1 | // Copyright 2013 The Servo Project Developers. See the COPYRIGHT |
2 | // file at the top-level directory of this distribution. |
3 | // |
4 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
5 | // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
6 | // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
7 | // option. This file may not be copied, modified, or distributed |
8 | // except according to those terms. |
9 | |
10 | use super::UnknownUnit; |
11 | use crate::box2d::Box2D; |
12 | use crate::num::*; |
13 | use crate::point::Point2D; |
14 | use crate::scale::Scale; |
15 | use crate::side_offsets::SideOffsets2D; |
16 | use crate::size::Size2D; |
17 | use crate::vector::Vector2D; |
18 | |
19 | #[cfg (feature = "bytemuck" )] |
20 | use bytemuck::{Pod, Zeroable}; |
21 | use num_traits::{Float, NumCast}; |
22 | #[cfg (feature = "serde" )] |
23 | use serde::{Deserialize, Serialize}; |
24 | |
25 | use core::borrow::Borrow; |
26 | use core::cmp::PartialOrd; |
27 | use core::fmt; |
28 | use core::hash::{Hash, Hasher}; |
29 | use core::ops::{Add, Div, DivAssign, Mul, MulAssign, Range, Sub}; |
30 | |
31 | /// A 2d Rectangle optionally tagged with a unit. |
32 | /// |
33 | /// # Representation |
34 | /// |
35 | /// `Rect` is represented by an origin point and a size. |
36 | /// |
37 | /// See [`Box2D`] for a rectangle represented by two endpoints. |
38 | /// |
39 | /// # Empty rectangle |
40 | /// |
41 | /// A rectangle is considered empty (see [`is_empty`]) if any of the following is true: |
42 | /// - it's area is empty, |
43 | /// - it's area is negative (`size.x < 0` or `size.y < 0`), |
44 | /// - it contains NaNs. |
45 | /// |
46 | /// [`is_empty`]: Self::is_empty |
47 | #[repr (C)] |
48 | #[cfg_attr (feature = "serde" , derive(Serialize, Deserialize))] |
49 | #[cfg_attr ( |
50 | feature = "serde" , |
51 | serde(bound(serialize = "T: Serialize" , deserialize = "T: Deserialize<'de>" )) |
52 | )] |
53 | pub struct Rect<T, U> { |
54 | pub origin: Point2D<T, U>, |
55 | pub size: Size2D<T, U>, |
56 | } |
57 | |
58 | #[cfg (feature = "arbitrary" )] |
59 | impl<'a, T, U> arbitrary::Arbitrary<'a> for Rect<T, U> |
60 | where |
61 | T: arbitrary::Arbitrary<'a>, |
62 | { |
63 | fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> { |
64 | let (origin, size) = arbitrary::Arbitrary::arbitrary(u)?; |
65 | Ok(Rect { origin, size }) |
66 | } |
67 | } |
68 | |
69 | #[cfg (feature = "bytemuck" )] |
70 | unsafe impl<T: Zeroable, U> Zeroable for Rect<T, U> {} |
71 | |
72 | #[cfg (feature = "bytemuck" )] |
73 | unsafe impl<T: Pod, U: 'static> Pod for Rect<T, U> {} |
74 | |
75 | impl<T: Hash, U> Hash for Rect<T, U> { |
76 | fn hash<H: Hasher>(&self, h: &mut H) { |
77 | self.origin.hash(state:h); |
78 | self.size.hash(state:h); |
79 | } |
80 | } |
81 | |
82 | impl<T: Copy, U> Copy for Rect<T, U> {} |
83 | |
84 | impl<T: Clone, U> Clone for Rect<T, U> { |
85 | fn clone(&self) -> Self { |
86 | Self::new(self.origin.clone(), self.size.clone()) |
87 | } |
88 | } |
89 | |
90 | impl<T: PartialEq, U> PartialEq for Rect<T, U> { |
91 | fn eq(&self, other: &Self) -> bool { |
92 | self.origin.eq(&other.origin) && self.size.eq(&other.size) |
93 | } |
94 | } |
95 | |
96 | impl<T: Eq, U> Eq for Rect<T, U> {} |
97 | |
98 | impl<T: fmt::Debug, U> fmt::Debug for Rect<T, U> { |
99 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
100 | write!(f, "Rect(" )?; |
101 | fmt::Debug::fmt(&self.size, f)?; |
102 | write!(f, " at " )?; |
103 | fmt::Debug::fmt(&self.origin, f)?; |
104 | write!(f, ")" ) |
105 | } |
106 | } |
107 | |
108 | impl<T: Default, U> Default for Rect<T, U> { |
109 | fn default() -> Self { |
110 | Rect::new(origin:Default::default(), size:Default::default()) |
111 | } |
112 | } |
113 | |
114 | impl<T, U> Rect<T, U> { |
115 | /// Constructor. |
116 | #[inline ] |
117 | pub const fn new(origin: Point2D<T, U>, size: Size2D<T, U>) -> Self { |
118 | Rect { origin, size } |
119 | } |
120 | } |
121 | |
122 | impl<T, U> Rect<T, U> |
123 | where |
124 | T: Zero, |
125 | { |
126 | /// Constructor, setting all sides to zero. |
127 | #[inline ] |
128 | pub fn zero() -> Self { |
129 | Rect::new(Point2D::origin(), size:Size2D::zero()) |
130 | } |
131 | |
132 | /// Creates a rect of the given size, at offset zero. |
133 | #[inline ] |
134 | pub fn from_size(size: Size2D<T, U>) -> Self { |
135 | Rect { |
136 | origin: Point2D::zero(), |
137 | size, |
138 | } |
139 | } |
140 | } |
141 | |
142 | impl<T, U> Rect<T, U> |
143 | where |
144 | T: Copy + Add<T, Output = T>, |
145 | { |
146 | #[inline ] |
147 | pub fn min(&self) -> Point2D<T, U> { |
148 | self.origin |
149 | } |
150 | |
151 | #[inline ] |
152 | pub fn max(&self) -> Point2D<T, U> { |
153 | self.origin + self.size |
154 | } |
155 | |
156 | #[inline ] |
157 | pub fn max_x(&self) -> T { |
158 | self.origin.x + self.size.width |
159 | } |
160 | |
161 | #[inline ] |
162 | pub fn min_x(&self) -> T { |
163 | self.origin.x |
164 | } |
165 | |
166 | #[inline ] |
167 | pub fn max_y(&self) -> T { |
168 | self.origin.y + self.size.height |
169 | } |
170 | |
171 | #[inline ] |
172 | pub fn min_y(&self) -> T { |
173 | self.origin.y |
174 | } |
175 | |
176 | #[inline ] |
177 | pub fn width(&self) -> T { |
178 | self.size.width |
179 | } |
180 | |
181 | #[inline ] |
182 | pub fn height(&self) -> T { |
183 | self.size.height |
184 | } |
185 | |
186 | #[inline ] |
187 | pub fn x_range(&self) -> Range<T> { |
188 | self.min_x()..self.max_x() |
189 | } |
190 | |
191 | #[inline ] |
192 | pub fn y_range(&self) -> Range<T> { |
193 | self.min_y()..self.max_y() |
194 | } |
195 | |
196 | /// Returns the same rectangle, translated by a vector. |
197 | #[inline ] |
198 | #[must_use ] |
199 | pub fn translate(&self, by: Vector2D<T, U>) -> Self { |
200 | Self::new(self.origin + by, self.size) |
201 | } |
202 | |
203 | #[inline ] |
204 | pub fn to_box2d(&self) -> Box2D<T, U> { |
205 | Box2D { |
206 | min: self.min(), |
207 | max: self.max(), |
208 | } |
209 | } |
210 | } |
211 | |
212 | impl<T, U> Rect<T, U> |
213 | where |
214 | T: Copy + PartialOrd + Add<T, Output = T>, |
215 | { |
216 | /// Returns `true` if this rectangle contains the point. Points are considered |
217 | /// in the rectangle if they are on the left or top edge, but outside if they |
218 | /// are on the right or bottom edge. |
219 | #[inline ] |
220 | pub fn contains(&self, p: Point2D<T, U>) -> bool { |
221 | self.to_box2d().contains(p) |
222 | } |
223 | |
224 | #[inline ] |
225 | pub fn intersects(&self, other: &Self) -> bool { |
226 | self.to_box2d().intersects(&other.to_box2d()) |
227 | } |
228 | } |
229 | |
230 | impl<T, U> Rect<T, U> |
231 | where |
232 | T: Copy + PartialOrd + Add<T, Output = T> + Sub<T, Output = T>, |
233 | { |
234 | #[inline ] |
235 | pub fn intersection(&self, other: &Self) -> Option<Self> { |
236 | let box2d: Box2D = self.to_box2d().intersection_unchecked(&other.to_box2d()); |
237 | |
238 | if box2d.is_empty() { |
239 | return None; |
240 | } |
241 | |
242 | Some(box2d.to_rect()) |
243 | } |
244 | } |
245 | |
246 | impl<T, U> Rect<T, U> |
247 | where |
248 | T: Copy + Add<T, Output = T> + Sub<T, Output = T>, |
249 | { |
250 | #[inline ] |
251 | #[must_use ] |
252 | pub fn inflate(&self, width: T, height: T) -> Self { |
253 | Rect::new( |
254 | origin:Point2D::new(self.origin.x - width, self.origin.y - height), |
255 | size:Size2D::new( |
256 | self.size.width + width + width, |
257 | self.size.height + height + height, |
258 | ), |
259 | ) |
260 | } |
261 | } |
262 | |
263 | impl<T, U> Rect<T, U> |
264 | where |
265 | T: Copy + Zero + PartialOrd + Add<T, Output = T>, |
266 | { |
267 | /// Returns `true` if this rectangle contains the interior of `rect`. Always |
268 | /// returns `true` if `rect` is empty, and always returns `false` if `rect` is |
269 | /// nonempty but this rectangle is empty. |
270 | #[inline ] |
271 | pub fn contains_rect(&self, rect: &Self) -> bool { |
272 | rect.is_empty() |
273 | || (self.min_x() <= rect.min_x() |
274 | && rect.max_x() <= self.max_x() |
275 | && self.min_y() <= rect.min_y() |
276 | && rect.max_y() <= self.max_y()) |
277 | } |
278 | } |
279 | |
280 | impl<T, U> Rect<T, U> |
281 | where |
282 | T: Copy + Zero + PartialOrd + Add<T, Output = T> + Sub<T, Output = T>, |
283 | { |
284 | /// Calculate the size and position of an inner rectangle. |
285 | /// |
286 | /// Subtracts the side offsets from all sides. The horizontal and vertical |
287 | /// offsets must not be larger than the original side length. |
288 | /// This method assumes y oriented downward. |
289 | pub fn inner_rect(&self, offsets: SideOffsets2D<T, U>) -> Self { |
290 | let rect: Rect = Rect::new( |
291 | origin:Point2D::new(self.origin.x + offsets.left, self.origin.y + offsets.top), |
292 | size:Size2D::new( |
293 | self.size.width - offsets.horizontal(), |
294 | self.size.height - offsets.vertical(), |
295 | ), |
296 | ); |
297 | debug_assert!(rect.size.width >= Zero::zero()); |
298 | debug_assert!(rect.size.height >= Zero::zero()); |
299 | rect |
300 | } |
301 | } |
302 | |
303 | impl<T, U> Rect<T, U> |
304 | where |
305 | T: Copy + Add<T, Output = T> + Sub<T, Output = T>, |
306 | { |
307 | /// Calculate the size and position of an outer rectangle. |
308 | /// |
309 | /// Add the offsets to all sides. The expanded rectangle is returned. |
310 | /// This method assumes y oriented downward. |
311 | pub fn outer_rect(&self, offsets: SideOffsets2D<T, U>) -> Self { |
312 | Rect::new( |
313 | origin:Point2D::new(self.origin.x - offsets.left, self.origin.y - offsets.top), |
314 | size:Size2D::new( |
315 | self.size.width + offsets.horizontal(), |
316 | self.size.height + offsets.vertical(), |
317 | ), |
318 | ) |
319 | } |
320 | } |
321 | |
322 | impl<T, U> Rect<T, U> |
323 | where |
324 | T: Copy + Zero + PartialOrd + Sub<T, Output = T>, |
325 | { |
326 | /// Returns the smallest rectangle defined by the top/bottom/left/right-most |
327 | /// points provided as parameter. |
328 | /// |
329 | /// Note: This function has a behavior that can be surprising because |
330 | /// the right-most and bottom-most points are exactly on the edge |
331 | /// of the rectangle while the `contains` function is has exclusive |
332 | /// semantic on these edges. This means that the right-most and bottom-most |
333 | /// points provided to `from_points` will count as not contained by the rect. |
334 | /// This behavior may change in the future. |
335 | pub fn from_points<I>(points: I) -> Self |
336 | where |
337 | I: IntoIterator, |
338 | I::Item: Borrow<Point2D<T, U>>, |
339 | { |
340 | Box2D::from_points(points).to_rect() |
341 | } |
342 | } |
343 | |
344 | impl<T, U> Rect<T, U> |
345 | where |
346 | T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>, |
347 | { |
348 | /// Linearly interpolate between this rectangle and another rectangle. |
349 | #[inline ] |
350 | pub fn lerp(&self, other: Self, t: T) -> Self { |
351 | Self::new( |
352 | self.origin.lerp(other.origin, t), |
353 | self.size.lerp(other.size, t), |
354 | ) |
355 | } |
356 | } |
357 | |
358 | impl<T, U> Rect<T, U> |
359 | where |
360 | T: Copy + One + Add<Output = T> + Div<Output = T>, |
361 | { |
362 | pub fn center(&self) -> Point2D<T, U> { |
363 | let two: T = T::one() + T::one(); |
364 | self.origin + self.size.to_vector() / two |
365 | } |
366 | } |
367 | |
368 | impl<T, U> Rect<T, U> |
369 | where |
370 | T: Copy + PartialOrd + Add<T, Output = T> + Sub<T, Output = T> + Zero, |
371 | { |
372 | #[inline ] |
373 | pub fn union(&self, other: &Self) -> Self { |
374 | self.to_box2d().union(&other.to_box2d()).to_rect() |
375 | } |
376 | } |
377 | |
378 | impl<T, U> Rect<T, U> { |
379 | #[inline ] |
380 | pub fn scale<S: Copy>(&self, x: S, y: S) -> Self |
381 | where |
382 | T: Copy + Mul<S, Output = T>, |
383 | { |
384 | Rect::new( |
385 | origin:Point2D::new(self.origin.x * x, self.origin.y * y), |
386 | size:Size2D::new(self.size.width * x, self.size.height * y), |
387 | ) |
388 | } |
389 | } |
390 | |
391 | impl<T: Copy + Mul<T, Output = T>, U> Rect<T, U> { |
392 | #[inline ] |
393 | pub fn area(&self) -> T { |
394 | self.size.area() |
395 | } |
396 | } |
397 | |
398 | impl<T: Copy + Zero + PartialOrd, U> Rect<T, U> { |
399 | #[inline ] |
400 | pub fn is_empty(&self) -> bool { |
401 | self.size.is_empty() |
402 | } |
403 | } |
404 | |
405 | impl<T: Copy + Zero + PartialOrd, U> Rect<T, U> { |
406 | #[inline ] |
407 | pub fn to_non_empty(&self) -> Option<Self> { |
408 | if self.is_empty() { |
409 | return None; |
410 | } |
411 | |
412 | Some(*self) |
413 | } |
414 | } |
415 | |
416 | impl<T: Copy + Mul, U> Mul<T> for Rect<T, U> { |
417 | type Output = Rect<T::Output, U>; |
418 | |
419 | #[inline ] |
420 | fn mul(self, scale: T) -> Self::Output { |
421 | Rect::new(self.origin * scale, self.size * scale) |
422 | } |
423 | } |
424 | |
425 | impl<T: Copy + MulAssign, U> MulAssign<T> for Rect<T, U> { |
426 | #[inline ] |
427 | fn mul_assign(&mut self, scale: T) { |
428 | *self *= Scale::new(scale); |
429 | } |
430 | } |
431 | |
432 | impl<T: Copy + Div, U> Div<T> for Rect<T, U> { |
433 | type Output = Rect<T::Output, U>; |
434 | |
435 | #[inline ] |
436 | fn div(self, scale: T) -> Self::Output { |
437 | Rect::new(self.origin / scale.clone(), self.size / scale) |
438 | } |
439 | } |
440 | |
441 | impl<T: Copy + DivAssign, U> DivAssign<T> for Rect<T, U> { |
442 | #[inline ] |
443 | fn div_assign(&mut self, scale: T) { |
444 | *self /= Scale::new(scale); |
445 | } |
446 | } |
447 | |
448 | impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Rect<T, U1> { |
449 | type Output = Rect<T::Output, U2>; |
450 | |
451 | #[inline ] |
452 | fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output { |
453 | Rect::new(self.origin * scale.clone(), self.size * scale) |
454 | } |
455 | } |
456 | |
457 | impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Rect<T, U> { |
458 | #[inline ] |
459 | fn mul_assign(&mut self, scale: Scale<T, U, U>) { |
460 | self.origin *= scale.clone(); |
461 | self.size *= scale; |
462 | } |
463 | } |
464 | |
465 | impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Rect<T, U2> { |
466 | type Output = Rect<T::Output, U1>; |
467 | |
468 | #[inline ] |
469 | fn div(self, scale: Scale<T, U1, U2>) -> Self::Output { |
470 | Rect::new(self.origin / scale.clone(), self.size / scale) |
471 | } |
472 | } |
473 | |
474 | impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Rect<T, U> { |
475 | #[inline ] |
476 | fn div_assign(&mut self, scale: Scale<T, U, U>) { |
477 | self.origin /= scale.clone(); |
478 | self.size /= scale; |
479 | } |
480 | } |
481 | |
482 | impl<T: Copy, U> Rect<T, U> { |
483 | /// Drop the units, preserving only the numeric value. |
484 | #[inline ] |
485 | pub fn to_untyped(&self) -> Rect<T, UnknownUnit> { |
486 | Rect::new(self.origin.to_untyped(), self.size.to_untyped()) |
487 | } |
488 | |
489 | /// Tag a unitless value with units. |
490 | #[inline ] |
491 | pub fn from_untyped(r: &Rect<T, UnknownUnit>) -> Rect<T, U> { |
492 | Rect::new( |
493 | origin:Point2D::from_untyped(r.origin), |
494 | size:Size2D::from_untyped(r.size), |
495 | ) |
496 | } |
497 | |
498 | /// Cast the unit |
499 | #[inline ] |
500 | pub fn cast_unit<V>(&self) -> Rect<T, V> { |
501 | Rect::new(self.origin.cast_unit(), self.size.cast_unit()) |
502 | } |
503 | } |
504 | |
505 | impl<T: NumCast + Copy, U> Rect<T, U> { |
506 | /// Cast from one numeric representation to another, preserving the units. |
507 | /// |
508 | /// When casting from floating point to integer coordinates, the decimals are truncated |
509 | /// as one would expect from a simple cast, but this behavior does not always make sense |
510 | /// geometrically. Consider using [`round`], [`round_in`] or [`round_out`] before casting. |
511 | /// |
512 | /// [`round`]: Self::round |
513 | /// [`round_in`]: Self::round_in |
514 | /// [`round_out`]: Self::round_out |
515 | #[inline ] |
516 | pub fn cast<NewT: NumCast>(&self) -> Rect<NewT, U> { |
517 | Rect::new(self.origin.cast(), self.size.cast()) |
518 | } |
519 | |
520 | /// Fallible cast from one numeric representation to another, preserving the units. |
521 | /// |
522 | /// When casting from floating point to integer coordinates, the decimals are truncated |
523 | /// as one would expect from a simple cast, but this behavior does not always make sense |
524 | /// geometrically. Consider using [`round`], [`round_in`] or [`round_out` before casting. |
525 | /// |
526 | /// [`round`]: Self::round |
527 | /// [`round_in`]: Self::round_in |
528 | /// [`round_out`]: Self::round_out |
529 | pub fn try_cast<NewT: NumCast>(&self) -> Option<Rect<NewT, U>> { |
530 | match (self.origin.try_cast(), self.size.try_cast()) { |
531 | (Some(origin), Some(size)) => Some(Rect::new(origin, size)), |
532 | _ => None, |
533 | } |
534 | } |
535 | |
536 | // Convenience functions for common casts |
537 | |
538 | /// Cast into an `f32` rectangle. |
539 | #[inline ] |
540 | pub fn to_f32(&self) -> Rect<f32, U> { |
541 | self.cast() |
542 | } |
543 | |
544 | /// Cast into an `f64` rectangle. |
545 | #[inline ] |
546 | pub fn to_f64(&self) -> Rect<f64, U> { |
547 | self.cast() |
548 | } |
549 | |
550 | /// Cast into an `usize` rectangle, truncating decimals if any. |
551 | /// |
552 | /// When casting from floating point rectangles, it is worth considering whether |
553 | /// to `round()`, `round_in()` or `round_out()` before the cast in order to |
554 | /// obtain the desired conversion behavior. |
555 | #[inline ] |
556 | pub fn to_usize(&self) -> Rect<usize, U> { |
557 | self.cast() |
558 | } |
559 | |
560 | /// Cast into an `u32` rectangle, truncating decimals if any. |
561 | /// |
562 | /// When casting from floating point rectangles, it is worth considering whether |
563 | /// to `round()`, `round_in()` or `round_out()` before the cast in order to |
564 | /// obtain the desired conversion behavior. |
565 | #[inline ] |
566 | pub fn to_u32(&self) -> Rect<u32, U> { |
567 | self.cast() |
568 | } |
569 | |
570 | /// Cast into an `u64` rectangle, truncating decimals if any. |
571 | /// |
572 | /// When casting from floating point rectangles, it is worth considering whether |
573 | /// to `round()`, `round_in()` or `round_out()` before the cast in order to |
574 | /// obtain the desired conversion behavior. |
575 | #[inline ] |
576 | pub fn to_u64(&self) -> Rect<u64, U> { |
577 | self.cast() |
578 | } |
579 | |
580 | /// Cast into an `i32` rectangle, truncating decimals if any. |
581 | /// |
582 | /// When casting from floating point rectangles, it is worth considering whether |
583 | /// to `round()`, `round_in()` or `round_out()` before the cast in order to |
584 | /// obtain the desired conversion behavior. |
585 | #[inline ] |
586 | pub fn to_i32(&self) -> Rect<i32, U> { |
587 | self.cast() |
588 | } |
589 | |
590 | /// Cast into an `i64` rectangle, truncating decimals if any. |
591 | /// |
592 | /// When casting from floating point rectangles, it is worth considering whether |
593 | /// to `round()`, `round_in()` or `round_out()` before the cast in order to |
594 | /// obtain the desired conversion behavior. |
595 | #[inline ] |
596 | pub fn to_i64(&self) -> Rect<i64, U> { |
597 | self.cast() |
598 | } |
599 | } |
600 | |
601 | impl<T: Float, U> Rect<T, U> { |
602 | /// Returns `true` if all members are finite. |
603 | #[inline ] |
604 | pub fn is_finite(self) -> bool { |
605 | self.origin.is_finite() && self.size.is_finite() |
606 | } |
607 | } |
608 | |
609 | impl<T: Floor + Ceil + Round + Add<T, Output = T> + Sub<T, Output = T>, U> Rect<T, U> { |
610 | /// Return a rectangle with edges rounded to integer coordinates, such that |
611 | /// the returned rectangle has the same set of pixel centers as the original |
612 | /// one. |
613 | /// Edges at offset 0.5 round up. |
614 | /// Suitable for most places where integral device coordinates |
615 | /// are needed, but note that any translation should be applied first to |
616 | /// avoid pixel rounding errors. |
617 | /// Note that this is *not* rounding to nearest integer if the values are negative. |
618 | /// They are always rounding as floor(n + 0.5). |
619 | /// |
620 | /// # Usage notes |
621 | /// Note, that when using with floating-point `T` types that method can significantly |
622 | /// lose precision for large values, so if you need to call this method very often it |
623 | /// is better to use [`Box2D`]. |
624 | #[must_use ] |
625 | pub fn round(&self) -> Self { |
626 | self.to_box2d().round().to_rect() |
627 | } |
628 | |
629 | /// Return a rectangle with edges rounded to integer coordinates, such that |
630 | /// the original rectangle contains the resulting rectangle. |
631 | /// |
632 | /// # Usage notes |
633 | /// Note, that when using with floating-point `T` types that method can significantly |
634 | /// lose precision for large values, so if you need to call this method very often it |
635 | /// is better to use [`Box2D`]. |
636 | #[must_use ] |
637 | pub fn round_in(&self) -> Self { |
638 | self.to_box2d().round_in().to_rect() |
639 | } |
640 | |
641 | /// Return a rectangle with edges rounded to integer coordinates, such that |
642 | /// the original rectangle is contained in the resulting rectangle. |
643 | /// |
644 | /// # Usage notes |
645 | /// Note, that when using with floating-point `T` types that method can significantly |
646 | /// lose precision for large values, so if you need to call this method very often it |
647 | /// is better to use [`Box2D`]. |
648 | #[must_use ] |
649 | pub fn round_out(&self) -> Self { |
650 | self.to_box2d().round_out().to_rect() |
651 | } |
652 | } |
653 | |
654 | impl<T, U> From<Size2D<T, U>> for Rect<T, U> |
655 | where |
656 | T: Zero, |
657 | { |
658 | fn from(size: Size2D<T, U>) -> Self { |
659 | Self::from_size(size) |
660 | } |
661 | } |
662 | |
663 | /// Shorthand for `Rect::new(Point2D::new(x, y), Size2D::new(w, h))`. |
664 | pub const fn rect<T, U>(x: T, y: T, w: T, h: T) -> Rect<T, U> { |
665 | Rect::new(origin:Point2D::new(x, y), size:Size2D::new(width:w, height:h)) |
666 | } |
667 | |
668 | #[cfg (test)] |
669 | mod tests { |
670 | use crate::default::{Point2D, Rect, Size2D}; |
671 | use crate::side_offsets::SideOffsets2D; |
672 | use crate::{point2, rect, size2, vec2}; |
673 | |
674 | #[test ] |
675 | fn test_translate() { |
676 | let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32)); |
677 | let pp = p.translate(vec2(10, 15)); |
678 | |
679 | assert!(pp.size.width == 50); |
680 | assert!(pp.size.height == 40); |
681 | assert!(pp.origin.x == 10); |
682 | assert!(pp.origin.y == 15); |
683 | |
684 | let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40)); |
685 | let rr = r.translate(vec2(0, -10)); |
686 | |
687 | assert!(rr.size.width == 50); |
688 | assert!(rr.size.height == 40); |
689 | assert!(rr.origin.x == -10); |
690 | assert!(rr.origin.y == -15); |
691 | } |
692 | |
693 | #[test ] |
694 | fn test_union() { |
695 | let p = Rect::new(Point2D::new(0, 0), Size2D::new(50, 40)); |
696 | let q = Rect::new(Point2D::new(20, 20), Size2D::new(5, 5)); |
697 | let r = Rect::new(Point2D::new(-15, -30), Size2D::new(200, 15)); |
698 | let s = Rect::new(Point2D::new(20, -15), Size2D::new(250, 200)); |
699 | |
700 | let pq = p.union(&q); |
701 | assert!(pq.origin == Point2D::new(0, 0)); |
702 | assert!(pq.size == Size2D::new(50, 40)); |
703 | |
704 | let pr = p.union(&r); |
705 | assert!(pr.origin == Point2D::new(-15, -30)); |
706 | assert!(pr.size == Size2D::new(200, 70)); |
707 | |
708 | let ps = p.union(&s); |
709 | assert!(ps.origin == Point2D::new(0, -15)); |
710 | assert!(ps.size == Size2D::new(270, 200)); |
711 | } |
712 | |
713 | #[test ] |
714 | fn test_intersection() { |
715 | let p = Rect::new(Point2D::new(0, 0), Size2D::new(10, 20)); |
716 | let q = Rect::new(Point2D::new(5, 15), Size2D::new(10, 10)); |
717 | let r = Rect::new(Point2D::new(-5, -5), Size2D::new(8, 8)); |
718 | |
719 | let pq = p.intersection(&q); |
720 | assert!(pq.is_some()); |
721 | let pq = pq.unwrap(); |
722 | assert!(pq.origin == Point2D::new(5, 15)); |
723 | assert!(pq.size == Size2D::new(5, 5)); |
724 | |
725 | let pr = p.intersection(&r); |
726 | assert!(pr.is_some()); |
727 | let pr = pr.unwrap(); |
728 | assert!(pr.origin == Point2D::new(0, 0)); |
729 | assert!(pr.size == Size2D::new(3, 3)); |
730 | |
731 | let qr = q.intersection(&r); |
732 | assert!(qr.is_none()); |
733 | } |
734 | |
735 | #[test ] |
736 | fn test_intersection_overflow() { |
737 | // test some scenarios where the intersection can overflow but |
738 | // the min_x() and max_x() don't. Gecko currently fails these cases |
739 | let p = Rect::new(Point2D::new(-2147483648, -2147483648), Size2D::new(0, 0)); |
740 | let q = Rect::new( |
741 | Point2D::new(2136893440, 2136893440), |
742 | Size2D::new(279552, 279552), |
743 | ); |
744 | let r = Rect::new(Point2D::new(-2147483648, -2147483648), Size2D::new(1, 1)); |
745 | |
746 | assert!(p.is_empty()); |
747 | let pq = p.intersection(&q); |
748 | assert!(pq.is_none()); |
749 | |
750 | let qr = q.intersection(&r); |
751 | assert!(qr.is_none()); |
752 | } |
753 | |
754 | #[test ] |
755 | fn test_contains() { |
756 | let r = Rect::new(Point2D::new(-20, 15), Size2D::new(100, 200)); |
757 | |
758 | assert!(r.contains(Point2D::new(0, 50))); |
759 | assert!(r.contains(Point2D::new(-10, 200))); |
760 | |
761 | // The `contains` method is inclusive of the top/left edges, but not the |
762 | // bottom/right edges. |
763 | assert!(r.contains(Point2D::new(-20, 15))); |
764 | assert!(!r.contains(Point2D::new(80, 15))); |
765 | assert!(!r.contains(Point2D::new(80, 215))); |
766 | assert!(!r.contains(Point2D::new(-20, 215))); |
767 | |
768 | // Points beyond the top-left corner. |
769 | assert!(!r.contains(Point2D::new(-25, 15))); |
770 | assert!(!r.contains(Point2D::new(-15, 10))); |
771 | |
772 | // Points beyond the top-right corner. |
773 | assert!(!r.contains(Point2D::new(85, 20))); |
774 | assert!(!r.contains(Point2D::new(75, 10))); |
775 | |
776 | // Points beyond the bottom-right corner. |
777 | assert!(!r.contains(Point2D::new(85, 210))); |
778 | assert!(!r.contains(Point2D::new(75, 220))); |
779 | |
780 | // Points beyond the bottom-left corner. |
781 | assert!(!r.contains(Point2D::new(-25, 210))); |
782 | assert!(!r.contains(Point2D::new(-15, 220))); |
783 | |
784 | let r = Rect::new(Point2D::new(-20.0, 15.0), Size2D::new(100.0, 200.0)); |
785 | assert!(r.contains_rect(&r)); |
786 | assert!(!r.contains_rect(&r.translate(vec2(0.1, 0.0)))); |
787 | assert!(!r.contains_rect(&r.translate(vec2(-0.1, 0.0)))); |
788 | assert!(!r.contains_rect(&r.translate(vec2(0.0, 0.1)))); |
789 | assert!(!r.contains_rect(&r.translate(vec2(0.0, -0.1)))); |
790 | // Empty rectangles are always considered as contained in other rectangles, |
791 | // even if their origin is not. |
792 | let p = Point2D::new(1.0, 1.0); |
793 | assert!(!r.contains(p)); |
794 | assert!(r.contains_rect(&Rect::new(p, Size2D::zero()))); |
795 | } |
796 | |
797 | #[test ] |
798 | fn test_scale() { |
799 | let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32)); |
800 | let pp = p.scale(10, 15); |
801 | |
802 | assert!(pp.size.width == 500); |
803 | assert!(pp.size.height == 600); |
804 | assert!(pp.origin.x == 0); |
805 | assert!(pp.origin.y == 0); |
806 | |
807 | let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40)); |
808 | let rr = r.scale(1, 20); |
809 | |
810 | assert!(rr.size.width == 50); |
811 | assert!(rr.size.height == 800); |
812 | assert!(rr.origin.x == -10); |
813 | assert!(rr.origin.y == -100); |
814 | } |
815 | |
816 | #[test ] |
817 | fn test_inflate() { |
818 | let p = Rect::new(Point2D::new(0, 0), Size2D::new(10, 10)); |
819 | let pp = p.inflate(10, 20); |
820 | |
821 | assert!(pp.size.width == 30); |
822 | assert!(pp.size.height == 50); |
823 | assert!(pp.origin.x == -10); |
824 | assert!(pp.origin.y == -20); |
825 | |
826 | let r = Rect::new(Point2D::new(0, 0), Size2D::new(10, 20)); |
827 | let rr = r.inflate(-2, -5); |
828 | |
829 | assert!(rr.size.width == 6); |
830 | assert!(rr.size.height == 10); |
831 | assert!(rr.origin.x == 2); |
832 | assert!(rr.origin.y == 5); |
833 | } |
834 | |
835 | #[test ] |
836 | fn test_inner_outer_rect() { |
837 | let inner_rect = Rect::new(point2(20, 40), size2(80, 100)); |
838 | let offsets = SideOffsets2D::new(20, 10, 10, 10); |
839 | let outer_rect = inner_rect.outer_rect(offsets); |
840 | assert_eq!(outer_rect.origin.x, 10); |
841 | assert_eq!(outer_rect.origin.y, 20); |
842 | assert_eq!(outer_rect.size.width, 100); |
843 | assert_eq!(outer_rect.size.height, 130); |
844 | assert_eq!(outer_rect.inner_rect(offsets), inner_rect); |
845 | } |
846 | |
847 | #[test ] |
848 | fn test_min_max_x_y() { |
849 | let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32)); |
850 | assert!(p.max_y() == 40); |
851 | assert!(p.min_y() == 0); |
852 | assert!(p.max_x() == 50); |
853 | assert!(p.min_x() == 0); |
854 | |
855 | let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40)); |
856 | assert!(r.max_y() == 35); |
857 | assert!(r.min_y() == -5); |
858 | assert!(r.max_x() == 40); |
859 | assert!(r.min_x() == -10); |
860 | } |
861 | |
862 | #[test ] |
863 | fn test_width_height() { |
864 | let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40)); |
865 | assert!(r.width() == 50); |
866 | assert!(r.height() == 40); |
867 | } |
868 | |
869 | #[test ] |
870 | fn test_is_empty() { |
871 | assert!(Rect::new(Point2D::new(0u32, 0u32), Size2D::new(0u32, 0u32)).is_empty()); |
872 | assert!(Rect::new(Point2D::new(0u32, 0u32), Size2D::new(10u32, 0u32)).is_empty()); |
873 | assert!(Rect::new(Point2D::new(0u32, 0u32), Size2D::new(0u32, 10u32)).is_empty()); |
874 | assert!(!Rect::new(Point2D::new(0u32, 0u32), Size2D::new(1u32, 1u32)).is_empty()); |
875 | assert!(Rect::new(Point2D::new(10u32, 10u32), Size2D::new(0u32, 0u32)).is_empty()); |
876 | assert!(Rect::new(Point2D::new(10u32, 10u32), Size2D::new(10u32, 0u32)).is_empty()); |
877 | assert!(Rect::new(Point2D::new(10u32, 10u32), Size2D::new(0u32, 10u32)).is_empty()); |
878 | assert!(!Rect::new(Point2D::new(10u32, 10u32), Size2D::new(1u32, 1u32)).is_empty()); |
879 | } |
880 | |
881 | #[test ] |
882 | fn test_round() { |
883 | let mut x = -2.0; |
884 | let mut y = -2.0; |
885 | let mut w = -2.0; |
886 | let mut h = -2.0; |
887 | while x < 2.0 { |
888 | while y < 2.0 { |
889 | while w < 2.0 { |
890 | while h < 2.0 { |
891 | let rect = Rect::new(Point2D::new(x, y), Size2D::new(w, h)); |
892 | |
893 | assert!(rect.contains_rect(&rect.round_in())); |
894 | assert!(rect.round_in().inflate(1.0, 1.0).contains_rect(&rect)); |
895 | |
896 | assert!(rect.round_out().contains_rect(&rect)); |
897 | assert!(rect.inflate(1.0, 1.0).contains_rect(&rect.round_out())); |
898 | |
899 | assert!(rect.inflate(1.0, 1.0).contains_rect(&rect.round())); |
900 | assert!(rect.round().inflate(1.0, 1.0).contains_rect(&rect)); |
901 | |
902 | h += 0.1; |
903 | } |
904 | w += 0.1; |
905 | } |
906 | y += 0.1; |
907 | } |
908 | x += 0.1 |
909 | } |
910 | } |
911 | |
912 | #[test ] |
913 | fn test_center() { |
914 | let r: Rect<i32> = rect(-2, 5, 4, 10); |
915 | assert_eq!(r.center(), point2(0, 10)); |
916 | |
917 | let r: Rect<f32> = rect(1.0, 2.0, 3.0, 4.0); |
918 | assert_eq!(r.center(), point2(2.5, 4.0)); |
919 | } |
920 | |
921 | #[test ] |
922 | fn test_nan() { |
923 | let r1: Rect<f32> = rect(-2.0, 5.0, 4.0, std::f32::NAN); |
924 | let r2: Rect<f32> = rect(std::f32::NAN, -1.0, 3.0, 10.0); |
925 | |
926 | assert_eq!(r1.intersection(&r2), None); |
927 | } |
928 | } |
929 | |