| 1 | use std::borrow::Cow; |
| 2 | use std::io; |
| 3 | use std::mem; |
| 4 | use std::iter; |
| 5 | use crate::common::Frame; |
| 6 | use crate::MemoryLimit; |
| 7 | |
| 8 | use super::decoder::{ |
| 9 | PLTE_CHANNELS, DecodingError, OutputBuffer |
| 10 | }; |
| 11 | |
| 12 | pub(crate) const N_CHANNELS: usize = 4; |
| 13 | |
| 14 | /// Output mode for the image data |
| 15 | #[derive (Clone, Copy, Debug, PartialEq)] |
| 16 | #[repr (u8)] |
| 17 | pub enum ColorOutput { |
| 18 | /// The decoder expands the image data to 32bit RGBA. |
| 19 | /// This affects: |
| 20 | /// |
| 21 | /// - The buffer buffer of the `Frame` returned by [`Decoder::read_next_frame`]. |
| 22 | /// - `Decoder::fill_buffer`, `Decoder::buffer_size` and `Decoder::line_length`. |
| 23 | RGBA = 0, |
| 24 | /// The decoder returns the raw indexed data. |
| 25 | Indexed = 1, |
| 26 | } |
| 27 | |
| 28 | pub(crate) type FillBufferCallback<'a> = &'a mut dyn FnMut(&mut OutputBuffer<'_>) -> Result<usize, DecodingError>; |
| 29 | |
| 30 | /// Deinterlaces and expands to RGBA if needed |
| 31 | pub(crate) struct PixelConverter { |
| 32 | memory_limit: MemoryLimit, |
| 33 | color_output: ColorOutput, |
| 34 | buffer: Vec<u8>, |
| 35 | global_palette: Option<Vec<u8>>, |
| 36 | } |
| 37 | |
| 38 | impl PixelConverter { |
| 39 | pub(crate) fn new(color_output: ColorOutput, memory_limit: MemoryLimit) -> Self { |
| 40 | Self { |
| 41 | memory_limit, |
| 42 | color_output, |
| 43 | buffer: Vec::new(), |
| 44 | global_palette: None, |
| 45 | } |
| 46 | } |
| 47 | |
| 48 | pub(crate) fn check_buffer_size(&mut self, frame: &Frame<'_>) -> Result<usize, DecodingError> { |
| 49 | let pixel_bytes = self.memory_limit |
| 50 | .buffer_size(self.color_output, frame.width, frame.height) |
| 51 | .ok_or_else(|| io::Error::new(io::ErrorKind::OutOfMemory, "image is too large" ))?; |
| 52 | |
| 53 | debug_assert_eq!( |
| 54 | pixel_bytes, self.buffer_size(frame).unwrap(), |
| 55 | "Checked computation diverges from required buffer size" |
| 56 | ); |
| 57 | Ok(pixel_bytes) |
| 58 | } |
| 59 | |
| 60 | #[inline ] |
| 61 | pub(crate) fn read_frame(&mut self, frame: &mut Frame<'_>, data_callback: FillBufferCallback<'_>) -> Result<(), DecodingError> { |
| 62 | let pixel_bytes = self.check_buffer_size(frame)?; |
| 63 | let mut vec = match mem::replace(&mut frame.buffer, Cow::Borrowed(&[])) { |
| 64 | // reuse buffer if possible without reallocating |
| 65 | Cow::Owned(mut vec) if vec.capacity() >= pixel_bytes => { |
| 66 | vec.resize(pixel_bytes, 0); |
| 67 | vec |
| 68 | }, |
| 69 | // resizing would realloc anyway, and 0-init is faster than a copy |
| 70 | _ => vec![0; pixel_bytes], |
| 71 | }; |
| 72 | self.read_into_buffer(frame, &mut vec, data_callback)?; |
| 73 | frame.buffer = Cow::Owned(vec); |
| 74 | frame.interlaced = false; |
| 75 | Ok(()) |
| 76 | } |
| 77 | |
| 78 | #[inline ] |
| 79 | pub(crate) fn buffer_size(&self, frame: &Frame<'_>) -> Option<usize> { |
| 80 | self.line_length(frame).checked_mul(frame.height as usize) |
| 81 | } |
| 82 | |
| 83 | #[inline ] |
| 84 | pub(crate) fn line_length(&self, frame: &Frame<'_>) -> usize { |
| 85 | use self::ColorOutput::*; |
| 86 | match self.color_output { |
| 87 | RGBA => frame.width as usize * N_CHANNELS, |
| 88 | Indexed => frame.width as usize, |
| 89 | } |
| 90 | } |
| 91 | |
| 92 | /// Use `read_into_buffer` to deinterlace |
| 93 | #[inline (never)] |
| 94 | pub(crate) fn fill_buffer(&mut self, current_frame: &Frame<'_>, mut buf: &mut [u8], data_callback: FillBufferCallback<'_>) -> Result<bool, DecodingError> { |
| 95 | loop { |
| 96 | let decode_into = match self.color_output { |
| 97 | // When decoding indexed data, LZW can write the pixels directly |
| 98 | ColorOutput::Indexed => &mut buf[..], |
| 99 | // When decoding RGBA, the pixel data will be expanded by a factor of 4, |
| 100 | // and it's simpler to decode indexed pixels to another buffer first |
| 101 | ColorOutput::RGBA => { |
| 102 | let buffer_size = buf.len() / N_CHANNELS; |
| 103 | if buffer_size == 0 { |
| 104 | return Err(DecodingError::format("odd-sized buffer" )); |
| 105 | } |
| 106 | if self.buffer.len() < buffer_size { |
| 107 | self.buffer.resize(buffer_size, 0); |
| 108 | } |
| 109 | &mut self.buffer[..buffer_size] |
| 110 | } |
| 111 | }; |
| 112 | match data_callback(&mut OutputBuffer::Slice(decode_into))? { |
| 113 | 0 => return Ok(false), |
| 114 | bytes_decoded => { |
| 115 | match self.color_output { |
| 116 | ColorOutput::RGBA => { |
| 117 | let transparent = current_frame.transparent; |
| 118 | let palette: &[u8] = current_frame.palette.as_deref() |
| 119 | .or(self.global_palette.as_deref()) |
| 120 | .unwrap_or_default(); // next_frame_info already checked it won't happen |
| 121 | |
| 122 | let (pixels, rest) = buf.split_at_mut(bytes_decoded * N_CHANNELS); |
| 123 | buf = rest; |
| 124 | |
| 125 | for (rgba, idx) in pixels.chunks_exact_mut(N_CHANNELS).zip(self.buffer.iter().copied().take(bytes_decoded)) { |
| 126 | let plte_offset = PLTE_CHANNELS * idx as usize; |
| 127 | if let Some(colors) = palette.get(plte_offset..plte_offset+PLTE_CHANNELS) { |
| 128 | rgba[0] = colors[0]; |
| 129 | rgba[1] = colors[1]; |
| 130 | rgba[2] = colors[2]; |
| 131 | rgba[3] = if let Some(t) = transparent { |
| 132 | if t == idx { 0x00 } else { 0xFF } |
| 133 | } else { |
| 134 | 0xFF |
| 135 | }; |
| 136 | } |
| 137 | } |
| 138 | }, |
| 139 | ColorOutput::Indexed => { |
| 140 | buf = &mut buf[bytes_decoded..]; |
| 141 | } |
| 142 | } |
| 143 | if buf.is_empty() { |
| 144 | return Ok(true); |
| 145 | } |
| 146 | }, |
| 147 | } |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | pub(crate) fn global_palette(&self) -> Option<&[u8]> { |
| 152 | self.global_palette.as_deref() |
| 153 | } |
| 154 | |
| 155 | pub(crate) fn set_global_palette(&mut self, palette: Vec<u8>) { |
| 156 | self.global_palette = if !palette.is_empty() { |
| 157 | Some(palette) |
| 158 | } else { |
| 159 | None |
| 160 | }; |
| 161 | } |
| 162 | |
| 163 | /// Applies deinterlacing |
| 164 | /// |
| 165 | /// Set `frame.interlaced = false` afterwards if you're putting the buffer back into the `Frame` |
| 166 | pub(crate) fn read_into_buffer(&mut self, frame: &Frame<'_>, buf: &mut [u8], data_callback: FillBufferCallback<'_>) -> Result<(), DecodingError> { |
| 167 | if frame.interlaced { |
| 168 | let width = self.line_length(frame); |
| 169 | for row in (InterlaceIterator { len: frame.height, next: 0, pass: 0 }) { |
| 170 | // this can't overflow 32-bit, because row never equals (maximum) height |
| 171 | let start = row * width; |
| 172 | // Handle a too-small buffer and 32-bit usize overflow without panicking |
| 173 | let line = buf.get_mut(start..).and_then(|b| b.get_mut(..width)) |
| 174 | .ok_or_else(|| DecodingError::format("buffer too small" ))?; |
| 175 | if !self.fill_buffer(frame, line, data_callback)? { |
| 176 | return Err(DecodingError::format("image truncated" )); |
| 177 | } |
| 178 | } |
| 179 | } else { |
| 180 | let buf = self.buffer_size(frame).and_then(|buffer_size| buf.get_mut(..buffer_size)) |
| 181 | .ok_or_else(|| DecodingError::format("buffer too small" ))?; |
| 182 | if !self.fill_buffer(frame, buf, data_callback)? { |
| 183 | return Err(DecodingError::format("image truncated" )); |
| 184 | } |
| 185 | }; |
| 186 | Ok(()) |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | struct InterlaceIterator { |
| 191 | len: u16, |
| 192 | next: usize, |
| 193 | pass: usize, |
| 194 | } |
| 195 | |
| 196 | impl iter::Iterator for InterlaceIterator { |
| 197 | type Item = usize; |
| 198 | |
| 199 | #[inline ] |
| 200 | fn next(&mut self) -> Option<Self::Item> { |
| 201 | if self.len == 0 { |
| 202 | return None; |
| 203 | } |
| 204 | // although the pass never goes out of bounds thanks to len==0, |
| 205 | // the optimizer doesn't see it. get()? avoids costlier panicking code. |
| 206 | let mut next: usize = self.next + *[8, 8, 4, 2].get(self.pass)?; |
| 207 | while next >= self.len as usize { |
| 208 | debug_assert!(self.pass < 4); |
| 209 | next = *[4, 2, 1, 0].get(self.pass)?; |
| 210 | self.pass += 1; |
| 211 | } |
| 212 | mem::swap(&mut next, &mut self.next); |
| 213 | Some(next) |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | #[cfg (test)] |
| 218 | mod test { |
| 219 | use super::InterlaceIterator; |
| 220 | |
| 221 | #[test ] |
| 222 | fn test_interlace_iterator() { |
| 223 | for &(len, expect) in &[ |
| 224 | (0, &[][..]), |
| 225 | (1, &[0][..]), |
| 226 | (2, &[0, 1][..]), |
| 227 | (3, &[0, 2, 1][..]), |
| 228 | (4, &[0, 2, 1, 3][..]), |
| 229 | (5, &[0, 4, 2, 1, 3][..]), |
| 230 | (6, &[0, 4, 2, 1, 3, 5][..]), |
| 231 | (7, &[0, 4, 2, 6, 1, 3, 5][..]), |
| 232 | (8, &[0, 4, 2, 6, 1, 3, 5, 7][..]), |
| 233 | (9, &[0, 8, 4, 2, 6, 1, 3, 5, 7][..]), |
| 234 | (10, &[0, 8, 4, 2, 6, 1, 3, 5, 7, 9][..]), |
| 235 | (11, &[0, 8, 4, 2, 6, 10, 1, 3, 5, 7, 9][..]), |
| 236 | (12, &[0, 8, 4, 2, 6, 10, 1, 3, 5, 7, 9, 11][..]), |
| 237 | (13, &[0, 8, 4, 12, 2, 6, 10, 1, 3, 5, 7, 9, 11][..]), |
| 238 | (14, &[0, 8, 4, 12, 2, 6, 10, 1, 3, 5, 7, 9, 11, 13][..]), |
| 239 | (15, &[0, 8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13][..]), |
| 240 | (16, &[0, 8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15][..]), |
| 241 | (17, &[0, 8, 16, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15][..]), |
| 242 | ] { |
| 243 | let iter = InterlaceIterator { len, next: 0, pass: 0 }; |
| 244 | let lines = iter.collect::<Vec<_>>(); |
| 245 | assert_eq!(lines, expect); |
| 246 | } |
| 247 | } |
| 248 | |
| 249 | #[test ] |
| 250 | fn interlace_max() { |
| 251 | let iter = InterlaceIterator { len: 0xFFFF, next: 0, pass: 0 }; |
| 252 | assert_eq!(65533, iter.last().unwrap()); |
| 253 | } |
| 254 | } |
| 255 | |