ($name:ident, $src_unit:ty, $dst_unit:ty, $stride_neither_aligned:ident) => { |
879 | /// Safety: src and dst must be valid for reads/writes of len elements of type src_unit/dst_unit |
880 | /// |
881 | /// Safety-usable invariant: will return Some() when it encounters non-ASCII, with the first element in the Some being |
882 | /// guaranteed to be non-ASCII (> 127), and the second being the offset where it is found |
883 | #[inline(always)] |
884 | pub unsafe fn $name( |
885 | src: *const $src_unit, |
886 | dst: *mut $dst_unit, |
887 | len: usize, |
888 | ) -> Option<($src_unit, usize)> { |
889 | let mut offset = 0usize; |
890 | // Safety: if this check succeeds we're valid for reading/writing at least `stride` elements. |
891 | if SIMD_STRIDE_SIZE <= len { |
892 | let len_minus_stride = len - SIMD_STRIDE_SIZE; |
893 | loop { |
894 | // Safety: We know we're valid for `stride` reads/writes, so we can call this function. We don't need alignment. |
895 | if !$stride_neither_aligned(src.add(offset), dst.add(offset)) { |
896 | break; |
897 | } |
898 | offset += SIMD_STRIDE_SIZE; |
899 | // This is `offset > len - stride` which means we always have at least `stride` elements to munch next time. |
900 | if offset > len_minus_stride { |
901 | break; |
902 | } |
903 | } |
904 | } |
905 | while offset < len { |
906 | // Safety: Uses len invariant here and below |
907 | let code_unit = *(src.add(offset)); |
908 | if code_unit > 127 { |
909 | // Safety-usable invariant upheld here |
910 | return Some((code_unit, offset)); |
911 | } |
912 | *(dst.add(offset)) = code_unit as $dst_unit; |
913 | offset += 1; |
914 | } |
915 | None |
916 | } |
917 | }; |
918 | } |
919 | |
920 | #[allow (unused_macros)] |
921 | macro_rules! latin1_simd_unalign { |
922 | // Safety: stride_neither_aligned must be a function that requires src/dest be valid for unaligned reads/writes for SIMD_STRIDE_SIZE elements of type src_unit/dest_unit |
923 | ($name:ident, $src_unit:ty, $dst_unit:ty, $stride_neither_aligned:ident) => { |
924 | /// Safety: src and dst must be valid for unaligned reads/writes of len elements of type src_unit/dst_unit |
925 | #[inline(always)] |
926 | pub unsafe fn $name(src: *const $src_unit, dst: *mut $dst_unit, len: usize) { |
927 | let mut offset = 0usize; |
928 | // Safety: if this check succeeds we're valid for reading/writing at least `stride` elements. |
929 | if SIMD_STRIDE_SIZE <= len { |
930 | let len_minus_stride = len - SIMD_STRIDE_SIZE; |
931 | loop { |
932 | // Safety: We know we're valid for `stride` reads/writes, so we can call this function. We don't need alignment. |
933 | $stride_neither_aligned(src.add(offset), dst.add(offset)); |
934 | offset += SIMD_STRIDE_SIZE; |
935 | // This is `offset > len - stride` which means we always have at least `stride` elements to munch next time. |
936 | if offset > len_minus_stride { |
937 | break; |
938 | } |
939 | } |
940 | } |
941 | while offset < len { |
942 | // Safety: Uses len invariant here |
943 | let code_unit = *(src.add(offset)); |
944 | *(dst.add(offset)) = code_unit as $dst_unit; |
945 | offset += 1; |
946 | } |
947 | } |
948 | }; |
949 | } |
950 | |
951 | #[allow (unused_macros)] |
952 | macro_rules! ascii_to_ascii_simd_stride { |
953 | // Safety: load/store must be valid for 16 bytes of read/write, which may be unaligned. (candidates: `(load|store)(16|8)_(unaligned|aligned)` functions) |
954 | ($name:ident, $load:ident, $store:ident) => { |
955 | /// Safety: src and dst must be valid for 16 bytes of read/write according to |
956 | /// the $load/$store fn, which may allow for unaligned reads/writes or require |
957 | /// alignment to either 16x8 or u8x16. |
958 | #[inline(always)] |
959 | pub unsafe fn $name(src: *const u8, dst: *mut u8) -> bool { |
960 | let simd = $load(src); |
961 | if !simd_is_ascii(simd) { |
962 | return false; |
963 | } |
964 | $store(dst, simd); |
965 | true |
966 | } |
967 | }; |
968 | } |
969 | |
970 | #[allow (unused_macros)] |
971 | macro_rules! ascii_to_ascii_simd_double_stride { |
972 | // Safety: store must be valid for 32 bytes of write, which may be unaligned (candidates: `store(8|16)_(aligned|unaligned)`) |
973 | ($name:ident, $store:ident) => { |
974 | /// Safety: src must be valid for 32 bytes of aligned u8x16 read |
975 | /// dst must be valid for 32 bytes of unaligned write according to |
976 | /// the $store fn, which may allow for unaligned writes or require |
977 | /// alignment to either 16x8 or u8x16. |
978 | /// |
979 | /// Safety-usable invariant: Returns Some(index) if the element at `index` is invalid ASCII |
980 | #[inline(always)] |
981 | pub unsafe fn $name(src: *const u8, dst: *mut u8) -> Option<usize> { |
982 | let first = load16_aligned(src); |
983 | let second = load16_aligned(src.add(SIMD_STRIDE_SIZE)); |
984 | $store(dst, first); |
985 | if unlikely(!simd_is_ascii(first | second)) { |
986 | // Safety: mask_ascii produces a mask of all the high bits. |
987 | let mask_first = mask_ascii(first); |
988 | if mask_first != 0 { |
989 | // Safety: on little endian systems this will be the number of ascii bytes |
990 | // before the first non-ascii, i.e. valid for indexing src |
991 | // TODO SAFETY: What about big-endian systems? |
992 | return Some(mask_first.trailing_zeros() as usize); |
993 | } |
994 | $store(dst.add(SIMD_STRIDE_SIZE), second); |
995 | let mask_second = mask_ascii(second); |
996 | // Safety: on little endian systems this will be the number of ascii bytes |
997 | // before the first non-ascii, i.e. valid for indexing src |
998 | return Some(SIMD_STRIDE_SIZE + mask_second.trailing_zeros() as usize); |
999 | } |
1000 | $store(dst.add(SIMD_STRIDE_SIZE), second); |
1001 | None |
1002 | } |
1003 | }; |
1004 | } |
1005 | |
1006 | #[allow (unused_macros)] |
1007 | macro_rules! ascii_to_basic_latin_simd_stride { |
1008 | // Safety: load/store must be valid for 16 bytes of read/write, which may be unaligned. (candidates: `(load|store)(16|8)_(unaligned|aligned)` functions) |
1009 | ($name:ident, $load:ident, $store:ident) => { |
1010 | /// Safety: src and dst must be valid for 16/32 bytes of read/write according to |
1011 | /// the $load/$store fn, which may allow for unaligned reads/writes or require |
1012 | /// alignment to either 16x8 or u8x16. |
1013 | #[inline(always)] |
1014 | pub unsafe fn $name(src: *const u8, dst: *mut u16) -> bool { |
1015 | let simd = $load(src); |
1016 | if !simd_is_ascii(simd) { |
1017 | return false; |
1018 | } |
1019 | let (first, second) = simd_unpack(simd); |
1020 | $store(dst, first); |
1021 | $store(dst.add(8), second); |
1022 | true |
1023 | } |
1024 | }; |
1025 | } |
1026 | |
1027 | #[allow (unused_macros)] |
1028 | macro_rules! ascii_to_basic_latin_simd_double_stride { |
1029 | // Safety: store must be valid for 16 bytes of write, which may be unaligned |
1030 | ($name:ident, $store:ident) => { |
1031 | /// Safety: src must be valid for 2*SIMD_STRIDE_SIZE bytes of aligned reads, |
1032 | /// aligned to either 16x8 or u8x16. |
1033 | /// dst must be valid for 2*SIMD_STRIDE_SIZE bytes of aligned or unaligned reads |
1034 | #[inline(always)] |
1035 | pub unsafe fn $name(src: *const u8, dst: *mut u16) -> Option<usize> { |
1036 | let first = load16_aligned(src); |
1037 | let second = load16_aligned(src.add(SIMD_STRIDE_SIZE)); |
1038 | let (a, b) = simd_unpack(first); |
1039 | $store(dst, a); |
1040 | // Safety: divide by 2 since it's a u16 pointer |
1041 | $store(dst.add(SIMD_STRIDE_SIZE / 2), b); |
1042 | if unlikely(!simd_is_ascii(first | second)) { |
1043 | let mask_first = mask_ascii(first); |
1044 | if mask_first != 0 { |
1045 | return Some(mask_first.trailing_zeros() as usize); |
1046 | } |
1047 | let (c, d) = simd_unpack(second); |
1048 | $store(dst.add(SIMD_STRIDE_SIZE), c); |
1049 | $store(dst.add(SIMD_STRIDE_SIZE + (SIMD_STRIDE_SIZE / 2)), d); |
1050 | let mask_second = mask_ascii(second); |
1051 | return Some(SIMD_STRIDE_SIZE + mask_second.trailing_zeros() as usize); |
1052 | } |
1053 | let (c, d) = simd_unpack(second); |
1054 | $store(dst.add(SIMD_STRIDE_SIZE), c); |
1055 | $store(dst.add(SIMD_STRIDE_SIZE + (SIMD_STRIDE_SIZE / 2)), d); |
1056 | None |
1057 | } |
1058 | }; |
1059 | } |
1060 | |
1061 | #[allow (unused_macros)] |
1062 | macro_rules! unpack_simd_stride { |
1063 | // Safety: load/store must be valid for 16 bytes of read/write, which may be unaligned. (candidates: `(load|store)(16|8)_(unaligned|aligned)` functions) |
1064 | ($name:ident, $load:ident, $store:ident) => { |
1065 | /// Safety: src and dst must be valid for 16 bytes of read/write according to |
1066 | /// the $load/$store fn, which may allow for unaligned reads/writes or require |
1067 | /// alignment to either 16x8 or u8x16. |
1068 | #[inline(always)] |
1069 | pub unsafe fn $name(src: *const u8, dst: *mut u16) { |
1070 | let simd = $load(src); |
1071 | let (first, second) = simd_unpack(simd); |
1072 | $store(dst, first); |
1073 | $store(dst.add(8), second); |
1074 | } |
1075 | }; |
1076 | } |
1077 | |
1078 | #[allow (unused_macros)] |
1079 | macro_rules! basic_latin_to_ascii_simd_stride { |
1080 | // Safety: load/store must be valid for 16 bytes of read/write, which may be unaligned. (candidates: `(load|store)(16|8)_(unaligned|aligned)` functions) |
1081 | ($name:ident, $load:ident, $store:ident) => { |
1082 | /// Safety: src and dst must be valid for 32/16 bytes of read/write according to |
1083 | /// the $load/$store fn, which may allow for unaligned reads/writes or require |
1084 | /// alignment to either 16x8 or u8x16. |
1085 | #[inline(always)] |
1086 | pub unsafe fn $name(src: *const u16, dst: *mut u8) -> bool { |
1087 | let first = $load(src); |
1088 | let second = $load(src.add(8)); |
1089 | if simd_is_basic_latin(first | second) { |
1090 | $store(dst, simd_pack(first, second)); |
1091 | true |
1092 | } else { |
1093 | false |
1094 | } |
1095 | } |
1096 | }; |
1097 | } |
1098 | |
1099 | #[allow (unused_macros)] |
1100 | macro_rules! pack_simd_stride { |
1101 | // Safety: load/store must be valid for 16 bytes of read/write, which may be unaligned. (candidates: `(load|store)(16|8)_(unaligned|aligned)` functions) |
1102 | ($name:ident, $load:ident, $store:ident) => { |
1103 | /// Safety: src and dst must be valid for 32/16 bytes of read/write according to |
1104 | /// the $load/$store fn, which may allow for unaligned reads/writes or require |
1105 | /// alignment to either 16x8 or u8x16. |
1106 | #[inline(always)] |
1107 | pub unsafe fn $name(src: *const u16, dst: *mut u8) { |
1108 | let first = $load(src); |
1109 | let second = $load(src.add(8)); |
1110 | $store(dst, simd_pack(first, second)); |
1111 | } |
1112 | }; |
1113 | } |
1114 | |
1115 | cfg_if! { |
1116 | if #[cfg(all(feature = "simd-accel" , target_endian = "little" , target_arch = "aarch64" ))] { |
1117 | // SIMD with the same instructions for aligned and unaligned loads and stores |
1118 | |
1119 | pub const SIMD_STRIDE_SIZE: usize = 16; |
1120 | |
1121 | pub const MAX_STRIDE_SIZE: usize = 16; |
1122 | |
1123 | // pub const ALIGNMENT: usize = 8; |
1124 | |
1125 | pub const ALU_STRIDE_SIZE: usize = 16; |
1126 | |
1127 | pub const ALU_ALIGNMENT: usize = 8; |
1128 | |
1129 | pub const ALU_ALIGNMENT_MASK: usize = 7; |
1130 | |
1131 | // Safety for stride macros: We stick to the load8_aligned/etc family of functions. We consistently produce |
1132 | // neither_unaligned variants using only unaligned inputs. |
1133 | ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_neither_aligned, load16_unaligned, store16_unaligned); |
1134 | |
1135 | ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_neither_aligned, load16_unaligned, store8_unaligned); |
1136 | unpack_simd_stride!(unpack_stride_neither_aligned, load16_unaligned, store8_unaligned); |
1137 | |
1138 | basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_neither_aligned, load8_unaligned, store16_unaligned); |
1139 | pack_simd_stride!(pack_stride_neither_aligned, load8_unaligned, store16_unaligned); |
1140 | |
1141 | // Safety for conversion macros: We use the unalign macro with unalign functions above. All stride functions were produced |
1142 | // by stride macros that universally munch a single SIMD_STRIDE_SIZE worth of elements. |
1143 | ascii_simd_unalign!(ascii_to_ascii, u8, u8, ascii_to_ascii_stride_neither_aligned); |
1144 | ascii_simd_unalign!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_neither_aligned); |
1145 | ascii_simd_unalign!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_neither_aligned); |
1146 | latin1_simd_unalign!(unpack_latin1, u8, u16, unpack_stride_neither_aligned); |
1147 | latin1_simd_unalign!(pack_latin1, u16, u8, pack_stride_neither_aligned); |
1148 | } else if #[cfg(all(feature = "simd-accel" , target_endian = "little" , target_feature = "neon" ))] { |
1149 | // SIMD with different instructions for aligned and unaligned loads and stores. |
1150 | // |
1151 | // Newer microarchitectures are not supposed to have a performance difference between |
1152 | // aligned and unaligned SSE2 loads and stores when the address is actually aligned, |
1153 | // but the benchmark results I see don't agree. |
1154 | |
1155 | pub const SIMD_STRIDE_SIZE: usize = 16; |
1156 | |
1157 | pub const MAX_STRIDE_SIZE: usize = 16; |
1158 | |
1159 | pub const SIMD_ALIGNMENT_MASK: usize = 15; |
1160 | |
1161 | // Safety for stride macros: We stick to the load8_aligned/etc family of functions. We consistently name |
1162 | // aligned/unaligned functions according to src/dst being aligned/unaligned |
1163 | |
1164 | ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_both_aligned, load16_aligned, store16_aligned); |
1165 | ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_src_aligned, load16_aligned, store16_unaligned); |
1166 | ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_dst_aligned, load16_unaligned, store16_aligned); |
1167 | ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_neither_aligned, load16_unaligned, store16_unaligned); |
1168 | |
1169 | ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_both_aligned, load16_aligned, store8_aligned); |
1170 | ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_src_aligned, load16_aligned, store8_unaligned); |
1171 | ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_dst_aligned, load16_unaligned, store8_aligned); |
1172 | ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_neither_aligned, load16_unaligned, store8_unaligned); |
1173 | |
1174 | unpack_simd_stride!(unpack_stride_both_aligned, load16_aligned, store8_aligned); |
1175 | unpack_simd_stride!(unpack_stride_src_aligned, load16_aligned, store8_unaligned); |
1176 | unpack_simd_stride!(unpack_stride_dst_aligned, load16_unaligned, store8_aligned); |
1177 | unpack_simd_stride!(unpack_stride_neither_aligned, load16_unaligned, store8_unaligned); |
1178 | |
1179 | basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_both_aligned, load8_aligned, store16_aligned); |
1180 | basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_src_aligned, load8_aligned, store16_unaligned); |
1181 | basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_dst_aligned, load8_unaligned, store16_aligned); |
1182 | basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_neither_aligned, load8_unaligned, store16_unaligned); |
1183 | |
1184 | pack_simd_stride!(pack_stride_both_aligned, load8_aligned, store16_aligned); |
1185 | pack_simd_stride!(pack_stride_src_aligned, load8_aligned, store16_unaligned); |
1186 | pack_simd_stride!(pack_stride_dst_aligned, load8_unaligned, store16_aligned); |
1187 | pack_simd_stride!(pack_stride_neither_aligned, load8_unaligned, store16_unaligned); |
1188 | |
1189 | // Safety for conversion macros: We use the correct pattern of both/src/dst/neither here. All stride functions were produced |
1190 | // by stride macros that universally munch a single SIMD_STRIDE_SIZE worth of elements. |
1191 | |
1192 | ascii_simd_check_align!(ascii_to_ascii, u8, u8, ascii_to_ascii_stride_both_aligned, ascii_to_ascii_stride_src_aligned, ascii_to_ascii_stride_dst_aligned, ascii_to_ascii_stride_neither_aligned); |
1193 | ascii_simd_check_align!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_both_aligned, ascii_to_basic_latin_stride_src_aligned, ascii_to_basic_latin_stride_dst_aligned, ascii_to_basic_latin_stride_neither_aligned); |
1194 | ascii_simd_check_align!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_both_aligned, basic_latin_to_ascii_stride_src_aligned, basic_latin_to_ascii_stride_dst_aligned, basic_latin_to_ascii_stride_neither_aligned); |
1195 | latin1_simd_check_align!(unpack_latin1, u8, u16, unpack_stride_both_aligned, unpack_stride_src_aligned, unpack_stride_dst_aligned, unpack_stride_neither_aligned); |
1196 | latin1_simd_check_align!(pack_latin1, u16, u8, pack_stride_both_aligned, pack_stride_src_aligned, pack_stride_dst_aligned, pack_stride_neither_aligned); |
1197 | } else if #[cfg(all(feature = "simd-accel" , target_feature = "sse2" ))] { |
1198 | // SIMD with different instructions for aligned and unaligned loads and stores. |
1199 | // |
1200 | // Newer microarchitectures are not supposed to have a performance difference between |
1201 | // aligned and unaligned SSE2 loads and stores when the address is actually aligned, |
1202 | // but the benchmark results I see don't agree. |
1203 | |
1204 | pub const SIMD_STRIDE_SIZE: usize = 16; |
1205 | |
1206 | /// Safety-usable invariant: This should be identical to SIMD_STRIDE_SIZE (used by ascii_simd_check_align_unrolled) |
1207 | pub const SIMD_ALIGNMENT: usize = 16; |
1208 | |
1209 | pub const MAX_STRIDE_SIZE: usize = 16; |
1210 | |
1211 | pub const SIMD_ALIGNMENT_MASK: usize = 15; |
1212 | |
1213 | // Safety for stride macros: We stick to the load8_aligned/etc family of functions. We consistently name |
1214 | // aligned/unaligned functions according to src/dst being aligned/unaligned |
1215 | |
1216 | ascii_to_ascii_simd_double_stride!(ascii_to_ascii_simd_double_stride_both_aligned, store16_aligned); |
1217 | ascii_to_ascii_simd_double_stride!(ascii_to_ascii_simd_double_stride_src_aligned, store16_unaligned); |
1218 | |
1219 | ascii_to_basic_latin_simd_double_stride!(ascii_to_basic_latin_simd_double_stride_both_aligned, store8_aligned); |
1220 | ascii_to_basic_latin_simd_double_stride!(ascii_to_basic_latin_simd_double_stride_src_aligned, store8_unaligned); |
1221 | |
1222 | ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_both_aligned, load16_aligned, store16_aligned); |
1223 | ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_src_aligned, load16_aligned, store16_unaligned); |
1224 | ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_neither_aligned, load16_unaligned, store16_unaligned); |
1225 | |
1226 | ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_both_aligned, load16_aligned, store8_aligned); |
1227 | ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_src_aligned, load16_aligned, store8_unaligned); |
1228 | ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_neither_aligned, load16_unaligned, store8_unaligned); |
1229 | |
1230 | unpack_simd_stride!(unpack_stride_both_aligned, load16_aligned, store8_aligned); |
1231 | unpack_simd_stride!(unpack_stride_src_aligned, load16_aligned, store8_unaligned); |
1232 | |
1233 | basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_both_aligned, load8_aligned, store16_aligned); |
1234 | basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_src_aligned, load8_aligned, store16_unaligned); |
1235 | basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_dst_aligned, load8_unaligned, store16_aligned); |
1236 | basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_neither_aligned, load8_unaligned, store16_unaligned); |
1237 | |
1238 | pack_simd_stride!(pack_stride_both_aligned, load8_aligned, store16_aligned); |
1239 | pack_simd_stride!(pack_stride_src_aligned, load8_aligned, store16_unaligned); |
1240 | |
1241 | // Safety for conversion macros: We use the correct pattern of both/src/dst/neither/double_both/double_src here. All stride functions were produced |
1242 | // by stride macros that universally munch a single SIMD_STRIDE_SIZE worth of elements. |
1243 | |
1244 | ascii_simd_check_align_unrolled!(ascii_to_ascii, u8, u8, ascii_to_ascii_stride_both_aligned, ascii_to_ascii_stride_src_aligned, ascii_to_ascii_stride_neither_aligned, ascii_to_ascii_simd_double_stride_both_aligned, ascii_to_ascii_simd_double_stride_src_aligned); |
1245 | ascii_simd_check_align_unrolled!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_both_aligned, ascii_to_basic_latin_stride_src_aligned, ascii_to_basic_latin_stride_neither_aligned, ascii_to_basic_latin_simd_double_stride_both_aligned, ascii_to_basic_latin_simd_double_stride_src_aligned); |
1246 | |
1247 | ascii_simd_check_align!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_both_aligned, basic_latin_to_ascii_stride_src_aligned, basic_latin_to_ascii_stride_dst_aligned, basic_latin_to_ascii_stride_neither_aligned); |
1248 | latin1_simd_check_align_unrolled!(unpack_latin1, u8, u16, unpack_stride_both_aligned, unpack_stride_src_aligned, unpack_stride_dst_aligned, unpack_stride_neither_aligned); |
1249 | latin1_simd_check_align_unrolled!(pack_latin1, u16, u8, pack_stride_both_aligned, pack_stride_src_aligned, pack_stride_dst_aligned, pack_stride_neither_aligned); |
1250 | } else if #[cfg(all(target_endian = "little" , target_pointer_width = "64" ))] { |
1251 | // Aligned ALU word, little-endian, 64-bit |
1252 | |
1253 | /// Safety invariant: this is the amount of bytes consumed by |
1254 | /// unpack_alu. This will be twice the pointer width, as it consumes two usizes. |
1255 | /// This is also the number of bytes produced by pack_alu. |
1256 | /// This is also the number of u16 code units produced/consumed by unpack_alu/pack_alu respectively. |
1257 | pub const ALU_STRIDE_SIZE: usize = 16; |
1258 | |
1259 | pub const MAX_STRIDE_SIZE: usize = 16; |
1260 | |
1261 | // Safety invariant: this is the pointer width in bytes |
1262 | pub const ALU_ALIGNMENT: usize = 8; |
1263 | |
1264 | // Safety invariant: this is a mask for getting the bits of a pointer not aligned to ALU_ALIGNMENT |
1265 | pub const ALU_ALIGNMENT_MASK: usize = 7; |
1266 | |
1267 | /// Safety: dst must point to valid space for writing four `usize`s |
1268 | #[inline (always)] |
1269 | unsafe fn unpack_alu(word: usize, second_word: usize, dst: *mut usize) { |
1270 | let first = ((0x0000_0000_FF00_0000usize & word) << 24) | |
1271 | ((0x0000_0000_00FF_0000usize & word) << 16) | |
1272 | ((0x0000_0000_0000_FF00usize & word) << 8) | |
1273 | (0x0000_0000_0000_00FFusize & word); |
1274 | let second = ((0xFF00_0000_0000_0000usize & word) >> 8) | |
1275 | ((0x00FF_0000_0000_0000usize & word) >> 16) | |
1276 | ((0x0000_FF00_0000_0000usize & word) >> 24) | |
1277 | ((0x0000_00FF_0000_0000usize & word) >> 32); |
1278 | let third = ((0x0000_0000_FF00_0000usize & second_word) << 24) | |
1279 | ((0x0000_0000_00FF_0000usize & second_word) << 16) | |
1280 | ((0x0000_0000_0000_FF00usize & second_word) << 8) | |
1281 | (0x0000_0000_0000_00FFusize & second_word); |
1282 | let fourth = ((0xFF00_0000_0000_0000usize & second_word) >> 8) | |
1283 | ((0x00FF_0000_0000_0000usize & second_word) >> 16) | |
1284 | ((0x0000_FF00_0000_0000usize & second_word) >> 24) | |
1285 | ((0x0000_00FF_0000_0000usize & second_word) >> 32); |
1286 | // Safety: fn invariant used here |
1287 | *dst = first; |
1288 | *(dst.add(1)) = second; |
1289 | *(dst.add(2)) = third; |
1290 | *(dst.add(3)) = fourth; |
1291 | } |
1292 | |
1293 | /// Safety: dst must point to valid space for writing two `usize`s |
1294 | #[inline (always)] |
1295 | unsafe fn pack_alu(first: usize, second: usize, third: usize, fourth: usize, dst: *mut usize) { |
1296 | let word = ((0x00FF_0000_0000_0000usize & second) << 8) | |
1297 | ((0x0000_00FF_0000_0000usize & second) << 16) | |
1298 | ((0x0000_0000_00FF_0000usize & second) << 24) | |
1299 | ((0x0000_0000_0000_00FFusize & second) << 32) | |
1300 | ((0x00FF_0000_0000_0000usize & first) >> 24) | |
1301 | ((0x0000_00FF_0000_0000usize & first) >> 16) | |
1302 | ((0x0000_0000_00FF_0000usize & first) >> 8) | |
1303 | (0x0000_0000_0000_00FFusize & first); |
1304 | let second_word = ((0x00FF_0000_0000_0000usize & fourth) << 8) | |
1305 | ((0x0000_00FF_0000_0000usize & fourth) << 16) | |
1306 | ((0x0000_0000_00FF_0000usize & fourth) << 24) | |
1307 | ((0x0000_0000_0000_00FFusize & fourth) << 32) | |
1308 | ((0x00FF_0000_0000_0000usize & third) >> 24) | |
1309 | ((0x0000_00FF_0000_0000usize & third) >> 16) | |
1310 | ((0x0000_0000_00FF_0000usize & third) >> 8) | |
1311 | (0x0000_0000_0000_00FFusize & third); |
1312 | // Safety: fn invariant used here |
1313 | *dst = word; |
1314 | *(dst.add(1)) = second_word; |
1315 | } |
1316 | } else if #[cfg(all(target_endian = "little" , target_pointer_width = "32" ))] { |
1317 | // Aligned ALU word, little-endian, 32-bit |
1318 | |
1319 | /// Safety invariant: this is the amount of bytes consumed by |
1320 | /// unpack_alu. This will be twice the pointer width, as it consumes two usizes. |
1321 | /// This is also the number of bytes produced by pack_alu. |
1322 | /// This is also the number of u16 code units produced/consumed by unpack_alu/pack_alu respectively. |
1323 | pub const ALU_STRIDE_SIZE: usize = 8; |
1324 | |
1325 | pub const MAX_STRIDE_SIZE: usize = 8; |
1326 | |
1327 | // Safety invariant: this is the pointer width in bytes |
1328 | pub const ALU_ALIGNMENT: usize = 4; |
1329 | |
1330 | // Safety invariant: this is a mask for getting the bits of a pointer not aligned to ALU_ALIGNMENT |
1331 | pub const ALU_ALIGNMENT_MASK: usize = 3; |
1332 | |
1333 | /// Safety: dst must point to valid space for writing four `usize`s |
1334 | #[inline(always)] |
1335 | unsafe fn unpack_alu(word: usize, second_word: usize, dst: *mut usize) { |
1336 | let first = ((0x0000_FF00usize & word) << 8) | |
1337 | (0x0000_00FFusize & word); |
1338 | let second = ((0xFF00_0000usize & word) >> 8) | |
1339 | ((0x00FF_0000usize & word) >> 16); |
1340 | let third = ((0x0000_FF00usize & second_word) << 8) | |
1341 | (0x0000_00FFusize & second_word); |
1342 | let fourth = ((0xFF00_0000usize & second_word) >> 8) | |
1343 | ((0x00FF_0000usize & second_word) >> 16); |
1344 | // Safety: fn invariant used here |
1345 | *dst = first; |
1346 | *(dst.add(1)) = second; |
1347 | *(dst.add(2)) = third; |
1348 | *(dst.add(3)) = fourth; |
1349 | } |
1350 | |
1351 | /// Safety: dst must point to valid space for writing two `usize`s |
1352 | #[inline(always)] |
1353 | unsafe fn pack_alu(first: usize, second: usize, third: usize, fourth: usize, dst: *mut usize) { |
1354 | let word = ((0x00FF_0000usize & second) << 8) | |
1355 | ((0x0000_00FFusize & second) << 16) | |
1356 | ((0x00FF_0000usize & first) >> 8) | |
1357 | (0x0000_00FFusize & first); |
1358 | let second_word = ((0x00FF_0000usize & fourth) << 8) | |
1359 | ((0x0000_00FFusize & fourth) << 16) | |
1360 | ((0x00FF_0000usize & third) >> 8) | |
1361 | (0x0000_00FFusize & third); |
1362 | // Safety: fn invariant used here |
1363 | *dst = word; |
1364 | *(dst.add(1)) = second_word; |
1365 | } |
1366 | } else if #[cfg(all(target_endian = "big" , target_pointer_width = "64" ))] { |
1367 | // Aligned ALU word, big-endian, 64-bit |
1368 | |
1369 | /// Safety invariant: this is the amount of bytes consumed by |
1370 | /// unpack_alu. This will be twice the pointer width, as it consumes two usizes. |
1371 | /// This is also the number of bytes produced by pack_alu. |
1372 | /// This is also the number of u16 code units produced/consumed by unpack_alu/pack_alu respectively. |
1373 | pub const ALU_STRIDE_SIZE: usize = 16; |
1374 | |
1375 | pub const MAX_STRIDE_SIZE: usize = 16; |
1376 | |
1377 | // Safety invariant: this is the pointer width in bytes |
1378 | pub const ALU_ALIGNMENT: usize = 8; |
1379 | |
1380 | // Safety invariant: this is a mask for getting the bits of a pointer not aligned to ALU_ALIGNMENT |
1381 | pub const ALU_ALIGNMENT_MASK: usize = 7; |
1382 | |
1383 | /// Safety: dst must point to valid space for writing four `usize`s |
1384 | #[inline(always)] |
1385 | unsafe fn unpack_alu(word: usize, second_word: usize, dst: *mut usize) { |
1386 | let first = ((0xFF00_0000_0000_0000usize & word) >> 8) | |
1387 | ((0x00FF_0000_0000_0000usize & word) >> 16) | |
1388 | ((0x0000_FF00_0000_0000usize & word) >> 24) | |
1389 | ((0x0000_00FF_0000_0000usize & word) >> 32); |
1390 | let second = ((0x0000_0000_FF00_0000usize & word) << 24) | |
1391 | ((0x0000_0000_00FF_0000usize & word) << 16) | |
1392 | ((0x0000_0000_0000_FF00usize & word) << 8) | |
1393 | (0x0000_0000_0000_00FFusize & word); |
1394 | let third = ((0xFF00_0000_0000_0000usize & second_word) >> 8) | |
1395 | ((0x00FF_0000_0000_0000usize & second_word) >> 16) | |
1396 | ((0x0000_FF00_0000_0000usize & second_word) >> 24) | |
1397 | ((0x0000_00FF_0000_0000usize & second_word) >> 32); |
1398 | let fourth = ((0x0000_0000_FF00_0000usize & second_word) << 24) | |
1399 | ((0x0000_0000_00FF_0000usize & second_word) << 16) | |
1400 | ((0x0000_0000_0000_FF00usize & second_word) << 8) | |
1401 | (0x0000_0000_0000_00FFusize & second_word); |
1402 | // Safety: fn invariant used here |
1403 | *dst = first; |
1404 | *(dst.add(1)) = second; |
1405 | *(dst.add(2)) = third; |
1406 | *(dst.add(3)) = fourth; |
1407 | } |
1408 | |
1409 | /// Safety: dst must point to valid space for writing two `usize`s |
1410 | #[inline(always)] |
1411 | unsafe fn pack_alu(first: usize, second: usize, third: usize, fourth: usize, dst: *mut usize) { |
1412 | let word = ((0x00FF0000_00000000usize & first) << 8) | |
1413 | ((0x000000FF_00000000usize & first) << 16) | |
1414 | ((0x00000000_00FF0000usize & first) << 24) | |
1415 | ((0x00000000_000000FFusize & first) << 32) | |
1416 | ((0x00FF0000_00000000usize & second) >> 24) | |
1417 | ((0x000000FF_00000000usize & second) >> 16) | |
1418 | ((0x00000000_00FF0000usize & second) >> 8) | |
1419 | (0x00000000_000000FFusize & second); |
1420 | let second_word = ((0x00FF0000_00000000usize & third) << 8) | |
1421 | ((0x000000FF_00000000usize & third) << 16) | |
1422 | ((0x00000000_00FF0000usize & third) << 24) | |
1423 | ((0x00000000_000000FFusize & third) << 32) | |
1424 | ((0x00FF0000_00000000usize & fourth) >> 24) | |
1425 | ((0x000000FF_00000000usize & fourth) >> 16) | |
1426 | ((0x00000000_00FF0000usize & fourth) >> 8) | |
1427 | (0x00000000_000000FFusize & fourth); |
1428 | // Safety: fn invariant used here |
1429 | *dst = word; |
1430 | *(dst.add(1)) = second_word; |
1431 | } |
1432 | } else if #[cfg(all(target_endian = "big" , target_pointer_width = "32" ))] { |
1433 | // Aligned ALU word, big-endian, 32-bit |
1434 | |
1435 | /// Safety invariant: this is the amount of bytes consumed by |
1436 | /// unpack_alu. This will be twice the pointer width, as it consumes two usizes. |
1437 | /// This is also the number of bytes produced by pack_alu. |
1438 | /// This is also the number of u16 code units produced/consumed by unpack_alu/pack_alu respectively. |
1439 | pub const ALU_STRIDE_SIZE: usize = 8; |
1440 | |
1441 | pub const MAX_STRIDE_SIZE: usize = 8; |
1442 | |
1443 | // Safety invariant: this is the pointer width in bytes |
1444 | pub const ALU_ALIGNMENT: usize = 4; |
1445 | |
1446 | // Safety invariant: this is a mask for getting the bits of a pointer not aligned to ALU_ALIGNMENT |
1447 | pub const ALU_ALIGNMENT_MASK: usize = 3; |
1448 | |
1449 | /// Safety: dst must point to valid space for writing four `usize`s |
1450 | #[inline(always)] |
1451 | unsafe fn unpack_alu(word: usize, second_word: usize, dst: *mut usize) { |
1452 | let first = ((0xFF00_0000usize & word) >> 8) | |
1453 | ((0x00FF_0000usize & word) >> 16); |
1454 | let second = ((0x0000_FF00usize & word) << 8) | |
1455 | (0x0000_00FFusize & word); |
1456 | let third = ((0xFF00_0000usize & second_word) >> 8) | |
1457 | ((0x00FF_0000usize & second_word) >> 16); |
1458 | let fourth = ((0x0000_FF00usize & second_word) << 8) | |
1459 | (0x0000_00FFusize & second_word); |
1460 | // Safety: fn invariant used here |
1461 | *dst = first; |
1462 | *(dst.add(1)) = second; |
1463 | *(dst.add(2)) = third; |
1464 | *(dst.add(3)) = fourth; |
1465 | } |
1466 | |
1467 | /// Safety: dst must point to valid space for writing two `usize`s |
1468 | #[inline(always)] |
1469 | unsafe fn pack_alu(first: usize, second: usize, third: usize, fourth: usize, dst: *mut usize) { |
1470 | let word = ((0x00FF_0000usize & first) << 8) | |
1471 | ((0x0000_00FFusize & first) << 16) | |
1472 | ((0x00FF_0000usize & second) >> 8) | |
1473 | (0x0000_00FFusize & second); |
1474 | let second_word = ((0x00FF_0000usize & third) << 8) | |
1475 | ((0x0000_00FFusize & third) << 16) | |
1476 | ((0x00FF_0000usize & fourth) >> 8) | |
1477 | (0x0000_00FFusize & fourth); |
1478 | // Safety: fn invariant used here |
1479 | *dst = word; |
1480 | *(dst.add(1)) = second_word; |
1481 | } |
1482 | } else { |
1483 | ascii_naive!(ascii_to_ascii, u8, u8); |
1484 | ascii_naive!(ascii_to_basic_latin, u8, u16); |
1485 | ascii_naive!(basic_latin_to_ascii, u16, u8); |
1486 | } |
1487 | } |
1488 | |
1489 | cfg_if! { |
1490 | // Safety-usable invariant: this counts the zeroes from the "first byte" of utf-8 data packed into a usize |
1491 | // with the target endianness |
1492 | if #[cfg(target_endian = "little" )] { |
1493 | #[allow (dead_code)] |
1494 | #[inline (always)] |
1495 | fn count_zeros(word: usize) -> u32 { |
1496 | word.trailing_zeros() |
1497 | } |
1498 | } else { |
1499 | #[allow(dead_code)] |
1500 | #[inline(always)] |
1501 | fn count_zeros(word: usize) -> u32 { |
1502 | word.leading_zeros() |
1503 | } |
1504 | } |
1505 | } |
1506 | |
1507 | cfg_if! { |
1508 | if #[cfg(all(feature = "simd-accel" , target_endian = "little" , target_arch = "disabled" ))] { |
1509 | /// Safety-usable invariant: Will return the value and position of the first non-ASCII byte in the slice in a Some if found. |
1510 | /// In other words, the first element of the Some is always `> 127` |
1511 | #[inline(always)] |
1512 | pub fn validate_ascii(slice: &[u8]) -> Option<(u8, usize)> { |
1513 | let src = slice.as_ptr(); |
1514 | let len = slice.len(); |
1515 | let mut offset = 0usize; |
1516 | // Safety: if this check succeeds we're valid for reading/writing at least `stride` elements. |
1517 | if SIMD_STRIDE_SIZE <= len { |
1518 | let len_minus_stride = len - SIMD_STRIDE_SIZE; |
1519 | loop { |
1520 | // Safety: src at offset is valid for a `SIMD_STRIDE_SIZE` read |
1521 | let simd = unsafe { load16_unaligned(src.add(offset)) }; |
1522 | if !simd_is_ascii(simd) { |
1523 | break; |
1524 | } |
1525 | offset += SIMD_STRIDE_SIZE; |
1526 | // This is `offset > len - SIMD_STRIDE_SIZE` which means we always have at least `SIMD_STRIDE_SIZE` elements to munch next time. |
1527 | if offset > len_minus_stride { |
1528 | break; |
1529 | } |
1530 | } |
1531 | } |
1532 | while offset < len { |
1533 | let code_unit = slice[offset]; |
1534 | if code_unit > 127 { |
1535 | // Safety: Safety-usable invariant upheld here |
1536 | return Some((code_unit, offset)); |
1537 | } |
1538 | offset += 1; |
1539 | } |
1540 | None |
1541 | } |
1542 | } else if #[cfg(all(feature = "simd-accel" , target_feature = "sse2" ))] { |
1543 | /// Safety-usable invariant: will return Some() when it encounters non-ASCII, with the first element in the Some being |
1544 | /// guaranteed to be non-ASCII (> 127), and the second being the offset where it is found |
1545 | #[inline(always)] |
1546 | pub fn validate_ascii(slice: &[u8]) -> Option<(u8, usize)> { |
1547 | let src = slice.as_ptr(); |
1548 | let len = slice.len(); |
1549 | let mut offset = 0usize; |
1550 | // Safety: if this check succeeds we're valid for reading at least `stride` elements. |
1551 | if SIMD_STRIDE_SIZE <= len { |
1552 | // First, process one unaligned vector |
1553 | // Safety: src is valid for a `SIMD_STRIDE_SIZE` read |
1554 | let simd = unsafe { load16_unaligned(src) }; |
1555 | let mask = mask_ascii(simd); |
1556 | if mask != 0 { |
1557 | offset = mask.trailing_zeros() as usize; |
1558 | let non_ascii = unsafe { *src.add(offset) }; |
1559 | return Some((non_ascii, offset)); |
1560 | } |
1561 | offset = SIMD_STRIDE_SIZE; |
1562 | // Safety: Now that offset has changed we don't yet know how much it is valid for |
1563 | |
1564 | // We have now seen 16 ASCII bytes. Let's guess that |
1565 | // there will be enough more to justify more expense |
1566 | // in the case of non-ASCII. |
1567 | // Use aligned reads for the sake of old microachitectures. |
1568 | // Safety: this correctly calculates the number of src_units that need to be read before the remaining list is aligned. |
1569 | // This is by definition less than SIMD_ALIGNMENT, which is defined to be equal to SIMD_STRIDE_SIZE. |
1570 | let until_alignment = unsafe { (SIMD_ALIGNMENT - ((src.add(offset) as usize) & SIMD_ALIGNMENT_MASK)) & SIMD_ALIGNMENT_MASK }; |
1571 | // This addition won't overflow, because even in the 32-bit PAE case the |
1572 | // address space holds enough code that the slice length can't be that |
1573 | // close to address space size. |
1574 | // offset now equals SIMD_STRIDE_SIZE, hence times 3 below. |
1575 | // |
1576 | // Safety: if this check succeeds we're valid for reading at least `2 * SIMD_STRIDE_SIZE` elements plus `until_alignment`. |
1577 | // The extra SIMD_STRIDE_SIZE in the condition is because `offset` is already `SIMD_STRIDE_SIZE`. |
1578 | if until_alignment + (SIMD_STRIDE_SIZE * 3) <= len { |
1579 | if until_alignment != 0 { |
1580 | // Safety: this is safe to call since we're valid for this read (and more), and don't care about alignment |
1581 | // This will copy over bytes that get decoded twice since it's not incrementing `offset` by SIMD_STRIDE_SIZE. This is fine. |
1582 | let simd = unsafe { load16_unaligned(src.add(offset)) }; |
1583 | let mask = mask_ascii(simd); |
1584 | if mask != 0 { |
1585 | offset += mask.trailing_zeros() as usize; |
1586 | let non_ascii = unsafe { *src.add(offset) }; |
1587 | return Some((non_ascii, offset)); |
1588 | } |
1589 | offset += until_alignment; |
1590 | } |
1591 | // Safety: At this point we're valid for reading 2*SIMD_STRIDE_SIZE elements |
1592 | // Safety: Now `offset` is aligned for `src` |
1593 | let len_minus_stride_times_two = len - (SIMD_STRIDE_SIZE * 2); |
1594 | loop { |
1595 | // Safety: We were valid for this read, and were aligned. |
1596 | let first = unsafe { load16_aligned(src.add(offset)) }; |
1597 | let second = unsafe { load16_aligned(src.add(offset + SIMD_STRIDE_SIZE)) }; |
1598 | if !simd_is_ascii(first | second) { |
1599 | // Safety: mask_ascii produces a mask of all the high bits. |
1600 | let mask_first = mask_ascii(first); |
1601 | if mask_first != 0 { |
1602 | // Safety: on little endian systems this will be the number of ascii bytes |
1603 | // before the first non-ascii, i.e. valid for indexing src |
1604 | // TODO SAFETY: What about big-endian systems? |
1605 | offset += mask_first.trailing_zeros() as usize; |
1606 | } else { |
1607 | let mask_second = mask_ascii(second); |
1608 | // Safety: on little endian systems this will be the number of ascii bytes |
1609 | // before the first non-ascii, i.e. valid for indexing src |
1610 | offset += SIMD_STRIDE_SIZE + mask_second.trailing_zeros() as usize; |
1611 | } |
1612 | // Safety: We know this is non-ASCII, and can uphold the safety-usable invariant here |
1613 | let non_ascii = unsafe { *src.add(offset) }; |
1614 | |
1615 | return Some((non_ascii, offset)); |
1616 | } |
1617 | offset += SIMD_STRIDE_SIZE * 2; |
1618 | // Safety: This is `offset > len - 2 * SIMD_STRIDE_SIZE` which means we always have at least `2 * SIMD_STRIDE_SIZE` elements to munch next time. |
1619 | if offset > len_minus_stride_times_two { |
1620 | break; |
1621 | } |
1622 | } |
1623 | // Safety: if this check succeeds we're valid for reading at least `SIMD_STRIDE_SIZE` |
1624 | if offset + SIMD_STRIDE_SIZE <= len { |
1625 | // Safety: We were valid for this read, and were aligned. |
1626 | let simd = unsafe { load16_aligned(src.add(offset)) }; |
1627 | // Safety: mask_ascii produces a mask of all the high bits. |
1628 | let mask = mask_ascii(simd); |
1629 | if mask != 0 { |
1630 | // Safety: on little endian systems this will be the number of ascii bytes |
1631 | // before the first non-ascii, i.e. valid for indexing src |
1632 | offset += mask.trailing_zeros() as usize; |
1633 | let non_ascii = unsafe { *src.add(offset) }; |
1634 | // Safety: We know this is non-ASCII, and can uphold the safety-usable invariant here |
1635 | return Some((non_ascii, offset)); |
1636 | } |
1637 | offset += SIMD_STRIDE_SIZE; |
1638 | } |
1639 | } else { |
1640 | // Safety: this is the unaligned branch |
1641 | // At most two iterations, so unroll |
1642 | // Safety: if this check succeeds we're valid for reading at least `SIMD_STRIDE_SIZE` |
1643 | if offset + SIMD_STRIDE_SIZE <= len { |
1644 | // Safety: We're valid for this read but must use an unaligned read |
1645 | let simd = unsafe { load16_unaligned(src.add(offset)) }; |
1646 | let mask = mask_ascii(simd); |
1647 | if mask != 0 { |
1648 | offset += mask.trailing_zeros() as usize; |
1649 | let non_ascii = unsafe { *src.add(offset) }; |
1650 | // Safety-usable invariant upheld here (same as above) |
1651 | return Some((non_ascii, offset)); |
1652 | } |
1653 | offset += SIMD_STRIDE_SIZE; |
1654 | // Safety: if this check succeeds we're valid for reading at least `SIMD_STRIDE_SIZE` |
1655 | if offset + SIMD_STRIDE_SIZE <= len { |
1656 | // Safety: We're valid for this read but must use an unaligned read |
1657 | let simd = unsafe { load16_unaligned(src.add(offset)) }; |
1658 | let mask = mask_ascii(simd); |
1659 | if mask != 0 { |
1660 | offset += mask.trailing_zeros() as usize; |
1661 | let non_ascii = unsafe { *src.add(offset) }; |
1662 | // Safety-usable invariant upheld here (same as above) |
1663 | return Some((non_ascii, offset)); |
1664 | } |
1665 | offset += SIMD_STRIDE_SIZE; |
1666 | } |
1667 | } |
1668 | } |
1669 | } |
1670 | while offset < len { |
1671 | // Safety: relies straightforwardly on the `len` invariant |
1672 | let code_unit = unsafe { *(src.add(offset)) }; |
1673 | if code_unit > 127 { |
1674 | // Safety-usable invariant upheld here |
1675 | return Some((code_unit, offset)); |
1676 | } |
1677 | offset += 1; |
1678 | } |
1679 | None |
1680 | } |
1681 | } else { |
1682 | // Safety-usable invariant: returns byte index of first non-ascii byte |
1683 | #[inline (always)] |
1684 | fn find_non_ascii(word: usize, second_word: usize) -> Option<usize> { |
1685 | let word_masked = word & ASCII_MASK; |
1686 | let second_masked = second_word & ASCII_MASK; |
1687 | if (word_masked | second_masked) == 0 { |
1688 | // Both are ascii, invariant upheld |
1689 | return None; |
1690 | } |
1691 | if word_masked != 0 { |
1692 | let zeros = count_zeros(word_masked); |
1693 | // `zeros` now contains 0 to 7 (for the seven bits of masked ASCII in little endian, |
1694 | // or up to 7 bits of non-ASCII in big endian if the first byte is non-ASCII) |
1695 | // plus 8 times the number of ASCII in text order before the |
1696 | // non-ASCII byte in the little-endian case or 8 times the number of ASCII in |
1697 | // text order before the non-ASCII byte in the big-endian case. |
1698 | let num_ascii = (zeros >> 3) as usize; |
1699 | // Safety-usable invariant upheld here |
1700 | return Some(num_ascii); |
1701 | } |
1702 | let zeros = count_zeros(second_masked); |
1703 | // `zeros` now contains 0 to 7 (for the seven bits of masked ASCII in little endian, |
1704 | // or up to 7 bits of non-ASCII in big endian if the first byte is non-ASCII) |
1705 | // plus 8 times the number of ASCII in text order before the |
1706 | // non-ASCII byte in the little-endian case or 8 times the number of ASCII in |
1707 | // text order before the non-ASCII byte in the big-endian case. |
1708 | let num_ascii = (zeros >> 3) as usize; |
1709 | // Safety-usable invariant upheld here |
1710 | Some(ALU_ALIGNMENT + num_ascii) |
1711 | } |
1712 | |
1713 | /// Safety: `src` must be valid for the reads of two `usize`s |
1714 | /// |
1715 | /// Safety-usable invariant: will return byte index of first non-ascii byte |
1716 | #[inline (always)] |
1717 | unsafe fn validate_ascii_stride(src: *const usize) -> Option<usize> { |
1718 | let word = *src; |
1719 | let second_word = *(src.add(1)); |
1720 | find_non_ascii(word, second_word) |
1721 | } |
1722 | |
1723 | /// Safety-usable invariant: will return Some() when it encounters non-ASCII, with the first element in the Some being |
1724 | /// guaranteed to be non-ASCII (> 127), and the second being the offset where it is found |
1725 | #[cfg_attr (feature = "cargo-clippy" , allow(cast_ptr_alignment))] |
1726 | #[inline (always)] |
1727 | pub fn validate_ascii(slice: &[u8]) -> Option<(u8, usize)> { |
1728 | let src = slice.as_ptr(); |
1729 | let len = slice.len(); |
1730 | let mut offset = 0usize; |
1731 | let mut until_alignment = (ALU_ALIGNMENT - ((src as usize) & ALU_ALIGNMENT_MASK)) & ALU_ALIGNMENT_MASK; |
1732 | // Safety: If this check fails we're valid to read `until_alignment + ALU_STRIDE_SIZE` elements |
1733 | if until_alignment + ALU_STRIDE_SIZE <= len { |
1734 | while until_alignment != 0 { |
1735 | let code_unit = slice[offset]; |
1736 | if code_unit > 127 { |
1737 | // Safety-usable invairant upheld here |
1738 | return Some((code_unit, offset)); |
1739 | } |
1740 | offset += 1; |
1741 | until_alignment -= 1; |
1742 | } |
1743 | // Safety: At this point we have read until_alignment elements and |
1744 | // are valid for `ALU_STRIDE_SIZE` more. |
1745 | let len_minus_stride = len - ALU_STRIDE_SIZE; |
1746 | loop { |
1747 | // Safety: we were valid for this read |
1748 | let ptr = unsafe { src.add(offset) as *const usize }; |
1749 | if let Some(num_ascii) = unsafe { validate_ascii_stride(ptr) } { |
1750 | offset += num_ascii; |
1751 | // Safety-usable invairant upheld here using the invariant from validate_ascii_stride() |
1752 | return Some((unsafe { *(src.add(offset)) }, offset)); |
1753 | } |
1754 | offset += ALU_STRIDE_SIZE; |
1755 | // Safety: This is `offset > ALU_STRIDE_SIZE` which means we always have at least `2 * ALU_STRIDE_SIZE` elements to munch next time. |
1756 | if offset > len_minus_stride { |
1757 | break; |
1758 | } |
1759 | } |
1760 | } |
1761 | while offset < len { |
1762 | let code_unit = slice[offset]; |
1763 | if code_unit > 127 { |
1764 | // Safety-usable invairant upheld here |
1765 | return Some((code_unit, offset)); |
1766 | } |
1767 | offset += 1; |
1768 | } |
1769 | None |
1770 | } |
1771 | |
1772 | } |
1773 | } |
1774 | |
1775 | cfg_if! { |
1776 | if #[cfg(all(feature = "simd-accel" , any(target_feature = "sse2" , all(target_endian = "little" , target_arch = "aarch64" ))))] { |
1777 | |
1778 | } else if #[cfg(all(feature = "simd-accel" , target_endian = "little" , target_feature = "neon" ))] { |
1779 | // Even with NEON enabled, we use the ALU path for ASCII validation, because testing |
1780 | // on Exynos 5 indicated that using NEON isn't worthwhile where there are only |
1781 | // vector reads without vector writes. |
1782 | |
1783 | pub const ALU_STRIDE_SIZE: usize = 8; |
1784 | |
1785 | pub const ALU_ALIGNMENT: usize = 4; |
1786 | |
1787 | pub const ALU_ALIGNMENT_MASK: usize = 3; |
1788 | } else { |
1789 | // Safety: src points to two valid `usize`s, dst points to four valid `usize`s |
1790 | #[inline (always)] |
1791 | unsafe fn unpack_latin1_stride_alu(src: *const usize, dst: *mut usize) { |
1792 | // Safety: src safety invariant used here |
1793 | let word = *src; |
1794 | let second_word = *(src.add(1)); |
1795 | // Safety: dst safety invariant passed down |
1796 | unpack_alu(word, second_word, dst); |
1797 | } |
1798 | |
1799 | // Safety: src points to four valid `usize`s, dst points to two valid `usize`s |
1800 | #[inline (always)] |
1801 | unsafe fn pack_latin1_stride_alu(src: *const usize, dst: *mut usize) { |
1802 | // Safety: src safety invariant used here |
1803 | let first = *src; |
1804 | let second = *(src.add(1)); |
1805 | let third = *(src.add(2)); |
1806 | let fourth = *(src.add(3)); |
1807 | // Safety: dst safety invariant passed down |
1808 | pack_alu(first, second, third, fourth, dst); |
1809 | } |
1810 | |
1811 | // Safety: src points to two valid `usize`s, dst points to four valid `usize`s |
1812 | #[inline (always)] |
1813 | unsafe fn ascii_to_basic_latin_stride_alu(src: *const usize, dst: *mut usize) -> bool { |
1814 | // Safety: src safety invariant used here |
1815 | let word = *src; |
1816 | let second_word = *(src.add(1)); |
1817 | // Check if the words contains non-ASCII |
1818 | if (word & ASCII_MASK) | (second_word & ASCII_MASK) != 0 { |
1819 | return false; |
1820 | } |
1821 | // Safety: dst safety invariant passed down |
1822 | unpack_alu(word, second_word, dst); |
1823 | true |
1824 | } |
1825 | |
1826 | // Safety: src points four valid `usize`s, dst points to two valid `usize`s |
1827 | #[inline (always)] |
1828 | unsafe fn basic_latin_to_ascii_stride_alu(src: *const usize, dst: *mut usize) -> bool { |
1829 | // Safety: src safety invariant used here |
1830 | let first = *src; |
1831 | let second = *(src.add(1)); |
1832 | let third = *(src.add(2)); |
1833 | let fourth = *(src.add(3)); |
1834 | if (first & BASIC_LATIN_MASK) | (second & BASIC_LATIN_MASK) | (third & BASIC_LATIN_MASK) | (fourth & BASIC_LATIN_MASK) != 0 { |
1835 | return false; |
1836 | } |
1837 | // Safety: dst safety invariant passed down |
1838 | pack_alu(first, second, third, fourth, dst); |
1839 | true |
1840 | } |
1841 | |
1842 | // Safety: src, dst both point to two valid `usize`s each |
1843 | // Safety-usable invariant: Will return byte index of first non-ascii byte. |
1844 | #[inline (always)] |
1845 | unsafe fn ascii_to_ascii_stride(src: *const usize, dst: *mut usize) -> Option<usize> { |
1846 | // Safety: src safety invariant used here |
1847 | let word = *src; |
1848 | let second_word = *(src.add(1)); |
1849 | // Safety: src safety invariant used here |
1850 | *dst = word; |
1851 | *(dst.add(1)) = second_word; |
1852 | // Relies on safety-usable invariant here |
1853 | find_non_ascii(word, second_word) |
1854 | } |
1855 | |
1856 | basic_latin_alu!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_alu); |
1857 | basic_latin_alu!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_alu); |
1858 | latin1_alu!(unpack_latin1, u8, u16, unpack_latin1_stride_alu); |
1859 | latin1_alu!(pack_latin1, u16, u8, pack_latin1_stride_alu); |
1860 | // Safety invariant upheld: ascii_to_ascii_stride will return byte index of first non-ascii if found |
1861 | ascii_alu!(ascii_to_ascii, u8, u8, ascii_to_ascii_stride); |
1862 | } |
1863 | } |
1864 | |
1865 | pub fn ascii_valid_up_to(bytes: &[u8]) -> usize { |
1866 | match validate_ascii(slice:bytes) { |
1867 | None => bytes.len(), |
1868 | Some((_, num_valid: usize)) => num_valid, |
1869 | } |
1870 | } |
1871 | |
1872 | pub fn iso_2022_jp_ascii_valid_up_to(bytes: &[u8]) -> usize { |
1873 | for (i: usize, b_ref: &u8) in bytes.iter().enumerate() { |
1874 | let b: u8 = *b_ref; |
1875 | if b >= 0x80 || b == 0x1B || b == 0x0E || b == 0x0F { |
1876 | return i; |
1877 | } |
1878 | } |
1879 | bytes.len() |
1880 | } |
1881 | |
1882 | // Any copyright to the test code below this comment is dedicated to the |
1883 | // Public Domain. http://creativecommons.org/publicdomain/zero/1.0/ |
1884 | |
1885 | #[cfg (all(test, feature = "alloc" ))] |
1886 | mod tests { |
1887 | use super::*; |
1888 | use alloc::vec::Vec; |
1889 | |
1890 | macro_rules! test_ascii { |
1891 | ($test_name:ident, $fn_tested:ident, $src_unit:ty, $dst_unit:ty) => { |
1892 | #[test] |
1893 | fn $test_name() { |
1894 | let mut src: Vec<$src_unit> = Vec::with_capacity(32); |
1895 | let mut dst: Vec<$dst_unit> = Vec::with_capacity(32); |
1896 | for i in 0..32 { |
1897 | src.clear(); |
1898 | dst.clear(); |
1899 | dst.resize(32, 0); |
1900 | for j in 0..32 { |
1901 | let c = if i == j { 0xAA } else { j + 0x40 }; |
1902 | src.push(c as $src_unit); |
1903 | } |
1904 | match unsafe { $fn_tested(src.as_ptr(), dst.as_mut_ptr(), 32) } { |
1905 | None => unreachable!("Should always find non-ASCII" ), |
1906 | Some((non_ascii, num_ascii)) => { |
1907 | assert_eq!(non_ascii, 0xAA); |
1908 | assert_eq!(num_ascii, i); |
1909 | for j in 0..i { |
1910 | assert_eq!(dst[j], (j + 0x40) as $dst_unit); |
1911 | } |
1912 | } |
1913 | } |
1914 | } |
1915 | } |
1916 | }; |
1917 | } |
1918 | |
1919 | test_ascii!(test_ascii_to_ascii, ascii_to_ascii, u8, u8); |
1920 | test_ascii!(test_ascii_to_basic_latin, ascii_to_basic_latin, u8, u16); |
1921 | test_ascii!(test_basic_latin_to_ascii, basic_latin_to_ascii, u16, u8); |
1922 | } |
1923 | |