1 |
|
2 |
|
3 | //! The PIZ compression method is a wavelet compression,
|
4 | //! based on the PIZ image format, customized for OpenEXR.
|
5 | // inspired by https://github.com/AcademySoftwareFoundation/openexr/blob/master/OpenEXR/IlmImf/ImfPizCompressor.cpp
|
6 |
|
7 | mod huffman;
|
8 | mod wavelet;
|
9 |
|
10 | use crate::prelude::*;
|
11 | use crate::io::Data;
|
12 | use crate::meta::attribute::*;
|
13 | use crate::compression::{ByteVec, Bytes, mod_p};
|
14 | use crate::error::{usize_to_i32, usize_to_u16};
|
15 | use std::convert::TryFrom;
|
16 |
|
17 |
|
18 | const U16_RANGE: usize = (1_i32 << 16_i32) as usize;
|
19 | const BITMAP_SIZE: usize = (U16_RANGE as i32 >> 3_i32) as usize;
|
20 |
|
21 | #[derive (Debug)]
|
22 | struct ChannelData {
|
23 | tmp_start_index: usize,
|
24 | tmp_end_index: usize,
|
25 |
|
26 | resolution: Vec2<usize>,
|
27 | y_sampling: usize,
|
28 | samples_per_pixel: usize,
|
29 | }
|
30 |
|
31 |
|
32 | pub fn decompress(
|
33 | channels: &ChannelList,
|
34 | compressed: ByteVec,
|
35 | rectangle: IntegerBounds,
|
36 | expected_byte_size: usize, // TODO remove expected byte size as it can be computed with `rectangle.size.area() * channels.bytes_per_pixel`
|
37 | pedantic: bool
|
38 | ) -> Result<ByteVec>
|
39 | {
|
40 | let expected_u16_count = expected_byte_size / 2;
|
41 | debug_assert_eq!(expected_byte_size, rectangle.size.area() * channels.bytes_per_pixel);
|
42 | debug_assert!(!channels.list.is_empty());
|
43 |
|
44 | if compressed.is_empty() {
|
45 | return Ok(Vec::new());
|
46 | }
|
47 |
|
48 | debug_assert_ne!(expected_u16_count, 0);
|
49 |
|
50 | let mut bitmap = vec![0_u8; BITMAP_SIZE]; // FIXME use bit_vec!
|
51 |
|
52 | let mut remaining_input = compressed.as_slice();
|
53 | let min_non_zero = u16::read(&mut remaining_input)? as usize;
|
54 | let max_non_zero = u16::read(&mut remaining_input)? as usize;
|
55 |
|
56 | if max_non_zero >= BITMAP_SIZE || min_non_zero >= BITMAP_SIZE {
|
57 | return Err(Error::invalid("compression data" ));
|
58 | }
|
59 |
|
60 | if min_non_zero <= max_non_zero {
|
61 | u8::read_slice(&mut remaining_input, &mut bitmap[min_non_zero ..= max_non_zero])?;
|
62 | }
|
63 |
|
64 | let (lookup_table, max_value) = reverse_lookup_table_from_bitmap(&bitmap);
|
65 |
|
66 | {
|
67 | let length = i32::read(&mut remaining_input)?;
|
68 | if pedantic && length as i64 != remaining_input.len() as i64 {
|
69 | // TODO length might be smaller than remaining??
|
70 | return Err(Error::invalid("compression data" ));
|
71 | }
|
72 | }
|
73 |
|
74 | let mut tmp_u16_buffer = huffman::decompress(remaining_input, expected_u16_count)?;
|
75 |
|
76 | let mut channel_data: SmallVec<[ChannelData; 6]> = {
|
77 | let mut tmp_read_index = 0;
|
78 |
|
79 | let channel_data = channels.list.iter().map(|channel| {
|
80 | let channel_data = ChannelData {
|
81 | tmp_start_index: tmp_read_index,
|
82 | tmp_end_index: tmp_read_index,
|
83 | y_sampling: channel.sampling.y(),
|
84 | resolution: channel.subsampled_resolution(rectangle.size),
|
85 | samples_per_pixel: channel.sample_type.bytes_per_sample() / SampleType::F16.bytes_per_sample()
|
86 | };
|
87 |
|
88 | tmp_read_index += channel_data.resolution.area() * channel_data.samples_per_pixel;
|
89 | channel_data
|
90 | }).collect();
|
91 |
|
92 | debug_assert_eq!(tmp_read_index, expected_u16_count);
|
93 | channel_data
|
94 | };
|
95 |
|
96 | for channel in &channel_data {
|
97 | let u16_count = channel.resolution.area() * channel.samples_per_pixel;
|
98 | let u16s = &mut tmp_u16_buffer[channel.tmp_start_index .. channel.tmp_start_index + u16_count];
|
99 |
|
100 | for offset in 0..channel.samples_per_pixel { // if channel is 32 bit, compress interleaved as two 16 bit values
|
101 | wavelet::decode(
|
102 | &mut u16s[offset..],
|
103 | channel.resolution,
|
104 | Vec2(channel.samples_per_pixel, channel.resolution.x() * channel.samples_per_pixel),
|
105 | max_value
|
106 | )?;
|
107 | }
|
108 | }
|
109 |
|
110 | // Expand the pixel data to their original range
|
111 | apply_lookup_table(&mut tmp_u16_buffer, &lookup_table);
|
112 |
|
113 | // let out_buffer_size = (max_scan_line_size * scan_line_count) + 65536 + 8192; // TODO not use expected byte size?
|
114 | let mut out = Vec::with_capacity(expected_byte_size);
|
115 |
|
116 | for y in rectangle.position.y() .. rectangle.end().y() {
|
117 | for channel in &mut channel_data {
|
118 | if mod_p(y, usize_to_i32(channel.y_sampling)) != 0 {
|
119 | continue;
|
120 | }
|
121 |
|
122 | let u16s_per_line = channel.resolution.x() * channel.samples_per_pixel;
|
123 | let next_tmp_end_index = channel.tmp_end_index + u16s_per_line;
|
124 | let values = &tmp_u16_buffer[channel.tmp_end_index .. next_tmp_end_index];
|
125 | channel.tmp_end_index = next_tmp_end_index;
|
126 |
|
127 | // TODO do not convert endianness for f16-only images
|
128 | // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842
|
129 | // We can support uncompressed data in the machine's native format
|
130 | // if all image channels are of type HALF, and if the Xdr and the
|
131 | // native representations of a half have the same size.
|
132 | u16::write_slice(&mut out, values).expect("write to in-memory failed" );
|
133 | }
|
134 | }
|
135 |
|
136 | for (previous, current) in channel_data.iter().zip(channel_data.iter().skip(1)) {
|
137 | debug_assert_eq!(previous.tmp_end_index, current.tmp_start_index);
|
138 | }
|
139 |
|
140 | debug_assert_eq!(channel_data.last().unwrap().tmp_end_index, tmp_u16_buffer.len());
|
141 | debug_assert_eq!(out.len(), expected_byte_size);
|
142 |
|
143 | // TODO optimize for when all channels are f16!
|
144 | // we should be able to omit endianness conversions in that case
|
145 | // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842
|
146 | Ok(super::convert_little_endian_to_current(out, channels, rectangle))
|
147 | }
|
148 |
|
149 |
|
150 |
|
151 | pub fn compress(
|
152 | channels: &ChannelList,
|
153 | uncompressed: ByteVec,
|
154 | rectangle: IntegerBounds
|
155 | ) -> Result<ByteVec>
|
156 | {
|
157 | if uncompressed.is_empty() {
|
158 | return Ok(Vec::new());
|
159 | }
|
160 |
|
161 | // TODO do not convert endianness for f16-only images
|
162 | // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842
|
163 | let uncompressed = super::convert_current_to_little_endian(uncompressed, channels, rectangle);
|
164 | let uncompressed = uncompressed.as_slice();// TODO no alloc
|
165 |
|
166 | let mut tmp = vec![0_u16; uncompressed.len() / 2 ];
|
167 | let mut channel_data: SmallVec<[ChannelData; 6]> = {
|
168 | let mut tmp_end_index = 0;
|
169 |
|
170 | let vec = channels.list.iter().map(|channel| {
|
171 | let number_samples = channel.subsampled_resolution(rectangle.size);
|
172 | let byte_size = channel.sample_type.bytes_per_sample() / SampleType::F16.bytes_per_sample();
|
173 | let byte_count = byte_size * number_samples.area();
|
174 |
|
175 | let channel = ChannelData {
|
176 | tmp_end_index,
|
177 | tmp_start_index: tmp_end_index,
|
178 | y_sampling: channel.sampling.y(),
|
179 | resolution: number_samples,
|
180 | samples_per_pixel: byte_size,
|
181 | };
|
182 |
|
183 | tmp_end_index += byte_count;
|
184 | channel
|
185 | }).collect();
|
186 |
|
187 | debug_assert_eq!(tmp_end_index, tmp.len());
|
188 | vec
|
189 | };
|
190 |
|
191 | let mut remaining_uncompressed_bytes = uncompressed;
|
192 | for y in rectangle.position.y() .. rectangle.end().y() {
|
193 | for channel in &mut channel_data {
|
194 | if mod_p(y, usize_to_i32(channel.y_sampling)) != 0 { continue; }
|
195 | let u16s_per_line = channel.resolution.x() * channel.samples_per_pixel;
|
196 | let next_tmp_end_index = channel.tmp_end_index + u16s_per_line;
|
197 | let target = &mut tmp[channel.tmp_end_index .. next_tmp_end_index];
|
198 | channel.tmp_end_index = next_tmp_end_index;
|
199 |
|
200 | // TODO do not convert endianness for f16-only images
|
201 | // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842
|
202 | // We can support uncompressed data in the machine's native format
|
203 | // if all image channels are of type HALF, and if the Xdr and the
|
204 | // native representations of a half have the same size.
|
205 | u16::read_slice(&mut remaining_uncompressed_bytes, target).expect("in-memory read failed" );
|
206 | }
|
207 | }
|
208 |
|
209 |
|
210 | let (min_non_zero, max_non_zero, bitmap) = bitmap_from_data(&tmp);
|
211 | let (max_value, table) = forward_lookup_table_from_bitmap(&bitmap);
|
212 | apply_lookup_table(&mut tmp, &table);
|
213 |
|
214 | let mut piz_compressed = Vec::with_capacity(uncompressed.len() / 2);
|
215 | u16::try_from(min_non_zero)?.write(&mut piz_compressed)?;
|
216 | u16::try_from(max_non_zero)?.write(&mut piz_compressed)?;
|
217 |
|
218 | if min_non_zero <= max_non_zero {
|
219 | piz_compressed.extend_from_slice(&bitmap[min_non_zero ..= max_non_zero]);
|
220 | }
|
221 |
|
222 | for channel in channel_data {
|
223 | for offset in 0 .. channel.samples_per_pixel {
|
224 | wavelet::encode(
|
225 | &mut tmp[channel.tmp_start_index + offset .. channel.tmp_end_index],
|
226 | channel.resolution,
|
227 | Vec2(channel.samples_per_pixel, channel.resolution.x() * channel.samples_per_pixel),
|
228 | max_value
|
229 | )?;
|
230 | }
|
231 | }
|
232 |
|
233 | let huffman_compressed: Vec<u8> = huffman::compress(&tmp)?;
|
234 | u8::write_i32_sized_slice(&mut piz_compressed, &huffman_compressed).expect("in-memory write failed" );
|
235 |
|
236 | Ok(piz_compressed)
|
237 | }
|
238 |
|
239 |
|
240 | pub fn bitmap_from_data(data: &[u16]) -> (usize, usize, Vec<u8>) {
|
241 | let mut bitmap: Vec = vec![0_u8; BITMAP_SIZE];
|
242 |
|
243 | for value: &u16 in data {
|
244 | bitmap[*value as usize >> 3] |= 1 << (*value as u8 & 7);
|
245 | }
|
246 |
|
247 | bitmap[0] = bitmap[0] & !1; // zero is not explicitly stored in the bitmap; we assume that the data always contain zeroes
|
248 |
|
249 | let min_index: Option = bitmap.iter().position(|&value: u8| value != 0);
|
250 | let max_index: Option = min_index.map(|min: usize| // only if min was found
|
251 | min + bitmap[min..].iter().rposition(|&value| value != 0).expect(msg:"[min] not found" )
|
252 | );
|
253 |
|
254 | (min_index.unwrap_or(default:0), max_index.unwrap_or(default:0), bitmap)
|
255 | }
|
256 |
|
257 | pub fn forward_lookup_table_from_bitmap(bitmap: &[u8]) -> (u16, Vec<u16>) {
|
258 | debug_assert_eq!(bitmap.len(), BITMAP_SIZE);
|
259 |
|
260 | let mut table: Vec = vec![0_u16; U16_RANGE];
|
261 | let mut count: usize = 0_usize;
|
262 |
|
263 | for (index: usize, entry: &mut u16) in table.iter_mut().enumerate() {
|
264 | if index == 0 || bitmap[index >> 3] as usize & (1 << (index & 7)) != 0 {
|
265 | *entry = usize_to_u16(count).unwrap();
|
266 | count += 1;
|
267 | }
|
268 | }
|
269 |
|
270 | (usize_to_u16(count - 1).unwrap(), table)
|
271 | }
|
272 |
|
273 | fn reverse_lookup_table_from_bitmap(bitmap: Bytes<'_>) -> (Vec<u16>, u16) {
|
274 | let mut table: Vec = Vec::with_capacity(U16_RANGE);
|
275 |
|
276 | for index: usize in 0 .. U16_RANGE { // cannot use iter because filter removes capacity sizehint
|
277 | if index == 0 || ((bitmap[index >> 3] as usize & (1 << (index & 7))) != 0) {
|
278 | table.push(usize_to_u16(index).unwrap());
|
279 | }
|
280 | }
|
281 |
|
282 | debug_assert!(!table.is_empty());
|
283 | let max_value: u16 = usize_to_u16(table.len() - 1).unwrap();
|
284 |
|
285 | // fill remaining up to u16 range
|
286 | assert!(table.len() <= U16_RANGE);
|
287 | table.resize(U16_RANGE, value:0);
|
288 |
|
289 | (table, max_value)
|
290 | }
|
291 |
|
292 | fn apply_lookup_table(data: &mut [u16], table: &[u16]) {
|
293 | for data: &mut u16 in data {
|
294 | *data = table[*data as usize];
|
295 | }
|
296 | }
|
297 |
|
298 | #[cfg (test)]
|
299 | mod test {
|
300 | use crate::prelude::*;
|
301 | use crate::compression::ByteVec;
|
302 | use crate::compression::piz;
|
303 | use crate::meta::attribute::*;
|
304 |
|
305 | fn test_roundtrip_noise_with(channels: ChannelList, rectangle: IntegerBounds){
|
306 | let pixel_bytes: ByteVec = (0 .. 37).map(|_| rand::random()).collect::<Vec<u8>>().into_iter()
|
307 | .cycle().take(channels.bytes_per_pixel * rectangle.size.area())
|
308 | .collect();
|
309 |
|
310 | let compressed = piz::compress(&channels, pixel_bytes.clone(), rectangle).unwrap();
|
311 | let decompressed = piz::decompress(&channels, compressed, rectangle, pixel_bytes.len(), true).unwrap();
|
312 |
|
313 | assert_eq!(pixel_bytes, decompressed);
|
314 | }
|
315 |
|
316 |
|
317 | #[test ]
|
318 | fn roundtrip_any_sample_type(){
|
319 | for &sample_type in &[SampleType::F16, SampleType::F32, SampleType::U32] {
|
320 | let channel = ChannelDescription {
|
321 | sample_type,
|
322 |
|
323 | name: Default::default(),
|
324 | quantize_linearly: false,
|
325 | sampling: Vec2(1,1)
|
326 | };
|
327 |
|
328 | let channels = ChannelList::new(smallvec![ channel.clone(), channel ]);
|
329 |
|
330 | let rectangle = IntegerBounds {
|
331 | position: Vec2(-30, 100),
|
332 | size: Vec2(1080, 720),
|
333 | };
|
334 |
|
335 | test_roundtrip_noise_with(channels, rectangle);
|
336 | }
|
337 | }
|
338 |
|
339 | #[test ]
|
340 | fn roundtrip_two_channels(){
|
341 | let channel = ChannelDescription {
|
342 | sample_type: SampleType::F16,
|
343 |
|
344 | name: Default::default(),
|
345 | quantize_linearly: false,
|
346 | sampling: Vec2(1,1)
|
347 | };
|
348 |
|
349 | let channel2 = ChannelDescription {
|
350 | sample_type: SampleType::F32,
|
351 |
|
352 | name: Default::default(),
|
353 | quantize_linearly: false,
|
354 | sampling: Vec2(1,1)
|
355 | };
|
356 |
|
357 | let channels = ChannelList::new(smallvec![ channel, channel2 ]);
|
358 |
|
359 | let rectangle = IntegerBounds {
|
360 | position: Vec2(-3, 1),
|
361 | size: Vec2(223, 3132),
|
362 | };
|
363 |
|
364 | test_roundtrip_noise_with(channels, rectangle);
|
365 | }
|
366 |
|
367 |
|
368 |
|
369 | #[test ]
|
370 | fn roundtrip_seven_channels(){
|
371 | let channels = ChannelList::new(smallvec![
|
372 | ChannelDescription {
|
373 | sample_type: SampleType::F32,
|
374 |
|
375 | name: Default::default(),
|
376 | quantize_linearly: false,
|
377 | sampling: Vec2(1,1)
|
378 | },
|
379 |
|
380 | ChannelDescription {
|
381 | sample_type: SampleType::F32,
|
382 |
|
383 | name: Default::default(),
|
384 | quantize_linearly: false,
|
385 | sampling: Vec2(1,1)
|
386 | },
|
387 |
|
388 | ChannelDescription {
|
389 | sample_type: SampleType::F32,
|
390 |
|
391 | name: Default::default(),
|
392 | quantize_linearly: false,
|
393 | sampling: Vec2(1,1)
|
394 | },
|
395 |
|
396 | ChannelDescription {
|
397 | sample_type: SampleType::F16,
|
398 |
|
399 | name: Default::default(),
|
400 | quantize_linearly: false,
|
401 | sampling: Vec2(1,1)
|
402 | },
|
403 |
|
404 | ChannelDescription {
|
405 | sample_type: SampleType::F32,
|
406 |
|
407 | name: Default::default(),
|
408 | quantize_linearly: false,
|
409 | sampling: Vec2(1,1)
|
410 | },
|
411 |
|
412 | ChannelDescription {
|
413 | sample_type: SampleType::F32,
|
414 |
|
415 | name: Default::default(),
|
416 | quantize_linearly: false,
|
417 | sampling: Vec2(1,1)
|
418 | },
|
419 |
|
420 | ChannelDescription {
|
421 | sample_type: SampleType::U32,
|
422 |
|
423 | name: Default::default(),
|
424 | quantize_linearly: false,
|
425 | sampling: Vec2(1,1)
|
426 | },
|
427 | ]);
|
428 |
|
429 | let rectangle = IntegerBounds {
|
430 | position: Vec2(-3, 1),
|
431 | size: Vec2(1323, 132),
|
432 | };
|
433 |
|
434 | test_roundtrip_noise_with(channels, rectangle);
|
435 | }
|
436 |
|
437 | } |