1 | use std::cmp::{self, Ordering}; |
2 | use std::io::{self, Cursor, Read, Seek, SeekFrom}; |
3 | use std::iter::{repeat, Rev}; |
4 | use std::marker::PhantomData; |
5 | use std::slice::ChunksMut; |
6 | use std::{error, fmt, mem}; |
7 | |
8 | use byteorder::{LittleEndian, ReadBytesExt}; |
9 | |
10 | use crate::color::ColorType; |
11 | use crate::error::{ |
12 | DecodingError, ImageError, ImageResult, UnsupportedError, UnsupportedErrorKind, |
13 | }; |
14 | use crate::image::{self, ImageDecoder, ImageDecoderRect, ImageFormat, Progress}; |
15 | |
16 | const BITMAPCOREHEADER_SIZE: u32 = 12; |
17 | const BITMAPINFOHEADER_SIZE: u32 = 40; |
18 | const BITMAPV2HEADER_SIZE: u32 = 52; |
19 | const BITMAPV3HEADER_SIZE: u32 = 56; |
20 | const BITMAPV4HEADER_SIZE: u32 = 108; |
21 | const BITMAPV5HEADER_SIZE: u32 = 124; |
22 | |
23 | static LOOKUP_TABLE_3_BIT_TO_8_BIT: [u8; 8] = [0, 36, 73, 109, 146, 182, 219, 255]; |
24 | static LOOKUP_TABLE_4_BIT_TO_8_BIT: [u8; 16] = [ |
25 | 0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255, |
26 | ]; |
27 | static LOOKUP_TABLE_5_BIT_TO_8_BIT: [u8; 32] = [ |
28 | 0, 8, 16, 25, 33, 41, 49, 58, 66, 74, 82, 90, 99, 107, 115, 123, 132, 140, 148, 156, 165, 173, |
29 | 181, 189, 197, 206, 214, 222, 230, 239, 247, 255, |
30 | ]; |
31 | static LOOKUP_TABLE_6_BIT_TO_8_BIT: [u8; 64] = [ |
32 | 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, |
33 | 97, 101, 105, 109, 113, 117, 121, 125, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, |
34 | 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 215, 219, 223, 227, 231, 235, 239, 243, 247, |
35 | 251, 255, |
36 | ]; |
37 | |
38 | static R5_G5_B5_COLOR_MASK: Bitfields = Bitfields { |
39 | r: Bitfield { len: 5, shift: 10 }, |
40 | g: Bitfield { len: 5, shift: 5 }, |
41 | b: Bitfield { len: 5, shift: 0 }, |
42 | a: Bitfield { len: 0, shift: 0 }, |
43 | }; |
44 | const R8_G8_B8_COLOR_MASK: Bitfields = Bitfields { |
45 | r: Bitfield { len: 8, shift: 24 }, |
46 | g: Bitfield { len: 8, shift: 16 }, |
47 | b: Bitfield { len: 8, shift: 8 }, |
48 | a: Bitfield { len: 0, shift: 0 }, |
49 | }; |
50 | const R8_G8_B8_A8_COLOR_MASK: Bitfields = Bitfields { |
51 | r: Bitfield { len: 8, shift: 16 }, |
52 | g: Bitfield { len: 8, shift: 8 }, |
53 | b: Bitfield { len: 8, shift: 0 }, |
54 | a: Bitfield { len: 8, shift: 24 }, |
55 | }; |
56 | |
57 | const RLE_ESCAPE: u8 = 0; |
58 | const RLE_ESCAPE_EOL: u8 = 0; |
59 | const RLE_ESCAPE_EOF: u8 = 1; |
60 | const RLE_ESCAPE_DELTA: u8 = 2; |
61 | |
62 | /// The maximum width/height the decoder will process. |
63 | const MAX_WIDTH_HEIGHT: i32 = 0xFFFF; |
64 | |
65 | #[derive (PartialEq, Copy, Clone)] |
66 | enum ImageType { |
67 | Palette, |
68 | RGB16, |
69 | RGB24, |
70 | RGB32, |
71 | RGBA32, |
72 | RLE8, |
73 | RLE4, |
74 | Bitfields16, |
75 | Bitfields32, |
76 | } |
77 | |
78 | #[derive (PartialEq)] |
79 | enum BMPHeaderType { |
80 | Core, |
81 | Info, |
82 | V2, |
83 | V3, |
84 | V4, |
85 | V5, |
86 | } |
87 | |
88 | #[derive (PartialEq)] |
89 | enum FormatFullBytes { |
90 | RGB24, |
91 | RGB32, |
92 | RGBA32, |
93 | Format888, |
94 | } |
95 | |
96 | enum Chunker<'a> { |
97 | FromTop(ChunksMut<'a, u8>), |
98 | FromBottom(Rev<ChunksMut<'a, u8>>), |
99 | } |
100 | |
101 | pub(crate) struct RowIterator<'a> { |
102 | chunks: Chunker<'a>, |
103 | } |
104 | |
105 | impl<'a> Iterator for RowIterator<'a> { |
106 | type Item = &'a mut [u8]; |
107 | |
108 | #[inline (always)] |
109 | fn next(&mut self) -> Option<&'a mut [u8]> { |
110 | match self.chunks { |
111 | Chunker::FromTop(ref mut chunks: &mut ChunksMut<'_, u8>) => chunks.next(), |
112 | Chunker::FromBottom(ref mut chunks: impl Iterator ) => chunks.next(), |
113 | } |
114 | } |
115 | } |
116 | |
117 | /// All errors that can occur when attempting to parse a BMP |
118 | #[derive (Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] |
119 | enum DecoderError { |
120 | // Failed to decompress RLE data. |
121 | CorruptRleData, |
122 | |
123 | /// The bitfield mask interleaves set and unset bits |
124 | BitfieldMaskNonContiguous, |
125 | /// Bitfield mask invalid (e.g. too long for specified type) |
126 | BitfieldMaskInvalid, |
127 | /// Bitfield (of the specified width – 16- or 32-bit) mask not present |
128 | BitfieldMaskMissing(u32), |
129 | /// Bitfield (of the specified width – 16- or 32-bit) masks not present |
130 | BitfieldMasksMissing(u32), |
131 | |
132 | /// BMP's "BM" signature wrong or missing |
133 | BmpSignatureInvalid, |
134 | /// More than the exactly one allowed plane specified by the format |
135 | MoreThanOnePlane, |
136 | /// Invalid amount of bits per channel for the specified image type |
137 | InvalidChannelWidth(ChannelWidthError, u16), |
138 | |
139 | /// The width is negative |
140 | NegativeWidth(i32), |
141 | /// One of the dimensions is larger than a soft limit |
142 | ImageTooLarge(i32, i32), |
143 | /// The height is `i32::min_value()` |
144 | /// |
145 | /// General negative heights specify top-down DIBs |
146 | InvalidHeight, |
147 | |
148 | /// Specified image type is invalid for top-down BMPs (i.e. is compressed) |
149 | ImageTypeInvalidForTopDown(u32), |
150 | /// Image type not currently recognized by the decoder |
151 | ImageTypeUnknown(u32), |
152 | |
153 | /// Bitmap header smaller than the core header |
154 | HeaderTooSmall(u32), |
155 | |
156 | /// The palette is bigger than allowed by the bit count of the BMP |
157 | PaletteSizeExceeded { |
158 | colors_used: u32, |
159 | bit_count: u16, |
160 | }, |
161 | } |
162 | |
163 | impl fmt::Display for DecoderError { |
164 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
165 | match self { |
166 | DecoderError::CorruptRleData => f.write_str("Corrupt RLE data" ), |
167 | DecoderError::BitfieldMaskNonContiguous => f.write_str("Non-contiguous bitfield mask" ), |
168 | DecoderError::BitfieldMaskInvalid => f.write_str("Invalid bitfield mask" ), |
169 | DecoderError::BitfieldMaskMissing(bb) => { |
170 | f.write_fmt(format_args!("Missing {}-bit bitfield mask" , bb)) |
171 | } |
172 | DecoderError::BitfieldMasksMissing(bb) => { |
173 | f.write_fmt(format_args!("Missing {}-bit bitfield masks" , bb)) |
174 | } |
175 | DecoderError::BmpSignatureInvalid => f.write_str("BMP signature not found" ), |
176 | DecoderError::MoreThanOnePlane => f.write_str("More than one plane" ), |
177 | DecoderError::InvalidChannelWidth(tp, n) => { |
178 | f.write_fmt(format_args!("Invalid channel bit count for {}: {}" , tp, n)) |
179 | } |
180 | DecoderError::NegativeWidth(w) => f.write_fmt(format_args!("Negative width ( {})" , w)), |
181 | DecoderError::ImageTooLarge(w, h) => f.write_fmt(format_args!( |
182 | "Image too large (one of ( {}, {}) > soft limit of {})" , |
183 | w, h, MAX_WIDTH_HEIGHT |
184 | )), |
185 | DecoderError::InvalidHeight => f.write_str("Invalid height" ), |
186 | DecoderError::ImageTypeInvalidForTopDown(tp) => f.write_fmt(format_args!( |
187 | "Invalid image type {} for top-down image." , |
188 | tp |
189 | )), |
190 | DecoderError::ImageTypeUnknown(tp) => { |
191 | f.write_fmt(format_args!("Unknown image compression type {}" , tp)) |
192 | } |
193 | DecoderError::HeaderTooSmall(s) => { |
194 | f.write_fmt(format_args!("Bitmap header too small ( {} bytes)" , s)) |
195 | } |
196 | DecoderError::PaletteSizeExceeded { |
197 | colors_used, |
198 | bit_count, |
199 | } => f.write_fmt(format_args!( |
200 | "Palette size {} exceeds maximum size for BMP with bit count of {}" , |
201 | colors_used, bit_count |
202 | )), |
203 | } |
204 | } |
205 | } |
206 | |
207 | impl From<DecoderError> for ImageError { |
208 | fn from(e: DecoderError) -> ImageError { |
209 | ImageError::Decoding(DecodingError::new(format:ImageFormat::Bmp.into(), err:e)) |
210 | } |
211 | } |
212 | |
213 | impl error::Error for DecoderError {} |
214 | |
215 | /// Distinct image types whose saved channel width can be invalid |
216 | #[derive (Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] |
217 | enum ChannelWidthError { |
218 | /// RGB |
219 | Rgb, |
220 | /// 8-bit run length encoding |
221 | Rle8, |
222 | /// 4-bit run length encoding |
223 | Rle4, |
224 | /// Bitfields (16- or 32-bit) |
225 | Bitfields, |
226 | } |
227 | |
228 | impl fmt::Display for ChannelWidthError { |
229 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
230 | f.write_str(data:match self { |
231 | ChannelWidthError::Rgb => "RGB" , |
232 | ChannelWidthError::Rle8 => "RLE8" , |
233 | ChannelWidthError::Rle4 => "RLE4" , |
234 | ChannelWidthError::Bitfields => "bitfields" , |
235 | }) |
236 | } |
237 | } |
238 | |
239 | /// Convenience function to check if the combination of width, length and number of |
240 | /// channels would result in a buffer that would overflow. |
241 | fn check_for_overflow(width: i32, length: i32, channels: usize) -> ImageResult<()> { |
242 | num_bytes(width, length, channels) |
243 | .map(|_| ()) |
244 | .ok_or_else(|| { |
245 | ImageError::Unsupported(UnsupportedError::from_format_and_kind( |
246 | format:ImageFormat::Bmp.into(), |
247 | kind:UnsupportedErrorKind::GenericFeature(format!( |
248 | "Image dimensions ( {}x {} w/ {} channels) are too large" , |
249 | width, length, channels |
250 | )), |
251 | )) |
252 | }) |
253 | } |
254 | |
255 | /// Calculate how many many bytes a buffer holding a decoded image with these properties would |
256 | /// require. Returns `None` if the buffer size would overflow or if one of the sizes are negative. |
257 | fn num_bytes(width: i32, length: i32, channels: usize) -> Option<usize> { |
258 | if width <= 0 || length <= 0 { |
259 | None |
260 | } else { |
261 | match channels.checked_mul(width as usize) { |
262 | Some(n: usize) => n.checked_mul(length as usize), |
263 | None => None, |
264 | } |
265 | } |
266 | } |
267 | |
268 | /// Call the provided function on each row of the provided buffer, returning Err if the provided |
269 | /// function returns an error, extends the buffer if it's not large enough. |
270 | fn with_rows<F>( |
271 | buffer: &mut [u8], |
272 | width: i32, |
273 | height: i32, |
274 | channels: usize, |
275 | top_down: bool, |
276 | mut func: F, |
277 | ) -> io::Result<()> |
278 | where |
279 | F: FnMut(&mut [u8]) -> io::Result<()>, |
280 | { |
281 | // An overflow should already have been checked for when this is called, |
282 | // though we check anyhow, as it somehow seems to increase performance slightly. |
283 | let row_width: usize = channels.checked_mul(width as usize).unwrap(); |
284 | let full_image_size: usize = row_width.checked_mul(height as usize).unwrap(); |
285 | assert_eq!(buffer.len(), full_image_size); |
286 | |
287 | if !top_down { |
288 | for row: &mut [u8] in buffer.chunks_mut(chunk_size:row_width).rev() { |
289 | func(row)?; |
290 | } |
291 | } else { |
292 | for row: &mut [u8] in buffer.chunks_mut(chunk_size:row_width) { |
293 | func(row)?; |
294 | } |
295 | } |
296 | Ok(()) |
297 | } |
298 | |
299 | fn set_8bit_pixel_run<'a, T: Iterator<Item = &'a u8>>( |
300 | pixel_iter: &mut ChunksMut<u8>, |
301 | palette: &[[u8; 3]], |
302 | indices: T, |
303 | n_pixels: usize, |
304 | ) -> bool { |
305 | for idx: &u8 in indices.take(n_pixels) { |
306 | if let Some(pixel: &mut [u8]) = pixel_iter.next() { |
307 | let rgb: [u8; 3] = palette[*idx as usize]; |
308 | pixel[0] = rgb[0]; |
309 | pixel[1] = rgb[1]; |
310 | pixel[2] = rgb[2]; |
311 | } else { |
312 | return false; |
313 | } |
314 | } |
315 | true |
316 | } |
317 | |
318 | fn set_4bit_pixel_run<'a, T: Iterator<Item = &'a u8>>( |
319 | pixel_iter: &mut ChunksMut<u8>, |
320 | palette: &[[u8; 3]], |
321 | indices: T, |
322 | mut n_pixels: usize, |
323 | ) -> bool { |
324 | for idx: &u8 in indices { |
325 | macro_rules! set_pixel { |
326 | ($i:expr) => { |
327 | if n_pixels == 0 { |
328 | break; |
329 | } |
330 | if let Some(pixel) = pixel_iter.next() { |
331 | let rgb = palette[$i as usize]; |
332 | pixel[0] = rgb[0]; |
333 | pixel[1] = rgb[1]; |
334 | pixel[2] = rgb[2]; |
335 | } else { |
336 | return false; |
337 | } |
338 | n_pixels -= 1; |
339 | }; |
340 | } |
341 | set_pixel!(idx >> 4); |
342 | set_pixel!(idx & 0xf); |
343 | } |
344 | true |
345 | } |
346 | |
347 | #[rustfmt::skip] |
348 | fn set_2bit_pixel_run<'a, T: Iterator<Item = &'a u8>>( |
349 | pixel_iter: &mut ChunksMut<u8>, |
350 | palette: &[[u8; 3]], |
351 | indices: T, |
352 | mut n_pixels: usize, |
353 | ) -> bool { |
354 | for idx in indices { |
355 | macro_rules! set_pixel { |
356 | ($i:expr) => { |
357 | if n_pixels == 0 { |
358 | break; |
359 | } |
360 | if let Some(pixel) = pixel_iter.next() { |
361 | let rgb = palette[$i as usize]; |
362 | pixel[0] = rgb[0]; |
363 | pixel[1] = rgb[1]; |
364 | pixel[2] = rgb[2]; |
365 | } else { |
366 | return false; |
367 | } |
368 | n_pixels -= 1; |
369 | }; |
370 | } |
371 | set_pixel!((idx >> 6) & 0x3u8); |
372 | set_pixel!((idx >> 4) & 0x3u8); |
373 | set_pixel!((idx >> 2) & 0x3u8); |
374 | set_pixel!( idx & 0x3u8); |
375 | } |
376 | true |
377 | } |
378 | |
379 | fn set_1bit_pixel_run<'a, T: Iterator<Item = &'a u8>>( |
380 | pixel_iter: &mut ChunksMut<u8>, |
381 | palette: &[[u8; 3]], |
382 | indices: T, |
383 | ) { |
384 | for idx: &u8 in indices { |
385 | let mut bit: u8 = 0x80; |
386 | loop { |
387 | if let Some(pixel: &mut [u8]) = pixel_iter.next() { |
388 | let rgb: [u8; 3] = palette[((idx & bit) != 0) as usize]; |
389 | pixel[0] = rgb[0]; |
390 | pixel[1] = rgb[1]; |
391 | pixel[2] = rgb[2]; |
392 | } else { |
393 | return; |
394 | } |
395 | |
396 | bit >>= 1; |
397 | if bit == 0 { |
398 | break; |
399 | } |
400 | } |
401 | } |
402 | } |
403 | |
404 | #[derive (PartialEq, Eq)] |
405 | struct Bitfield { |
406 | shift: u32, |
407 | len: u32, |
408 | } |
409 | |
410 | impl Bitfield { |
411 | fn from_mask(mask: u32, max_len: u32) -> ImageResult<Bitfield> { |
412 | if mask == 0 { |
413 | return Ok(Bitfield { shift: 0, len: 0 }); |
414 | } |
415 | let mut shift = mask.trailing_zeros(); |
416 | let mut len = (!(mask >> shift)).trailing_zeros(); |
417 | if len != mask.count_ones() { |
418 | return Err(DecoderError::BitfieldMaskNonContiguous.into()); |
419 | } |
420 | if len + shift > max_len { |
421 | return Err(DecoderError::BitfieldMaskInvalid.into()); |
422 | } |
423 | if len > 8 { |
424 | shift += len - 8; |
425 | len = 8; |
426 | } |
427 | Ok(Bitfield { shift, len }) |
428 | } |
429 | |
430 | fn read(&self, data: u32) -> u8 { |
431 | let data = data >> self.shift; |
432 | match self.len { |
433 | 1 => ((data & 0b1) * 0xff) as u8, |
434 | 2 => ((data & 0b11) * 0x55) as u8, |
435 | 3 => LOOKUP_TABLE_3_BIT_TO_8_BIT[(data & 0b00_0111) as usize], |
436 | 4 => LOOKUP_TABLE_4_BIT_TO_8_BIT[(data & 0b00_1111) as usize], |
437 | 5 => LOOKUP_TABLE_5_BIT_TO_8_BIT[(data & 0b01_1111) as usize], |
438 | 6 => LOOKUP_TABLE_6_BIT_TO_8_BIT[(data & 0b11_1111) as usize], |
439 | 7 => ((data & 0x7f) << 1 | (data & 0x7f) >> 6) as u8, |
440 | 8 => (data & 0xff) as u8, |
441 | _ => panic!(), |
442 | } |
443 | } |
444 | } |
445 | |
446 | #[derive (PartialEq, Eq)] |
447 | struct Bitfields { |
448 | r: Bitfield, |
449 | g: Bitfield, |
450 | b: Bitfield, |
451 | a: Bitfield, |
452 | } |
453 | |
454 | impl Bitfields { |
455 | fn from_mask( |
456 | r_mask: u32, |
457 | g_mask: u32, |
458 | b_mask: u32, |
459 | a_mask: u32, |
460 | max_len: u32, |
461 | ) -> ImageResult<Bitfields> { |
462 | let bitfields: Bitfields = Bitfields { |
463 | r: Bitfield::from_mask(r_mask, max_len)?, |
464 | g: Bitfield::from_mask(g_mask, max_len)?, |
465 | b: Bitfield::from_mask(b_mask, max_len)?, |
466 | a: Bitfield::from_mask(a_mask, max_len)?, |
467 | }; |
468 | if bitfields.r.len == 0 || bitfields.g.len == 0 || bitfields.b.len == 0 { |
469 | return Err(DecoderError::BitfieldMaskMissing(max_len).into()); |
470 | } |
471 | Ok(bitfields) |
472 | } |
473 | } |
474 | |
475 | /// A bmp decoder |
476 | pub struct BmpDecoder<R> { |
477 | reader: R, |
478 | |
479 | bmp_header_type: BMPHeaderType, |
480 | indexed_color: bool, |
481 | |
482 | width: i32, |
483 | height: i32, |
484 | data_offset: u64, |
485 | top_down: bool, |
486 | no_file_header: bool, |
487 | add_alpha_channel: bool, |
488 | has_loaded_metadata: bool, |
489 | image_type: ImageType, |
490 | |
491 | bit_count: u16, |
492 | colors_used: u32, |
493 | palette: Option<Vec<[u8; 3]>>, |
494 | bitfields: Option<Bitfields>, |
495 | } |
496 | |
497 | enum RLEInsn { |
498 | EndOfFile, |
499 | EndOfRow, |
500 | Delta(u8, u8), |
501 | Absolute(u8, Vec<u8>), |
502 | PixelRun(u8, u8), |
503 | } |
504 | |
505 | impl<R: Read + Seek> BmpDecoder<R> { |
506 | fn new_decoder(reader: R) -> BmpDecoder<R> { |
507 | BmpDecoder { |
508 | reader, |
509 | |
510 | bmp_header_type: BMPHeaderType::Info, |
511 | indexed_color: false, |
512 | |
513 | width: 0, |
514 | height: 0, |
515 | data_offset: 0, |
516 | top_down: false, |
517 | no_file_header: false, |
518 | add_alpha_channel: false, |
519 | has_loaded_metadata: false, |
520 | image_type: ImageType::Palette, |
521 | |
522 | bit_count: 0, |
523 | colors_used: 0, |
524 | palette: None, |
525 | bitfields: None, |
526 | } |
527 | } |
528 | |
529 | /// Create a new decoder that decodes from the stream ```r``` |
530 | pub fn new(reader: R) -> ImageResult<BmpDecoder<R>> { |
531 | let mut decoder = Self::new_decoder(reader); |
532 | decoder.read_metadata()?; |
533 | Ok(decoder) |
534 | } |
535 | |
536 | /// Create a new decoder that decodes from the stream ```r``` without first |
537 | /// reading a BITMAPFILEHEADER. This is useful for decoding the CF_DIB format |
538 | /// directly from the Windows clipboard. |
539 | pub fn new_without_file_header(reader: R) -> ImageResult<BmpDecoder<R>> { |
540 | let mut decoder = Self::new_decoder(reader); |
541 | decoder.no_file_header = true; |
542 | decoder.read_metadata()?; |
543 | Ok(decoder) |
544 | } |
545 | |
546 | #[cfg (feature = "ico" )] |
547 | pub(crate) fn new_with_ico_format(reader: R) -> ImageResult<BmpDecoder<R>> { |
548 | let mut decoder = Self::new_decoder(reader); |
549 | decoder.read_metadata_in_ico_format()?; |
550 | Ok(decoder) |
551 | } |
552 | |
553 | /// If true, the palette in BMP does not apply to the image even if it is found. |
554 | /// In other words, the output image is the indexed color. |
555 | pub fn set_indexed_color(&mut self, indexed_color: bool) { |
556 | self.indexed_color = indexed_color; |
557 | } |
558 | |
559 | #[cfg (feature = "ico" )] |
560 | pub(crate) fn reader(&mut self) -> &mut R { |
561 | &mut self.reader |
562 | } |
563 | |
564 | fn read_file_header(&mut self) -> ImageResult<()> { |
565 | if self.no_file_header { |
566 | return Ok(()); |
567 | } |
568 | let mut signature = [0; 2]; |
569 | self.reader.read_exact(&mut signature)?; |
570 | |
571 | if signature != b"BM" [..] { |
572 | return Err(DecoderError::BmpSignatureInvalid.into()); |
573 | } |
574 | |
575 | // The next 8 bytes represent file size, followed the 4 reserved bytes |
576 | // We're not interesting these values |
577 | self.reader.read_u32::<LittleEndian>()?; |
578 | self.reader.read_u32::<LittleEndian>()?; |
579 | |
580 | self.data_offset = u64::from(self.reader.read_u32::<LittleEndian>()?); |
581 | |
582 | Ok(()) |
583 | } |
584 | |
585 | /// Read BITMAPCOREHEADER https://msdn.microsoft.com/en-us/library/vs/alm/dd183372(v=vs.85).aspx |
586 | /// |
587 | /// returns Err if any of the values are invalid. |
588 | fn read_bitmap_core_header(&mut self) -> ImageResult<()> { |
589 | // As height/width values in BMP files with core headers are only 16 bits long, |
590 | // they won't be larger than `MAX_WIDTH_HEIGHT`. |
591 | self.width = i32::from(self.reader.read_u16::<LittleEndian>()?); |
592 | self.height = i32::from(self.reader.read_u16::<LittleEndian>()?); |
593 | |
594 | check_for_overflow(self.width, self.height, self.num_channels())?; |
595 | |
596 | // Number of planes (format specifies that this should be 1). |
597 | if self.reader.read_u16::<LittleEndian>()? != 1 { |
598 | return Err(DecoderError::MoreThanOnePlane.into()); |
599 | } |
600 | |
601 | self.bit_count = self.reader.read_u16::<LittleEndian>()?; |
602 | self.image_type = match self.bit_count { |
603 | 1 | 4 | 8 => ImageType::Palette, |
604 | 24 => ImageType::RGB24, |
605 | _ => { |
606 | return Err(DecoderError::InvalidChannelWidth( |
607 | ChannelWidthError::Rgb, |
608 | self.bit_count, |
609 | ) |
610 | .into()) |
611 | } |
612 | }; |
613 | |
614 | Ok(()) |
615 | } |
616 | |
617 | /// Read BITMAPINFOHEADER https://msdn.microsoft.com/en-us/library/vs/alm/dd183376(v=vs.85).aspx |
618 | /// or BITMAPV{2|3|4|5}HEADER. |
619 | /// |
620 | /// returns Err if any of the values are invalid. |
621 | fn read_bitmap_info_header(&mut self) -> ImageResult<()> { |
622 | self.width = self.reader.read_i32::<LittleEndian>()?; |
623 | self.height = self.reader.read_i32::<LittleEndian>()?; |
624 | |
625 | // Width can not be negative |
626 | if self.width < 0 { |
627 | return Err(DecoderError::NegativeWidth(self.width).into()); |
628 | } else if self.width > MAX_WIDTH_HEIGHT || self.height > MAX_WIDTH_HEIGHT { |
629 | // Limit very large image sizes to avoid OOM issues. Images with these sizes are |
630 | // unlikely to be valid anyhow. |
631 | return Err(DecoderError::ImageTooLarge(self.width, self.height).into()); |
632 | } |
633 | |
634 | if self.height == i32::min_value() { |
635 | return Err(DecoderError::InvalidHeight.into()); |
636 | } |
637 | |
638 | // A negative height indicates a top-down DIB. |
639 | if self.height < 0 { |
640 | self.height *= -1; |
641 | self.top_down = true; |
642 | } |
643 | |
644 | check_for_overflow(self.width, self.height, self.num_channels())?; |
645 | |
646 | // Number of planes (format specifies that this should be 1). |
647 | if self.reader.read_u16::<LittleEndian>()? != 1 { |
648 | return Err(DecoderError::MoreThanOnePlane.into()); |
649 | } |
650 | |
651 | self.bit_count = self.reader.read_u16::<LittleEndian>()?; |
652 | let image_type_u32 = self.reader.read_u32::<LittleEndian>()?; |
653 | |
654 | // Top-down dibs can not be compressed. |
655 | if self.top_down && image_type_u32 != 0 && image_type_u32 != 3 { |
656 | return Err(DecoderError::ImageTypeInvalidForTopDown(image_type_u32).into()); |
657 | } |
658 | self.image_type = match image_type_u32 { |
659 | 0 => match self.bit_count { |
660 | 1 | 2 | 4 | 8 => ImageType::Palette, |
661 | 16 => ImageType::RGB16, |
662 | 24 => ImageType::RGB24, |
663 | 32 if self.add_alpha_channel => ImageType::RGBA32, |
664 | 32 => ImageType::RGB32, |
665 | _ => { |
666 | return Err(DecoderError::InvalidChannelWidth( |
667 | ChannelWidthError::Rgb, |
668 | self.bit_count, |
669 | ) |
670 | .into()) |
671 | } |
672 | }, |
673 | 1 => match self.bit_count { |
674 | 8 => ImageType::RLE8, |
675 | _ => { |
676 | return Err(DecoderError::InvalidChannelWidth( |
677 | ChannelWidthError::Rle8, |
678 | self.bit_count, |
679 | ) |
680 | .into()) |
681 | } |
682 | }, |
683 | 2 => match self.bit_count { |
684 | 4 => ImageType::RLE4, |
685 | _ => { |
686 | return Err(DecoderError::InvalidChannelWidth( |
687 | ChannelWidthError::Rle4, |
688 | self.bit_count, |
689 | ) |
690 | .into()) |
691 | } |
692 | }, |
693 | 3 => match self.bit_count { |
694 | 16 => ImageType::Bitfields16, |
695 | 32 => ImageType::Bitfields32, |
696 | _ => { |
697 | return Err(DecoderError::InvalidChannelWidth( |
698 | ChannelWidthError::Bitfields, |
699 | self.bit_count, |
700 | ) |
701 | .into()) |
702 | } |
703 | }, |
704 | 4 => { |
705 | // JPEG compression is not implemented yet. |
706 | return Err(ImageError::Unsupported( |
707 | UnsupportedError::from_format_and_kind( |
708 | ImageFormat::Bmp.into(), |
709 | UnsupportedErrorKind::GenericFeature("JPEG compression" .to_owned()), |
710 | ), |
711 | )); |
712 | } |
713 | 5 => { |
714 | // PNG compression is not implemented yet. |
715 | return Err(ImageError::Unsupported( |
716 | UnsupportedError::from_format_and_kind( |
717 | ImageFormat::Bmp.into(), |
718 | UnsupportedErrorKind::GenericFeature("PNG compression" .to_owned()), |
719 | ), |
720 | )); |
721 | } |
722 | 11..=13 => { |
723 | // CMYK types are not implemented yet. |
724 | return Err(ImageError::Unsupported( |
725 | UnsupportedError::from_format_and_kind( |
726 | ImageFormat::Bmp.into(), |
727 | UnsupportedErrorKind::GenericFeature("CMYK format" .to_owned()), |
728 | ), |
729 | )); |
730 | } |
731 | _ => { |
732 | // Unknown compression type. |
733 | return Err(DecoderError::ImageTypeUnknown(image_type_u32).into()); |
734 | } |
735 | }; |
736 | |
737 | // The next 12 bytes represent data array size in bytes, |
738 | // followed the horizontal and vertical printing resolutions |
739 | // We will calculate the pixel array size using width & height of image |
740 | // We're not interesting the horz or vert printing resolutions |
741 | self.reader.read_u32::<LittleEndian>()?; |
742 | self.reader.read_u32::<LittleEndian>()?; |
743 | self.reader.read_u32::<LittleEndian>()?; |
744 | |
745 | self.colors_used = self.reader.read_u32::<LittleEndian>()?; |
746 | |
747 | // The next 4 bytes represent number of "important" colors |
748 | // We're not interested in this value, so we'll skip it |
749 | self.reader.read_u32::<LittleEndian>()?; |
750 | |
751 | Ok(()) |
752 | } |
753 | |
754 | fn read_bitmasks(&mut self) -> ImageResult<()> { |
755 | let r_mask = self.reader.read_u32::<LittleEndian>()?; |
756 | let g_mask = self.reader.read_u32::<LittleEndian>()?; |
757 | let b_mask = self.reader.read_u32::<LittleEndian>()?; |
758 | |
759 | let a_mask = match self.bmp_header_type { |
760 | BMPHeaderType::V3 | BMPHeaderType::V4 | BMPHeaderType::V5 => { |
761 | self.reader.read_u32::<LittleEndian>()? |
762 | } |
763 | _ => 0, |
764 | }; |
765 | |
766 | self.bitfields = match self.image_type { |
767 | ImageType::Bitfields16 => { |
768 | Some(Bitfields::from_mask(r_mask, g_mask, b_mask, a_mask, 16)?) |
769 | } |
770 | ImageType::Bitfields32 => { |
771 | Some(Bitfields::from_mask(r_mask, g_mask, b_mask, a_mask, 32)?) |
772 | } |
773 | _ => None, |
774 | }; |
775 | |
776 | if self.bitfields.is_some() && a_mask != 0 { |
777 | self.add_alpha_channel = true; |
778 | } |
779 | |
780 | Ok(()) |
781 | } |
782 | |
783 | fn read_metadata(&mut self) -> ImageResult<()> { |
784 | if !self.has_loaded_metadata { |
785 | self.read_file_header()?; |
786 | let bmp_header_offset = self.reader.stream_position()?; |
787 | let bmp_header_size = self.reader.read_u32::<LittleEndian>()?; |
788 | let bmp_header_end = bmp_header_offset + u64::from(bmp_header_size); |
789 | |
790 | self.bmp_header_type = match bmp_header_size { |
791 | BITMAPCOREHEADER_SIZE => BMPHeaderType::Core, |
792 | BITMAPINFOHEADER_SIZE => BMPHeaderType::Info, |
793 | BITMAPV2HEADER_SIZE => BMPHeaderType::V2, |
794 | BITMAPV3HEADER_SIZE => BMPHeaderType::V3, |
795 | BITMAPV4HEADER_SIZE => BMPHeaderType::V4, |
796 | BITMAPV5HEADER_SIZE => BMPHeaderType::V5, |
797 | _ if bmp_header_size < BITMAPCOREHEADER_SIZE => { |
798 | // Size of any valid header types won't be smaller than core header type. |
799 | return Err(DecoderError::HeaderTooSmall(bmp_header_size).into()); |
800 | } |
801 | _ => { |
802 | return Err(ImageError::Unsupported( |
803 | UnsupportedError::from_format_and_kind( |
804 | ImageFormat::Bmp.into(), |
805 | UnsupportedErrorKind::GenericFeature(format!( |
806 | "Unknown bitmap header type (size= {})" , |
807 | bmp_header_size |
808 | )), |
809 | ), |
810 | )) |
811 | } |
812 | }; |
813 | |
814 | match self.bmp_header_type { |
815 | BMPHeaderType::Core => { |
816 | self.read_bitmap_core_header()?; |
817 | } |
818 | BMPHeaderType::Info |
819 | | BMPHeaderType::V2 |
820 | | BMPHeaderType::V3 |
821 | | BMPHeaderType::V4 |
822 | | BMPHeaderType::V5 => { |
823 | self.read_bitmap_info_header()?; |
824 | } |
825 | }; |
826 | |
827 | match self.image_type { |
828 | ImageType::Bitfields16 | ImageType::Bitfields32 => self.read_bitmasks()?, |
829 | _ => {} |
830 | }; |
831 | |
832 | self.reader.seek(SeekFrom::Start(bmp_header_end))?; |
833 | |
834 | match self.image_type { |
835 | ImageType::Palette | ImageType::RLE4 | ImageType::RLE8 => self.read_palette()?, |
836 | _ => {} |
837 | }; |
838 | |
839 | if self.no_file_header { |
840 | // Use the offset of the end of metadata instead of reading a BMP file header. |
841 | self.data_offset = self.reader.stream_position()?; |
842 | } |
843 | |
844 | self.has_loaded_metadata = true; |
845 | } |
846 | Ok(()) |
847 | } |
848 | |
849 | #[cfg (feature = "ico" )] |
850 | #[doc (hidden)] |
851 | pub fn read_metadata_in_ico_format(&mut self) -> ImageResult<()> { |
852 | self.no_file_header = true; |
853 | self.add_alpha_channel = true; |
854 | self.read_metadata()?; |
855 | |
856 | // The height field in an ICO file is doubled to account for the AND mask |
857 | // (whether or not an AND mask is actually present). |
858 | self.height /= 2; |
859 | Ok(()) |
860 | } |
861 | |
862 | fn get_palette_size(&mut self) -> ImageResult<usize> { |
863 | match self.colors_used { |
864 | 0 => Ok(1 << self.bit_count), |
865 | _ => { |
866 | if self.colors_used > 1 << self.bit_count { |
867 | return Err(DecoderError::PaletteSizeExceeded { |
868 | colors_used: self.colors_used, |
869 | bit_count: self.bit_count, |
870 | } |
871 | .into()); |
872 | } |
873 | Ok(self.colors_used as usize) |
874 | } |
875 | } |
876 | } |
877 | |
878 | fn bytes_per_color(&self) -> usize { |
879 | match self.bmp_header_type { |
880 | BMPHeaderType::Core => 3, |
881 | _ => 4, |
882 | } |
883 | } |
884 | |
885 | fn read_palette(&mut self) -> ImageResult<()> { |
886 | const MAX_PALETTE_SIZE: usize = 256; // Palette indices are u8. |
887 | |
888 | let bytes_per_color = self.bytes_per_color(); |
889 | let palette_size = self.get_palette_size()?; |
890 | let max_length = MAX_PALETTE_SIZE * bytes_per_color; |
891 | |
892 | let length = palette_size * bytes_per_color; |
893 | let mut buf = Vec::with_capacity(max_length); |
894 | |
895 | // Resize and read the palette entries to the buffer. |
896 | // We limit the buffer to at most 256 colours to avoid any oom issues as |
897 | // 8-bit images can't reference more than 256 indexes anyhow. |
898 | buf.resize(cmp::min(length, max_length), 0); |
899 | self.reader.by_ref().read_exact(&mut buf)?; |
900 | |
901 | // Allocate 256 entries even if palette_size is smaller, to prevent corrupt files from |
902 | // causing an out-of-bounds array access. |
903 | match length.cmp(&max_length) { |
904 | Ordering::Greater => { |
905 | self.reader |
906 | .seek(SeekFrom::Current((length - max_length) as i64))?; |
907 | } |
908 | Ordering::Less => buf.resize(max_length, 0), |
909 | Ordering::Equal => (), |
910 | } |
911 | |
912 | let p: Vec<[u8; 3]> = (0..MAX_PALETTE_SIZE) |
913 | .map(|i| { |
914 | let b = buf[bytes_per_color * i]; |
915 | let g = buf[bytes_per_color * i + 1]; |
916 | let r = buf[bytes_per_color * i + 2]; |
917 | [r, g, b] |
918 | }) |
919 | .collect(); |
920 | |
921 | self.palette = Some(p); |
922 | |
923 | Ok(()) |
924 | } |
925 | |
926 | /// Get the palette that is embedded in the BMP image, if any. |
927 | pub fn get_palette(&self) -> Option<&[[u8; 3]]> { |
928 | self.palette.as_ref().map(|vec| &vec[..]) |
929 | } |
930 | |
931 | fn num_channels(&self) -> usize { |
932 | if self.indexed_color { |
933 | 1 |
934 | } else if self.add_alpha_channel { |
935 | 4 |
936 | } else { |
937 | 3 |
938 | } |
939 | } |
940 | |
941 | fn rows<'a>(&self, pixel_data: &'a mut [u8]) -> RowIterator<'a> { |
942 | let stride = self.width as usize * self.num_channels(); |
943 | if self.top_down { |
944 | RowIterator { |
945 | chunks: Chunker::FromTop(pixel_data.chunks_mut(stride)), |
946 | } |
947 | } else { |
948 | RowIterator { |
949 | chunks: Chunker::FromBottom(pixel_data.chunks_mut(stride).rev()), |
950 | } |
951 | } |
952 | } |
953 | |
954 | fn read_palettized_pixel_data(&mut self, buf: &mut [u8]) -> ImageResult<()> { |
955 | let num_channels = self.num_channels(); |
956 | let row_byte_length = ((i32::from(self.bit_count) * self.width + 31) / 32 * 4) as usize; |
957 | let mut indices = vec![0; row_byte_length]; |
958 | let palette = self.palette.as_ref().unwrap(); |
959 | let bit_count = self.bit_count; |
960 | let reader = &mut self.reader; |
961 | let width = self.width as usize; |
962 | let skip_palette = self.indexed_color; |
963 | |
964 | reader.seek(SeekFrom::Start(self.data_offset))?; |
965 | |
966 | if num_channels == 4 { |
967 | buf.chunks_exact_mut(4).for_each(|c| c[3] = 0xFF); |
968 | } |
969 | |
970 | with_rows( |
971 | buf, |
972 | self.width, |
973 | self.height, |
974 | num_channels, |
975 | self.top_down, |
976 | |row| { |
977 | reader.read_exact(&mut indices)?; |
978 | if skip_palette { |
979 | row.clone_from_slice(&indices[0..width]); |
980 | } else { |
981 | let mut pixel_iter = row.chunks_mut(num_channels); |
982 | match bit_count { |
983 | 1 => { |
984 | set_1bit_pixel_run(&mut pixel_iter, palette, indices.iter()); |
985 | } |
986 | 2 => { |
987 | set_2bit_pixel_run(&mut pixel_iter, palette, indices.iter(), width); |
988 | } |
989 | 4 => { |
990 | set_4bit_pixel_run(&mut pixel_iter, palette, indices.iter(), width); |
991 | } |
992 | 8 => { |
993 | set_8bit_pixel_run(&mut pixel_iter, palette, indices.iter(), width); |
994 | } |
995 | _ => panic!(), |
996 | }; |
997 | } |
998 | Ok(()) |
999 | }, |
1000 | )?; |
1001 | |
1002 | Ok(()) |
1003 | } |
1004 | |
1005 | fn read_16_bit_pixel_data( |
1006 | &mut self, |
1007 | buf: &mut [u8], |
1008 | bitfields: Option<&Bitfields>, |
1009 | ) -> ImageResult<()> { |
1010 | let num_channels = self.num_channels(); |
1011 | let row_padding_len = self.width as usize % 2 * 2; |
1012 | let row_padding = &mut [0; 2][..row_padding_len]; |
1013 | let bitfields = match bitfields { |
1014 | Some(b) => b, |
1015 | None => self.bitfields.as_ref().unwrap(), |
1016 | }; |
1017 | let reader = &mut self.reader; |
1018 | |
1019 | reader.seek(SeekFrom::Start(self.data_offset))?; |
1020 | |
1021 | with_rows( |
1022 | buf, |
1023 | self.width, |
1024 | self.height, |
1025 | num_channels, |
1026 | self.top_down, |
1027 | |row| { |
1028 | for pixel in row.chunks_mut(num_channels) { |
1029 | let data = u32::from(reader.read_u16::<LittleEndian>()?); |
1030 | |
1031 | pixel[0] = bitfields.r.read(data); |
1032 | pixel[1] = bitfields.g.read(data); |
1033 | pixel[2] = bitfields.b.read(data); |
1034 | if num_channels == 4 { |
1035 | if bitfields.a.len != 0 { |
1036 | pixel[3] = bitfields.a.read(data); |
1037 | } else { |
1038 | pixel[3] = 0xFF; |
1039 | } |
1040 | } |
1041 | } |
1042 | reader.read_exact(row_padding) |
1043 | }, |
1044 | )?; |
1045 | |
1046 | Ok(()) |
1047 | } |
1048 | |
1049 | /// Read image data from a reader in 32-bit formats that use bitfields. |
1050 | fn read_32_bit_pixel_data(&mut self, buf: &mut [u8]) -> ImageResult<()> { |
1051 | let num_channels = self.num_channels(); |
1052 | |
1053 | let bitfields = self.bitfields.as_ref().unwrap(); |
1054 | |
1055 | let reader = &mut self.reader; |
1056 | reader.seek(SeekFrom::Start(self.data_offset))?; |
1057 | |
1058 | with_rows( |
1059 | buf, |
1060 | self.width, |
1061 | self.height, |
1062 | num_channels, |
1063 | self.top_down, |
1064 | |row| { |
1065 | for pixel in row.chunks_mut(num_channels) { |
1066 | let data = reader.read_u32::<LittleEndian>()?; |
1067 | |
1068 | pixel[0] = bitfields.r.read(data); |
1069 | pixel[1] = bitfields.g.read(data); |
1070 | pixel[2] = bitfields.b.read(data); |
1071 | if num_channels == 4 { |
1072 | if bitfields.a.len != 0 { |
1073 | pixel[3] = bitfields.a.read(data); |
1074 | } else { |
1075 | pixel[3] = 0xff; |
1076 | } |
1077 | } |
1078 | } |
1079 | Ok(()) |
1080 | }, |
1081 | )?; |
1082 | |
1083 | Ok(()) |
1084 | } |
1085 | |
1086 | /// Read image data from a reader where the colours are stored as 8-bit values (24 or 32-bit). |
1087 | fn read_full_byte_pixel_data( |
1088 | &mut self, |
1089 | buf: &mut [u8], |
1090 | format: &FormatFullBytes, |
1091 | ) -> ImageResult<()> { |
1092 | let num_channels = self.num_channels(); |
1093 | let row_padding_len = match *format { |
1094 | FormatFullBytes::RGB24 => (4 - (self.width as usize * 3) % 4) % 4, |
1095 | _ => 0, |
1096 | }; |
1097 | let row_padding = &mut [0; 4][..row_padding_len]; |
1098 | |
1099 | self.reader.seek(SeekFrom::Start(self.data_offset))?; |
1100 | |
1101 | let reader = &mut self.reader; |
1102 | |
1103 | with_rows( |
1104 | buf, |
1105 | self.width, |
1106 | self.height, |
1107 | num_channels, |
1108 | self.top_down, |
1109 | |row| { |
1110 | for pixel in row.chunks_mut(num_channels) { |
1111 | if *format == FormatFullBytes::Format888 { |
1112 | reader.read_u8()?; |
1113 | } |
1114 | |
1115 | // Read the colour values (b, g, r). |
1116 | // Reading 3 bytes and reversing them is significantly faster than reading one |
1117 | // at a time. |
1118 | reader.read_exact(&mut pixel[0..3])?; |
1119 | pixel[0..3].reverse(); |
1120 | |
1121 | if *format == FormatFullBytes::RGB32 { |
1122 | reader.read_u8()?; |
1123 | } |
1124 | |
1125 | // Read the alpha channel if present |
1126 | if *format == FormatFullBytes::RGBA32 { |
1127 | reader.read_exact(&mut pixel[3..4])?; |
1128 | } else if num_channels == 4 { |
1129 | pixel[3] = 0xFF; |
1130 | } |
1131 | } |
1132 | reader.read_exact(row_padding) |
1133 | }, |
1134 | )?; |
1135 | |
1136 | Ok(()) |
1137 | } |
1138 | |
1139 | fn read_rle_data(&mut self, buf: &mut [u8], image_type: ImageType) -> ImageResult<()> { |
1140 | // Seek to the start of the actual image data. |
1141 | self.reader.seek(SeekFrom::Start(self.data_offset))?; |
1142 | |
1143 | let num_channels = self.num_channels(); |
1144 | let p = self.palette.as_ref().unwrap(); |
1145 | |
1146 | // Handling deltas in the RLE scheme means that we need to manually |
1147 | // iterate through rows and pixels. Even if we didn't have to handle |
1148 | // deltas, we have to ensure that a single runlength doesn't straddle |
1149 | // two rows. |
1150 | let mut row_iter = self.rows(buf); |
1151 | |
1152 | while let Some(row) = row_iter.next() { |
1153 | let mut pixel_iter = row.chunks_mut(num_channels); |
1154 | |
1155 | let mut x = 0; |
1156 | loop { |
1157 | let instruction = { |
1158 | let control_byte = self.reader.read_u8()?; |
1159 | match control_byte { |
1160 | RLE_ESCAPE => { |
1161 | let op = self.reader.read_u8()?; |
1162 | |
1163 | match op { |
1164 | RLE_ESCAPE_EOL => RLEInsn::EndOfRow, |
1165 | RLE_ESCAPE_EOF => RLEInsn::EndOfFile, |
1166 | RLE_ESCAPE_DELTA => { |
1167 | let xdelta = self.reader.read_u8()?; |
1168 | let ydelta = self.reader.read_u8()?; |
1169 | RLEInsn::Delta(xdelta, ydelta) |
1170 | } |
1171 | _ => { |
1172 | let mut length = op as usize; |
1173 | if self.image_type == ImageType::RLE4 { |
1174 | length = (length + 1) / 2; |
1175 | } |
1176 | length += length & 1; |
1177 | let mut buffer = vec![0; length]; |
1178 | self.reader.read_exact(&mut buffer)?; |
1179 | RLEInsn::Absolute(op, buffer) |
1180 | } |
1181 | } |
1182 | } |
1183 | _ => { |
1184 | let palette_index = self.reader.read_u8()?; |
1185 | RLEInsn::PixelRun(control_byte, palette_index) |
1186 | } |
1187 | } |
1188 | }; |
1189 | |
1190 | match instruction { |
1191 | RLEInsn::EndOfFile => { |
1192 | pixel_iter.for_each(|p| p.fill(0)); |
1193 | row_iter.for_each(|r| r.fill(0)); |
1194 | return Ok(()); |
1195 | } |
1196 | RLEInsn::EndOfRow => { |
1197 | pixel_iter.for_each(|p| p.fill(0)); |
1198 | break; |
1199 | } |
1200 | RLEInsn::Delta(x_delta, y_delta) => { |
1201 | // The msdn site on bitmap compression doesn't specify |
1202 | // what happens to the values skipped when encountering |
1203 | // a delta code, however IE and the windows image |
1204 | // preview seems to replace them with black pixels, |
1205 | // so we stick to that. |
1206 | |
1207 | if y_delta > 0 { |
1208 | // Zero out the remainder of the current row. |
1209 | pixel_iter.for_each(|p| p.fill(0)); |
1210 | |
1211 | // If any full rows are skipped, zero them out. |
1212 | for _ in 1..y_delta { |
1213 | let row = row_iter.next().ok_or(DecoderError::CorruptRleData)?; |
1214 | row.fill(0); |
1215 | } |
1216 | |
1217 | // Set the pixel iterator to the start of the next row. |
1218 | pixel_iter = row_iter |
1219 | .next() |
1220 | .ok_or(DecoderError::CorruptRleData)? |
1221 | .chunks_mut(num_channels); |
1222 | |
1223 | // Zero out the pixels up to the current point in the row. |
1224 | for _ in 0..x { |
1225 | pixel_iter |
1226 | .next() |
1227 | .ok_or(DecoderError::CorruptRleData)? |
1228 | .fill(0); |
1229 | } |
1230 | } |
1231 | |
1232 | for _ in 0..x_delta { |
1233 | let pixel = pixel_iter.next().ok_or(DecoderError::CorruptRleData)?; |
1234 | pixel.fill(0); |
1235 | } |
1236 | x += x_delta as usize; |
1237 | } |
1238 | RLEInsn::Absolute(length, indices) => { |
1239 | // Absolute mode cannot span rows, so if we run |
1240 | // out of pixels to process, we should stop |
1241 | // processing the image. |
1242 | match image_type { |
1243 | ImageType::RLE8 => { |
1244 | if !set_8bit_pixel_run( |
1245 | &mut pixel_iter, |
1246 | p, |
1247 | indices.iter(), |
1248 | length as usize, |
1249 | ) { |
1250 | return Err(DecoderError::CorruptRleData.into()); |
1251 | } |
1252 | } |
1253 | ImageType::RLE4 => { |
1254 | if !set_4bit_pixel_run( |
1255 | &mut pixel_iter, |
1256 | p, |
1257 | indices.iter(), |
1258 | length as usize, |
1259 | ) { |
1260 | return Err(DecoderError::CorruptRleData.into()); |
1261 | } |
1262 | } |
1263 | _ => unreachable!(), |
1264 | } |
1265 | x += length as usize; |
1266 | } |
1267 | RLEInsn::PixelRun(n_pixels, palette_index) => { |
1268 | // A pixel run isn't allowed to span rows, but we |
1269 | // simply continue on to the next row if we run |
1270 | // out of pixels to set. |
1271 | match image_type { |
1272 | ImageType::RLE8 => { |
1273 | if !set_8bit_pixel_run( |
1274 | &mut pixel_iter, |
1275 | p, |
1276 | repeat(&palette_index), |
1277 | n_pixels as usize, |
1278 | ) { |
1279 | return Err(DecoderError::CorruptRleData.into()); |
1280 | } |
1281 | } |
1282 | ImageType::RLE4 => { |
1283 | if !set_4bit_pixel_run( |
1284 | &mut pixel_iter, |
1285 | p, |
1286 | repeat(&palette_index), |
1287 | n_pixels as usize, |
1288 | ) { |
1289 | return Err(DecoderError::CorruptRleData.into()); |
1290 | } |
1291 | } |
1292 | _ => unreachable!(), |
1293 | } |
1294 | x += n_pixels as usize; |
1295 | } |
1296 | } |
1297 | } |
1298 | } |
1299 | |
1300 | Ok(()) |
1301 | } |
1302 | |
1303 | /// Read the actual data of the image. This function is deliberately not public because it |
1304 | /// cannot be called multiple times without seeking back the underlying reader in between. |
1305 | pub(crate) fn read_image_data(&mut self, buf: &mut [u8]) -> ImageResult<()> { |
1306 | match self.image_type { |
1307 | ImageType::Palette => self.read_palettized_pixel_data(buf), |
1308 | ImageType::RGB16 => self.read_16_bit_pixel_data(buf, Some(&R5_G5_B5_COLOR_MASK)), |
1309 | ImageType::RGB24 => self.read_full_byte_pixel_data(buf, &FormatFullBytes::RGB24), |
1310 | ImageType::RGB32 => self.read_full_byte_pixel_data(buf, &FormatFullBytes::RGB32), |
1311 | ImageType::RGBA32 => self.read_full_byte_pixel_data(buf, &FormatFullBytes::RGBA32), |
1312 | ImageType::RLE8 => self.read_rle_data(buf, ImageType::RLE8), |
1313 | ImageType::RLE4 => self.read_rle_data(buf, ImageType::RLE4), |
1314 | ImageType::Bitfields16 => match self.bitfields { |
1315 | Some(_) => self.read_16_bit_pixel_data(buf, None), |
1316 | None => Err(DecoderError::BitfieldMasksMissing(16).into()), |
1317 | }, |
1318 | ImageType::Bitfields32 => match self.bitfields { |
1319 | Some(R8_G8_B8_COLOR_MASK) => { |
1320 | self.read_full_byte_pixel_data(buf, &FormatFullBytes::Format888) |
1321 | } |
1322 | Some(R8_G8_B8_A8_COLOR_MASK) => { |
1323 | self.read_full_byte_pixel_data(buf, &FormatFullBytes::RGBA32) |
1324 | } |
1325 | Some(_) => self.read_32_bit_pixel_data(buf), |
1326 | None => Err(DecoderError::BitfieldMasksMissing(32).into()), |
1327 | }, |
1328 | } |
1329 | } |
1330 | } |
1331 | |
1332 | /// Wrapper struct around a `Cursor<Vec<u8>>` |
1333 | pub struct BmpReader<R>(Cursor<Vec<u8>>, PhantomData<R>); |
1334 | impl<R> Read for BmpReader<R> { |
1335 | fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> { |
1336 | self.0.read(buf) |
1337 | } |
1338 | fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> { |
1339 | if self.0.position() == 0 && buf.is_empty() { |
1340 | mem::swap(x:buf, self.0.get_mut()); |
1341 | Ok(buf.len()) |
1342 | } else { |
1343 | self.0.read_to_end(buf) |
1344 | } |
1345 | } |
1346 | } |
1347 | |
1348 | impl<'a, R: 'a + Read + Seek> ImageDecoder<'a> for BmpDecoder<R> { |
1349 | type Reader = BmpReader<R>; |
1350 | |
1351 | fn dimensions(&self) -> (u32, u32) { |
1352 | (self.width as u32, self.height as u32) |
1353 | } |
1354 | |
1355 | fn color_type(&self) -> ColorType { |
1356 | if self.indexed_color { |
1357 | ColorType::L8 |
1358 | } else if self.add_alpha_channel { |
1359 | ColorType::Rgba8 |
1360 | } else { |
1361 | ColorType::Rgb8 |
1362 | } |
1363 | } |
1364 | |
1365 | fn into_reader(self) -> ImageResult<Self::Reader> { |
1366 | Ok(BmpReader( |
1367 | Cursor::new(image::decoder_to_vec(self)?), |
1368 | PhantomData, |
1369 | )) |
1370 | } |
1371 | |
1372 | fn read_image(mut self, buf: &mut [u8]) -> ImageResult<()> { |
1373 | assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes())); |
1374 | self.read_image_data(buf) |
1375 | } |
1376 | } |
1377 | |
1378 | impl<'a, R: 'a + Read + Seek> ImageDecoderRect<'a> for BmpDecoder<R> { |
1379 | fn read_rect_with_progress<F: Fn(Progress)>( |
1380 | &mut self, |
1381 | x: u32, |
1382 | y: u32, |
1383 | width: u32, |
1384 | height: u32, |
1385 | buf: &mut [u8], |
1386 | progress_callback: F, |
1387 | ) -> ImageResult<()> { |
1388 | let start = self.reader.stream_position()?; |
1389 | image::load_rect( |
1390 | x, |
1391 | y, |
1392 | width, |
1393 | height, |
1394 | buf, |
1395 | progress_callback, |
1396 | self, |
1397 | |_, _| Ok(()), |
1398 | |s, buf| s.read_image_data(buf), |
1399 | )?; |
1400 | self.reader.seek(SeekFrom::Start(start))?; |
1401 | Ok(()) |
1402 | } |
1403 | } |
1404 | |
1405 | #[cfg (test)] |
1406 | mod test { |
1407 | use super::*; |
1408 | |
1409 | #[test ] |
1410 | fn test_bitfield_len() { |
1411 | for len in 1..9 { |
1412 | let bitfield = Bitfield { shift: 0, len }; |
1413 | for i in 0..(1 << len) { |
1414 | let read = bitfield.read(i); |
1415 | let calc = (i as f64 / ((1 << len) - 1) as f64 * 255f64).round() as u8; |
1416 | if read != calc { |
1417 | println!("len: {} i: {} read: {} calc: {}" , len, i, read, calc); |
1418 | } |
1419 | assert_eq!(read, calc); |
1420 | } |
1421 | } |
1422 | } |
1423 | |
1424 | #[test ] |
1425 | fn read_rect() { |
1426 | let f = std::fs::File::open("tests/images/bmp/images/Core_8_Bit.bmp" ).unwrap(); |
1427 | let mut decoder = super::BmpDecoder::new(f).unwrap(); |
1428 | |
1429 | let mut buf: Vec<u8> = vec![0; 8 * 8 * 3]; |
1430 | decoder.read_rect(0, 0, 8, 8, &mut buf).unwrap(); |
1431 | } |
1432 | |
1433 | #[test ] |
1434 | fn read_rle_too_short() { |
1435 | let data = vec![ |
1436 | 0x42, 0x4d, 0x04, 0xee, 0xfe, 0xff, 0xff, 0x10, 0xff, 0x00, 0x04, 0x00, 0x00, 0x00, |
1437 | 0x7c, 0x00, 0x00, 0x00, 0x0c, 0x41, 0x00, 0x00, 0x07, 0x10, 0x00, 0x00, 0x01, 0x00, |
1438 | 0x04, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0d, 0x00, 0x00, 0x00, |
1439 | 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xfe, 0x21, |
1440 | 0xff, 0x00, 0x66, 0x61, 0x72, 0x62, 0x66, 0x65, 0x6c, 0x64, 0x00, 0x00, 0x00, 0x00, |
1441 | 0x00, 0x00, 0x00, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
1442 | 0xff, 0xd8, 0xff, 0x00, 0x00, 0x19, 0x51, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
1443 | 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0xfa, 0xff, 0x00, 0x00, 0x00, |
1444 | 0x00, 0x01, 0x00, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0f, 0x00, |
1445 | 0x00, 0x00, 0x00, 0x2d, 0x31, 0x31, 0x35, 0x36, 0x00, 0xff, 0x00, 0x00, 0x52, 0x3a, |
1446 | 0x37, 0x30, 0x7e, 0x71, 0x63, 0x91, 0x5a, 0x04, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, |
1447 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, |
1448 | 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x2d, 0x35, 0x37, 0x00, 0xff, 0x00, 0x00, 0x52, |
1449 | 0x3a, 0x37, 0x30, 0x7e, 0x71, 0x63, 0x91, 0x5a, 0x04, 0x05, 0x3c, 0x00, 0x00, 0x11, |
1450 | 0x00, 0x5d, 0x7a, 0x82, 0xb7, 0xca, 0x2d, 0x31, 0xff, 0xff, 0xc7, 0x95, 0x33, 0x2e, |
1451 | 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7c, 0x00, |
1452 | 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x66, 0x00, 0x4d, |
1453 | 0x4d, 0x00, 0x2a, 0x00, |
1454 | ]; |
1455 | |
1456 | let decoder = BmpDecoder::new(Cursor::new(&data)).unwrap(); |
1457 | let mut buf = vec![0; usize::try_from(decoder.total_bytes()).unwrap()]; |
1458 | assert!(decoder.read_image(&mut buf).is_ok()); |
1459 | } |
1460 | |
1461 | #[test ] |
1462 | fn test_no_header() { |
1463 | let tests = [ |
1464 | "Info_R8_G8_B8.bmp" , |
1465 | "Info_A8_R8_G8_B8.bmp" , |
1466 | "Info_8_Bit.bmp" , |
1467 | "Info_4_Bit.bmp" , |
1468 | "Info_1_Bit.bmp" , |
1469 | ]; |
1470 | |
1471 | for name in &tests { |
1472 | let path = format!("tests/images/bmp/images/ {name}" ); |
1473 | let ref_img = crate::open(&path).unwrap(); |
1474 | let mut data = std::fs::read(&path).unwrap(); |
1475 | // skip the BITMAPFILEHEADER |
1476 | let slice = &mut data[14..]; |
1477 | let decoder = BmpDecoder::new_without_file_header(Cursor::new(slice)).unwrap(); |
1478 | let no_hdr_img = crate::DynamicImage::from_decoder(decoder).unwrap(); |
1479 | assert_eq!(ref_img, no_hdr_img); |
1480 | } |
1481 | } |
1482 | } |
1483 | |