| 1 |
|
| 2 | //! Describes all meta data possible in an exr file.
|
| 3 | //! Contains functionality to read and write meta data from bytes.
|
| 4 | //! Browse the `exr::image` module to get started with the high-level interface.
|
| 5 |
|
| 6 | pub mod attribute;
|
| 7 | pub mod header;
|
| 8 |
|
| 9 |
|
| 10 | use crate::io::*;
|
| 11 | use ::smallvec::SmallVec;
|
| 12 | use self::attribute::*;
|
| 13 | use crate::block::chunk::{TileCoordinates, CompressedBlock};
|
| 14 | use crate::error::*;
|
| 15 | use std::fs::File;
|
| 16 | use std::io::{BufReader};
|
| 17 | use crate::math::*;
|
| 18 | use std::collections::{HashSet};
|
| 19 | use std::convert::TryFrom;
|
| 20 | use crate::meta::header::{Header};
|
| 21 | use crate::block::{BlockIndex, UncompressedBlock};
|
| 22 |
|
| 23 |
|
| 24 | // TODO rename MetaData to ImageInfo?
|
| 25 |
|
| 26 | /// Contains the complete meta data of an exr image.
|
| 27 | /// Defines how the image is split up in the file,
|
| 28 | /// the number and type of images and channels,
|
| 29 | /// and various other attributes.
|
| 30 | /// The usage of custom attributes is encouraged.
|
| 31 | #[derive (Debug, Clone, PartialEq)]
|
| 32 | pub struct MetaData {
|
| 33 |
|
| 34 | /// Some flags summarizing the features that must be supported to decode the file.
|
| 35 | pub requirements: Requirements,
|
| 36 |
|
| 37 | /// One header to describe each layer in this file.
|
| 38 | // TODO rename to layer descriptions?
|
| 39 | pub headers: Headers,
|
| 40 | }
|
| 41 |
|
| 42 |
|
| 43 | /// List of `Header`s.
|
| 44 | pub type Headers = SmallVec<[Header; 3]>;
|
| 45 |
|
| 46 | /// List of `OffsetTable`s.
|
| 47 | pub type OffsetTables = SmallVec<[OffsetTable; 3]>;
|
| 48 |
|
| 49 |
|
| 50 | /// The offset table is an ordered list of indices referencing pixel data in the exr file.
|
| 51 | /// For each pixel tile in the image, an index exists, which points to the byte-location
|
| 52 | /// of the corresponding pixel data in the file. That index can be used to load specific
|
| 53 | /// portions of an image without processing all bytes in a file. For each header,
|
| 54 | /// an offset table exists with its indices ordered by `LineOrder::Increasing`.
|
| 55 | // If the multipart bit is unset and the chunkCount attribute is not present,
|
| 56 | // the number of entries in the chunk table is computed using the
|
| 57 | // dataWindow, tileDesc, and compression attribute.
|
| 58 | //
|
| 59 | // If the multipart bit is set, the header must contain a
|
| 60 | // chunkCount attribute, that contains the length of the offset table.
|
| 61 | pub type OffsetTable = Vec<u64>;
|
| 62 |
|
| 63 |
|
| 64 | /// A summary of requirements that must be met to read this exr file.
|
| 65 | /// Used to determine whether this file can be read by a given reader.
|
| 66 | /// It includes the OpenEXR version number. This library aims to support version `2.0`.
|
| 67 | #[derive (Clone, Copy, Eq, PartialEq, Debug, Hash)]
|
| 68 | pub struct Requirements {
|
| 69 |
|
| 70 | /// This library supports reading version 1 and 2, and writing version 2.
|
| 71 | // TODO write version 1 for simple images
|
| 72 | pub file_format_version: u8,
|
| 73 |
|
| 74 | /// If true, this image has tiled blocks and contains only a single layer.
|
| 75 | /// If false and not deep and not multilayer, this image is a single layer image with scan line blocks.
|
| 76 | pub is_single_layer_and_tiled: bool,
|
| 77 |
|
| 78 | // in c or bad c++ this might have been relevant (omg is he allowed to say that)
|
| 79 | /// Whether this file has strings with a length greater than 31.
|
| 80 | /// Strings can never be longer than 255.
|
| 81 | pub has_long_names: bool,
|
| 82 |
|
| 83 | /// This image contains at least one layer with deep data.
|
| 84 | pub has_deep_data: bool,
|
| 85 |
|
| 86 | /// Whether this file contains multiple layers.
|
| 87 | pub has_multiple_layers: bool,
|
| 88 | }
|
| 89 |
|
| 90 |
|
| 91 | /// Locates a rectangular section of pixels in an image.
|
| 92 | #[derive (Copy, Clone, Debug, Hash, Eq, PartialEq)]
|
| 93 | pub struct TileIndices {
|
| 94 |
|
| 95 | /// Index of the tile.
|
| 96 | pub location: TileCoordinates,
|
| 97 |
|
| 98 | /// Pixel size of the tile.
|
| 99 | pub size: Vec2<usize>,
|
| 100 | }
|
| 101 |
|
| 102 | /// How the image pixels are split up into separate blocks.
|
| 103 | #[derive (Copy, Clone, Debug, PartialEq, Eq, Hash)]
|
| 104 | pub enum BlockDescription {
|
| 105 |
|
| 106 | /// The image is divided into scan line blocks.
|
| 107 | /// The number of scan lines in a block depends on the compression method.
|
| 108 | ScanLines,
|
| 109 |
|
| 110 | /// The image is divided into tile blocks.
|
| 111 | /// Also specifies the size of each tile in the image
|
| 112 | /// and whether this image contains multiple resolution levels.
|
| 113 | Tiles(TileDescription)
|
| 114 | }
|
| 115 |
|
| 116 |
|
| 117 | /*impl TileIndices {
|
| 118 | pub fn cmp(&self, other: &Self) -> Ordering {
|
| 119 | match self.location.level_index.1.cmp(&other.location.level_index.1) {
|
| 120 | Ordering::Equal => {
|
| 121 | match self.location.level_index.0.cmp(&other.location.level_index.0) {
|
| 122 | Ordering::Equal => {
|
| 123 | match self.location.tile_index.1.cmp(&other.location.tile_index.1) {
|
| 124 | Ordering::Equal => {
|
| 125 | self.location.tile_index.0.cmp(&other.location.tile_index.0)
|
| 126 | },
|
| 127 |
|
| 128 | other => other,
|
| 129 | }
|
| 130 | },
|
| 131 |
|
| 132 | other => other
|
| 133 | }
|
| 134 | },
|
| 135 |
|
| 136 | other => other
|
| 137 | }
|
| 138 | }
|
| 139 | }*/
|
| 140 |
|
| 141 | impl BlockDescription {
|
| 142 |
|
| 143 | /// Whether this image is tiled. If false, this image is divided into scan line blocks.
|
| 144 | pub fn has_tiles(&self) -> bool {
|
| 145 | match self {
|
| 146 | BlockDescription::Tiles { .. } => true,
|
| 147 | _ => false
|
| 148 | }
|
| 149 | }
|
| 150 | }
|
| 151 |
|
| 152 |
|
| 153 |
|
| 154 |
|
| 155 |
|
| 156 | /// The first four bytes of each exr file.
|
| 157 | /// Used to abort reading non-exr files.
|
| 158 | pub mod magic_number {
|
| 159 | use super::*;
|
| 160 |
|
| 161 | /// The first four bytes of each exr file.
|
| 162 | pub const BYTES: [u8; 4] = [0x76, 0x2f, 0x31, 0x01];
|
| 163 |
|
| 164 | /// Without validation, write this instance to the byte stream.
|
| 165 | pub fn write(write: &mut impl Write) -> Result<()> {
|
| 166 | u8::write_slice(write, &self::BYTES)
|
| 167 | }
|
| 168 |
|
| 169 | /// Consumes four bytes from the reader and returns whether the file may be an exr file.
|
| 170 | // TODO check if exr before allocating BufRead
|
| 171 | pub fn is_exr(read: &mut impl Read) -> Result<bool> {
|
| 172 | let mut magic_num = [0; 4];
|
| 173 | u8::read_slice(read, &mut magic_num)?;
|
| 174 | Ok(magic_num == self::BYTES)
|
| 175 | }
|
| 176 |
|
| 177 | /// Validate this image. If it is an exr file, return `Ok(())`.
|
| 178 | pub fn validate_exr(read: &mut impl Read) -> UnitResult {
|
| 179 | if self::is_exr(read)? {
|
| 180 | Ok(())
|
| 181 |
|
| 182 | } else {
|
| 183 | Err(Error::invalid("file identifier missing" ))
|
| 184 | }
|
| 185 | }
|
| 186 | }
|
| 187 |
|
| 188 | /// A `0_u8` at the end of a sequence.
|
| 189 | pub mod sequence_end {
|
| 190 | use super::*;
|
| 191 |
|
| 192 | /// Number of bytes this would consume in an exr file.
|
| 193 | pub fn byte_size() -> usize {
|
| 194 | 1
|
| 195 | }
|
| 196 |
|
| 197 | /// Without validation, write this instance to the byte stream.
|
| 198 | pub fn write<W: Write>(write: &mut W) -> UnitResult {
|
| 199 | 0_u8.write(write)
|
| 200 | }
|
| 201 |
|
| 202 | /// Peeks the next byte. If it is zero, consumes the byte and returns true.
|
| 203 | pub fn has_come(read: &mut PeekRead<impl Read>) -> Result<bool> {
|
| 204 | Ok(read.skip_if_eq(0)?)
|
| 205 | }
|
| 206 | }
|
| 207 |
|
| 208 | fn missing_attribute(name: &str) -> Error {
|
| 209 | Error::invalid(message:format!("missing or invalid {} attribute" , name))
|
| 210 | }
|
| 211 |
|
| 212 |
|
| 213 | /// Compute the number of tiles required to contain all values.
|
| 214 | pub fn compute_block_count(full_res: usize, tile_size: usize) -> usize {
|
| 215 | // round up, because if the image is not evenly divisible by the tiles,
|
| 216 | // we add another tile at the end (which is only partially used)
|
| 217 | RoundingMode::Up.divide(dividend:full_res, divisor:tile_size)
|
| 218 | }
|
| 219 |
|
| 220 | /// Compute the start position and size of a block inside a dimension.
|
| 221 | #[inline ]
|
| 222 | pub fn calculate_block_position_and_size(total_size: usize, block_size: usize, block_index: usize) -> Result<(usize, usize)> {
|
| 223 | let block_position: usize = block_size * block_index;
|
| 224 |
|
| 225 | Ok((
|
| 226 | block_position,
|
| 227 | calculate_block_size(total_size, block_size, block_position)?
|
| 228 | ))
|
| 229 | }
|
| 230 |
|
| 231 | /// Calculate the size of a single block. If this is the last block,
|
| 232 | /// this only returns the required size, which is always smaller than the default block size.
|
| 233 | // TODO use this method everywhere instead of convoluted formulas
|
| 234 | #[inline ]
|
| 235 | pub fn calculate_block_size(total_size: usize, block_size: usize, block_position: usize) -> Result<usize> {
|
| 236 | if block_position >= total_size {
|
| 237 | return Err(Error::invalid(message:"block index" ))
|
| 238 | }
|
| 239 |
|
| 240 | if block_position + block_size <= total_size {
|
| 241 | Ok(block_size)
|
| 242 | }
|
| 243 | else {
|
| 244 | Ok(total_size - block_position)
|
| 245 | }
|
| 246 | }
|
| 247 |
|
| 248 |
|
| 249 | /// Calculate number of mip levels in a given resolution.
|
| 250 | // TODO this should be cached? log2 may be very expensive
|
| 251 | pub fn compute_level_count(round: RoundingMode, full_res: usize) -> usize {
|
| 252 | usize::try_from(round.log2(number:u32::try_from(full_res).unwrap())).unwrap() + 1
|
| 253 | }
|
| 254 |
|
| 255 | /// Calculate the size of a single mip level by index.
|
| 256 | // TODO this should be cached? log2 may be very expensive
|
| 257 | pub fn compute_level_size(round: RoundingMode, full_res: usize, level_index: usize) -> usize {
|
| 258 | assert!(level_index < std::mem::size_of::<usize>() * 8, "largest level size exceeds maximum integer value" );
|
| 259 | round.divide(dividend:full_res, divisor:1 << level_index).max(1)
|
| 260 | }
|
| 261 |
|
| 262 | /// Iterates over all rip map level resolutions of a given size, including the indices of each level.
|
| 263 | /// The order of iteration conforms to `LineOrder::Increasing`.
|
| 264 | // TODO cache these?
|
| 265 | // TODO compute these directly instead of summing up an iterator?
|
| 266 | pub fn rip_map_levels(round: RoundingMode, max_resolution: Vec2<usize>) -> impl Iterator<Item=(Vec2<usize>, Vec2<usize>)> {
|
| 267 | rip_map_indices(round, max_resolution).map(move |level_indices: Vec2|{
|
| 268 | // TODO progressively divide instead??
|
| 269 | let width: usize = compute_level_size(round, full_res:max_resolution.width(), level_index:level_indices.x());
|
| 270 | let height: usize = compute_level_size(round, full_res:max_resolution.height(), level_index:level_indices.y());
|
| 271 | (level_indices, Vec2(width, height))
|
| 272 | })
|
| 273 | }
|
| 274 |
|
| 275 | /// Iterates over all mip map level resolutions of a given size, including the indices of each level.
|
| 276 | /// The order of iteration conforms to `LineOrder::Increasing`.
|
| 277 | // TODO cache all these level values when computing table offset size??
|
| 278 | // TODO compute these directly instead of summing up an iterator?
|
| 279 | pub fn mip_map_levels(round: RoundingMode, max_resolution: Vec2<usize>) -> impl Iterator<Item=(usize, Vec2<usize>)> {
|
| 280 | mip_map_indicesimpl Iterator (round, max_resolution)
|
| 281 | .map(move |level_index: usize|{
|
| 282 | // TODO progressively divide instead??
|
| 283 | let width: usize = compute_level_size(round, full_res:max_resolution.width(), level_index);
|
| 284 | let height: usize = compute_level_size(round, full_res:max_resolution.height(), level_index);
|
| 285 | (level_index, Vec2(width, height))
|
| 286 | })
|
| 287 | }
|
| 288 |
|
| 289 | /// Iterates over all rip map level indices of a given size.
|
| 290 | /// The order of iteration conforms to `LineOrder::Increasing`.
|
| 291 | pub fn rip_map_indices(round: RoundingMode, max_resolution: Vec2<usize>) -> impl Iterator<Item=Vec2<usize>> {
|
| 292 | let (width: usize, height: usize) = (
|
| 293 | compute_level_count(round, full_res:max_resolution.width()),
|
| 294 | compute_level_count(round, full_res:max_resolution.height())
|
| 295 | );
|
| 296 |
|
| 297 | (0..height).flat_map(move |y_level: usize|{
|
| 298 | (0..width).map(move |x_level: usize|{
|
| 299 | Vec2(x_level, y_level)
|
| 300 | })
|
| 301 | })
|
| 302 | }
|
| 303 |
|
| 304 | /// Iterates over all mip map level indices of a given size.
|
| 305 | /// The order of iteration conforms to `LineOrder::Increasing`.
|
| 306 | pub fn mip_map_indices(round: RoundingMode, max_resolution: Vec2<usize>) -> impl Iterator<Item=usize> {
|
| 307 | 0..compute_level_count(round, full_res:max_resolution.width().max(max_resolution.height()))
|
| 308 | }
|
| 309 |
|
| 310 | /// Compute the number of chunks that an image is divided into. May be an expensive operation.
|
| 311 | // If not multilayer and chunkCount not present,
|
| 312 | // the number of entries in the chunk table is computed
|
| 313 | // using the dataWindow and tileDesc attributes and the compression format
|
| 314 | pub fn compute_chunk_count(compression: Compression, data_size: Vec2<usize>, blocks: BlockDescription) -> usize {
|
| 315 |
|
| 316 | if let BlockDescription::Tiles(tiles) = blocks {
|
| 317 | let round = tiles.rounding_mode;
|
| 318 | let Vec2(tile_width, tile_height) = tiles.tile_size;
|
| 319 |
|
| 320 | // TODO cache all these level values??
|
| 321 | use crate::meta::attribute::LevelMode::*;
|
| 322 | match tiles.level_mode {
|
| 323 | Singular => {
|
| 324 | let tiles_x = compute_block_count(data_size.width(), tile_width);
|
| 325 | let tiles_y = compute_block_count(data_size.height(), tile_height);
|
| 326 | tiles_x * tiles_y
|
| 327 | }
|
| 328 |
|
| 329 | MipMap => {
|
| 330 | mip_map_levels(round, data_size).map(|(_, Vec2(level_width, level_height))| {
|
| 331 | compute_block_count(level_width, tile_width) * compute_block_count(level_height, tile_height)
|
| 332 | }).sum()
|
| 333 | },
|
| 334 |
|
| 335 | RipMap => {
|
| 336 | rip_map_levels(round, data_size).map(|(_, Vec2(level_width, level_height))| {
|
| 337 | compute_block_count(level_width, tile_width) * compute_block_count(level_height, tile_height)
|
| 338 | }).sum()
|
| 339 | }
|
| 340 | }
|
| 341 | }
|
| 342 |
|
| 343 | // scan line blocks never have mip maps
|
| 344 | else {
|
| 345 | compute_block_count(data_size.height(), compression.scan_lines_per_block())
|
| 346 | }
|
| 347 | }
|
| 348 |
|
| 349 |
|
| 350 |
|
| 351 | impl MetaData {
|
| 352 |
|
| 353 | /// Read the exr meta data from a file.
|
| 354 | /// Use `read_from_unbuffered` instead if you do not have a file.
|
| 355 | /// Does not validate the meta data.
|
| 356 | #[must_use ]
|
| 357 | pub fn read_from_file(path: impl AsRef<::std::path::Path>, pedantic: bool) -> Result<Self> {
|
| 358 | Self::read_from_unbuffered(File::open(path)?, pedantic)
|
| 359 | }
|
| 360 |
|
| 361 | /// Buffer the reader and then read the exr meta data from it.
|
| 362 | /// Use `read_from_buffered` if your reader is an in-memory reader.
|
| 363 | /// Use `read_from_file` if you have a file path.
|
| 364 | /// Does not validate the meta data.
|
| 365 | #[must_use ]
|
| 366 | pub fn read_from_unbuffered(unbuffered: impl Read, pedantic: bool) -> Result<Self> {
|
| 367 | Self::read_from_buffered(BufReader::new(unbuffered), pedantic)
|
| 368 | }
|
| 369 |
|
| 370 | /// Read the exr meta data from a reader.
|
| 371 | /// Use `read_from_file` if you have a file path.
|
| 372 | /// Use `read_from_unbuffered` if this is not an in-memory reader.
|
| 373 | /// Does not validate the meta data.
|
| 374 | #[must_use ]
|
| 375 | pub fn read_from_buffered(buffered: impl Read, pedantic: bool) -> Result<Self> {
|
| 376 | let mut read = PeekRead::new(buffered);
|
| 377 | MetaData::read_unvalidated_from_buffered_peekable(&mut read, pedantic)
|
| 378 | }
|
| 379 |
|
| 380 | /// Does __not validate__ the meta data completely.
|
| 381 | #[must_use ]
|
| 382 | pub(crate) fn read_unvalidated_from_buffered_peekable(read: &mut PeekRead<impl Read>, pedantic: bool) -> Result<Self> {
|
| 383 | magic_number::validate_exr(read)?;
|
| 384 |
|
| 385 | let requirements = Requirements::read(read)?;
|
| 386 |
|
| 387 | // do this check now in order to fast-fail for newer versions and features than version 2
|
| 388 | requirements.validate()?;
|
| 389 |
|
| 390 | let headers = Header::read_all(read, &requirements, pedantic)?;
|
| 391 |
|
| 392 | // TODO check if supporting requirements 2 always implies supporting requirements 1
|
| 393 | Ok(MetaData { requirements, headers })
|
| 394 | }
|
| 395 |
|
| 396 | /// Validates the meta data.
|
| 397 | #[must_use ]
|
| 398 | pub(crate) fn read_validated_from_buffered_peekable(
|
| 399 | read: &mut PeekRead<impl Read>, pedantic: bool
|
| 400 | ) -> Result<Self> {
|
| 401 | let meta_data = Self::read_unvalidated_from_buffered_peekable(read, !pedantic)?;
|
| 402 | MetaData::validate(meta_data.headers.as_slice(), pedantic)?;
|
| 403 | Ok(meta_data)
|
| 404 | }
|
| 405 |
|
| 406 | /// Validates the meta data and writes it to the stream.
|
| 407 | /// If pedantic, throws errors for files that may produce errors in other exr readers.
|
| 408 | /// Returns the automatically detected minimum requirement flags.
|
| 409 | pub(crate) fn write_validating_to_buffered(write: &mut impl Write, headers: &[Header], pedantic: bool) -> Result<Requirements> {
|
| 410 | // pedantic validation to not allow slightly invalid files
|
| 411 | // that still could be read correctly in theory
|
| 412 | let minimal_requirements = Self::validate(headers, pedantic)?;
|
| 413 |
|
| 414 | magic_number::write(write)?;
|
| 415 | minimal_requirements.write(write)?;
|
| 416 | Header::write_all(headers, write, minimal_requirements.has_multiple_layers)?;
|
| 417 | Ok(minimal_requirements)
|
| 418 | }
|
| 419 |
|
| 420 | /// Read one offset table from the reader for each header.
|
| 421 | pub fn read_offset_tables(read: &mut PeekRead<impl Read>, headers: &Headers) -> Result<OffsetTables> {
|
| 422 | headers.iter()
|
| 423 | .map(|header| u64::read_vec(read, header.chunk_count, u16::MAX as usize, None, "offset table size" ))
|
| 424 | .collect()
|
| 425 | }
|
| 426 |
|
| 427 | /// Skip the offset tables by advancing the reader by the required byte count.
|
| 428 | // TODO use seek for large (probably all) tables!
|
| 429 | pub fn skip_offset_tables(read: &mut PeekRead<impl Read>, headers: &Headers) -> Result<usize> {
|
| 430 | let chunk_count: usize = headers.iter().map(|header| header.chunk_count).sum();
|
| 431 | crate::io::skip_bytes(read, chunk_count * u64::BYTE_SIZE)?; // TODO this should seek for large tables
|
| 432 | Ok(chunk_count)
|
| 433 | }
|
| 434 |
|
| 435 | /// This iterator tells you the block indices of all blocks that must be in the image.
|
| 436 | /// The order of the blocks depends on the `LineOrder` attribute
|
| 437 | /// (unspecified line order is treated the same as increasing line order).
|
| 438 | /// The blocks written to the file must be exactly in this order,
|
| 439 | /// except for when the `LineOrder` is unspecified.
|
| 440 | /// The index represents the block index, in increasing line order, within the header.
|
| 441 | pub fn enumerate_ordered_header_block_indices(&self) -> impl '_ + Iterator<Item=(usize, BlockIndex)> {
|
| 442 | crate::block::enumerate_ordered_header_block_indices(&self.headers)
|
| 443 | }
|
| 444 |
|
| 445 | /// Go through all the block indices in the correct order and call the specified closure for each of these blocks.
|
| 446 | /// That way, the blocks indices are filled with real block data and returned as an iterator.
|
| 447 | /// The closure returns the an `UncompressedBlock` for each block index.
|
| 448 | pub fn collect_ordered_blocks<'s>(&'s self, mut get_block: impl 's + FnMut(BlockIndex) -> UncompressedBlock)
|
| 449 | -> impl 's + Iterator<Item=(usize, UncompressedBlock)>
|
| 450 | {
|
| 451 | self.enumerate_ordered_header_block_indices().map(move |(index_in_header, block_index)|{
|
| 452 | (index_in_header, get_block(block_index))
|
| 453 | })
|
| 454 | }
|
| 455 |
|
| 456 | /// Go through all the block indices in the correct order and call the specified closure for each of these blocks.
|
| 457 | /// That way, the blocks indices are filled with real block data and returned as an iterator.
|
| 458 | /// The closure returns the byte data for each block index.
|
| 459 | pub fn collect_ordered_block_data<'s>(&'s self, mut get_block_data: impl 's + FnMut(BlockIndex) -> Vec<u8>)
|
| 460 | -> impl 's + Iterator<Item=(usize, UncompressedBlock)>
|
| 461 | {
|
| 462 | self.collect_ordered_blocks(move |block_index|
|
| 463 | UncompressedBlock { index: block_index, data: get_block_data(block_index) }
|
| 464 | )
|
| 465 | }
|
| 466 |
|
| 467 | /// Validates this meta data. Returns the minimal possible requirements.
|
| 468 | pub fn validate(headers: &[Header], pedantic: bool) -> Result<Requirements> {
|
| 469 | if headers.len() == 0 {
|
| 470 | return Err(Error::invalid("at least one layer is required" ));
|
| 471 | }
|
| 472 |
|
| 473 | let deep = false; // TODO deep data
|
| 474 | let is_multilayer = headers.len() > 1;
|
| 475 | let first_header_has_tiles = headers.iter().next()
|
| 476 | .map_or(false, |header| header.blocks.has_tiles());
|
| 477 |
|
| 478 | let mut minimal_requirements = Requirements {
|
| 479 | // according to the spec, version 2 should only be necessary if `is_multilayer || deep`.
|
| 480 | // but the current open exr library does not support images with version 1, so always use version 2.
|
| 481 | file_format_version: 2,
|
| 482 |
|
| 483 | // start as low as possible, later increasing if required
|
| 484 | has_long_names: false,
|
| 485 |
|
| 486 | is_single_layer_and_tiled: !is_multilayer && first_header_has_tiles,
|
| 487 | has_multiple_layers: is_multilayer,
|
| 488 | has_deep_data: deep,
|
| 489 | };
|
| 490 |
|
| 491 | for header in headers {
|
| 492 | if header.deep { // TODO deep data (and then remove this check)
|
| 493 | return Err(Error::unsupported("deep data not supported yet" ));
|
| 494 | }
|
| 495 |
|
| 496 | header.validate(is_multilayer, &mut minimal_requirements.has_long_names, pedantic)?;
|
| 497 | }
|
| 498 |
|
| 499 | // TODO validation fn!
|
| 500 | /*if let Some(max) = max_pixel_bytes {
|
| 501 | let byte_size: usize = headers.iter()
|
| 502 | .map(|header| header.total_pixel_bytes())
|
| 503 | .sum();
|
| 504 |
|
| 505 | if byte_size > max {
|
| 506 | return Err(Error::invalid("image larger than specified maximum"));
|
| 507 | }
|
| 508 | }*/
|
| 509 |
|
| 510 | if pedantic { // check for duplicate header names
|
| 511 | let mut header_names = HashSet::with_capacity(headers.len());
|
| 512 | for header in headers {
|
| 513 | if !header_names.insert(&header.own_attributes.layer_name) {
|
| 514 | return Err(Error::invalid(format!(
|
| 515 | "duplicate layer name: ` {}`" ,
|
| 516 | header.own_attributes.layer_name.as_ref().expect("header validation bug" )
|
| 517 | )));
|
| 518 | }
|
| 519 | }
|
| 520 | }
|
| 521 |
|
| 522 | if pedantic {
|
| 523 | let must_share = headers.iter().flat_map(|header| header.own_attributes.other.iter())
|
| 524 | .any(|(_, value)| value.to_chromaticities().is_ok() || value.to_time_code().is_ok());
|
| 525 |
|
| 526 | if must_share {
|
| 527 | return Err(Error::invalid("chromaticities and time code attributes must must not exist in own attributes but shared instead" ));
|
| 528 | }
|
| 529 | }
|
| 530 |
|
| 531 | if pedantic && headers.len() > 1 { // check for attributes that should not differ in between headers
|
| 532 | let first_header = headers.first().expect("header count validation bug" );
|
| 533 | let first_header_attributes = &first_header.shared_attributes;
|
| 534 |
|
| 535 | for header in &headers[1..] {
|
| 536 | if &header.shared_attributes != first_header_attributes {
|
| 537 | return Err(Error::invalid("display window, pixel aspect, chromaticities, and time code attributes must be equal for all headers" ))
|
| 538 | }
|
| 539 | }
|
| 540 | }
|
| 541 |
|
| 542 | debug_assert!(minimal_requirements.validate().is_ok(), "inferred requirements are invalid" );
|
| 543 | Ok(minimal_requirements)
|
| 544 | }
|
| 545 | }
|
| 546 |
|
| 547 |
|
| 548 |
|
| 549 |
|
| 550 | impl Requirements {
|
| 551 |
|
| 552 | // this is actually used for control flow, as the number of headers may be 1 in a multilayer file
|
| 553 | /// Is this file declared to contain multiple layers?
|
| 554 | pub fn is_multilayer(&self) -> bool {
|
| 555 | self.has_multiple_layers
|
| 556 | }
|
| 557 |
|
| 558 | /// Read the value without validating.
|
| 559 | pub fn read<R: Read>(read: &mut R) -> Result<Self> {
|
| 560 | use ::bit_field::BitField;
|
| 561 |
|
| 562 | let version_and_flags = u32::read(read)?;
|
| 563 |
|
| 564 | // take the 8 least significant bits, they contain the file format version number
|
| 565 | let version = (version_and_flags & 0x000F) as u8;
|
| 566 |
|
| 567 | // the 24 most significant bits are treated as a set of boolean flags
|
| 568 | let is_single_tile = version_and_flags.get_bit(9);
|
| 569 | let has_long_names = version_and_flags.get_bit(10);
|
| 570 | let has_deep_data = version_and_flags.get_bit(11);
|
| 571 | let has_multiple_layers = version_and_flags.get_bit(12);
|
| 572 |
|
| 573 | // all remaining bits except 9, 10, 11 and 12 are reserved and should be 0
|
| 574 | // if a file has any of these bits set to 1, it means this file contains
|
| 575 | // a feature that we don't support
|
| 576 | let unknown_flags = version_and_flags >> 13; // all flags excluding the 12 bits we already parsed
|
| 577 |
|
| 578 | if unknown_flags != 0 { // TODO test if this correctly detects unsupported files
|
| 579 | return Err(Error::unsupported("too new file feature flags" ));
|
| 580 | }
|
| 581 |
|
| 582 | let version = Requirements {
|
| 583 | file_format_version: version,
|
| 584 | is_single_layer_and_tiled: is_single_tile, has_long_names,
|
| 585 | has_deep_data, has_multiple_layers,
|
| 586 | };
|
| 587 |
|
| 588 | Ok(version)
|
| 589 | }
|
| 590 |
|
| 591 | /// Without validation, write this instance to the byte stream.
|
| 592 | pub fn write<W: Write>(self, write: &mut W) -> UnitResult {
|
| 593 | use ::bit_field::BitField;
|
| 594 |
|
| 595 | // the 8 least significant bits contain the file format version number
|
| 596 | // and the flags are set to 0
|
| 597 | let mut version_and_flags = self.file_format_version as u32;
|
| 598 |
|
| 599 | // the 24 most significant bits are treated as a set of boolean flags
|
| 600 | version_and_flags.set_bit(9, self.is_single_layer_and_tiled);
|
| 601 | version_and_flags.set_bit(10, self.has_long_names);
|
| 602 | version_and_flags.set_bit(11, self.has_deep_data);
|
| 603 | version_and_flags.set_bit(12, self.has_multiple_layers);
|
| 604 | // all remaining bits except 9, 10, 11 and 12 are reserved and should be 0
|
| 605 |
|
| 606 | version_and_flags.write(write)?;
|
| 607 | Ok(())
|
| 608 | }
|
| 609 |
|
| 610 | /// Validate this instance.
|
| 611 | pub fn validate(&self) -> UnitResult {
|
| 612 | if self.file_format_version == 2 {
|
| 613 |
|
| 614 | match (
|
| 615 | self.is_single_layer_and_tiled, self.has_deep_data, self.has_multiple_layers,
|
| 616 | self.file_format_version
|
| 617 | ) {
|
| 618 | // Single-part scan line. One normal scan line image.
|
| 619 | (false, false, false, 1..=2) => Ok(()),
|
| 620 |
|
| 621 | // Single-part tile. One normal tiled image.
|
| 622 | (true, false, false, 1..=2) => Ok(()),
|
| 623 |
|
| 624 | // Multi-part (new in 2.0).
|
| 625 | // Multiple normal images (scan line and/or tiled).
|
| 626 | (false, false, true, 2) => Ok(()),
|
| 627 |
|
| 628 | // Single-part deep data (new in 2.0).
|
| 629 | // One deep tile or deep scan line part
|
| 630 | (false, true, false, 2) => Ok(()),
|
| 631 |
|
| 632 | // Multi-part deep data (new in 2.0).
|
| 633 | // Multiple parts (any combination of:
|
| 634 | // tiles, scan lines, deep tiles and/or deep scan lines).
|
| 635 | (false, true, true, 2) => Ok(()),
|
| 636 |
|
| 637 | _ => Err(Error::invalid("file feature flags" ))
|
| 638 | }
|
| 639 | }
|
| 640 | else {
|
| 641 | Err(Error::unsupported("file versions other than 2.0 are not supported" ))
|
| 642 | }
|
| 643 | }
|
| 644 | }
|
| 645 |
|
| 646 |
|
| 647 | #[cfg (test)]
|
| 648 | mod test {
|
| 649 | use super::*;
|
| 650 | use crate::meta::header::{ImageAttributes, LayerAttributes};
|
| 651 |
|
| 652 | #[test ]
|
| 653 | fn round_trip_requirements() {
|
| 654 | let requirements = Requirements {
|
| 655 | file_format_version: 2,
|
| 656 | is_single_layer_and_tiled: true,
|
| 657 | has_long_names: false,
|
| 658 | has_deep_data: true,
|
| 659 | has_multiple_layers: false
|
| 660 | };
|
| 661 |
|
| 662 | let mut data: Vec<u8> = Vec::new();
|
| 663 | requirements.write(&mut data).unwrap();
|
| 664 | let read = Requirements::read(&mut data.as_slice()).unwrap();
|
| 665 | assert_eq!(requirements, read);
|
| 666 | }
|
| 667 |
|
| 668 | #[test ]
|
| 669 | fn round_trip(){
|
| 670 | let header = Header {
|
| 671 | channels: ChannelList::new(smallvec![
|
| 672 | ChannelDescription {
|
| 673 | name: Text::from("main" ),
|
| 674 | sample_type: SampleType::U32,
|
| 675 | quantize_linearly: false,
|
| 676 | sampling: Vec2(1, 1)
|
| 677 | }
|
| 678 | ],
|
| 679 | ),
|
| 680 | compression: Compression::Uncompressed,
|
| 681 | line_order: LineOrder::Increasing,
|
| 682 | deep_data_version: Some(1),
|
| 683 | chunk_count: compute_chunk_count(Compression::Uncompressed, Vec2(2000, 333), BlockDescription::ScanLines),
|
| 684 | max_samples_per_pixel: Some(4),
|
| 685 | shared_attributes: ImageAttributes {
|
| 686 | pixel_aspect: 3.0,
|
| 687 | .. ImageAttributes::new(IntegerBounds {
|
| 688 | position: Vec2(2,1),
|
| 689 | size: Vec2(11, 9)
|
| 690 | })
|
| 691 | },
|
| 692 |
|
| 693 | blocks: BlockDescription::ScanLines,
|
| 694 | deep: false,
|
| 695 | layer_size: Vec2(2000, 333),
|
| 696 | own_attributes: LayerAttributes {
|
| 697 | layer_name: Some(Text::from("test name lol" )),
|
| 698 | layer_position: Vec2(3, -5),
|
| 699 | screen_window_center: Vec2(0.3, 99.0),
|
| 700 | screen_window_width: 0.19,
|
| 701 | .. Default::default()
|
| 702 | }
|
| 703 | };
|
| 704 |
|
| 705 | let meta = MetaData {
|
| 706 | requirements: Requirements {
|
| 707 | file_format_version: 2,
|
| 708 | is_single_layer_and_tiled: false,
|
| 709 | has_long_names: false,
|
| 710 | has_deep_data: false,
|
| 711 | has_multiple_layers: false
|
| 712 | },
|
| 713 | headers: smallvec![ header ],
|
| 714 | };
|
| 715 |
|
| 716 |
|
| 717 | let mut data: Vec<u8> = Vec::new();
|
| 718 | MetaData::write_validating_to_buffered(&mut data, meta.headers.as_slice(), true).unwrap();
|
| 719 | let meta2 = MetaData::read_from_buffered(data.as_slice(), false).unwrap();
|
| 720 | MetaData::validate(meta2.headers.as_slice(), true).unwrap();
|
| 721 | assert_eq!(meta, meta2);
|
| 722 | }
|
| 723 |
|
| 724 | #[test ]
|
| 725 | fn infer_low_requirements() {
|
| 726 | let header_version_1_short_names = Header {
|
| 727 | channels: ChannelList::new(smallvec![
|
| 728 | ChannelDescription {
|
| 729 | name: Text::from("main" ),
|
| 730 | sample_type: SampleType::U32,
|
| 731 | quantize_linearly: false,
|
| 732 | sampling: Vec2(1, 1)
|
| 733 | }
|
| 734 | ],
|
| 735 | ),
|
| 736 | compression: Compression::Uncompressed,
|
| 737 | line_order: LineOrder::Increasing,
|
| 738 | deep_data_version: Some(1),
|
| 739 | chunk_count: compute_chunk_count(Compression::Uncompressed, Vec2(2000, 333), BlockDescription::ScanLines),
|
| 740 | max_samples_per_pixel: Some(4),
|
| 741 | shared_attributes: ImageAttributes {
|
| 742 | pixel_aspect: 3.0,
|
| 743 | .. ImageAttributes::new(IntegerBounds {
|
| 744 | position: Vec2(2,1),
|
| 745 | size: Vec2(11, 9)
|
| 746 | })
|
| 747 | },
|
| 748 | blocks: BlockDescription::ScanLines,
|
| 749 | deep: false,
|
| 750 | layer_size: Vec2(2000, 333),
|
| 751 | own_attributes: LayerAttributes {
|
| 752 | other: vec![
|
| 753 | (Text::try_from("x" ).unwrap(), AttributeValue::F32(3.0)),
|
| 754 | (Text::try_from("y" ).unwrap(), AttributeValue::F32(-1.0)),
|
| 755 | ].into_iter().collect(),
|
| 756 | .. Default::default()
|
| 757 | }
|
| 758 | };
|
| 759 |
|
| 760 | let low_requirements = MetaData::validate(
|
| 761 | &[header_version_1_short_names], true
|
| 762 | ).unwrap();
|
| 763 |
|
| 764 | assert_eq!(low_requirements.has_long_names, false);
|
| 765 | assert_eq!(low_requirements.file_format_version, 2); // always have version 2
|
| 766 | assert_eq!(low_requirements.has_deep_data, false);
|
| 767 | assert_eq!(low_requirements.has_multiple_layers, false);
|
| 768 | }
|
| 769 |
|
| 770 | #[test ]
|
| 771 | fn infer_high_requirements() {
|
| 772 | let header_version_2_long_names = Header {
|
| 773 | channels: ChannelList::new(
|
| 774 | smallvec![
|
| 775 | ChannelDescription {
|
| 776 | name: Text::new_or_panic("main" ),
|
| 777 | sample_type: SampleType::U32,
|
| 778 | quantize_linearly: false,
|
| 779 | sampling: Vec2(1, 1)
|
| 780 | }
|
| 781 | ],
|
| 782 | ),
|
| 783 | compression: Compression::Uncompressed,
|
| 784 | line_order: LineOrder::Increasing,
|
| 785 | deep_data_version: Some(1),
|
| 786 | chunk_count: compute_chunk_count(Compression::Uncompressed, Vec2(2000, 333), BlockDescription::ScanLines),
|
| 787 | max_samples_per_pixel: Some(4),
|
| 788 | shared_attributes: ImageAttributes {
|
| 789 | pixel_aspect: 3.0,
|
| 790 | .. ImageAttributes::new(IntegerBounds {
|
| 791 | position: Vec2(2,1),
|
| 792 | size: Vec2(11, 9)
|
| 793 | })
|
| 794 | },
|
| 795 | blocks: BlockDescription::ScanLines,
|
| 796 | deep: false,
|
| 797 | layer_size: Vec2(2000, 333),
|
| 798 | own_attributes: LayerAttributes {
|
| 799 | layer_name: Some(Text::new_or_panic("oasdasoidfj" )),
|
| 800 | other: vec![
|
| 801 | (Text::new_or_panic("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" ), AttributeValue::F32(3.0)),
|
| 802 | (Text::new_or_panic("y" ), AttributeValue::F32(-1.0)),
|
| 803 | ].into_iter().collect(),
|
| 804 | .. Default::default()
|
| 805 | }
|
| 806 | };
|
| 807 |
|
| 808 | let mut layer_2 = header_version_2_long_names.clone();
|
| 809 | layer_2.own_attributes.layer_name = Some(Text::new_or_panic("anythingelse" ));
|
| 810 |
|
| 811 | let low_requirements = MetaData::validate(
|
| 812 | &[header_version_2_long_names, layer_2], true
|
| 813 | ).unwrap();
|
| 814 |
|
| 815 | assert_eq!(low_requirements.has_long_names, true);
|
| 816 | assert_eq!(low_requirements.file_format_version, 2);
|
| 817 | assert_eq!(low_requirements.has_deep_data, false);
|
| 818 | assert_eq!(low_requirements.has_multiple_layers, true);
|
| 819 | }
|
| 820 | }
|
| 821 |
|
| 822 | |