1 | //! An unbounded set of futures. |
2 | //! |
3 | //! This module is only available when the `std` or `alloc` feature of this |
4 | //! library is activated, and it is activated by default. |
5 | |
6 | use crate::task::AtomicWaker; |
7 | use alloc::sync::{Arc, Weak}; |
8 | use core::cell::UnsafeCell; |
9 | use core::fmt::{self, Debug}; |
10 | use core::iter::FromIterator; |
11 | use core::marker::PhantomData; |
12 | use core::mem; |
13 | use core::pin::Pin; |
14 | use core::ptr; |
15 | use core::sync::atomic::Ordering::{AcqRel, Acquire, Relaxed, Release, SeqCst}; |
16 | use core::sync::atomic::{AtomicBool, AtomicPtr}; |
17 | use futures_core::future::Future; |
18 | use futures_core::stream::{FusedStream, Stream}; |
19 | use futures_core::task::{Context, Poll}; |
20 | use futures_task::{FutureObj, LocalFutureObj, LocalSpawn, Spawn, SpawnError}; |
21 | |
22 | mod abort; |
23 | |
24 | mod iter; |
25 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/102352 |
26 | pub use self::iter::{IntoIter, Iter, IterMut, IterPinMut, IterPinRef}; |
27 | |
28 | mod task; |
29 | use self::task::Task; |
30 | |
31 | mod ready_to_run_queue; |
32 | use self::ready_to_run_queue::{Dequeue, ReadyToRunQueue}; |
33 | |
34 | /// A set of futures which may complete in any order. |
35 | /// |
36 | /// See [`FuturesOrdered`](crate::stream::FuturesOrdered) for a version of this |
37 | /// type that preserves a FIFO order. |
38 | /// |
39 | /// This structure is optimized to manage a large number of futures. |
40 | /// Futures managed by [`FuturesUnordered`] will only be polled when they |
41 | /// generate wake-up notifications. This reduces the required amount of work |
42 | /// needed to poll large numbers of futures. |
43 | /// |
44 | /// [`FuturesUnordered`] can be filled by [`collect`](Iterator::collect)ing an |
45 | /// iterator of futures into a [`FuturesUnordered`], or by |
46 | /// [`push`](FuturesUnordered::push)ing futures onto an existing |
47 | /// [`FuturesUnordered`]. When new futures are added, |
48 | /// [`poll_next`](Stream::poll_next) must be called in order to begin receiving |
49 | /// wake-ups for new futures. |
50 | /// |
51 | /// Note that you can create a ready-made [`FuturesUnordered`] via the |
52 | /// [`collect`](Iterator::collect) method, or you can start with an empty set |
53 | /// with the [`FuturesUnordered::new`] constructor. |
54 | /// |
55 | /// This type is only available when the `std` or `alloc` feature of this |
56 | /// library is activated, and it is activated by default. |
57 | #[must_use = "streams do nothing unless polled" ] |
58 | pub struct FuturesUnordered<Fut> { |
59 | ready_to_run_queue: Arc<ReadyToRunQueue<Fut>>, |
60 | head_all: AtomicPtr<Task<Fut>>, |
61 | is_terminated: AtomicBool, |
62 | } |
63 | |
64 | unsafe impl<Fut: Send> Send for FuturesUnordered<Fut> {} |
65 | unsafe impl<Fut: Send + Sync> Sync for FuturesUnordered<Fut> {} |
66 | impl<Fut> Unpin for FuturesUnordered<Fut> {} |
67 | |
68 | impl Spawn for FuturesUnordered<FutureObj<'_, ()>> { |
69 | fn spawn_obj(&self, future_obj: FutureObj<'static, ()>) -> Result<(), SpawnError> { |
70 | self.push(future_obj); |
71 | Ok(()) |
72 | } |
73 | } |
74 | |
75 | impl LocalSpawn for FuturesUnordered<LocalFutureObj<'_, ()>> { |
76 | fn spawn_local_obj(&self, future_obj: LocalFutureObj<'static, ()>) -> Result<(), SpawnError> { |
77 | self.push(future_obj); |
78 | Ok(()) |
79 | } |
80 | } |
81 | |
82 | // FuturesUnordered is implemented using two linked lists. One which links all |
83 | // futures managed by a `FuturesUnordered` and one that tracks futures that have |
84 | // been scheduled for polling. The first linked list allows for thread safe |
85 | // insertion of nodes at the head as well as forward iteration, but is otherwise |
86 | // not thread safe and is only accessed by the thread that owns the |
87 | // `FuturesUnordered` value for any other operations. The second linked list is |
88 | // an implementation of the intrusive MPSC queue algorithm described by |
89 | // 1024cores.net. |
90 | // |
91 | // When a future is submitted to the set, a task is allocated and inserted in |
92 | // both linked lists. The next call to `poll_next` will (eventually) see this |
93 | // task and call `poll` on the future. |
94 | // |
95 | // Before a managed future is polled, the current context's waker is replaced |
96 | // with one that is aware of the specific future being run. This ensures that |
97 | // wake-up notifications generated by that specific future are visible to |
98 | // `FuturesUnordered`. When a wake-up notification is received, the task is |
99 | // inserted into the ready to run queue, so that its future can be polled later. |
100 | // |
101 | // Each task is wrapped in an `Arc` and thereby atomically reference counted. |
102 | // Also, each task contains an `AtomicBool` which acts as a flag that indicates |
103 | // whether the task is currently inserted in the atomic queue. When a wake-up |
104 | // notification is received, the task will only be inserted into the ready to |
105 | // run queue if it isn't inserted already. |
106 | |
107 | impl<Fut> Default for FuturesUnordered<Fut> { |
108 | fn default() -> Self { |
109 | Self::new() |
110 | } |
111 | } |
112 | |
113 | impl<Fut> FuturesUnordered<Fut> { |
114 | /// Constructs a new, empty [`FuturesUnordered`]. |
115 | /// |
116 | /// The returned [`FuturesUnordered`] does not contain any futures. |
117 | /// In this state, [`FuturesUnordered::poll_next`](Stream::poll_next) will |
118 | /// return [`Poll::Ready(None)`](Poll::Ready). |
119 | pub fn new() -> Self { |
120 | let stub = Arc::new(Task { |
121 | future: UnsafeCell::new(None), |
122 | next_all: AtomicPtr::new(ptr::null_mut()), |
123 | prev_all: UnsafeCell::new(ptr::null()), |
124 | len_all: UnsafeCell::new(0), |
125 | next_ready_to_run: AtomicPtr::new(ptr::null_mut()), |
126 | queued: AtomicBool::new(true), |
127 | ready_to_run_queue: Weak::new(), |
128 | woken: AtomicBool::new(false), |
129 | }); |
130 | let stub_ptr = Arc::as_ptr(&stub); |
131 | let ready_to_run_queue = Arc::new(ReadyToRunQueue { |
132 | waker: AtomicWaker::new(), |
133 | head: AtomicPtr::new(stub_ptr as *mut _), |
134 | tail: UnsafeCell::new(stub_ptr), |
135 | stub, |
136 | }); |
137 | |
138 | Self { |
139 | head_all: AtomicPtr::new(ptr::null_mut()), |
140 | ready_to_run_queue, |
141 | is_terminated: AtomicBool::new(false), |
142 | } |
143 | } |
144 | |
145 | /// Returns the number of futures contained in the set. |
146 | /// |
147 | /// This represents the total number of in-flight futures. |
148 | pub fn len(&self) -> usize { |
149 | let (_, len) = self.atomic_load_head_and_len_all(); |
150 | len |
151 | } |
152 | |
153 | /// Returns `true` if the set contains no futures. |
154 | pub fn is_empty(&self) -> bool { |
155 | // Relaxed ordering can be used here since we don't need to read from |
156 | // the head pointer, only check whether it is null. |
157 | self.head_all.load(Relaxed).is_null() |
158 | } |
159 | |
160 | /// Push a future into the set. |
161 | /// |
162 | /// This method adds the given future to the set. This method will not |
163 | /// call [`poll`](core::future::Future::poll) on the submitted future. The caller must |
164 | /// ensure that [`FuturesUnordered::poll_next`](Stream::poll_next) is called |
165 | /// in order to receive wake-up notifications for the given future. |
166 | pub fn push(&self, future: Fut) { |
167 | let task = Arc::new(Task { |
168 | future: UnsafeCell::new(Some(future)), |
169 | next_all: AtomicPtr::new(self.pending_next_all()), |
170 | prev_all: UnsafeCell::new(ptr::null_mut()), |
171 | len_all: UnsafeCell::new(0), |
172 | next_ready_to_run: AtomicPtr::new(ptr::null_mut()), |
173 | queued: AtomicBool::new(true), |
174 | ready_to_run_queue: Arc::downgrade(&self.ready_to_run_queue), |
175 | woken: AtomicBool::new(false), |
176 | }); |
177 | |
178 | // Reset the `is_terminated` flag if we've previously marked ourselves |
179 | // as terminated. |
180 | self.is_terminated.store(false, Relaxed); |
181 | |
182 | // Right now our task has a strong reference count of 1. We transfer |
183 | // ownership of this reference count to our internal linked list |
184 | // and we'll reclaim ownership through the `unlink` method below. |
185 | let ptr = self.link(task); |
186 | |
187 | // We'll need to get the future "into the system" to start tracking it, |
188 | // e.g. getting its wake-up notifications going to us tracking which |
189 | // futures are ready. To do that we unconditionally enqueue it for |
190 | // polling here. |
191 | self.ready_to_run_queue.enqueue(ptr); |
192 | } |
193 | |
194 | /// Returns an iterator that allows inspecting each future in the set. |
195 | pub fn iter(&self) -> Iter<'_, Fut> |
196 | where |
197 | Fut: Unpin, |
198 | { |
199 | Iter(Pin::new(self).iter_pin_ref()) |
200 | } |
201 | |
202 | /// Returns an iterator that allows inspecting each future in the set. |
203 | pub fn iter_pin_ref(self: Pin<&Self>) -> IterPinRef<'_, Fut> { |
204 | let (task, len) = self.atomic_load_head_and_len_all(); |
205 | let pending_next_all = self.pending_next_all(); |
206 | |
207 | IterPinRef { task, len, pending_next_all, _marker: PhantomData } |
208 | } |
209 | |
210 | /// Returns an iterator that allows modifying each future in the set. |
211 | pub fn iter_mut(&mut self) -> IterMut<'_, Fut> |
212 | where |
213 | Fut: Unpin, |
214 | { |
215 | IterMut(Pin::new(self).iter_pin_mut()) |
216 | } |
217 | |
218 | /// Returns an iterator that allows modifying each future in the set. |
219 | pub fn iter_pin_mut(mut self: Pin<&mut Self>) -> IterPinMut<'_, Fut> { |
220 | // `head_all` can be accessed directly and we don't need to spin on |
221 | // `Task::next_all` since we have exclusive access to the set. |
222 | let task = *self.head_all.get_mut(); |
223 | let len = if task.is_null() { 0 } else { unsafe { *(*task).len_all.get() } }; |
224 | |
225 | IterPinMut { task, len, _marker: PhantomData } |
226 | } |
227 | |
228 | /// Returns the current head node and number of futures in the list of all |
229 | /// futures within a context where access is shared with other threads |
230 | /// (mostly for use with the `len` and `iter_pin_ref` methods). |
231 | fn atomic_load_head_and_len_all(&self) -> (*const Task<Fut>, usize) { |
232 | let task = self.head_all.load(Acquire); |
233 | let len = if task.is_null() { |
234 | 0 |
235 | } else { |
236 | unsafe { |
237 | (*task).spin_next_all(self.pending_next_all(), Acquire); |
238 | *(*task).len_all.get() |
239 | } |
240 | }; |
241 | |
242 | (task, len) |
243 | } |
244 | |
245 | /// Releases the task. It destroys the future inside and either drops |
246 | /// the `Arc<Task>` or transfers ownership to the ready to run queue. |
247 | /// The task this method is called on must have been unlinked before. |
248 | fn release_task(&mut self, task: Arc<Task<Fut>>) { |
249 | // `release_task` must only be called on unlinked tasks |
250 | debug_assert_eq!(task.next_all.load(Relaxed), self.pending_next_all()); |
251 | unsafe { |
252 | debug_assert!((*task.prev_all.get()).is_null()); |
253 | } |
254 | |
255 | // The future is done, try to reset the queued flag. This will prevent |
256 | // `wake` from doing any work in the future |
257 | let prev = task.queued.swap(true, SeqCst); |
258 | |
259 | // If the queued flag was previously set, then it means that this task |
260 | // is still in our internal ready to run queue. We then transfer |
261 | // ownership of our reference count to the ready to run queue, and it'll |
262 | // come along and free it later, noticing that the future is `None`. |
263 | // |
264 | // If, however, the queued flag was *not* set then we're safe to |
265 | // release our reference count on the task. The queued flag was set |
266 | // above so all future `enqueue` operations will not actually |
267 | // enqueue the task, so our task will never see the ready to run queue |
268 | // again. The task itself will be deallocated once all reference counts |
269 | // have been dropped elsewhere by the various wakers that contain it. |
270 | // |
271 | // Use ManuallyDrop to transfer the reference count ownership before |
272 | // dropping the future so unwinding won't release the reference count. |
273 | let md_slot; |
274 | let task = if prev { |
275 | md_slot = mem::ManuallyDrop::new(task); |
276 | &*md_slot |
277 | } else { |
278 | &task |
279 | }; |
280 | |
281 | // Drop the future, even if it hasn't finished yet. This is safe |
282 | // because we're dropping the future on the thread that owns |
283 | // `FuturesUnordered`, which correctly tracks `Fut`'s lifetimes and |
284 | // such. |
285 | unsafe { |
286 | // Set to `None` rather than `take()`ing to prevent moving the |
287 | // future. |
288 | *task.future.get() = None; |
289 | } |
290 | } |
291 | |
292 | /// Insert a new task into the internal linked list. |
293 | fn link(&self, task: Arc<Task<Fut>>) -> *const Task<Fut> { |
294 | // `next_all` should already be reset to the pending state before this |
295 | // function is called. |
296 | debug_assert_eq!(task.next_all.load(Relaxed), self.pending_next_all()); |
297 | let ptr = Arc::into_raw(task); |
298 | |
299 | // Atomically swap out the old head node to get the node that should be |
300 | // assigned to `next_all`. |
301 | let next = self.head_all.swap(ptr as *mut _, AcqRel); |
302 | |
303 | unsafe { |
304 | // Store the new list length in the new node. |
305 | let new_len = if next.is_null() { |
306 | 1 |
307 | } else { |
308 | // Make sure `next_all` has been written to signal that it is |
309 | // safe to read `len_all`. |
310 | (*next).spin_next_all(self.pending_next_all(), Acquire); |
311 | *(*next).len_all.get() + 1 |
312 | }; |
313 | *(*ptr).len_all.get() = new_len; |
314 | |
315 | // Write the old head as the next node pointer, signaling to other |
316 | // threads that `len_all` and `next_all` are ready to read. |
317 | (*ptr).next_all.store(next, Release); |
318 | |
319 | // `prev_all` updates don't need to be synchronized, as the field is |
320 | // only ever used after exclusive access has been acquired. |
321 | if !next.is_null() { |
322 | *(*next).prev_all.get() = ptr; |
323 | } |
324 | } |
325 | |
326 | ptr |
327 | } |
328 | |
329 | /// Remove the task from the linked list tracking all tasks currently |
330 | /// managed by `FuturesUnordered`. |
331 | /// This method is unsafe because it has be guaranteed that `task` is a |
332 | /// valid pointer. |
333 | unsafe fn unlink(&mut self, task: *const Task<Fut>) -> Arc<Task<Fut>> { |
334 | unsafe { |
335 | // Compute the new list length now in case we're removing the head node |
336 | // and won't be able to retrieve the correct length later. |
337 | let head = *self.head_all.get_mut(); |
338 | debug_assert!(!head.is_null()); |
339 | let new_len = *(*head).len_all.get() - 1; |
340 | |
341 | let task = Arc::from_raw(task); |
342 | let next = task.next_all.load(Relaxed); |
343 | let prev = *task.prev_all.get(); |
344 | task.next_all.store(self.pending_next_all(), Relaxed); |
345 | *task.prev_all.get() = ptr::null_mut(); |
346 | |
347 | if !next.is_null() { |
348 | *(*next).prev_all.get() = prev; |
349 | } |
350 | |
351 | if !prev.is_null() { |
352 | (*prev).next_all.store(next, Relaxed); |
353 | } else { |
354 | *self.head_all.get_mut() = next; |
355 | } |
356 | |
357 | // Store the new list length in the head node. |
358 | let head = *self.head_all.get_mut(); |
359 | if !head.is_null() { |
360 | *(*head).len_all.get() = new_len; |
361 | } |
362 | |
363 | task |
364 | } |
365 | } |
366 | |
367 | /// Returns the reserved value for `Task::next_all` to indicate a pending |
368 | /// assignment from the thread that inserted the task. |
369 | /// |
370 | /// `FuturesUnordered::link` needs to update `Task` pointers in an order |
371 | /// that ensures any iterators created on other threads can correctly |
372 | /// traverse the entire `Task` list using the chain of `next_all` pointers. |
373 | /// This could be solved with a compare-exchange loop that stores the |
374 | /// current `head_all` in `next_all` and swaps out `head_all` with the new |
375 | /// `Task` pointer if the head hasn't already changed. Under heavy thread |
376 | /// contention, this compare-exchange loop could become costly. |
377 | /// |
378 | /// An alternative is to initialize `next_all` to a reserved pending state |
379 | /// first, perform an atomic swap on `head_all`, and finally update |
380 | /// `next_all` with the old head node. Iterators will then either see the |
381 | /// pending state value or the correct next node pointer, and can reload |
382 | /// `next_all` as needed until the correct value is loaded. The number of |
383 | /// retries needed (if any) would be small and will always be finite, so |
384 | /// this should generally perform better than the compare-exchange loop. |
385 | /// |
386 | /// A valid `Task` pointer in the `head_all` list is guaranteed to never be |
387 | /// this value, so it is safe to use as a reserved value until the correct |
388 | /// value can be written. |
389 | fn pending_next_all(&self) -> *mut Task<Fut> { |
390 | // The `ReadyToRunQueue` stub is never inserted into the `head_all` |
391 | // list, and its pointer value will remain valid for the lifetime of |
392 | // this `FuturesUnordered`, so we can make use of its value here. |
393 | Arc::as_ptr(&self.ready_to_run_queue.stub) as *mut _ |
394 | } |
395 | } |
396 | |
397 | impl<Fut: Future> Stream for FuturesUnordered<Fut> { |
398 | type Item = Fut::Output; |
399 | |
400 | fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> { |
401 | let len = self.len(); |
402 | |
403 | // Keep track of how many child futures we have polled, |
404 | // in case we want to forcibly yield. |
405 | let mut polled = 0; |
406 | let mut yielded = 0; |
407 | |
408 | // Ensure `parent` is correctly set. |
409 | self.ready_to_run_queue.waker.register(cx.waker()); |
410 | |
411 | loop { |
412 | // Safety: &mut self guarantees the mutual exclusion `dequeue` |
413 | // expects |
414 | let task = match unsafe { self.ready_to_run_queue.dequeue() } { |
415 | Dequeue::Empty => { |
416 | if self.is_empty() { |
417 | // We can only consider ourselves terminated once we |
418 | // have yielded a `None` |
419 | *self.is_terminated.get_mut() = true; |
420 | return Poll::Ready(None); |
421 | } else { |
422 | return Poll::Pending; |
423 | } |
424 | } |
425 | Dequeue::Inconsistent => { |
426 | // At this point, it may be worth yielding the thread & |
427 | // spinning a few times... but for now, just yield using the |
428 | // task system. |
429 | cx.waker().wake_by_ref(); |
430 | return Poll::Pending; |
431 | } |
432 | Dequeue::Data(task) => task, |
433 | }; |
434 | |
435 | debug_assert!(task != self.ready_to_run_queue.stub()); |
436 | |
437 | // Safety: |
438 | // - `task` is a valid pointer. |
439 | // - We are the only thread that accesses the `UnsafeCell` that |
440 | // contains the future |
441 | let future = match unsafe { &mut *(*task).future.get() } { |
442 | Some(future) => future, |
443 | |
444 | // If the future has already gone away then we're just |
445 | // cleaning out this task. See the comment in |
446 | // `release_task` for more information, but we're basically |
447 | // just taking ownership of our reference count here. |
448 | None => { |
449 | // This case only happens when `release_task` was called |
450 | // for this task before and couldn't drop the task |
451 | // because it was already enqueued in the ready to run |
452 | // queue. |
453 | |
454 | // Safety: `task` is a valid pointer |
455 | let task = unsafe { Arc::from_raw(task) }; |
456 | |
457 | // Double check that the call to `release_task` really |
458 | // happened. Calling it required the task to be unlinked. |
459 | debug_assert_eq!(task.next_all.load(Relaxed), self.pending_next_all()); |
460 | unsafe { |
461 | debug_assert!((*task.prev_all.get()).is_null()); |
462 | } |
463 | continue; |
464 | } |
465 | }; |
466 | |
467 | // Safety: `task` is a valid pointer |
468 | let task = unsafe { self.unlink(task) }; |
469 | |
470 | // Unset queued flag: This must be done before polling to ensure |
471 | // that the future's task gets rescheduled if it sends a wake-up |
472 | // notification **during** the call to `poll`. |
473 | let prev = task.queued.swap(false, SeqCst); |
474 | assert!(prev); |
475 | |
476 | // We're going to need to be very careful if the `poll` |
477 | // method below panics. We need to (a) not leak memory and |
478 | // (b) ensure that we still don't have any use-after-frees. To |
479 | // manage this we do a few things: |
480 | // |
481 | // * A "bomb" is created which if dropped abnormally will call |
482 | // `release_task`. That way we'll be sure the memory management |
483 | // of the `task` is managed correctly. In particular |
484 | // `release_task` will drop the future. This ensures that it is |
485 | // dropped on this thread and not accidentally on a different |
486 | // thread (bad). |
487 | // * We unlink the task from our internal queue to preemptively |
488 | // assume it'll panic, in which case we'll want to discard it |
489 | // regardless. |
490 | struct Bomb<'a, Fut> { |
491 | queue: &'a mut FuturesUnordered<Fut>, |
492 | task: Option<Arc<Task<Fut>>>, |
493 | } |
494 | |
495 | impl<Fut> Drop for Bomb<'_, Fut> { |
496 | fn drop(&mut self) { |
497 | if let Some(task) = self.task.take() { |
498 | self.queue.release_task(task); |
499 | } |
500 | } |
501 | } |
502 | |
503 | let mut bomb = Bomb { task: Some(task), queue: &mut *self }; |
504 | |
505 | // Poll the underlying future with the appropriate waker |
506 | // implementation. This is where a large bit of the unsafety |
507 | // starts to stem from internally. The waker is basically just |
508 | // our `Arc<Task<Fut>>` and can schedule the future for polling by |
509 | // enqueuing itself in the ready to run queue. |
510 | // |
511 | // Critically though `Task<Fut>` won't actually access `Fut`, the |
512 | // future, while it's floating around inside of wakers. |
513 | // These structs will basically just use `Fut` to size |
514 | // the internal allocation, appropriately accessing fields and |
515 | // deallocating the task if need be. |
516 | let res = { |
517 | let task = bomb.task.as_ref().unwrap(); |
518 | // We are only interested in whether the future is awoken before it |
519 | // finishes polling, so reset the flag here. |
520 | task.woken.store(false, Relaxed); |
521 | // SAFETY: see the comments of Bomb and this block. |
522 | let waker = unsafe { Task::waker_ref(task) }; |
523 | let mut cx = Context::from_waker(&waker); |
524 | |
525 | // Safety: We won't move the future ever again |
526 | let future = unsafe { Pin::new_unchecked(future) }; |
527 | |
528 | future.poll(&mut cx) |
529 | }; |
530 | polled += 1; |
531 | |
532 | match res { |
533 | Poll::Pending => { |
534 | let task = bomb.task.take().unwrap(); |
535 | // If the future was awoken during polling, we assume |
536 | // the future wanted to explicitly yield. |
537 | yielded += task.woken.load(Relaxed) as usize; |
538 | bomb.queue.link(task); |
539 | |
540 | // If a future yields, we respect it and yield here. |
541 | // If all futures have been polled, we also yield here to |
542 | // avoid starving other tasks waiting on the executor. |
543 | // (polling the same future twice per iteration may cause |
544 | // the problem: https://github.com/rust-lang/futures-rs/pull/2333) |
545 | if yielded >= 2 || polled == len { |
546 | cx.waker().wake_by_ref(); |
547 | return Poll::Pending; |
548 | } |
549 | continue; |
550 | } |
551 | Poll::Ready(output) => return Poll::Ready(Some(output)), |
552 | } |
553 | } |
554 | } |
555 | |
556 | fn size_hint(&self) -> (usize, Option<usize>) { |
557 | let len = self.len(); |
558 | (len, Some(len)) |
559 | } |
560 | } |
561 | |
562 | impl<Fut> Debug for FuturesUnordered<Fut> { |
563 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
564 | write!(f, "FuturesUnordered {{ ... }}" ) |
565 | } |
566 | } |
567 | |
568 | impl<Fut> FuturesUnordered<Fut> { |
569 | /// Clears the set, removing all futures. |
570 | pub fn clear(&mut self) { |
571 | *self = Self::new(); |
572 | } |
573 | } |
574 | |
575 | impl<Fut> Drop for FuturesUnordered<Fut> { |
576 | fn drop(&mut self) { |
577 | // Before the strong reference to the queue is dropped we need all |
578 | // futures to be dropped. See note at the bottom of this method. |
579 | // |
580 | // If there is a panic before this completes, we leak the queue. |
581 | struct LeakQueueOnDrop<'a, Fut>(&'a mut FuturesUnordered<Fut>); |
582 | impl<Fut> Drop for LeakQueueOnDrop<'_, Fut> { |
583 | fn drop(&mut self) { |
584 | mem::forget(Arc::clone(&self.0.ready_to_run_queue)); |
585 | } |
586 | } |
587 | let guard = LeakQueueOnDrop(self); |
588 | // When a `FuturesUnordered` is dropped we want to drop all futures |
589 | // associated with it. At the same time though there may be tons of |
590 | // wakers flying around which contain `Task<Fut>` references |
591 | // inside them. We'll let those naturally get deallocated. |
592 | while !guard.0.head_all.get_mut().is_null() { |
593 | let head = *guard.0.head_all.get_mut(); |
594 | let task = unsafe { guard.0.unlink(head) }; |
595 | guard.0.release_task(task); |
596 | } |
597 | mem::forget(guard); // safe to release strong reference to queue |
598 | |
599 | // Note that at this point we could still have a bunch of tasks in the |
600 | // ready to run queue. None of those tasks, however, have futures |
601 | // associated with them so they're safe to destroy on any thread. At |
602 | // this point the `FuturesUnordered` struct, the owner of the one strong |
603 | // reference to the ready to run queue will drop the strong reference. |
604 | // At that point whichever thread releases the strong refcount last (be |
605 | // it this thread or some other thread as part of an `upgrade`) will |
606 | // clear out the ready to run queue and free all remaining tasks. |
607 | // |
608 | // While that freeing operation isn't guaranteed to happen here, it's |
609 | // guaranteed to happen "promptly" as no more "blocking work" will |
610 | // happen while there's a strong refcount held. |
611 | } |
612 | } |
613 | |
614 | impl<'a, Fut: Unpin> IntoIterator for &'a FuturesUnordered<Fut> { |
615 | type Item = &'a Fut; |
616 | type IntoIter = Iter<'a, Fut>; |
617 | |
618 | fn into_iter(self) -> Self::IntoIter { |
619 | self.iter() |
620 | } |
621 | } |
622 | |
623 | impl<'a, Fut: Unpin> IntoIterator for &'a mut FuturesUnordered<Fut> { |
624 | type Item = &'a mut Fut; |
625 | type IntoIter = IterMut<'a, Fut>; |
626 | |
627 | fn into_iter(self) -> Self::IntoIter { |
628 | self.iter_mut() |
629 | } |
630 | } |
631 | |
632 | impl<Fut: Unpin> IntoIterator for FuturesUnordered<Fut> { |
633 | type Item = Fut; |
634 | type IntoIter = IntoIter<Fut>; |
635 | |
636 | fn into_iter(mut self) -> Self::IntoIter { |
637 | // `head_all` can be accessed directly and we don't need to spin on |
638 | // `Task::next_all` since we have exclusive access to the set. |
639 | let task: *mut Task = *self.head_all.get_mut(); |
640 | let len: usize = if task.is_null() { 0 } else { unsafe { *(*task).len_all.get() } }; |
641 | |
642 | IntoIter { len, inner: self } |
643 | } |
644 | } |
645 | |
646 | impl<Fut> FromIterator<Fut> for FuturesUnordered<Fut> { |
647 | fn from_iter<I>(iter: I) -> Self |
648 | where |
649 | I: IntoIterator<Item = Fut>, |
650 | { |
651 | let acc: FuturesUnordered = Self::new(); |
652 | iter.into_iter().fold(init:acc, |acc: FuturesUnordered, item: Fut| { |
653 | acc.push(future:item); |
654 | acc |
655 | }) |
656 | } |
657 | } |
658 | |
659 | impl<Fut: Future> FusedStream for FuturesUnordered<Fut> { |
660 | fn is_terminated(&self) -> bool { |
661 | self.is_terminated.load(order:Relaxed) |
662 | } |
663 | } |
664 | |
665 | impl<Fut> Extend<Fut> for FuturesUnordered<Fut> { |
666 | fn extend<I>(&mut self, iter: I) |
667 | where |
668 | I: IntoIterator<Item = Fut>, |
669 | { |
670 | for item: Fut in iter { |
671 | self.push(future:item); |
672 | } |
673 | } |
674 | } |
675 | |