1 | use core::{mem::MaybeUninit, ptr};
|
2 |
|
3 | #[cfg (target_arch = "x86" )]
|
4 | use core::arch::x86::{
|
5 | __m128, __m128i, __m256, _mm256_cvtph_ps, _mm256_cvtps_ph, _mm_cvtph_ps,
|
6 | _MM_FROUND_TO_NEAREST_INT,
|
7 | };
|
8 | #[cfg (target_arch = "x86_64" )]
|
9 | use core::arch::x86_64::{
|
10 | __m128, __m128i, __m256, _mm256_cvtph_ps, _mm256_cvtps_ph, _mm_cvtph_ps, _mm_cvtps_ph,
|
11 | _MM_FROUND_TO_NEAREST_INT,
|
12 | };
|
13 |
|
14 | #[cfg (target_arch = "x86" )]
|
15 | use core::arch::x86::_mm_cvtps_ph;
|
16 |
|
17 | use super::convert_chunked_slice_8;
|
18 |
|
19 | /////////////// x86/x86_64 f16c ////////////////
|
20 |
|
21 | #[target_feature (enable = "f16c" )]
|
22 | #[inline ]
|
23 | pub(super) unsafe fn f16_to_f32_x86_f16c(i: u16) -> f32 {
|
24 | let mut vec: MaybeUninit<__m128i> = MaybeUninit::<__m128i>::zeroed();
|
25 | vec.as_mut_ptr().cast::<u16>().write(val:i);
|
26 | let retval: __m128 = _mm_cvtph_ps(vec.assume_init());
|
27 | *(&retval as *const __m128).cast()
|
28 | }
|
29 |
|
30 | #[target_feature (enable = "f16c" )]
|
31 | #[inline ]
|
32 | pub(super) unsafe fn f32_to_f16_x86_f16c(f: f32) -> u16 {
|
33 | let mut vec: MaybeUninit<__m128> = MaybeUninit::<__m128>::zeroed();
|
34 | vec.as_mut_ptr().cast::<f32>().write(val:f);
|
35 | let retval: __m128i = _mm_cvtps_ph(vec.assume_init(), _MM_FROUND_TO_NEAREST_INT);
|
36 | *(&retval as *const __m128i).cast()
|
37 | }
|
38 |
|
39 | #[target_feature (enable = "f16c" )]
|
40 | #[inline ]
|
41 | pub(super) unsafe fn f16x4_to_f32x4_x86_f16c(v: &[u16; 4]) -> [f32; 4] {
|
42 | let mut vec: MaybeUninit<__m128i> = MaybeUninit::<__m128i>::zeroed();
|
43 | ptr::copy_nonoverlapping(src:v.as_ptr(), dst:vec.as_mut_ptr().cast(), count:4);
|
44 | let retval: __m128 = _mm_cvtph_ps(vec.assume_init());
|
45 | *(&retval as *const __m128).cast()
|
46 | }
|
47 |
|
48 | #[target_feature (enable = "f16c" )]
|
49 | #[inline ]
|
50 | pub(super) unsafe fn f32x4_to_f16x4_x86_f16c(v: &[f32; 4]) -> [u16; 4] {
|
51 | let mut vec: MaybeUninit<__m128> = MaybeUninit::<__m128>::uninit();
|
52 | ptr::copy_nonoverlapping(src:v.as_ptr(), dst:vec.as_mut_ptr().cast(), count:4);
|
53 | let retval: __m128i = _mm_cvtps_ph(vec.assume_init(), _MM_FROUND_TO_NEAREST_INT);
|
54 | *(&retval as *const __m128i).cast()
|
55 | }
|
56 |
|
57 | #[target_feature (enable = "f16c" )]
|
58 | #[inline ]
|
59 | pub(super) unsafe fn f16x4_to_f64x4_x86_f16c(v: &[u16; 4]) -> [f64; 4] {
|
60 | let array: [f32; 4] = f16x4_to_f32x4_x86_f16c(v);
|
61 | // Let compiler vectorize this regular cast for now.
|
62 | // TODO: investigate auto-detecting sse2/avx convert features
|
63 | [
|
64 | array[0] as f64,
|
65 | array[1] as f64,
|
66 | array[2] as f64,
|
67 | array[3] as f64,
|
68 | ]
|
69 | }
|
70 |
|
71 | #[target_feature (enable = "f16c" )]
|
72 | #[inline ]
|
73 | pub(super) unsafe fn f64x4_to_f16x4_x86_f16c(v: &[f64; 4]) -> [u16; 4] {
|
74 | // Let compiler vectorize this regular cast for now.
|
75 | // TODO: investigate auto-detecting sse2/avx convert features
|
76 | let v: [f32; 4] = [v[0] as f32, v[1] as f32, v[2] as f32, v[3] as f32];
|
77 | f32x4_to_f16x4_x86_f16c(&v)
|
78 | }
|
79 |
|
80 | #[target_feature (enable = "f16c" )]
|
81 | #[inline ]
|
82 | pub(super) unsafe fn f16x8_to_f32x8_x86_f16c(v: &[u16; 8]) -> [f32; 8] {
|
83 | let mut vec: MaybeUninit<__m128i> = MaybeUninit::<__m128i>::zeroed();
|
84 | ptr::copy_nonoverlapping(src:v.as_ptr(), dst:vec.as_mut_ptr().cast(), count:8);
|
85 | let retval: __m256 = _mm256_cvtph_ps(vec.assume_init());
|
86 | *(&retval as *const __m256).cast()
|
87 | }
|
88 |
|
89 | #[target_feature (enable = "f16c" )]
|
90 | #[inline ]
|
91 | pub(super) unsafe fn f32x8_to_f16x8_x86_f16c(v: &[f32; 8]) -> [u16; 8] {
|
92 | let mut vec: MaybeUninit<__m256> = MaybeUninit::<__m256>::uninit();
|
93 | ptr::copy_nonoverlapping(src:v.as_ptr(), dst:vec.as_mut_ptr().cast(), count:8);
|
94 | let retval: __m128i = _mm256_cvtps_ph(vec.assume_init(), _MM_FROUND_TO_NEAREST_INT);
|
95 | *(&retval as *const __m128i).cast()
|
96 | }
|
97 |
|
98 | #[target_feature (enable = "f16c" )]
|
99 | #[inline ]
|
100 | pub(super) unsafe fn f16x8_to_f64x8_x86_f16c(v: &[u16; 8]) -> [f64; 8] {
|
101 | let array: [f32; 8] = f16x8_to_f32x8_x86_f16c(v);
|
102 | // Let compiler vectorize this regular cast for now.
|
103 | // TODO: investigate auto-detecting sse2/avx convert features
|
104 | [
|
105 | array[0] as f64,
|
106 | array[1] as f64,
|
107 | array[2] as f64,
|
108 | array[3] as f64,
|
109 | array[4] as f64,
|
110 | array[5] as f64,
|
111 | array[6] as f64,
|
112 | array[7] as f64,
|
113 | ]
|
114 | }
|
115 |
|
116 | #[target_feature (enable = "f16c" )]
|
117 | #[inline ]
|
118 | pub(super) unsafe fn f64x8_to_f16x8_x86_f16c(v: &[f64; 8]) -> [u16; 8] {
|
119 | // Let compiler vectorize this regular cast for now.
|
120 | // TODO: investigate auto-detecting sse2/avx convert features
|
121 | let v: [f32; 8] = [
|
122 | v[0] as f32,
|
123 | v[1] as f32,
|
124 | v[2] as f32,
|
125 | v[3] as f32,
|
126 | v[4] as f32,
|
127 | v[5] as f32,
|
128 | v[6] as f32,
|
129 | v[7] as f32,
|
130 | ];
|
131 | f32x8_to_f16x8_x86_f16c(&v)
|
132 | }
|
133 | |