| 1 | //! Implementations that just need to read from a file |
| 2 | use crate::Error; |
| 3 | use core::{ |
| 4 | ffi::c_void, |
| 5 | mem::MaybeUninit, |
| 6 | sync::atomic::{AtomicI32, Ordering}, |
| 7 | }; |
| 8 | |
| 9 | #[cfg (not(any(target_os = "android" , target_os = "linux" )))] |
| 10 | pub use crate::util::{inner_u32, inner_u64}; |
| 11 | |
| 12 | #[path = "../util_libc.rs" ] |
| 13 | pub(super) mod util_libc; |
| 14 | |
| 15 | /// For all platforms, we use `/dev/urandom` rather than `/dev/random`. |
| 16 | /// For more information see the linked man pages in lib.rs. |
| 17 | /// - On Linux, "/dev/urandom is preferred and sufficient in all use cases". |
| 18 | /// - On Redox, only /dev/urandom is provided. |
| 19 | /// - On AIX, /dev/urandom will "provide cryptographically secure output". |
| 20 | /// - On Haiku and QNX Neutrino they are identical. |
| 21 | const FILE_PATH: &[u8] = b"/dev/urandom \0" ; |
| 22 | |
| 23 | // File descriptor is a "nonnegative integer", so we can safely use negative sentinel values. |
| 24 | const FD_UNINIT: libc::c_int = -1; |
| 25 | const FD_ONGOING_INIT: libc::c_int = -2; |
| 26 | |
| 27 | // In theory `libc::c_int` could be something other than `i32`, but for the |
| 28 | // targets we currently support that use `use_file`, it is always `i32`. |
| 29 | // If/when we add support for a target where that isn't the case, we may |
| 30 | // need to use a different atomic type or make other accomodations. The |
| 31 | // compiler will let us know if/when that is the case, because the |
| 32 | // `FD.store(fd)` would fail to compile. |
| 33 | // |
| 34 | // The opening of the file, by libc/libstd/etc. may write some unknown |
| 35 | // state into in-process memory. (Such state may include some sanitizer |
| 36 | // bookkeeping, or we might be operating in a unikernal-like environment |
| 37 | // where all the "kernel" file descriptor bookkeeping is done in our |
| 38 | // process.) `get_fd_locked` stores into FD using `Ordering::Release` to |
| 39 | // ensure any such state is synchronized. `get_fd` loads from `FD` with |
| 40 | // `Ordering::Acquire` to synchronize with it. |
| 41 | static FD: AtomicI32 = AtomicI32::new(FD_UNINIT); |
| 42 | |
| 43 | #[inline ] |
| 44 | pub fn fill_inner(dest: &mut [MaybeUninit<u8>]) -> Result<(), Error> { |
| 45 | let mut fd: i32 = FD.load(order:Ordering::Acquire); |
| 46 | if fd == FD_UNINIT || fd == FD_ONGOING_INIT { |
| 47 | fd = open_or_wait()?; |
| 48 | } |
| 49 | util_libc::sys_fill_exact(buf:dest, |buf: &mut [MaybeUninit]| unsafe { |
| 50 | libc::read(fd, buf.as_mut_ptr().cast::<c_void>(), count:buf.len()) |
| 51 | }) |
| 52 | } |
| 53 | |
| 54 | /// Open a file in read-only mode. |
| 55 | /// |
| 56 | /// # Panics |
| 57 | /// If `path` does not contain any zeros. |
| 58 | // TODO: Move `path` to `CStr` and use `CStr::from_bytes_until_nul` (MSRV 1.69) |
| 59 | // or C-string literals (MSRV 1.77) for statics |
| 60 | fn open_readonly(path: &[u8]) -> Result<libc::c_int, Error> { |
| 61 | assert!(path.contains(&0)); |
| 62 | loop { |
| 63 | let fd: i32 = unsafe { |
| 64 | libc::open( |
| 65 | path.as_ptr().cast::<libc::c_char>(), |
| 66 | oflag:libc::O_RDONLY | libc::O_CLOEXEC, |
| 67 | ) |
| 68 | }; |
| 69 | if fd >= 0 { |
| 70 | return Ok(fd); |
| 71 | } |
| 72 | let err: Error = util_libc::last_os_error(); |
| 73 | // We should try again if open() was interrupted. |
| 74 | if err.raw_os_error() != Some(libc::EINTR) { |
| 75 | return Err(err); |
| 76 | } |
| 77 | } |
| 78 | } |
| 79 | |
| 80 | #[cold ] |
| 81 | #[inline (never)] |
| 82 | fn open_or_wait() -> Result<libc::c_int, Error> { |
| 83 | loop { |
| 84 | match FD.load(Ordering::Acquire) { |
| 85 | FD_UNINIT => { |
| 86 | let res = FD.compare_exchange_weak( |
| 87 | FD_UNINIT, |
| 88 | FD_ONGOING_INIT, |
| 89 | Ordering::AcqRel, |
| 90 | Ordering::Relaxed, |
| 91 | ); |
| 92 | if res.is_ok() { |
| 93 | break; |
| 94 | } |
| 95 | } |
| 96 | FD_ONGOING_INIT => sync::wait(), |
| 97 | fd => return Ok(fd), |
| 98 | } |
| 99 | } |
| 100 | |
| 101 | let res = open_fd(); |
| 102 | let val = match res { |
| 103 | Ok(fd) => fd, |
| 104 | Err(_) => FD_UNINIT, |
| 105 | }; |
| 106 | FD.store(val, Ordering::Release); |
| 107 | |
| 108 | // On non-Linux targets `wait` is just 1 ms sleep, |
| 109 | // so we don't need any explicit wake up in addition |
| 110 | // to updating value of `FD`. |
| 111 | #[cfg (any(target_os = "android" , target_os = "linux" ))] |
| 112 | sync::wake(); |
| 113 | |
| 114 | res |
| 115 | } |
| 116 | |
| 117 | fn open_fd() -> Result<libc::c_int, Error> { |
| 118 | #[cfg (any(target_os = "android" , target_os = "linux" ))] |
| 119 | sync::wait_until_rng_ready()?; |
| 120 | let fd: i32 = open_readonly(FILE_PATH)?; |
| 121 | debug_assert!(fd >= 0); |
| 122 | Ok(fd) |
| 123 | } |
| 124 | |
| 125 | #[cfg (not(any(target_os = "android" , target_os = "linux" )))] |
| 126 | mod sync { |
| 127 | /// Sleep 1 ms before checking `FD` again. |
| 128 | /// |
| 129 | /// On non-Linux targets the critical section only opens file, |
| 130 | /// which should not block, so in the unlikely contended case, |
| 131 | /// we can sleep-wait for the opening operation to finish. |
| 132 | pub(super) fn wait() { |
| 133 | let rqtp = libc::timespec { |
| 134 | tv_sec: 0, |
| 135 | tv_nsec: 1_000_000, |
| 136 | }; |
| 137 | let mut rmtp = libc::timespec { |
| 138 | tv_sec: 0, |
| 139 | tv_nsec: 0, |
| 140 | }; |
| 141 | // We do not care if sleep gets interrupted, so the return value is ignored |
| 142 | unsafe { |
| 143 | libc::nanosleep(&rqtp, &mut rmtp); |
| 144 | } |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | #[cfg (any(target_os = "android" , target_os = "linux" ))] |
| 149 | mod sync { |
| 150 | use super::{open_readonly, util_libc::last_os_error, Error, FD, FD_ONGOING_INIT}; |
| 151 | |
| 152 | /// Wait for atomic `FD` to change value from `FD_ONGOING_INIT` to something else. |
| 153 | /// |
| 154 | /// Futex syscall with `FUTEX_WAIT` op puts the current thread to sleep |
| 155 | /// until futex syscall with `FUTEX_WAKE` op gets executed for `FD`. |
| 156 | /// |
| 157 | /// For more information read: https://www.man7.org/linux/man-pages/man2/futex.2.html |
| 158 | pub(super) fn wait() { |
| 159 | let op = libc::FUTEX_WAIT | libc::FUTEX_PRIVATE_FLAG; |
| 160 | let timeout_ptr = core::ptr::null::<libc::timespec>(); |
| 161 | let ret = unsafe { libc::syscall(libc::SYS_futex, &FD, op, FD_ONGOING_INIT, timeout_ptr) }; |
| 162 | // FUTEX_WAIT should return either 0 or EAGAIN error |
| 163 | debug_assert!({ |
| 164 | match ret { |
| 165 | 0 => true, |
| 166 | -1 => last_os_error().raw_os_error() == Some(libc::EAGAIN), |
| 167 | _ => false, |
| 168 | } |
| 169 | }); |
| 170 | } |
| 171 | |
| 172 | /// Wake up all threads which wait for value of atomic `FD` to change. |
| 173 | pub(super) fn wake() { |
| 174 | let op = libc::FUTEX_WAKE | libc::FUTEX_PRIVATE_FLAG; |
| 175 | let ret = unsafe { libc::syscall(libc::SYS_futex, &FD, op, libc::INT_MAX) }; |
| 176 | debug_assert!(ret >= 0); |
| 177 | } |
| 178 | |
| 179 | // Polls /dev/random to make sure it is ok to read from /dev/urandom. |
| 180 | // |
| 181 | // Polling avoids draining the estimated entropy from /dev/random; |
| 182 | // short-lived processes reading even a single byte from /dev/random could |
| 183 | // be problematic if they are being executed faster than entropy is being |
| 184 | // collected. |
| 185 | // |
| 186 | // OTOH, reading a byte instead of polling is more compatible with |
| 187 | // sandboxes that disallow `poll()` but which allow reading /dev/random, |
| 188 | // e.g. sandboxes that assume that `poll()` is for network I/O. This way, |
| 189 | // fewer applications will have to insert pre-sandbox-initialization logic. |
| 190 | // Often (blocking) file I/O is not allowed in such early phases of an |
| 191 | // application for performance and/or security reasons. |
| 192 | // |
| 193 | // It is hard to write a sandbox policy to support `libc::poll()` because |
| 194 | // it may invoke the `poll`, `ppoll`, `ppoll_time64` (since Linux 5.1, with |
| 195 | // newer versions of glibc), and/or (rarely, and probably only on ancient |
| 196 | // systems) `select`. depending on the libc implementation (e.g. glibc vs |
| 197 | // musl), libc version, potentially the kernel version at runtime, and/or |
| 198 | // the target architecture. |
| 199 | // |
| 200 | // BoringSSL and libstd don't try to protect against insecure output from |
| 201 | // `/dev/urandom'; they don't open `/dev/random` at all. |
| 202 | // |
| 203 | // OpenSSL uses `libc::select()` unless the `dev/random` file descriptor |
| 204 | // is too large; if it is too large then it does what we do here. |
| 205 | // |
| 206 | // libsodium uses `libc::poll` similarly to this. |
| 207 | pub(super) fn wait_until_rng_ready() -> Result<(), Error> { |
| 208 | let fd = open_readonly(b"/dev/random \0" )?; |
| 209 | let mut pfd = libc::pollfd { |
| 210 | fd, |
| 211 | events: libc::POLLIN, |
| 212 | revents: 0, |
| 213 | }; |
| 214 | |
| 215 | let res = loop { |
| 216 | // A negative timeout means an infinite timeout. |
| 217 | let res = unsafe { libc::poll(&mut pfd, 1, -1) }; |
| 218 | if res >= 0 { |
| 219 | // We only used one fd, and cannot timeout. |
| 220 | debug_assert_eq!(res, 1); |
| 221 | break Ok(()); |
| 222 | } |
| 223 | let err = last_os_error(); |
| 224 | // Assuming that `poll` is called correctly, |
| 225 | // on Linux it can return only EINTR and ENOMEM errors. |
| 226 | match err.raw_os_error() { |
| 227 | Some(libc::EINTR) => continue, |
| 228 | _ => break Err(err), |
| 229 | } |
| 230 | }; |
| 231 | unsafe { libc::close(fd) }; |
| 232 | res |
| 233 | } |
| 234 | } |
| 235 | |