1 | use core::{mem::MaybeUninit, ptr}; |
2 | |
3 | #[cfg (target_arch = "x86" )] |
4 | use core::arch::x86::{ |
5 | __m128, __m128i, __m256, _mm256_cvtph_ps, _mm256_cvtps_ph, _mm_cvtph_ps, |
6 | _MM_FROUND_TO_NEAREST_INT, |
7 | }; |
8 | #[cfg (target_arch = "x86_64" )] |
9 | use core::arch::x86_64::{ |
10 | __m128, __m128i, __m256, _mm256_cvtph_ps, _mm256_cvtps_ph, _mm_cvtph_ps, _mm_cvtps_ph, |
11 | _MM_FROUND_TO_NEAREST_INT, |
12 | }; |
13 | |
14 | #[cfg (target_arch = "x86" )] |
15 | use core::arch::x86::_mm_cvtps_ph; |
16 | |
17 | use super::convert_chunked_slice_8; |
18 | |
19 | /////////////// x86/x86_64 f16c //////////////// |
20 | |
21 | #[target_feature (enable = "f16c" )] |
22 | #[inline ] |
23 | pub(super) unsafe fn f16_to_f32_x86_f16c(i: u16) -> f32 { |
24 | let mut vec: MaybeUninit<__m128i> = MaybeUninit::<__m128i>::zeroed(); |
25 | vec.as_mut_ptr().cast::<u16>().write(val:i); |
26 | let retval: __m128 = _mm_cvtph_ps(vec.assume_init()); |
27 | *(&retval as *const __m128).cast() |
28 | } |
29 | |
30 | #[target_feature (enable = "f16c" )] |
31 | #[inline ] |
32 | pub(super) unsafe fn f32_to_f16_x86_f16c(f: f32) -> u16 { |
33 | let mut vec: MaybeUninit<__m128> = MaybeUninit::<__m128>::zeroed(); |
34 | vec.as_mut_ptr().cast::<f32>().write(val:f); |
35 | let retval: __m128i = _mm_cvtps_ph(vec.assume_init(), _MM_FROUND_TO_NEAREST_INT); |
36 | *(&retval as *const __m128i).cast() |
37 | } |
38 | |
39 | #[target_feature (enable = "f16c" )] |
40 | #[inline ] |
41 | pub(super) unsafe fn f16x4_to_f32x4_x86_f16c(v: &[u16; 4]) -> [f32; 4] { |
42 | let mut vec: MaybeUninit<__m128i> = MaybeUninit::<__m128i>::zeroed(); |
43 | ptr::copy_nonoverlapping(src:v.as_ptr(), dst:vec.as_mut_ptr().cast(), count:4); |
44 | let retval: __m128 = _mm_cvtph_ps(vec.assume_init()); |
45 | *(&retval as *const __m128).cast() |
46 | } |
47 | |
48 | #[target_feature (enable = "f16c" )] |
49 | #[inline ] |
50 | pub(super) unsafe fn f32x4_to_f16x4_x86_f16c(v: &[f32; 4]) -> [u16; 4] { |
51 | let mut vec: MaybeUninit<__m128> = MaybeUninit::<__m128>::uninit(); |
52 | ptr::copy_nonoverlapping(src:v.as_ptr(), dst:vec.as_mut_ptr().cast(), count:4); |
53 | let retval: __m128i = _mm_cvtps_ph(vec.assume_init(), _MM_FROUND_TO_NEAREST_INT); |
54 | *(&retval as *const __m128i).cast() |
55 | } |
56 | |
57 | #[target_feature (enable = "f16c" )] |
58 | #[inline ] |
59 | pub(super) unsafe fn f16x4_to_f64x4_x86_f16c(v: &[u16; 4]) -> [f64; 4] { |
60 | let array: [f32; 4] = f16x4_to_f32x4_x86_f16c(v); |
61 | // Let compiler vectorize this regular cast for now. |
62 | // TODO: investigate auto-detecting sse2/avx convert features |
63 | [ |
64 | array[0] as f64, |
65 | array[1] as f64, |
66 | array[2] as f64, |
67 | array[3] as f64, |
68 | ] |
69 | } |
70 | |
71 | #[target_feature (enable = "f16c" )] |
72 | #[inline ] |
73 | pub(super) unsafe fn f64x4_to_f16x4_x86_f16c(v: &[f64; 4]) -> [u16; 4] { |
74 | // Let compiler vectorize this regular cast for now. |
75 | // TODO: investigate auto-detecting sse2/avx convert features |
76 | let v: [f32; 4] = [v[0] as f32, v[1] as f32, v[2] as f32, v[3] as f32]; |
77 | f32x4_to_f16x4_x86_f16c(&v) |
78 | } |
79 | |
80 | #[target_feature (enable = "f16c" )] |
81 | #[inline ] |
82 | pub(super) unsafe fn f16x8_to_f32x8_x86_f16c(v: &[u16; 8]) -> [f32; 8] { |
83 | let mut vec: MaybeUninit<__m128i> = MaybeUninit::<__m128i>::zeroed(); |
84 | ptr::copy_nonoverlapping(src:v.as_ptr(), dst:vec.as_mut_ptr().cast(), count:8); |
85 | let retval: __m256 = _mm256_cvtph_ps(vec.assume_init()); |
86 | *(&retval as *const __m256).cast() |
87 | } |
88 | |
89 | #[target_feature (enable = "f16c" )] |
90 | #[inline ] |
91 | pub(super) unsafe fn f32x8_to_f16x8_x86_f16c(v: &[f32; 8]) -> [u16; 8] { |
92 | let mut vec: MaybeUninit<__m256> = MaybeUninit::<__m256>::uninit(); |
93 | ptr::copy_nonoverlapping(src:v.as_ptr(), dst:vec.as_mut_ptr().cast(), count:8); |
94 | let retval: __m128i = _mm256_cvtps_ph(vec.assume_init(), _MM_FROUND_TO_NEAREST_INT); |
95 | *(&retval as *const __m128i).cast() |
96 | } |
97 | |
98 | #[target_feature (enable = "f16c" )] |
99 | #[inline ] |
100 | pub(super) unsafe fn f16x8_to_f64x8_x86_f16c(v: &[u16; 8]) -> [f64; 8] { |
101 | let array: [f32; 8] = f16x8_to_f32x8_x86_f16c(v); |
102 | // Let compiler vectorize this regular cast for now. |
103 | // TODO: investigate auto-detecting sse2/avx convert features |
104 | [ |
105 | array[0] as f64, |
106 | array[1] as f64, |
107 | array[2] as f64, |
108 | array[3] as f64, |
109 | array[4] as f64, |
110 | array[5] as f64, |
111 | array[6] as f64, |
112 | array[7] as f64, |
113 | ] |
114 | } |
115 | |
116 | #[target_feature (enable = "f16c" )] |
117 | #[inline ] |
118 | pub(super) unsafe fn f64x8_to_f16x8_x86_f16c(v: &[f64; 8]) -> [u16; 8] { |
119 | // Let compiler vectorize this regular cast for now. |
120 | // TODO: investigate auto-detecting sse2/avx convert features |
121 | let v: [f32; 8] = [ |
122 | v[0] as f32, |
123 | v[1] as f32, |
124 | v[2] as f32, |
125 | v[3] as f32, |
126 | v[4] as f32, |
127 | v[5] as f32, |
128 | v[6] as f32, |
129 | v[7] as f32, |
130 | ]; |
131 | f32x8_to_f16x8_x86_f16c(&v) |
132 | } |
133 | |