1 | // Copyright Mozilla Foundation. See the COPYRIGHT |
2 | // file at the top-level directory of this distribution. |
3 | // |
4 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
5 | // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
6 | // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
7 | // option. This file may not be copied, modified, or distributed |
8 | // except according to those terms. |
9 | |
10 | use super::*; |
11 | use crate::ascii::*; |
12 | use crate::data::position; |
13 | use crate::handles::*; |
14 | use crate::variant::*; |
15 | |
16 | pub struct SingleByteDecoder { |
17 | table: &'static [u16; 128], |
18 | } |
19 | |
20 | impl SingleByteDecoder { |
21 | pub fn new(data: &'static [u16; 128]) -> VariantDecoder { |
22 | VariantDecoder::SingleByte(SingleByteDecoder { table: data }) |
23 | } |
24 | |
25 | pub fn max_utf16_buffer_length(&self, byte_length: usize) -> Option<usize> { |
26 | Some(byte_length) |
27 | } |
28 | |
29 | pub fn max_utf8_buffer_length_without_replacement(&self, byte_length: usize) -> Option<usize> { |
30 | byte_length.checked_mul(3) |
31 | } |
32 | |
33 | pub fn max_utf8_buffer_length(&self, byte_length: usize) -> Option<usize> { |
34 | byte_length.checked_mul(3) |
35 | } |
36 | |
37 | pub fn decode_to_utf8_raw( |
38 | &mut self, |
39 | src: &[u8], |
40 | dst: &mut [u8], |
41 | _last: bool, |
42 | ) -> (DecoderResult, usize, usize) { |
43 | let mut source = ByteSource::new(src); |
44 | let mut dest = Utf8Destination::new(dst); |
45 | 'outermost: loop { |
46 | match dest.copy_ascii_from_check_space_bmp(&mut source) { |
47 | CopyAsciiResult::Stop(ret) => return ret, |
48 | CopyAsciiResult::GoOn((mut non_ascii, mut handle)) => 'middle: loop { |
49 | // Start non-boilerplate |
50 | // |
51 | // Since the non-ASCIIness of `non_ascii` is hidden from |
52 | // the optimizer, it can't figure out that it's OK to |
53 | // statically omit the bound check when accessing |
54 | // `[u16; 128]` with an index |
55 | // `non_ascii as usize - 0x80usize`. |
56 | // |
57 | // Safety: `non_ascii` is a u8 byte >=0x80, from the invariants |
58 | // on Utf8Destination::copy_ascii_from_check_space_bmp() |
59 | let mapped = |
60 | unsafe { *(self.table.get_unchecked(non_ascii as usize - 0x80usize)) }; |
61 | // let mapped = self.table[non_ascii as usize - 0x80usize]; |
62 | if mapped == 0u16 { |
63 | return ( |
64 | DecoderResult::Malformed(1, 0), |
65 | source.consumed(), |
66 | handle.written(), |
67 | ); |
68 | } |
69 | let dest_again = handle.write_bmp_excl_ascii(mapped); |
70 | // End non-boilerplate |
71 | match source.check_available() { |
72 | Space::Full(src_consumed) => { |
73 | return ( |
74 | DecoderResult::InputEmpty, |
75 | src_consumed, |
76 | dest_again.written(), |
77 | ); |
78 | } |
79 | Space::Available(source_handle) => { |
80 | match dest_again.check_space_bmp() { |
81 | Space::Full(dst_written) => { |
82 | return ( |
83 | DecoderResult::OutputFull, |
84 | source_handle.consumed(), |
85 | dst_written, |
86 | ); |
87 | } |
88 | Space::Available(mut destination_handle) => { |
89 | let (mut b, unread_handle) = source_handle.read(); |
90 | let source_again = unread_handle.commit(); |
91 | 'innermost: loop { |
92 | if b > 127 { |
93 | non_ascii = b; |
94 | handle = destination_handle; |
95 | continue 'middle; |
96 | } |
97 | // Testing on Haswell says that we should write the |
98 | // byte unconditionally instead of trying to unread it |
99 | // to make it part of the next SIMD stride. |
100 | let dest_again_again = destination_handle.write_ascii(b); |
101 | if b < 60 { |
102 | // We've got punctuation |
103 | match source_again.check_available() { |
104 | Space::Full(src_consumed_again) => { |
105 | return ( |
106 | DecoderResult::InputEmpty, |
107 | src_consumed_again, |
108 | dest_again_again.written(), |
109 | ); |
110 | } |
111 | Space::Available(source_handle_again) => { |
112 | match dest_again_again.check_space_bmp() { |
113 | Space::Full(dst_written_again) => { |
114 | return ( |
115 | DecoderResult::OutputFull, |
116 | source_handle_again.consumed(), |
117 | dst_written_again, |
118 | ); |
119 | } |
120 | Space::Available( |
121 | destination_handle_again, |
122 | ) => { |
123 | let (b_again, _unread_handle_again) = |
124 | source_handle_again.read(); |
125 | b = b_again; |
126 | destination_handle = |
127 | destination_handle_again; |
128 | continue 'innermost; |
129 | } |
130 | } |
131 | } |
132 | } |
133 | } |
134 | // We've got markup or ASCII text |
135 | continue 'outermost; |
136 | } |
137 | } |
138 | } |
139 | } |
140 | } |
141 | }, |
142 | } |
143 | } |
144 | } |
145 | |
146 | pub fn decode_to_utf16_raw( |
147 | &mut self, |
148 | src: &[u8], |
149 | dst: &mut [u16], |
150 | _last: bool, |
151 | ) -> (DecoderResult, usize, usize) { |
152 | let (pending, length) = if dst.len() < src.len() { |
153 | (DecoderResult::OutputFull, dst.len()) |
154 | } else { |
155 | (DecoderResult::InputEmpty, src.len()) |
156 | }; |
157 | // Safety invariant: converted <= length. Quite often we have `converted < length` |
158 | // which will be separately marked. |
159 | let mut converted = 0usize; |
160 | 'outermost: loop { |
161 | match unsafe { |
162 | // Safety: length is the minimum length, `src/dst + x` will always be valid for reads/writes of `len - x` |
163 | ascii_to_basic_latin( |
164 | src.as_ptr().add(converted), |
165 | dst.as_mut_ptr().add(converted), |
166 | length - converted, |
167 | ) |
168 | } { |
169 | None => { |
170 | return (pending, length, length); |
171 | } |
172 | Some((mut non_ascii, consumed)) => { |
173 | // Safety invariant: `converted <= length` upheld, since this can only consume |
174 | // up to `length - converted` bytes. |
175 | // |
176 | // Furthermore, in this context, |
177 | // we can assume `converted < length` since this branch is only ever hit when |
178 | // ascii_to_basic_latin fails to consume the entire slice |
179 | converted += consumed; |
180 | 'middle: loop { |
181 | // `converted` doesn't count the reading of `non_ascii` yet. |
182 | // Since the non-ASCIIness of `non_ascii` is hidden from |
183 | // the optimizer, it can't figure out that it's OK to |
184 | // statically omit the bound check when accessing |
185 | // `[u16; 128]` with an index |
186 | // `non_ascii as usize - 0x80usize`. |
187 | // |
188 | // Safety: We can rely on `non_ascii` being between `0x80` and `0xFF` due to |
189 | // the invariants of `ascii_to_basic_latin()`, and our table has enough space for that. |
190 | let mapped = |
191 | unsafe { *(self.table.get_unchecked(non_ascii as usize - 0x80usize)) }; |
192 | // let mapped = self.table[non_ascii as usize - 0x80usize]; |
193 | if mapped == 0u16 { |
194 | return ( |
195 | DecoderResult::Malformed(1, 0), |
196 | converted + 1, // +1 `for non_ascii` |
197 | converted, |
198 | ); |
199 | } |
200 | unsafe { |
201 | // Safety: As mentioned above, `converted < length` |
202 | *(dst.get_unchecked_mut(converted)) = mapped; |
203 | } |
204 | // Safety: `converted <= length` upheld, since `converted < length` before this |
205 | converted += 1; |
206 | // Next, handle ASCII punctuation and non-ASCII without |
207 | // going back to ASCII acceleration. Non-ASCII scripts |
208 | // use ASCII punctuation, so this avoid going to |
209 | // acceleration just for punctuation/space and then |
210 | // failing. This is a significant boost to non-ASCII |
211 | // scripts. |
212 | // TODO: Split out Latin converters without this part |
213 | // this stuff makes Latin script-conversion slower. |
214 | if converted == length { |
215 | return (pending, length, length); |
216 | } |
217 | // Safety: We are back to `converted < length` because of the == above |
218 | // and can perform this check. |
219 | let mut b = unsafe { *(src.get_unchecked(converted)) }; |
220 | // Safety: `converted < length` is upheld for this loop |
221 | 'innermost: loop { |
222 | if b > 127 { |
223 | non_ascii = b; |
224 | continue 'middle; |
225 | } |
226 | // Testing on Haswell says that we should write the |
227 | // byte unconditionally instead of trying to unread it |
228 | // to make it part of the next SIMD stride. |
229 | unsafe { |
230 | // Safety: `converted < length` is true for this loop |
231 | *(dst.get_unchecked_mut(converted)) = u16::from(b); |
232 | } |
233 | // Safety: We are now at `converted <= length`. We should *not* `continue` |
234 | // the loop without reverifying |
235 | converted += 1; |
236 | if b < 60 { |
237 | // We've got punctuation |
238 | if converted == length { |
239 | return (pending, length, length); |
240 | } |
241 | // Safety: we're back to `converted <= length` because of the == above |
242 | b = unsafe { *(src.get_unchecked(converted)) }; |
243 | // Safety: The loop continues as `converted < length` |
244 | continue 'innermost; |
245 | } |
246 | // We've got markup or ASCII text |
247 | continue 'outermost; |
248 | } |
249 | } |
250 | } |
251 | } |
252 | } |
253 | } |
254 | |
255 | pub fn latin1_byte_compatible_up_to(&self, buffer: &[u8]) -> usize { |
256 | let mut bytes = buffer; |
257 | let mut total = 0; |
258 | loop { |
259 | if let Some((non_ascii, offset)) = validate_ascii(bytes) { |
260 | total += offset; |
261 | // Safety: We can rely on `non_ascii` being between `0x80` and `0xFF` due to |
262 | // the invariants of `ascii_to_basic_latin()`, and our table has enough space for that. |
263 | let mapped = unsafe { *(self.table.get_unchecked(non_ascii as usize - 0x80usize)) }; |
264 | if mapped != u16::from(non_ascii) { |
265 | return total; |
266 | } |
267 | total += 1; |
268 | bytes = &bytes[offset + 1..]; |
269 | } else { |
270 | return total; |
271 | } |
272 | } |
273 | } |
274 | } |
275 | |
276 | pub struct SingleByteEncoder { |
277 | table: &'static [u16; 128], |
278 | run_bmp_offset: usize, |
279 | run_byte_offset: usize, |
280 | run_length: usize, |
281 | } |
282 | |
283 | impl SingleByteEncoder { |
284 | pub fn new( |
285 | encoding: &'static Encoding, |
286 | data: &'static [u16; 128], |
287 | run_bmp_offset: u16, |
288 | run_byte_offset: u8, |
289 | run_length: u8, |
290 | ) -> Encoder { |
291 | Encoder::new( |
292 | encoding, |
293 | VariantEncoder::SingleByte(SingleByteEncoder { |
294 | table: data, |
295 | run_bmp_offset: run_bmp_offset as usize, |
296 | run_byte_offset: run_byte_offset as usize, |
297 | run_length: run_length as usize, |
298 | }), |
299 | ) |
300 | } |
301 | |
302 | pub fn max_buffer_length_from_utf16_without_replacement( |
303 | &self, |
304 | u16_length: usize, |
305 | ) -> Option<usize> { |
306 | Some(u16_length) |
307 | } |
308 | |
309 | pub fn max_buffer_length_from_utf8_without_replacement( |
310 | &self, |
311 | byte_length: usize, |
312 | ) -> Option<usize> { |
313 | Some(byte_length) |
314 | } |
315 | |
316 | #[inline (always)] |
317 | fn encode_u16(&self, code_unit: u16) -> Option<u8> { |
318 | // First, we see if the code unit falls into a run of consecutive |
319 | // code units that can be mapped by offset. This is very efficient |
320 | // for most non-Latin encodings as well as Latin1-ish encodings. |
321 | // |
322 | // For encodings that don't fit this pattern, the run (which may |
323 | // have the length of just one) just establishes the starting point |
324 | // for the next rule. |
325 | // |
326 | // Next, we do a forward linear search in the part of the index |
327 | // after the run. Even in non-Latin1-ish Latin encodings (except |
328 | // macintosh), the lower case letters are here. |
329 | // |
330 | // Next, we search the third quadrant up to the start of the run |
331 | // (upper case letters in Latin encodings except macintosh, in |
332 | // Greek and in KOI encodings) and then the second quadrant, |
333 | // except if the run stared before the third quadrant, we search |
334 | // the second quadrant up to the run. |
335 | // |
336 | // Last, we search the first quadrant, which has unused controls |
337 | // or punctuation in most encodings. This is bad for macintosh |
338 | // and IBM866, but those are rare. |
339 | |
340 | // Run of consecutive units |
341 | let unit_as_usize = code_unit as usize; |
342 | let offset = unit_as_usize.wrapping_sub(self.run_bmp_offset); |
343 | if offset < self.run_length { |
344 | return Some((128 + self.run_byte_offset + offset) as u8); |
345 | } |
346 | |
347 | // Search after the run |
348 | let tail_start = self.run_byte_offset + self.run_length; |
349 | if let Some(pos) = position(&self.table[tail_start..], code_unit) { |
350 | return Some((128 + tail_start + pos) as u8); |
351 | } |
352 | |
353 | if self.run_byte_offset >= 64 { |
354 | // Search third quadrant before the run |
355 | if let Some(pos) = position(&self.table[64..self.run_byte_offset], code_unit) { |
356 | return Some(((128 + 64) + pos) as u8); |
357 | } |
358 | |
359 | // Search second quadrant |
360 | if let Some(pos) = position(&self.table[32..64], code_unit) { |
361 | return Some(((128 + 32) + pos) as u8); |
362 | } |
363 | } else if let Some(pos) = position(&self.table[32..self.run_byte_offset], code_unit) { |
364 | // windows-1252, windows-874, ISO-8859-15 and ISO-8859-5 |
365 | // Search second quadrant before the run |
366 | return Some(((128 + 32) + pos) as u8); |
367 | } |
368 | |
369 | // Search first quadrant |
370 | if let Some(pos) = position(&self.table[..32], code_unit) { |
371 | return Some((128 + pos) as u8); |
372 | } |
373 | |
374 | None |
375 | } |
376 | |
377 | ascii_compatible_bmp_encoder_function!( |
378 | { |
379 | match self.encode_u16(bmp) { |
380 | Some(byte) => handle.write_one(byte), |
381 | None => { |
382 | return ( |
383 | EncoderResult::unmappable_from_bmp(bmp), |
384 | source.consumed(), |
385 | handle.written(), |
386 | ); |
387 | } |
388 | } |
389 | }, |
390 | bmp, |
391 | self, |
392 | source, |
393 | handle, |
394 | copy_ascii_to_check_space_one, |
395 | check_space_one, |
396 | encode_from_utf8_raw, |
397 | str, |
398 | Utf8Source, |
399 | true |
400 | ); |
401 | |
402 | pub fn encode_from_utf16_raw( |
403 | &mut self, |
404 | src: &[u16], |
405 | dst: &mut [u8], |
406 | _last: bool, |
407 | ) -> (EncoderResult, usize, usize) { |
408 | let (pending, length) = if dst.len() < src.len() { |
409 | (EncoderResult::OutputFull, dst.len()) |
410 | } else { |
411 | (EncoderResult::InputEmpty, src.len()) |
412 | }; |
413 | // Safety invariant: converted <= length. Quite often we have `converted < length` |
414 | // which will be separately marked. |
415 | let mut converted = 0usize; |
416 | 'outermost: loop { |
417 | match unsafe { |
418 | // Safety: length is the minimum length, `src/dst + x` will always be valid for reads/writes of `len - x` |
419 | basic_latin_to_ascii( |
420 | src.as_ptr().add(converted), |
421 | dst.as_mut_ptr().add(converted), |
422 | length - converted, |
423 | ) |
424 | } { |
425 | None => { |
426 | return (pending, length, length); |
427 | } |
428 | Some((mut non_ascii, consumed)) => { |
429 | // Safety invariant: `converted <= length` upheld, since this can only consume |
430 | // up to `length - converted` bytes. |
431 | // |
432 | // Furthermore, in this context, |
433 | // we can assume `converted < length` since this branch is only ever hit when |
434 | // ascii_to_basic_latin fails to consume the entire slice |
435 | converted += consumed; |
436 | 'middle: loop { |
437 | // `converted` doesn't count the reading of `non_ascii` yet. |
438 | match self.encode_u16(non_ascii) { |
439 | Some(byte) => { |
440 | unsafe { |
441 | // Safety: we're allowed this access since `converted < length` |
442 | *(dst.get_unchecked_mut(converted)) = byte; |
443 | } |
444 | converted += 1; |
445 | // `converted <= length` now |
446 | } |
447 | None => { |
448 | // At this point, we need to know if we |
449 | // have a surrogate. |
450 | let high_bits = non_ascii & 0xFC00u16; |
451 | if high_bits == 0xD800u16 { |
452 | // high surrogate |
453 | if converted + 1 == length { |
454 | // End of buffer. This surrogate is unpaired. |
455 | return ( |
456 | EncoderResult::Unmappable(' \u{FFFD}' ), |
457 | converted + 1, // +1 `for non_ascii` |
458 | converted, |
459 | ); |
460 | } |
461 | // Safety: convered < length from outside the match, and `converted + 1 != length`, |
462 | // So `converted + 1 < length` as well. We're in bounds |
463 | let second = |
464 | u32::from(unsafe { *src.get_unchecked(converted + 1) }); |
465 | if second & 0xFC00u32 != 0xDC00u32 { |
466 | return ( |
467 | EncoderResult::Unmappable(' \u{FFFD}' ), |
468 | converted + 1, // +1 `for non_ascii` |
469 | converted, |
470 | ); |
471 | } |
472 | // The next code unit is a low surrogate. |
473 | let astral: char = unsafe { |
474 | // Safety: We can rely on non_ascii being 0xD800-0xDBFF since the high bits are 0xD800 |
475 | // Then, (non_ascii << 10 - 0xD800 << 10) becomes between (0 to 0x3FF) << 10, which is between |
476 | // 0x400 to 0xffc00. Adding the 0x10000 gives a range of 0x10400 to 0x10fc00. Subtracting the 0xDC00 |
477 | // gives 0x2800 to 0x102000 |
478 | // The second term is between 0xDC00 and 0xDFFF from the check above. This gives a maximum |
479 | // possible range of (0x10400 + 0xDC00) to (0x102000 + 0xDFFF) which is 0x1E000 to 0x10ffff. |
480 | // This is in range. |
481 | // |
482 | // From a Unicode principles perspective this can also be verified as we have checked that `non_ascii` is a high surrogate |
483 | // (0xD800..=0xDBFF), and that `second` is a low surrogate (`0xDC00..=0xDFFF`), and we are applying reverse of the UTC16 transformation |
484 | // algorithm <https://en.wikipedia.org/wiki/UTF-16#Code_points_from_U+010000_to_U+10FFFF>, by applying the high surrogate - 0xD800 to the |
485 | // high ten bits, and the low surrogate - 0xDc00 to the low ten bits, and then adding 0x10000 |
486 | ::core::char::from_u32_unchecked( |
487 | (u32::from(non_ascii) << 10) + second |
488 | - (((0xD800u32 << 10) - 0x1_0000u32) + 0xDC00u32), |
489 | ) |
490 | }; |
491 | return ( |
492 | EncoderResult::Unmappable(astral), |
493 | converted + 2, // +2 `for non_ascii` and `second` |
494 | converted, |
495 | ); |
496 | } |
497 | if high_bits == 0xDC00u16 { |
498 | // Unpaired low surrogate |
499 | return ( |
500 | EncoderResult::Unmappable(' \u{FFFD}' ), |
501 | converted + 1, // +1 `for non_ascii` |
502 | converted, |
503 | ); |
504 | } |
505 | return ( |
506 | EncoderResult::unmappable_from_bmp(non_ascii), |
507 | converted + 1, // +1 `for non_ascii` |
508 | converted, |
509 | ); |
510 | // Safety: This branch diverges, so no need to uphold invariants on `converted` |
511 | } |
512 | } |
513 | // Next, handle ASCII punctuation and non-ASCII without |
514 | // going back to ASCII acceleration. Non-ASCII scripts |
515 | // use ASCII punctuation, so this avoid going to |
516 | // acceleration just for punctuation/space and then |
517 | // failing. This is a significant boost to non-ASCII |
518 | // scripts. |
519 | // TODO: Split out Latin converters without this part |
520 | // this stuff makes Latin script-conversion slower. |
521 | if converted == length { |
522 | return (pending, length, length); |
523 | } |
524 | // Safety: we're back to `converted < length` due to the == above and can perform |
525 | // the unchecked read |
526 | let mut unit = unsafe { *(src.get_unchecked(converted)) }; |
527 | 'innermost: loop { |
528 | // Safety: This loop always begins with `converted < length`, see |
529 | // the invariant outside and the comment on the continue below |
530 | if unit > 127 { |
531 | non_ascii = unit; |
532 | continue 'middle; |
533 | } |
534 | // Testing on Haswell says that we should write the |
535 | // byte unconditionally instead of trying to unread it |
536 | // to make it part of the next SIMD stride. |
537 | unsafe { |
538 | // Safety: Can rely on converted < length |
539 | *(dst.get_unchecked_mut(converted)) = unit as u8; |
540 | } |
541 | converted += 1; |
542 | // `converted <= length` here |
543 | if unit < 60 { |
544 | // We've got punctuation |
545 | if converted == length { |
546 | return (pending, length, length); |
547 | } |
548 | // Safety: `converted < length` due to the == above. The read is safe. |
549 | unit = unsafe { *(src.get_unchecked(converted)) }; |
550 | // Safety: This only happens if `converted < length`, maintaining it |
551 | continue 'innermost; |
552 | } |
553 | // We've got markup or ASCII text |
554 | continue 'outermost; |
555 | // Safety: All other routes to here diverge so the continue is the only |
556 | // way to run the innermost loop. |
557 | } |
558 | } |
559 | } |
560 | } |
561 | } |
562 | } |
563 | } |
564 | |
565 | // Any copyright to the test code below this comment is dedicated to the |
566 | // Public Domain. http://creativecommons.org/publicdomain/zero/1.0/ |
567 | |
568 | #[cfg (all(test, feature = "alloc" ))] |
569 | mod tests { |
570 | use super::super::testing::*; |
571 | use super::super::*; |
572 | |
573 | #[test ] |
574 | fn test_windows_1255_ca() { |
575 | decode(WINDOWS_1255, b" \xCA" , " \u{05BA}" ); |
576 | encode(WINDOWS_1255, " \u{05BA}" , b" \xCA" ); |
577 | } |
578 | |
579 | #[test ] |
580 | fn test_ascii_punctuation() { |
581 | let bytes = b" \xC1\xF5\xF4\xFC \xE5\xDF\xED\xE1\xE9 \xDD\xED\xE1 \xF4\xE5\xF3\xF4. \xC1\xF5\xF4\xFC \xE5\xDF\xED\xE1\xE9 \xDD\xED\xE1 \xF4\xE5\xF3\xF4." ; |
582 | let characters = " \u{0391}\u{03C5}\u{03C4}\u{03CC} \ |
583 | \u{03B5}\u{03AF}\u{03BD}\u{03B1}\u{03B9} \u{03AD}\u{03BD}\u{03B1} \ |
584 | \u{03C4}\u{03B5}\u{03C3}\u{03C4}. \u{0391}\u{03C5}\u{03C4}\u{03CC} \ |
585 | \u{03B5}\u{03AF}\u{03BD}\u{03B1}\u{03B9} \u{03AD}\u{03BD}\u{03B1} \ |
586 | \u{03C4}\u{03B5}\u{03C3}\u{03C4}." ; |
587 | decode(WINDOWS_1253, bytes, characters); |
588 | encode(WINDOWS_1253, characters, bytes); |
589 | } |
590 | |
591 | #[test ] |
592 | fn test_decode_malformed() { |
593 | decode( |
594 | WINDOWS_1253, |
595 | b" \xC1\xF5\xD2\xF4\xFC" , |
596 | " \u{0391}\u{03C5}\u{FFFD}\u{03C4}\u{03CC}" , |
597 | ); |
598 | } |
599 | |
600 | #[test ] |
601 | fn test_encode_unmappables() { |
602 | encode( |
603 | WINDOWS_1253, |
604 | " \u{0391}\u{03C5}\u{2603}\u{03C4}\u{03CC}" , |
605 | b" \xC1\xF5☃ \xF4\xFC" , |
606 | ); |
607 | encode( |
608 | WINDOWS_1253, |
609 | " \u{0391}\u{03C5}\u{1F4A9}\u{03C4}\u{03CC}" , |
610 | b" \xC1\xF5💩 \xF4\xFC" , |
611 | ); |
612 | } |
613 | |
614 | #[test ] |
615 | fn test_encode_unpaired_surrogates() { |
616 | encode_from_utf16( |
617 | WINDOWS_1253, |
618 | &[0x0391u16, 0x03C5u16, 0xDCA9u16, 0x03C4u16, 0x03CCu16], |
619 | b" \xC1\xF5� \xF4\xFC" , |
620 | ); |
621 | encode_from_utf16( |
622 | WINDOWS_1253, |
623 | &[0x0391u16, 0x03C5u16, 0xD83Du16, 0x03C4u16, 0x03CCu16], |
624 | b" \xC1\xF5� \xF4\xFC" , |
625 | ); |
626 | encode_from_utf16( |
627 | WINDOWS_1253, |
628 | &[0x0391u16, 0x03C5u16, 0x03C4u16, 0x03CCu16, 0xD83Du16], |
629 | b" \xC1\xF5\xF4\xFC�" , |
630 | ); |
631 | } |
632 | |
633 | pub const HIGH_BYTES: &'static [u8; 128] = &[ |
634 | 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, |
635 | 0x8F, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0x9B, 0x9C, 0x9D, |
636 | 0x9E, 0x9F, 0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xAB, 0xAC, |
637 | 0xAD, 0xAE, 0xAF, 0xB0, 0xB1, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xBB, |
638 | 0xBC, 0xBD, 0xBE, 0xBF, 0xC0, 0xC1, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, |
639 | 0xCB, 0xCC, 0xCD, 0xCE, 0xCF, 0xD0, 0xD1, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, |
640 | 0xDA, 0xDB, 0xDC, 0xDD, 0xDE, 0xDF, 0xE0, 0xE1, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, |
641 | 0xE9, 0xEA, 0xEB, 0xEC, 0xED, 0xEE, 0xEF, 0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, |
642 | 0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, 0xFF, |
643 | ]; |
644 | |
645 | fn decode_single_byte(encoding: &'static Encoding, data: &'static [u16; 128]) { |
646 | let mut with_replacement = [0u16; 128]; |
647 | let mut it = data.iter().enumerate(); |
648 | loop { |
649 | match it.next() { |
650 | Some((i, code_point)) => { |
651 | if *code_point == 0 { |
652 | with_replacement[i] = 0xFFFD; |
653 | } else { |
654 | with_replacement[i] = *code_point; |
655 | } |
656 | } |
657 | None => { |
658 | break; |
659 | } |
660 | } |
661 | } |
662 | |
663 | decode_to_utf16(encoding, HIGH_BYTES, &with_replacement[..]); |
664 | } |
665 | |
666 | fn encode_single_byte(encoding: &'static Encoding, data: &'static [u16; 128]) { |
667 | let mut with_zeros = [0u8; 128]; |
668 | let mut it = data.iter().enumerate(); |
669 | loop { |
670 | match it.next() { |
671 | Some((i, code_point)) => { |
672 | if *code_point == 0 { |
673 | with_zeros[i] = 0; |
674 | } else { |
675 | with_zeros[i] = HIGH_BYTES[i]; |
676 | } |
677 | } |
678 | None => { |
679 | break; |
680 | } |
681 | } |
682 | } |
683 | |
684 | encode_from_utf16(encoding, data, &with_zeros[..]); |
685 | } |
686 | |
687 | #[test ] |
688 | fn test_single_byte_from_two_low_surrogates() { |
689 | let expectation = b"��" ; |
690 | let mut output = [0u8; 40]; |
691 | let mut encoder = WINDOWS_1253.new_encoder(); |
692 | let (result, read, written, had_errors) = |
693 | encoder.encode_from_utf16(&[0xDC00u16, 0xDEDEu16], &mut output[..], true); |
694 | assert_eq!(result, CoderResult::InputEmpty); |
695 | assert_eq!(read, 2); |
696 | assert_eq!(written, expectation.len()); |
697 | assert!(had_errors); |
698 | assert_eq!(&output[..written], expectation); |
699 | } |
700 | |
701 | // These tests are so self-referential that they are pretty useless. |
702 | |
703 | // BEGIN GENERATED CODE. PLEASE DO NOT EDIT. |
704 | // Instead, please regenerate using generate-encoding-data.py |
705 | |
706 | #[test ] |
707 | fn test_single_byte_decode() { |
708 | decode_single_byte(IBM866, &data::SINGLE_BYTE_DATA.ibm866); |
709 | decode_single_byte(ISO_8859_10, &data::SINGLE_BYTE_DATA.iso_8859_10); |
710 | if cfg!(miri) { |
711 | // Miri is too slow |
712 | return; |
713 | } |
714 | decode_single_byte(ISO_8859_13, &data::SINGLE_BYTE_DATA.iso_8859_13); |
715 | decode_single_byte(ISO_8859_14, &data::SINGLE_BYTE_DATA.iso_8859_14); |
716 | decode_single_byte(ISO_8859_15, &data::SINGLE_BYTE_DATA.iso_8859_15); |
717 | decode_single_byte(ISO_8859_16, &data::SINGLE_BYTE_DATA.iso_8859_16); |
718 | decode_single_byte(ISO_8859_2, &data::SINGLE_BYTE_DATA.iso_8859_2); |
719 | decode_single_byte(ISO_8859_3, &data::SINGLE_BYTE_DATA.iso_8859_3); |
720 | decode_single_byte(ISO_8859_4, &data::SINGLE_BYTE_DATA.iso_8859_4); |
721 | decode_single_byte(ISO_8859_5, &data::SINGLE_BYTE_DATA.iso_8859_5); |
722 | decode_single_byte(ISO_8859_6, &data::SINGLE_BYTE_DATA.iso_8859_6); |
723 | decode_single_byte(ISO_8859_7, &data::SINGLE_BYTE_DATA.iso_8859_7); |
724 | decode_single_byte(ISO_8859_8, &data::SINGLE_BYTE_DATA.iso_8859_8); |
725 | decode_single_byte(KOI8_R, &data::SINGLE_BYTE_DATA.koi8_r); |
726 | decode_single_byte(KOI8_U, &data::SINGLE_BYTE_DATA.koi8_u); |
727 | decode_single_byte(MACINTOSH, &data::SINGLE_BYTE_DATA.macintosh); |
728 | decode_single_byte(WINDOWS_1250, &data::SINGLE_BYTE_DATA.windows_1250); |
729 | decode_single_byte(WINDOWS_1251, &data::SINGLE_BYTE_DATA.windows_1251); |
730 | decode_single_byte(WINDOWS_1252, &data::SINGLE_BYTE_DATA.windows_1252); |
731 | decode_single_byte(WINDOWS_1253, &data::SINGLE_BYTE_DATA.windows_1253); |
732 | decode_single_byte(WINDOWS_1254, &data::SINGLE_BYTE_DATA.windows_1254); |
733 | decode_single_byte(WINDOWS_1255, &data::SINGLE_BYTE_DATA.windows_1255); |
734 | decode_single_byte(WINDOWS_1256, &data::SINGLE_BYTE_DATA.windows_1256); |
735 | decode_single_byte(WINDOWS_1257, &data::SINGLE_BYTE_DATA.windows_1257); |
736 | decode_single_byte(WINDOWS_1258, &data::SINGLE_BYTE_DATA.windows_1258); |
737 | decode_single_byte(WINDOWS_874, &data::SINGLE_BYTE_DATA.windows_874); |
738 | decode_single_byte(X_MAC_CYRILLIC, &data::SINGLE_BYTE_DATA.x_mac_cyrillic); |
739 | } |
740 | |
741 | #[test ] |
742 | fn test_single_byte_encode() { |
743 | encode_single_byte(IBM866, &data::SINGLE_BYTE_DATA.ibm866); |
744 | encode_single_byte(ISO_8859_10, &data::SINGLE_BYTE_DATA.iso_8859_10); |
745 | if cfg!(miri) { |
746 | // Miri is too slow |
747 | return; |
748 | } |
749 | encode_single_byte(ISO_8859_13, &data::SINGLE_BYTE_DATA.iso_8859_13); |
750 | encode_single_byte(ISO_8859_14, &data::SINGLE_BYTE_DATA.iso_8859_14); |
751 | encode_single_byte(ISO_8859_15, &data::SINGLE_BYTE_DATA.iso_8859_15); |
752 | encode_single_byte(ISO_8859_16, &data::SINGLE_BYTE_DATA.iso_8859_16); |
753 | encode_single_byte(ISO_8859_2, &data::SINGLE_BYTE_DATA.iso_8859_2); |
754 | encode_single_byte(ISO_8859_3, &data::SINGLE_BYTE_DATA.iso_8859_3); |
755 | encode_single_byte(ISO_8859_4, &data::SINGLE_BYTE_DATA.iso_8859_4); |
756 | encode_single_byte(ISO_8859_5, &data::SINGLE_BYTE_DATA.iso_8859_5); |
757 | encode_single_byte(ISO_8859_6, &data::SINGLE_BYTE_DATA.iso_8859_6); |
758 | encode_single_byte(ISO_8859_7, &data::SINGLE_BYTE_DATA.iso_8859_7); |
759 | encode_single_byte(ISO_8859_8, &data::SINGLE_BYTE_DATA.iso_8859_8); |
760 | encode_single_byte(KOI8_R, &data::SINGLE_BYTE_DATA.koi8_r); |
761 | encode_single_byte(KOI8_U, &data::SINGLE_BYTE_DATA.koi8_u); |
762 | encode_single_byte(MACINTOSH, &data::SINGLE_BYTE_DATA.macintosh); |
763 | encode_single_byte(WINDOWS_1250, &data::SINGLE_BYTE_DATA.windows_1250); |
764 | encode_single_byte(WINDOWS_1251, &data::SINGLE_BYTE_DATA.windows_1251); |
765 | encode_single_byte(WINDOWS_1252, &data::SINGLE_BYTE_DATA.windows_1252); |
766 | encode_single_byte(WINDOWS_1253, &data::SINGLE_BYTE_DATA.windows_1253); |
767 | encode_single_byte(WINDOWS_1254, &data::SINGLE_BYTE_DATA.windows_1254); |
768 | encode_single_byte(WINDOWS_1255, &data::SINGLE_BYTE_DATA.windows_1255); |
769 | encode_single_byte(WINDOWS_1256, &data::SINGLE_BYTE_DATA.windows_1256); |
770 | encode_single_byte(WINDOWS_1257, &data::SINGLE_BYTE_DATA.windows_1257); |
771 | encode_single_byte(WINDOWS_1258, &data::SINGLE_BYTE_DATA.windows_1258); |
772 | encode_single_byte(WINDOWS_874, &data::SINGLE_BYTE_DATA.windows_874); |
773 | encode_single_byte(X_MAC_CYRILLIC, &data::SINGLE_BYTE_DATA.x_mac_cyrillic); |
774 | } |
775 | // END GENERATED CODE |
776 | } |
777 | |