1 | //! Image representations for ffi. |
2 | //! |
3 | //! # Usage |
4 | //! |
5 | //! Imagine you want to offer a very simple ffi interface: The caller provides an image buffer and |
6 | //! your program creates a thumbnail from it and dumps that image as `png`. This module is designed |
7 | //! to help you transition from raw memory data to Rust representation. |
8 | //! |
9 | //! ```no_run |
10 | //! use std::ptr; |
11 | //! use std::slice; |
12 | //! use image::Rgb; |
13 | //! use image::flat::{FlatSamples, SampleLayout}; |
14 | //! use image::imageops::thumbnail; |
15 | //! |
16 | //! #[no_mangle] |
17 | //! pub extern "C" fn store_rgb8_compressed( |
18 | //! data: *const u8, len: usize, |
19 | //! layout: *const SampleLayout |
20 | //! ) |
21 | //! -> bool |
22 | //! { |
23 | //! let samples = unsafe { slice::from_raw_parts(data, len) }; |
24 | //! let layout = unsafe { ptr::read(layout) }; |
25 | //! |
26 | //! let buffer = FlatSamples { |
27 | //! samples, |
28 | //! layout, |
29 | //! color_hint: None, |
30 | //! }; |
31 | //! |
32 | //! let view = match buffer.as_view::<Rgb<u8>>() { |
33 | //! Err(_) => return false, // Invalid layout. |
34 | //! Ok(view) => view, |
35 | //! }; |
36 | //! |
37 | //! thumbnail(&view, 64, 64) |
38 | //! .save("output.png" ) |
39 | //! .map(|_| true) |
40 | //! .unwrap_or_else(|_| false) |
41 | //! } |
42 | //! ``` |
43 | //! |
44 | use std::marker::PhantomData; |
45 | use std::ops::{Deref, Index, IndexMut}; |
46 | use std::{cmp, error, fmt}; |
47 | |
48 | use num_traits::Zero; |
49 | |
50 | use crate::color::ColorType; |
51 | use crate::error::{ |
52 | DecodingError, ImageError, ImageFormatHint, ParameterError, ParameterErrorKind, |
53 | UnsupportedError, UnsupportedErrorKind, |
54 | }; |
55 | use crate::image::{GenericImage, GenericImageView}; |
56 | use crate::traits::Pixel; |
57 | use crate::ImageBuffer; |
58 | |
59 | /// A flat buffer over a (multi channel) image. |
60 | /// |
61 | /// In contrast to `ImageBuffer`, this representation of a sample collection is much more lenient |
62 | /// in the layout thereof. It also allows grouping by color planes instead of by pixel as long as |
63 | /// the strides of each extent are constant. This struct itself has no invariants on the strides |
64 | /// but not every possible configuration can be interpreted as a [`GenericImageView`] or |
65 | /// [`GenericImage`]. The methods [`as_view`] and [`as_view_mut`] construct the actual implementors |
66 | /// of these traits and perform necessary checks. To manually perform this and other layout checks |
67 | /// use [`is_normal`] or [`has_aliased_samples`]. |
68 | /// |
69 | /// Instances can be constructed not only by hand. The buffer instances returned by library |
70 | /// functions such as [`ImageBuffer::as_flat_samples`] guarantee that the conversion to a generic |
71 | /// image or generic view succeeds. A very different constructor is [`with_monocolor`]. It uses a |
72 | /// single pixel as the backing storage for an arbitrarily sized read-only raster by mapping each |
73 | /// pixel to the same samples by setting some strides to `0`. |
74 | /// |
75 | /// [`GenericImage`]: ../trait.GenericImage.html |
76 | /// [`GenericImageView`]: ../trait.GenericImageView.html |
77 | /// [`ImageBuffer::as_flat_samples`]: ../struct.ImageBuffer.html#method.as_flat_samples |
78 | /// [`is_normal`]: #method.is_normal |
79 | /// [`has_aliased_samples`]: #method.has_aliased_samples |
80 | /// [`as_view`]: #method.as_view |
81 | /// [`as_view_mut`]: #method.as_view_mut |
82 | /// [`with_monocolor`]: #method.with_monocolor |
83 | #[derive (Clone, Debug)] |
84 | pub struct FlatSamples<Buffer> { |
85 | /// Underlying linear container holding sample values. |
86 | pub samples: Buffer, |
87 | |
88 | /// A `repr(C)` description of the layout of buffer samples. |
89 | pub layout: SampleLayout, |
90 | |
91 | /// Supplementary color information. |
92 | /// |
93 | /// You may keep this as `None` in most cases. This is NOT checked in `View` or other |
94 | /// converters. It is intended mainly as a way for types that convert to this buffer type to |
95 | /// attach their otherwise static color information. A dynamic image representation could |
96 | /// however use this to resolve representational ambiguities such as the order of RGB channels. |
97 | pub color_hint: Option<ColorType>, |
98 | } |
99 | |
100 | /// A ffi compatible description of a sample buffer. |
101 | #[repr (C)] |
102 | #[derive (Clone, Copy, Debug, PartialEq, Eq, Hash)] |
103 | pub struct SampleLayout { |
104 | /// The number of channels in the color representation of the image. |
105 | pub channels: u8, |
106 | |
107 | /// Add this to an index to get to the sample in the next channel. |
108 | pub channel_stride: usize, |
109 | |
110 | /// The width of the represented image. |
111 | pub width: u32, |
112 | |
113 | /// Add this to an index to get to the next sample in x-direction. |
114 | pub width_stride: usize, |
115 | |
116 | /// The height of the represented image. |
117 | pub height: u32, |
118 | |
119 | /// Add this to an index to get to the next sample in y-direction. |
120 | pub height_stride: usize, |
121 | } |
122 | |
123 | /// Helper struct for an unnamed (stride, length) pair. |
124 | #[derive (Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)] |
125 | struct Dim(usize, usize); |
126 | |
127 | impl SampleLayout { |
128 | /// Describe a row-major image packed in all directions. |
129 | /// |
130 | /// The resulting will surely be `NormalForm::RowMajorPacked`. It can therefore be converted to |
131 | /// safely to an `ImageBuffer` with a large enough underlying buffer. |
132 | /// |
133 | /// ``` |
134 | /// # use image::flat::{NormalForm, SampleLayout}; |
135 | /// let layout = SampleLayout::row_major_packed(3, 640, 480); |
136 | /// assert!(layout.is_normal(NormalForm::RowMajorPacked)); |
137 | /// ``` |
138 | /// |
139 | /// # Panics |
140 | /// |
141 | /// On platforms where `usize` has the same size as `u32` this panics when the resulting stride |
142 | /// in the `height` direction would be larger than `usize::max_value()`. On other platforms |
143 | /// where it can surely accommodate `u8::max_value() * u32::max_value(), this can never happen. |
144 | pub fn row_major_packed(channels: u8, width: u32, height: u32) -> Self { |
145 | let height_stride = (channels as usize).checked_mul(width as usize).expect( |
146 | "Row major packed image can not be described because it does not fit into memory" , |
147 | ); |
148 | SampleLayout { |
149 | channels, |
150 | channel_stride: 1, |
151 | width, |
152 | width_stride: channels as usize, |
153 | height, |
154 | height_stride, |
155 | } |
156 | } |
157 | |
158 | /// Describe a column-major image packed in all directions. |
159 | /// |
160 | /// The resulting will surely be `NormalForm::ColumnMajorPacked`. This is not particularly |
161 | /// useful for conversion but can be used to describe such a buffer without pitfalls. |
162 | /// |
163 | /// ``` |
164 | /// # use image::flat::{NormalForm, SampleLayout}; |
165 | /// let layout = SampleLayout::column_major_packed(3, 640, 480); |
166 | /// assert!(layout.is_normal(NormalForm::ColumnMajorPacked)); |
167 | /// ``` |
168 | /// |
169 | /// # Panics |
170 | /// |
171 | /// On platforms where `usize` has the same size as `u32` this panics when the resulting stride |
172 | /// in the `width` direction would be larger than `usize::max_value()`. On other platforms |
173 | /// where it can surely accommodate `u8::max_value() * u32::max_value(), this can never happen. |
174 | pub fn column_major_packed(channels: u8, width: u32, height: u32) -> Self { |
175 | let width_stride = (channels as usize).checked_mul(height as usize).expect( |
176 | "Column major packed image can not be described because it does not fit into memory" , |
177 | ); |
178 | SampleLayout { |
179 | channels, |
180 | channel_stride: 1, |
181 | height, |
182 | height_stride: channels as usize, |
183 | width, |
184 | width_stride, |
185 | } |
186 | } |
187 | |
188 | /// Get the strides for indexing matrix-like `[(c, w, h)]`. |
189 | /// |
190 | /// For a row-major layout with grouped samples, this tuple is strictly |
191 | /// increasing. |
192 | pub fn strides_cwh(&self) -> (usize, usize, usize) { |
193 | (self.channel_stride, self.width_stride, self.height_stride) |
194 | } |
195 | |
196 | /// Get the dimensions `(channels, width, height)`. |
197 | /// |
198 | /// The interface is optimized for use with `strides_cwh` instead. The channel extent will be |
199 | /// before width and height. |
200 | pub fn extents(&self) -> (usize, usize, usize) { |
201 | ( |
202 | self.channels as usize, |
203 | self.width as usize, |
204 | self.height as usize, |
205 | ) |
206 | } |
207 | |
208 | /// Tuple of bounds in the order of coordinate inputs. |
209 | /// |
210 | /// This function should be used whenever working with image coordinates opposed to buffer |
211 | /// coordinates. The only difference compared to `extents` is the output type. |
212 | pub fn bounds(&self) -> (u8, u32, u32) { |
213 | (self.channels, self.width, self.height) |
214 | } |
215 | |
216 | /// Get the minimum length of a buffer such that all in-bounds samples have valid indices. |
217 | /// |
218 | /// This method will allow zero strides, allowing compact representations of monochrome images. |
219 | /// To check that no aliasing occurs, try `check_alias_invariants`. For compact images (no |
220 | /// aliasing and no unindexed samples) this is `width*height*channels`. But for both of the |
221 | /// other cases, the reasoning is slightly more involved. |
222 | /// |
223 | /// # Explanation |
224 | /// |
225 | /// Note that there is a difference between `min_length` and the index of the sample |
226 | /// 'one-past-the-end`. This is due to strides that may be larger than the dimension below. |
227 | /// |
228 | /// ## Example with holes |
229 | /// |
230 | /// Let's look at an example of a grayscale image with |
231 | /// * `width_stride = 1` |
232 | /// * `width = 2` |
233 | /// * `height_stride = 3` |
234 | /// * `height = 2` |
235 | /// |
236 | /// ```text |
237 | /// | x x | x x m | $ |
238 | /// min_length m ^ |
239 | /// ^ one-past-the-end $ |
240 | /// ``` |
241 | /// |
242 | /// The difference is also extreme for empty images with large strides. The one-past-the-end |
243 | /// sample index is still as large as the largest of these strides while `min_length = 0`. |
244 | /// |
245 | /// ## Example with aliasing |
246 | /// |
247 | /// The concept gets even more important when you allow samples to alias each other. Here we |
248 | /// have the buffer of a small grayscale image where this is the case, this time we will first |
249 | /// show the buffer and then the individual rows below. |
250 | /// |
251 | /// * `width_stride = 1` |
252 | /// * `width = 3` |
253 | /// * `height_stride = 2` |
254 | /// * `height = 2` |
255 | /// |
256 | /// ```text |
257 | /// 1 2 3 4 5 m |
258 | /// |1 2 3| row one |
259 | /// |3 4 5| row two |
260 | /// ^ m min_length |
261 | /// ^ ??? one-past-the-end |
262 | /// ``` |
263 | /// |
264 | /// This time 'one-past-the-end' is not even simply the largest stride times the extent of its |
265 | /// dimension. That still points inside the image because `height*height_stride = 4` but also |
266 | /// `index_of(1, 2) = 4`. |
267 | pub fn min_length(&self) -> Option<usize> { |
268 | if self.width == 0 || self.height == 0 || self.channels == 0 { |
269 | return Some(0); |
270 | } |
271 | |
272 | self.index(self.channels - 1, self.width - 1, self.height - 1) |
273 | .and_then(|idx| idx.checked_add(1)) |
274 | } |
275 | |
276 | /// Check if a buffer of length `len` is large enough. |
277 | pub fn fits(&self, len: usize) -> bool { |
278 | self.min_length().map(|min| len >= min).unwrap_or(false) |
279 | } |
280 | |
281 | /// The extents of this array, in order of increasing strides. |
282 | fn increasing_stride_dims(&self) -> [Dim; 3] { |
283 | // Order extents by strides, then check that each is less equal than the next stride. |
284 | let mut grouped: [Dim; 3] = [ |
285 | Dim(self.channel_stride, self.channels as usize), |
286 | Dim(self.width_stride, self.width as usize), |
287 | Dim(self.height_stride, self.height as usize), |
288 | ]; |
289 | |
290 | grouped.sort(); |
291 | |
292 | let (min_dim, mid_dim, max_dim) = (grouped[0], grouped[1], grouped[2]); |
293 | assert!(min_dim.stride() <= mid_dim.stride() && mid_dim.stride() <= max_dim.stride()); |
294 | |
295 | grouped |
296 | } |
297 | |
298 | /// If there are any samples aliasing each other. |
299 | /// |
300 | /// If this is not the case, it would always be safe to allow mutable access to two different |
301 | /// samples at the same time. Otherwise, this operation would need additional checks. When one |
302 | /// dimension overflows `usize` with its stride we also consider this aliasing. |
303 | pub fn has_aliased_samples(&self) -> bool { |
304 | let grouped = self.increasing_stride_dims(); |
305 | let (min_dim, mid_dim, max_dim) = (grouped[0], grouped[1], grouped[2]); |
306 | |
307 | let min_size = match min_dim.checked_len() { |
308 | None => return true, |
309 | Some(size) => size, |
310 | }; |
311 | |
312 | let mid_size = match mid_dim.checked_len() { |
313 | None => return true, |
314 | Some(size) => size, |
315 | }; |
316 | |
317 | match max_dim.checked_len() { |
318 | None => return true, |
319 | Some(_) => (), // Only want to know this didn't overflow. |
320 | }; |
321 | |
322 | // Each higher dimension must walk over all of one lower dimension. |
323 | min_size > mid_dim.stride() || mid_size > max_dim.stride() |
324 | } |
325 | |
326 | /// Check if a buffer fulfills the requirements of a normal form. |
327 | /// |
328 | /// Certain conversions have preconditions on the structure of the sample buffer that are not |
329 | /// captured (by design) by the type system. These are then checked before the conversion. Such |
330 | /// checks can all be done in constant time and will not inspect the buffer content. You can |
331 | /// perform these checks yourself when the conversion is not required at this moment but maybe |
332 | /// still performed later. |
333 | pub fn is_normal(&self, form: NormalForm) -> bool { |
334 | if self.has_aliased_samples() { |
335 | return false; |
336 | } |
337 | |
338 | if form >= NormalForm::PixelPacked && self.channel_stride != 1 { |
339 | return false; |
340 | } |
341 | |
342 | if form >= NormalForm::ImagePacked { |
343 | // has aliased already checked for overflows. |
344 | let grouped = self.increasing_stride_dims(); |
345 | let (min_dim, mid_dim, max_dim) = (grouped[0], grouped[1], grouped[2]); |
346 | |
347 | if 1 != min_dim.stride() { |
348 | return false; |
349 | } |
350 | |
351 | if min_dim.len() != mid_dim.stride() { |
352 | return false; |
353 | } |
354 | |
355 | if mid_dim.len() != max_dim.stride() { |
356 | return false; |
357 | } |
358 | } |
359 | |
360 | if form >= NormalForm::RowMajorPacked { |
361 | if self.width_stride != self.channels as usize { |
362 | return false; |
363 | } |
364 | |
365 | if self.width as usize * self.width_stride != self.height_stride { |
366 | return false; |
367 | } |
368 | } |
369 | |
370 | if form >= NormalForm::ColumnMajorPacked { |
371 | if self.height_stride != self.channels as usize { |
372 | return false; |
373 | } |
374 | |
375 | if self.height as usize * self.height_stride != self.width_stride { |
376 | return false; |
377 | } |
378 | } |
379 | |
380 | true |
381 | } |
382 | |
383 | /// Check that the pixel and the channel index are in bounds. |
384 | /// |
385 | /// An in-bound coordinate does not yet guarantee that the corresponding calculation of a |
386 | /// buffer index does not overflow. However, if such a buffer large enough to hold all samples |
387 | /// actually exists in memory, this property of course follows. |
388 | pub fn in_bounds(&self, channel: u8, x: u32, y: u32) -> bool { |
389 | channel < self.channels && x < self.width && y < self.height |
390 | } |
391 | |
392 | /// Resolve the index of a particular sample. |
393 | /// |
394 | /// `None` if the index is outside the bounds or does not fit into a `usize`. |
395 | pub fn index(&self, channel: u8, x: u32, y: u32) -> Option<usize> { |
396 | if !self.in_bounds(channel, x, y) { |
397 | return None; |
398 | } |
399 | |
400 | self.index_ignoring_bounds(channel as usize, x as usize, y as usize) |
401 | } |
402 | |
403 | /// Get the theoretical position of sample (channel, x, y). |
404 | /// |
405 | /// The 'check' is for overflow during index calculation, not that it is contained in the |
406 | /// image. Two samples may return the same index, even when one of them is out of bounds. This |
407 | /// happens when all strides are `0`, i.e. the image is an arbitrarily large monochrome image. |
408 | pub fn index_ignoring_bounds(&self, channel: usize, x: usize, y: usize) -> Option<usize> { |
409 | let idx_c = channel.checked_mul(self.channel_stride); |
410 | let idx_x = x.checked_mul(self.width_stride); |
411 | let idx_y = y.checked_mul(self.height_stride); |
412 | |
413 | let (idx_c, idx_x, idx_y) = match (idx_c, idx_x, idx_y) { |
414 | (Some(idx_c), Some(idx_x), Some(idx_y)) => (idx_c, idx_x, idx_y), |
415 | _ => return None, |
416 | }; |
417 | |
418 | Some(0usize) |
419 | .and_then(|b| b.checked_add(idx_c)) |
420 | .and_then(|b| b.checked_add(idx_x)) |
421 | .and_then(|b| b.checked_add(idx_y)) |
422 | } |
423 | |
424 | /// Get an index provided it is inbouds. |
425 | /// |
426 | /// Assumes that the image is backed by some sufficiently large buffer. Then computation can |
427 | /// not overflow as we could represent the maximum coordinate. Since overflow is defined either |
428 | /// way, this method can not be unsafe. |
429 | /// |
430 | /// Behavior is *unspecified* if the index is out of bounds or this sample layout would require |
431 | /// a buffer larger than `isize::MAX` bytes. |
432 | pub fn in_bounds_index(&self, c: u8, x: u32, y: u32) -> usize { |
433 | let (c_stride, x_stride, y_stride) = self.strides_cwh(); |
434 | (y as usize * y_stride) + (x as usize * x_stride) + (c as usize * c_stride) |
435 | } |
436 | |
437 | /// Shrink the image to the minimum of current and given extents. |
438 | /// |
439 | /// This does not modify the strides, so that the resulting sample buffer may have holes |
440 | /// created by the shrinking operation. Shrinking could also lead to an non-aliasing image when |
441 | /// samples had aliased each other before. |
442 | pub fn shrink_to(&mut self, channels: u8, width: u32, height: u32) { |
443 | self.channels = self.channels.min(channels); |
444 | self.width = self.width.min(width); |
445 | self.height = self.height.min(height); |
446 | } |
447 | } |
448 | |
449 | impl Dim { |
450 | fn stride(self) -> usize { |
451 | self.0 |
452 | } |
453 | |
454 | /// Length of this dimension in memory. |
455 | fn checked_len(self) -> Option<usize> { |
456 | self.0.checked_mul(self.1) |
457 | } |
458 | |
459 | fn len(self) -> usize { |
460 | self.0 * self.1 |
461 | } |
462 | } |
463 | |
464 | impl<Buffer> FlatSamples<Buffer> { |
465 | /// Get the strides for indexing matrix-like `[(c, w, h)]`. |
466 | /// |
467 | /// For a row-major layout with grouped samples, this tuple is strictly |
468 | /// increasing. |
469 | pub fn strides_cwh(&self) -> (usize, usize, usize) { |
470 | self.layout.strides_cwh() |
471 | } |
472 | |
473 | /// Get the dimensions `(channels, width, height)`. |
474 | /// |
475 | /// The interface is optimized for use with `strides_cwh` instead. The channel extent will be |
476 | /// before width and height. |
477 | pub fn extents(&self) -> (usize, usize, usize) { |
478 | self.layout.extents() |
479 | } |
480 | |
481 | /// Tuple of bounds in the order of coordinate inputs. |
482 | /// |
483 | /// This function should be used whenever working with image coordinates opposed to buffer |
484 | /// coordinates. The only difference compared to `extents` is the output type. |
485 | pub fn bounds(&self) -> (u8, u32, u32) { |
486 | self.layout.bounds() |
487 | } |
488 | |
489 | /// Get a reference based version. |
490 | pub fn as_ref<T>(&self) -> FlatSamples<&[T]> |
491 | where |
492 | Buffer: AsRef<[T]>, |
493 | { |
494 | FlatSamples { |
495 | samples: self.samples.as_ref(), |
496 | layout: self.layout, |
497 | color_hint: self.color_hint, |
498 | } |
499 | } |
500 | |
501 | /// Get a mutable reference based version. |
502 | pub fn as_mut<T>(&mut self) -> FlatSamples<&mut [T]> |
503 | where |
504 | Buffer: AsMut<[T]>, |
505 | { |
506 | FlatSamples { |
507 | samples: self.samples.as_mut(), |
508 | layout: self.layout, |
509 | color_hint: self.color_hint, |
510 | } |
511 | } |
512 | |
513 | /// Copy the data into an owned vector. |
514 | pub fn to_vec<T>(&self) -> FlatSamples<Vec<T>> |
515 | where |
516 | T: Clone, |
517 | Buffer: AsRef<[T]>, |
518 | { |
519 | FlatSamples { |
520 | samples: self.samples.as_ref().to_vec(), |
521 | layout: self.layout, |
522 | color_hint: self.color_hint, |
523 | } |
524 | } |
525 | |
526 | /// Get a reference to a single sample. |
527 | /// |
528 | /// This more restrictive than the method based on `std::ops::Index` but guarantees to properly |
529 | /// check all bounds and not panic as long as `Buffer::as_ref` does not do so. |
530 | /// |
531 | /// ``` |
532 | /// # use image::{RgbImage}; |
533 | /// let flat = RgbImage::new(480, 640).into_flat_samples(); |
534 | /// |
535 | /// // Get the blue channel at (10, 10). |
536 | /// assert!(flat.get_sample(1, 10, 10).is_some()); |
537 | /// |
538 | /// // There is no alpha channel. |
539 | /// assert!(flat.get_sample(3, 10, 10).is_none()); |
540 | /// ``` |
541 | /// |
542 | /// For cases where a special buffer does not provide `AsRef<[T]>`, consider encapsulating |
543 | /// bounds checks with `min_length` in a type similar to `View`. Then you may use |
544 | /// `in_bounds_index` as a small speedup over the index calculation of this method which relies |
545 | /// on `index_ignoring_bounds` since it can not have a-priori knowledge that the sample |
546 | /// coordinate is in fact backed by any memory buffer. |
547 | pub fn get_sample<T>(&self, channel: u8, x: u32, y: u32) -> Option<&T> |
548 | where |
549 | Buffer: AsRef<[T]>, |
550 | { |
551 | self.index(channel, x, y) |
552 | .and_then(|idx| self.samples.as_ref().get(idx)) |
553 | } |
554 | |
555 | /// Get a mutable reference to a single sample. |
556 | /// |
557 | /// This more restrictive than the method based on `std::ops::IndexMut` but guarantees to |
558 | /// properly check all bounds and not panic as long as `Buffer::as_ref` does not do so. |
559 | /// Contrary to conversion to `ViewMut`, this does not require that samples are packed since it |
560 | /// does not need to convert samples to a color representation. |
561 | /// |
562 | /// **WARNING**: Note that of course samples may alias, so that the mutable reference returned |
563 | /// here can in fact modify more than the coordinate in the argument. |
564 | /// |
565 | /// ``` |
566 | /// # use image::{RgbImage}; |
567 | /// let mut flat = RgbImage::new(480, 640).into_flat_samples(); |
568 | /// |
569 | /// // Assign some new color to the blue channel at (10, 10). |
570 | /// *flat.get_mut_sample(1, 10, 10).unwrap() = 255; |
571 | /// |
572 | /// // There is no alpha channel. |
573 | /// assert!(flat.get_mut_sample(3, 10, 10).is_none()); |
574 | /// ``` |
575 | /// |
576 | /// For cases where a special buffer does not provide `AsRef<[T]>`, consider encapsulating |
577 | /// bounds checks with `min_length` in a type similar to `View`. Then you may use |
578 | /// `in_bounds_index` as a small speedup over the index calculation of this method which relies |
579 | /// on `index_ignoring_bounds` since it can not have a-priori knowledge that the sample |
580 | /// coordinate is in fact backed by any memory buffer. |
581 | pub fn get_mut_sample<T>(&mut self, channel: u8, x: u32, y: u32) -> Option<&mut T> |
582 | where |
583 | Buffer: AsMut<[T]>, |
584 | { |
585 | match self.index(channel, x, y) { |
586 | None => None, |
587 | Some(idx) => self.samples.as_mut().get_mut(idx), |
588 | } |
589 | } |
590 | |
591 | /// View this buffer as an image over some type of pixel. |
592 | /// |
593 | /// This first ensures that all in-bounds coordinates refer to valid indices in the sample |
594 | /// buffer. It also checks that the specified pixel format expects the same number of channels |
595 | /// that are present in this buffer. Neither are larger nor a smaller number will be accepted. |
596 | /// There is no automatic conversion. |
597 | pub fn as_view<P>(&self) -> Result<View<&[P::Subpixel], P>, Error> |
598 | where |
599 | P: Pixel, |
600 | Buffer: AsRef<[P::Subpixel]>, |
601 | { |
602 | if self.layout.channels != P::CHANNEL_COUNT { |
603 | return Err(Error::ChannelCountMismatch( |
604 | self.layout.channels, |
605 | P::CHANNEL_COUNT, |
606 | )); |
607 | } |
608 | |
609 | let as_ref = self.samples.as_ref(); |
610 | if !self.layout.fits(as_ref.len()) { |
611 | return Err(Error::TooLarge); |
612 | } |
613 | |
614 | Ok(View { |
615 | inner: FlatSamples { |
616 | samples: as_ref, |
617 | layout: self.layout, |
618 | color_hint: self.color_hint, |
619 | }, |
620 | phantom: PhantomData, |
621 | }) |
622 | } |
623 | |
624 | /// View this buffer but keep mutability at a sample level. |
625 | /// |
626 | /// This is similar to `as_view` but subtly different from `as_view_mut`. The resulting type |
627 | /// can be used as a `GenericImage` with the same prior invariants needed as for `as_view`. |
628 | /// It can not be used as a mutable `GenericImage` but does not need channels to be packed in |
629 | /// their pixel representation. |
630 | /// |
631 | /// This first ensures that all in-bounds coordinates refer to valid indices in the sample |
632 | /// buffer. It also checks that the specified pixel format expects the same number of channels |
633 | /// that are present in this buffer. Neither are larger nor a smaller number will be accepted. |
634 | /// There is no automatic conversion. |
635 | /// |
636 | /// **WARNING**: Note that of course samples may alias, so that the mutable reference returned |
637 | /// for one sample can in fact modify other samples as well. Sometimes exactly this is |
638 | /// intended. |
639 | pub fn as_view_with_mut_samples<P>(&mut self) -> Result<View<&mut [P::Subpixel], P>, Error> |
640 | where |
641 | P: Pixel, |
642 | Buffer: AsMut<[P::Subpixel]>, |
643 | { |
644 | if self.layout.channels != P::CHANNEL_COUNT { |
645 | return Err(Error::ChannelCountMismatch( |
646 | self.layout.channels, |
647 | P::CHANNEL_COUNT, |
648 | )); |
649 | } |
650 | |
651 | let as_mut = self.samples.as_mut(); |
652 | if !self.layout.fits(as_mut.len()) { |
653 | return Err(Error::TooLarge); |
654 | } |
655 | |
656 | Ok(View { |
657 | inner: FlatSamples { |
658 | samples: as_mut, |
659 | layout: self.layout, |
660 | color_hint: self.color_hint, |
661 | }, |
662 | phantom: PhantomData, |
663 | }) |
664 | } |
665 | |
666 | /// Interpret this buffer as a mutable image. |
667 | /// |
668 | /// To succeed, the pixels in this buffer may not alias each other and the samples of each |
669 | /// pixel must be packed (i.e. `channel_stride` is `1`). The number of channels must be |
670 | /// consistent with the channel count expected by the pixel format. |
671 | /// |
672 | /// This is similar to an `ImageBuffer` except it is a temporary view that is not normalized as |
673 | /// strongly. To get an owning version, consider copying the data into an `ImageBuffer`. This |
674 | /// provides many more operations, is possibly faster (if not you may want to open an issue) is |
675 | /// generally polished. You can also try to convert this buffer inline, see |
676 | /// `ImageBuffer::from_raw`. |
677 | pub fn as_view_mut<P>(&mut self) -> Result<ViewMut<&mut [P::Subpixel], P>, Error> |
678 | where |
679 | P: Pixel, |
680 | Buffer: AsMut<[P::Subpixel]>, |
681 | { |
682 | if !self.layout.is_normal(NormalForm::PixelPacked) { |
683 | return Err(Error::NormalFormRequired(NormalForm::PixelPacked)); |
684 | } |
685 | |
686 | if self.layout.channels != P::CHANNEL_COUNT { |
687 | return Err(Error::ChannelCountMismatch( |
688 | self.layout.channels, |
689 | P::CHANNEL_COUNT, |
690 | )); |
691 | } |
692 | |
693 | let as_mut = self.samples.as_mut(); |
694 | if !self.layout.fits(as_mut.len()) { |
695 | return Err(Error::TooLarge); |
696 | } |
697 | |
698 | Ok(ViewMut { |
699 | inner: FlatSamples { |
700 | samples: as_mut, |
701 | layout: self.layout, |
702 | color_hint: self.color_hint, |
703 | }, |
704 | phantom: PhantomData, |
705 | }) |
706 | } |
707 | |
708 | /// View the samples as a slice. |
709 | /// |
710 | /// The slice is not limited to the region of the image and not all sample indices are valid |
711 | /// indices into this buffer. See `image_mut_slice` as an alternative. |
712 | pub fn as_slice<T>(&self) -> &[T] |
713 | where |
714 | Buffer: AsRef<[T]>, |
715 | { |
716 | self.samples.as_ref() |
717 | } |
718 | |
719 | /// View the samples as a slice. |
720 | /// |
721 | /// The slice is not limited to the region of the image and not all sample indices are valid |
722 | /// indices into this buffer. See `image_mut_slice` as an alternative. |
723 | pub fn as_mut_slice<T>(&mut self) -> &mut [T] |
724 | where |
725 | Buffer: AsMut<[T]>, |
726 | { |
727 | self.samples.as_mut() |
728 | } |
729 | |
730 | /// Return the portion of the buffer that holds sample values. |
731 | /// |
732 | /// This may fail when the coordinates in this image are either out-of-bounds of the underlying |
733 | /// buffer or can not be represented. Note that the slice may have holes that do not correspond |
734 | /// to any sample in the image represented by it. |
735 | pub fn image_slice<T>(&self) -> Option<&[T]> |
736 | where |
737 | Buffer: AsRef<[T]>, |
738 | { |
739 | let min_length = match self.min_length() { |
740 | None => return None, |
741 | Some(index) => index, |
742 | }; |
743 | |
744 | let slice = self.samples.as_ref(); |
745 | if slice.len() < min_length { |
746 | return None; |
747 | } |
748 | |
749 | Some(&slice[..min_length]) |
750 | } |
751 | |
752 | /// Mutable portion of the buffer that holds sample values. |
753 | pub fn image_mut_slice<T>(&mut self) -> Option<&mut [T]> |
754 | where |
755 | Buffer: AsMut<[T]>, |
756 | { |
757 | let min_length = match self.min_length() { |
758 | None => return None, |
759 | Some(index) => index, |
760 | }; |
761 | |
762 | let slice = self.samples.as_mut(); |
763 | if slice.len() < min_length { |
764 | return None; |
765 | } |
766 | |
767 | Some(&mut slice[..min_length]) |
768 | } |
769 | |
770 | /// Move the data into an image buffer. |
771 | /// |
772 | /// This does **not** convert the sample layout. The buffer needs to be in packed row-major form |
773 | /// before calling this function. In case of an error, returns the buffer again so that it does |
774 | /// not release any allocation. |
775 | pub fn try_into_buffer<P>(self) -> Result<ImageBuffer<P, Buffer>, (Error, Self)> |
776 | where |
777 | P: Pixel + 'static, |
778 | P::Subpixel: 'static, |
779 | Buffer: Deref<Target = [P::Subpixel]>, |
780 | { |
781 | if !self.is_normal(NormalForm::RowMajorPacked) { |
782 | return Err((Error::NormalFormRequired(NormalForm::RowMajorPacked), self)); |
783 | } |
784 | |
785 | if self.layout.channels != P::CHANNEL_COUNT { |
786 | return Err(( |
787 | Error::ChannelCountMismatch(self.layout.channels, P::CHANNEL_COUNT), |
788 | self, |
789 | )); |
790 | } |
791 | |
792 | if !self.fits(self.samples.deref().len()) { |
793 | return Err((Error::TooLarge, self)); |
794 | } |
795 | |
796 | Ok( |
797 | ImageBuffer::from_raw(self.layout.width, self.layout.height, self.samples) |
798 | .unwrap_or_else(|| { |
799 | panic!("Preconditions should have been ensured before conversion" ) |
800 | }), |
801 | ) |
802 | } |
803 | |
804 | /// Get the minimum length of a buffer such that all in-bounds samples have valid indices. |
805 | /// |
806 | /// This method will allow zero strides, allowing compact representations of monochrome images. |
807 | /// To check that no aliasing occurs, try `check_alias_invariants`. For compact images (no |
808 | /// aliasing and no unindexed samples) this is `width*height*channels`. But for both of the |
809 | /// other cases, the reasoning is slightly more involved. |
810 | /// |
811 | /// # Explanation |
812 | /// |
813 | /// Note that there is a difference between `min_length` and the index of the sample |
814 | /// 'one-past-the-end`. This is due to strides that may be larger than the dimension below. |
815 | /// |
816 | /// ## Example with holes |
817 | /// |
818 | /// Let's look at an example of a grayscale image with |
819 | /// * `width_stride = 1` |
820 | /// * `width = 2` |
821 | /// * `height_stride = 3` |
822 | /// * `height = 2` |
823 | /// |
824 | /// ```text |
825 | /// | x x | x x m | $ |
826 | /// min_length m ^ |
827 | /// ^ one-past-the-end $ |
828 | /// ``` |
829 | /// |
830 | /// The difference is also extreme for empty images with large strides. The one-past-the-end |
831 | /// sample index is still as large as the largest of these strides while `min_length = 0`. |
832 | /// |
833 | /// ## Example with aliasing |
834 | /// |
835 | /// The concept gets even more important when you allow samples to alias each other. Here we |
836 | /// have the buffer of a small grayscale image where this is the case, this time we will first |
837 | /// show the buffer and then the individual rows below. |
838 | /// |
839 | /// * `width_stride = 1` |
840 | /// * `width = 3` |
841 | /// * `height_stride = 2` |
842 | /// * `height = 2` |
843 | /// |
844 | /// ```text |
845 | /// 1 2 3 4 5 m |
846 | /// |1 2 3| row one |
847 | /// |3 4 5| row two |
848 | /// ^ m min_length |
849 | /// ^ ??? one-past-the-end |
850 | /// ``` |
851 | /// |
852 | /// This time 'one-past-the-end' is not even simply the largest stride times the extent of its |
853 | /// dimension. That still points inside the image because `height*height_stride = 4` but also |
854 | /// `index_of(1, 2) = 4`. |
855 | pub fn min_length(&self) -> Option<usize> { |
856 | self.layout.min_length() |
857 | } |
858 | |
859 | /// Check if a buffer of length `len` is large enough. |
860 | pub fn fits(&self, len: usize) -> bool { |
861 | self.layout.fits(len) |
862 | } |
863 | |
864 | /// If there are any samples aliasing each other. |
865 | /// |
866 | /// If this is not the case, it would always be safe to allow mutable access to two different |
867 | /// samples at the same time. Otherwise, this operation would need additional checks. When one |
868 | /// dimension overflows `usize` with its stride we also consider this aliasing. |
869 | pub fn has_aliased_samples(&self) -> bool { |
870 | self.layout.has_aliased_samples() |
871 | } |
872 | |
873 | /// Check if a buffer fulfills the requirements of a normal form. |
874 | /// |
875 | /// Certain conversions have preconditions on the structure of the sample buffer that are not |
876 | /// captured (by design) by the type system. These are then checked before the conversion. Such |
877 | /// checks can all be done in constant time and will not inspect the buffer content. You can |
878 | /// perform these checks yourself when the conversion is not required at this moment but maybe |
879 | /// still performed later. |
880 | pub fn is_normal(&self, form: NormalForm) -> bool { |
881 | self.layout.is_normal(form) |
882 | } |
883 | |
884 | /// Check that the pixel and the channel index are in bounds. |
885 | /// |
886 | /// An in-bound coordinate does not yet guarantee that the corresponding calculation of a |
887 | /// buffer index does not overflow. However, if such a buffer large enough to hold all samples |
888 | /// actually exists in memory, this property of course follows. |
889 | pub fn in_bounds(&self, channel: u8, x: u32, y: u32) -> bool { |
890 | self.layout.in_bounds(channel, x, y) |
891 | } |
892 | |
893 | /// Resolve the index of a particular sample. |
894 | /// |
895 | /// `None` if the index is outside the bounds or does not fit into a `usize`. |
896 | pub fn index(&self, channel: u8, x: u32, y: u32) -> Option<usize> { |
897 | self.layout.index(channel, x, y) |
898 | } |
899 | |
900 | /// Get the theoretical position of sample (x, y, channel). |
901 | /// |
902 | /// The 'check' is for overflow during index calculation, not that it is contained in the |
903 | /// image. Two samples may return the same index, even when one of them is out of bounds. This |
904 | /// happens when all strides are `0`, i.e. the image is an arbitrarily large monochrome image. |
905 | pub fn index_ignoring_bounds(&self, channel: usize, x: usize, y: usize) -> Option<usize> { |
906 | self.layout.index_ignoring_bounds(channel, x, y) |
907 | } |
908 | |
909 | /// Get an index provided it is inbouds. |
910 | /// |
911 | /// Assumes that the image is backed by some sufficiently large buffer. Then computation can |
912 | /// not overflow as we could represent the maximum coordinate. Since overflow is defined either |
913 | /// way, this method can not be unsafe. |
914 | pub fn in_bounds_index(&self, channel: u8, x: u32, y: u32) -> usize { |
915 | self.layout.in_bounds_index(channel, x, y) |
916 | } |
917 | |
918 | /// Shrink the image to the minimum of current and given extents. |
919 | /// |
920 | /// This does not modify the strides, so that the resulting sample buffer may have holes |
921 | /// created by the shrinking operation. Shrinking could also lead to an non-aliasing image when |
922 | /// samples had aliased each other before. |
923 | pub fn shrink_to(&mut self, channels: u8, width: u32, height: u32) { |
924 | self.layout.shrink_to(channels, width, height) |
925 | } |
926 | } |
927 | |
928 | impl<'buf, Subpixel> FlatSamples<&'buf [Subpixel]> { |
929 | /// Create a monocolor image from a single pixel. |
930 | /// |
931 | /// This can be used as a very cheap source of a `GenericImageView` with an arbitrary number of |
932 | /// pixels of a single color, without any dynamic allocation. |
933 | /// |
934 | /// ## Examples |
935 | /// |
936 | /// ``` |
937 | /// # fn paint_something<T>(_: T) {} |
938 | /// use image::{flat::FlatSamples, GenericImage, RgbImage, Rgb}; |
939 | /// |
940 | /// let background = Rgb([20, 20, 20]); |
941 | /// let bg = FlatSamples::with_monocolor(&background, 200, 200);; |
942 | /// |
943 | /// let mut image = RgbImage::new(200, 200); |
944 | /// paint_something(&mut image); |
945 | /// |
946 | /// // Reset the canvas |
947 | /// image.copy_from(&bg.as_view().unwrap(), 0, 0); |
948 | /// ``` |
949 | pub fn with_monocolor<P>(pixel: &'buf P, width: u32, height: u32) -> Self |
950 | where |
951 | P: Pixel<Subpixel = Subpixel>, |
952 | Subpixel: crate::Primitive, |
953 | { |
954 | FlatSamples { |
955 | samples: pixel.channels(), |
956 | layout: SampleLayout { |
957 | channels: P::CHANNEL_COUNT, |
958 | channel_stride: 1, |
959 | width, |
960 | width_stride: 0, |
961 | height, |
962 | height_stride: 0, |
963 | }, |
964 | |
965 | // TODO this value is never set. It should be set in all places where the Pixel type implements PixelWithColorType |
966 | color_hint: None, |
967 | } |
968 | } |
969 | } |
970 | |
971 | /// A flat buffer that can be used as an image view. |
972 | /// |
973 | /// This is a nearly trivial wrapper around a buffer but at least sanitizes by checking the buffer |
974 | /// length first and constraining the pixel type. |
975 | /// |
976 | /// Note that this does not eliminate panics as the `AsRef<[T]>` implementation of `Buffer` may be |
977 | /// unreliable, i.e. return different buffers at different times. This of course is a non-issue for |
978 | /// all common collections where the bounds check once must be enough. |
979 | /// |
980 | /// # Inner invariants |
981 | /// |
982 | /// * For all indices inside bounds, the corresponding index is valid in the buffer |
983 | /// * `P::channel_count()` agrees with `self.inner.layout.channels` |
984 | /// |
985 | #[derive (Clone, Debug)] |
986 | pub struct View<Buffer, P: Pixel> |
987 | where |
988 | Buffer: AsRef<[P::Subpixel]>, |
989 | { |
990 | inner: FlatSamples<Buffer>, |
991 | phantom: PhantomData<P>, |
992 | } |
993 | |
994 | /// A mutable owning version of a flat buffer. |
995 | /// |
996 | /// While this wraps a buffer similar to `ImageBuffer`, this is mostly intended as a utility. The |
997 | /// library endorsed normalized representation is still `ImageBuffer`. Also, the implementation of |
998 | /// `AsMut<[P::Subpixel]>` must always yield the same buffer. Therefore there is no public way to |
999 | /// construct this with an owning buffer. |
1000 | /// |
1001 | /// # Inner invariants |
1002 | /// |
1003 | /// * For all indices inside bounds, the corresponding index is valid in the buffer |
1004 | /// * There is no aliasing of samples |
1005 | /// * The samples are packed, i.e. `self.inner.layout.sample_stride == 1` |
1006 | /// * `P::channel_count()` agrees with `self.inner.layout.channels` |
1007 | /// |
1008 | #[derive (Clone, Debug)] |
1009 | pub struct ViewMut<Buffer, P: Pixel> |
1010 | where |
1011 | Buffer: AsMut<[P::Subpixel]>, |
1012 | { |
1013 | inner: FlatSamples<Buffer>, |
1014 | phantom: PhantomData<P>, |
1015 | } |
1016 | |
1017 | /// Denotes invalid flat sample buffers when trying to convert to stricter types. |
1018 | /// |
1019 | /// The biggest use case being `ImageBuffer` which expects closely packed |
1020 | /// samples in a row major matrix representation. But this error type may be |
1021 | /// resused for other import functions. A more versatile user may also try to |
1022 | /// correct the underlying representation depending on the error variant. |
1023 | #[derive (Clone, Copy, Debug, PartialEq, Eq, Hash)] |
1024 | pub enum Error { |
1025 | /// The represented image was too large. |
1026 | /// |
1027 | /// The optional value denotes a possibly accepted maximal bound. |
1028 | TooLarge, |
1029 | |
1030 | /// The represented image can not use this representation. |
1031 | /// |
1032 | /// Has an additional value of the normalized form that would be accepted. |
1033 | NormalFormRequired(NormalForm), |
1034 | |
1035 | /// The color format did not match the channel count. |
1036 | /// |
1037 | /// In some cases you might be able to fix this by lowering the reported pixel count of the |
1038 | /// buffer without touching the strides. |
1039 | /// |
1040 | /// In very special circumstances you *may* do the opposite. This is **VERY** dangerous but not |
1041 | /// directly memory unsafe although that will likely alias pixels. One scenario is when you |
1042 | /// want to construct an `Rgba` image but have only 3 bytes per pixel and for some reason don't |
1043 | /// care about the value of the alpha channel even though you need `Rgba`. |
1044 | ChannelCountMismatch(u8, u8), |
1045 | |
1046 | /// Deprecated - ChannelCountMismatch is used instead |
1047 | WrongColor(ColorType), |
1048 | } |
1049 | |
1050 | /// Different normal forms of buffers. |
1051 | /// |
1052 | /// A normal form is an unaliased buffer with some additional constraints. The `ÃŒmageBuffer` uses |
1053 | /// row major form with packed samples. |
1054 | #[derive (Clone, Copy, Debug, PartialEq, Eq, Hash)] |
1055 | pub enum NormalForm { |
1056 | /// No pixel aliases another. |
1057 | /// |
1058 | /// Unaliased also guarantees that all index calculations in the image bounds using |
1059 | /// `dim_index*dim_stride` (such as `x*width_stride + y*height_stride`) do not overflow. |
1060 | Unaliased, |
1061 | |
1062 | /// At least pixels are packed. |
1063 | /// |
1064 | /// Images of these types can wrap `[T]`-slices into the standard color types. This is a |
1065 | /// precondition for `GenericImage` which requires by-reference access to pixels. |
1066 | PixelPacked, |
1067 | |
1068 | /// All samples are packed. |
1069 | /// |
1070 | /// This is orthogonal to `PixelPacked`. It requires that there are no holes in the image but |
1071 | /// it is not necessary that the pixel samples themselves are adjacent. An example of this |
1072 | /// behaviour is a planar image layout. |
1073 | ImagePacked, |
1074 | |
1075 | /// The samples are in row-major form and all samples are packed. |
1076 | /// |
1077 | /// In addition to `PixelPacked` and `ImagePacked` this also asserts that the pixel matrix is |
1078 | /// in row-major form. |
1079 | RowMajorPacked, |
1080 | |
1081 | /// The samples are in column-major form and all samples are packed. |
1082 | /// |
1083 | /// In addition to `PixelPacked` and `ImagePacked` this also asserts that the pixel matrix is |
1084 | /// in column-major form. |
1085 | ColumnMajorPacked, |
1086 | } |
1087 | |
1088 | impl<Buffer, P: Pixel> View<Buffer, P> |
1089 | where |
1090 | Buffer: AsRef<[P::Subpixel]>, |
1091 | { |
1092 | /// Take out the sample buffer. |
1093 | /// |
1094 | /// Gives up the normalization invariants on the buffer format. |
1095 | pub fn into_inner(self) -> FlatSamples<Buffer> { |
1096 | self.inner |
1097 | } |
1098 | |
1099 | /// Get a reference on the inner sample descriptor. |
1100 | /// |
1101 | /// There is no mutable counterpart as modifying the buffer format, including strides and |
1102 | /// lengths, could invalidate the accessibility invariants of the `View`. It is not specified |
1103 | /// if the inner buffer is the same as the buffer of the image from which this view was |
1104 | /// created. It might have been truncated as an optimization. |
1105 | pub fn flat(&self) -> &FlatSamples<Buffer> { |
1106 | &self.inner |
1107 | } |
1108 | |
1109 | /// Get a reference on the inner buffer. |
1110 | /// |
1111 | /// There is no mutable counter part since it is not intended to allow you to reassign the |
1112 | /// buffer or otherwise change its size or properties. |
1113 | pub fn samples(&self) -> &Buffer { |
1114 | &self.inner.samples |
1115 | } |
1116 | |
1117 | /// Get a reference to a selected subpixel if it is in-bounds. |
1118 | /// |
1119 | /// This method will return `None` when the sample is out-of-bounds. All errors that could |
1120 | /// occur due to overflow have been eliminated while construction the `View`. |
1121 | pub fn get_sample(&self, channel: u8, x: u32, y: u32) -> Option<&P::Subpixel> { |
1122 | if !self.inner.in_bounds(channel, x, y) { |
1123 | return None; |
1124 | } |
1125 | |
1126 | let index = self.inner.in_bounds_index(channel, x, y); |
1127 | // Should always be `Some(_)` but checking is more costly. |
1128 | self.samples().as_ref().get(index) |
1129 | } |
1130 | |
1131 | /// Get a mutable reference to a selected subpixel if it is in-bounds. |
1132 | /// |
1133 | /// This is relevant only when constructed with `FlatSamples::as_view_with_mut_samples`. This |
1134 | /// method will return `None` when the sample is out-of-bounds. All errors that could occur due |
1135 | /// to overflow have been eliminated while construction the `View`. |
1136 | /// |
1137 | /// **WARNING**: Note that of course samples may alias, so that the mutable reference returned |
1138 | /// here can in fact modify more than the coordinate in the argument. |
1139 | pub fn get_mut_sample(&mut self, channel: u8, x: u32, y: u32) -> Option<&mut P::Subpixel> |
1140 | where |
1141 | Buffer: AsMut<[P::Subpixel]>, |
1142 | { |
1143 | if !self.inner.in_bounds(channel, x, y) { |
1144 | return None; |
1145 | } |
1146 | |
1147 | let index = self.inner.in_bounds_index(channel, x, y); |
1148 | // Should always be `Some(_)` but checking is more costly. |
1149 | self.inner.samples.as_mut().get_mut(index) |
1150 | } |
1151 | |
1152 | /// Get the minimum length of a buffer such that all in-bounds samples have valid indices. |
1153 | /// |
1154 | /// See `FlatSamples::min_length`. This method will always succeed. |
1155 | pub fn min_length(&self) -> usize { |
1156 | self.inner.min_length().unwrap() |
1157 | } |
1158 | |
1159 | /// Return the portion of the buffer that holds sample values. |
1160 | /// |
1161 | /// While this can not fail–the validity of all coordinates has been validated during the |
1162 | /// conversion from `FlatSamples`–the resulting slice may still contain holes. |
1163 | pub fn image_slice(&self) -> &[P::Subpixel] { |
1164 | &self.samples().as_ref()[..self.min_length()] |
1165 | } |
1166 | |
1167 | /// Return the mutable portion of the buffer that holds sample values. |
1168 | /// |
1169 | /// This is relevant only when constructed with `FlatSamples::as_view_with_mut_samples`. While |
1170 | /// this can not fail–the validity of all coordinates has been validated during the conversion |
1171 | /// from `FlatSamples`–the resulting slice may still contain holes. |
1172 | pub fn image_mut_slice(&mut self) -> &mut [P::Subpixel] |
1173 | where |
1174 | Buffer: AsMut<[P::Subpixel]>, |
1175 | { |
1176 | let min_length = self.min_length(); |
1177 | &mut self.inner.samples.as_mut()[..min_length] |
1178 | } |
1179 | |
1180 | /// Shrink the inner image. |
1181 | /// |
1182 | /// The new dimensions will be the minimum of the previous dimensions. Since the set of |
1183 | /// in-bounds pixels afterwards is a subset of the current ones, this is allowed on a `View`. |
1184 | /// Note that you can not change the number of channels as an intrinsic property of `P`. |
1185 | pub fn shrink_to(&mut self, width: u32, height: u32) { |
1186 | let channels = self.inner.layout.channels; |
1187 | self.inner.shrink_to(channels, width, height) |
1188 | } |
1189 | |
1190 | /// Try to convert this into an image with mutable pixels. |
1191 | /// |
1192 | /// The resulting image implements `GenericImage` in addition to `GenericImageView`. While this |
1193 | /// has mutable samples, it does not enforce that pixel can not alias and that samples are |
1194 | /// packed enough for a mutable pixel reference. This is slightly cheaper than the chain |
1195 | /// `self.into_inner().as_view_mut()` and keeps the `View` alive on failure. |
1196 | /// |
1197 | /// ``` |
1198 | /// # use image::RgbImage; |
1199 | /// # use image::Rgb; |
1200 | /// let mut buffer = RgbImage::new(480, 640).into_flat_samples(); |
1201 | /// let view = buffer.as_view_with_mut_samples::<Rgb<u8>>().unwrap(); |
1202 | /// |
1203 | /// // Inspect some pixels, … |
1204 | /// |
1205 | /// // Doesn't fail because it was originally an `RgbImage`. |
1206 | /// let view_mut = view.try_upgrade().unwrap(); |
1207 | /// ``` |
1208 | pub fn try_upgrade(self) -> Result<ViewMut<Buffer, P>, (Error, Self)> |
1209 | where |
1210 | Buffer: AsMut<[P::Subpixel]>, |
1211 | { |
1212 | if !self.inner.is_normal(NormalForm::PixelPacked) { |
1213 | return Err((Error::NormalFormRequired(NormalForm::PixelPacked), self)); |
1214 | } |
1215 | |
1216 | // No length check or channel count check required, all the same. |
1217 | Ok(ViewMut { |
1218 | inner: self.inner, |
1219 | phantom: PhantomData, |
1220 | }) |
1221 | } |
1222 | } |
1223 | |
1224 | impl<Buffer, P: Pixel> ViewMut<Buffer, P> |
1225 | where |
1226 | Buffer: AsMut<[P::Subpixel]>, |
1227 | { |
1228 | /// Take out the sample buffer. |
1229 | /// |
1230 | /// Gives up the normalization invariants on the buffer format. |
1231 | pub fn into_inner(self) -> FlatSamples<Buffer> { |
1232 | self.inner |
1233 | } |
1234 | |
1235 | /// Get a reference on the sample buffer descriptor. |
1236 | /// |
1237 | /// There is no mutable counterpart as modifying the buffer format, including strides and |
1238 | /// lengths, could invalidate the accessibility invariants of the `View`. It is not specified |
1239 | /// if the inner buffer is the same as the buffer of the image from which this view was |
1240 | /// created. It might have been truncated as an optimization. |
1241 | pub fn flat(&self) -> &FlatSamples<Buffer> { |
1242 | &self.inner |
1243 | } |
1244 | |
1245 | /// Get a reference on the inner buffer. |
1246 | /// |
1247 | /// There is no mutable counter part since it is not intended to allow you to reassign the |
1248 | /// buffer or otherwise change its size or properties. However, its contents can be accessed |
1249 | /// mutable through a slice with `image_mut_slice`. |
1250 | pub fn samples(&self) -> &Buffer { |
1251 | &self.inner.samples |
1252 | } |
1253 | |
1254 | /// Get the minimum length of a buffer such that all in-bounds samples have valid indices. |
1255 | /// |
1256 | /// See `FlatSamples::min_length`. This method will always succeed. |
1257 | pub fn min_length(&self) -> usize { |
1258 | self.inner.min_length().unwrap() |
1259 | } |
1260 | |
1261 | /// Get a reference to a selected subpixel. |
1262 | /// |
1263 | /// This method will return `None` when the sample is out-of-bounds. All errors that could |
1264 | /// occur due to overflow have been eliminated while construction the `View`. |
1265 | pub fn get_sample(&self, channel: u8, x: u32, y: u32) -> Option<&P::Subpixel> |
1266 | where |
1267 | Buffer: AsRef<[P::Subpixel]>, |
1268 | { |
1269 | if !self.inner.in_bounds(channel, x, y) { |
1270 | return None; |
1271 | } |
1272 | |
1273 | let index = self.inner.in_bounds_index(channel, x, y); |
1274 | // Should always be `Some(_)` but checking is more costly. |
1275 | self.samples().as_ref().get(index) |
1276 | } |
1277 | |
1278 | /// Get a mutable reference to a selected sample. |
1279 | /// |
1280 | /// This method will return `None` when the sample is out-of-bounds. All errors that could |
1281 | /// occur due to overflow have been eliminated while construction the `View`. |
1282 | pub fn get_mut_sample(&mut self, channel: u8, x: u32, y: u32) -> Option<&mut P::Subpixel> { |
1283 | if !self.inner.in_bounds(channel, x, y) { |
1284 | return None; |
1285 | } |
1286 | |
1287 | let index = self.inner.in_bounds_index(channel, x, y); |
1288 | // Should always be `Some(_)` but checking is more costly. |
1289 | self.inner.samples.as_mut().get_mut(index) |
1290 | } |
1291 | |
1292 | /// Return the portion of the buffer that holds sample values. |
1293 | /// |
1294 | /// While this can not fail–the validity of all coordinates has been validated during the |
1295 | /// conversion from `FlatSamples`–the resulting slice may still contain holes. |
1296 | pub fn image_slice(&self) -> &[P::Subpixel] |
1297 | where |
1298 | Buffer: AsRef<[P::Subpixel]>, |
1299 | { |
1300 | &self.inner.samples.as_ref()[..self.min_length()] |
1301 | } |
1302 | |
1303 | /// Return the mutable buffer that holds sample values. |
1304 | pub fn image_mut_slice(&mut self) -> &mut [P::Subpixel] { |
1305 | let length = self.min_length(); |
1306 | &mut self.inner.samples.as_mut()[..length] |
1307 | } |
1308 | |
1309 | /// Shrink the inner image. |
1310 | /// |
1311 | /// The new dimensions will be the minimum of the previous dimensions. Since the set of |
1312 | /// in-bounds pixels afterwards is a subset of the current ones, this is allowed on a `View`. |
1313 | /// Note that you can not change the number of channels as an intrinsic property of `P`. |
1314 | pub fn shrink_to(&mut self, width: u32, height: u32) { |
1315 | let channels = self.inner.layout.channels; |
1316 | self.inner.shrink_to(channels, width, height) |
1317 | } |
1318 | } |
1319 | |
1320 | // The out-of-bounds panic for single sample access similar to `slice::index`. |
1321 | #[inline (never)] |
1322 | #[cold ] |
1323 | fn panic_cwh_out_of_bounds( |
1324 | (c: u8, x: u32, y: u32): (u8, u32, u32), |
1325 | bounds: (u8, u32, u32), |
1326 | strides: (usize, usize, usize), |
1327 | ) -> ! { |
1328 | panic!( |
1329 | "Sample coordinates {:?} out of sample matrix bounds {:?} with strides {:?}" , |
1330 | (c, x, y), |
1331 | bounds, |
1332 | strides |
1333 | ) |
1334 | } |
1335 | |
1336 | // The out-of-bounds panic for pixel access similar to `slice::index`. |
1337 | #[inline (never)] |
1338 | #[cold ] |
1339 | fn panic_pixel_out_of_bounds((x: u32, y: u32): (u32, u32), bounds: (u32, u32)) -> ! { |
1340 | panic!("Image index {:?} out of bounds {:?}" , (x, y), bounds) |
1341 | } |
1342 | |
1343 | impl<Buffer> Index<(u8, u32, u32)> for FlatSamples<Buffer> |
1344 | where |
1345 | Buffer: Index<usize>, |
1346 | { |
1347 | type Output = Buffer::Output; |
1348 | |
1349 | /// Return a reference to a single sample at specified coordinates. |
1350 | /// |
1351 | /// # Panics |
1352 | /// |
1353 | /// When the coordinates are out of bounds or the index calculation fails. |
1354 | fn index(&self, (c: u8, x: u32, y: u32): (u8, u32, u32)) -> &Self::Output { |
1355 | let bounds: (u8, u32, u32) = self.bounds(); |
1356 | let strides: (usize, usize, usize) = self.strides_cwh(); |
1357 | let index: usize = self |
1358 | .index(channel:c, x, y) |
1359 | .unwrap_or_else(|| panic_cwh_out_of_bounds((c, x, y), bounds, strides)); |
1360 | &self.samples[index] |
1361 | } |
1362 | } |
1363 | |
1364 | impl<Buffer> IndexMut<(u8, u32, u32)> for FlatSamples<Buffer> |
1365 | where |
1366 | Buffer: IndexMut<usize>, |
1367 | { |
1368 | /// Return a mutable reference to a single sample at specified coordinates. |
1369 | /// |
1370 | /// # Panics |
1371 | /// |
1372 | /// When the coordinates are out of bounds or the index calculation fails. |
1373 | fn index_mut(&mut self, (c: u8, x: u32, y: u32): (u8, u32, u32)) -> &mut Self::Output { |
1374 | let bounds: (u8, u32, u32) = self.bounds(); |
1375 | let strides: (usize, usize, usize) = self.strides_cwh(); |
1376 | let index: usize = self |
1377 | .index(channel:c, x, y) |
1378 | .unwrap_or_else(|| panic_cwh_out_of_bounds((c, x, y), bounds, strides)); |
1379 | &mut self.samples[index] |
1380 | } |
1381 | } |
1382 | |
1383 | impl<Buffer, P: Pixel> GenericImageView for View<Buffer, P> |
1384 | where |
1385 | Buffer: AsRef<[P::Subpixel]>, |
1386 | { |
1387 | type Pixel = P; |
1388 | |
1389 | fn dimensions(&self) -> (u32, u32) { |
1390 | (self.inner.layout.width, self.inner.layout.height) |
1391 | } |
1392 | |
1393 | fn bounds(&self) -> (u32, u32, u32, u32) { |
1394 | let (w, h) = self.dimensions(); |
1395 | (0, w, 0, h) |
1396 | } |
1397 | |
1398 | fn in_bounds(&self, x: u32, y: u32) -> bool { |
1399 | let (w, h) = self.dimensions(); |
1400 | x < w && y < h |
1401 | } |
1402 | |
1403 | fn get_pixel(&self, x: u32, y: u32) -> Self::Pixel { |
1404 | if !self.inner.in_bounds(0, x, y) { |
1405 | panic_pixel_out_of_bounds((x, y), self.dimensions()) |
1406 | } |
1407 | |
1408 | let image = self.inner.samples.as_ref(); |
1409 | let base_index = self.inner.in_bounds_index(0, x, y); |
1410 | let channels = P::CHANNEL_COUNT as usize; |
1411 | |
1412 | let mut buffer = [Zero::zero(); 256]; |
1413 | buffer |
1414 | .iter_mut() |
1415 | .enumerate() |
1416 | .take(channels) |
1417 | .for_each(|(c, to)| { |
1418 | let index = base_index + c * self.inner.layout.channel_stride; |
1419 | *to = image[index]; |
1420 | }); |
1421 | |
1422 | *P::from_slice(&buffer[..channels]) |
1423 | } |
1424 | } |
1425 | |
1426 | impl<Buffer, P: Pixel> GenericImageView for ViewMut<Buffer, P> |
1427 | where |
1428 | Buffer: AsMut<[P::Subpixel]> + AsRef<[P::Subpixel]>, |
1429 | { |
1430 | type Pixel = P; |
1431 | |
1432 | fn dimensions(&self) -> (u32, u32) { |
1433 | (self.inner.layout.width, self.inner.layout.height) |
1434 | } |
1435 | |
1436 | fn bounds(&self) -> (u32, u32, u32, u32) { |
1437 | let (w, h) = self.dimensions(); |
1438 | (0, w, 0, h) |
1439 | } |
1440 | |
1441 | fn in_bounds(&self, x: u32, y: u32) -> bool { |
1442 | let (w, h) = self.dimensions(); |
1443 | x < w && y < h |
1444 | } |
1445 | |
1446 | fn get_pixel(&self, x: u32, y: u32) -> Self::Pixel { |
1447 | if !self.inner.in_bounds(0, x, y) { |
1448 | panic_pixel_out_of_bounds((x, y), self.dimensions()) |
1449 | } |
1450 | |
1451 | let image = self.inner.samples.as_ref(); |
1452 | let base_index = self.inner.in_bounds_index(0, x, y); |
1453 | let channels = P::CHANNEL_COUNT as usize; |
1454 | |
1455 | let mut buffer = [Zero::zero(); 256]; |
1456 | buffer |
1457 | .iter_mut() |
1458 | .enumerate() |
1459 | .take(channels) |
1460 | .for_each(|(c, to)| { |
1461 | let index = base_index + c * self.inner.layout.channel_stride; |
1462 | *to = image[index]; |
1463 | }); |
1464 | |
1465 | *P::from_slice(&buffer[..channels]) |
1466 | } |
1467 | } |
1468 | |
1469 | impl<Buffer, P: Pixel> GenericImage for ViewMut<Buffer, P> |
1470 | where |
1471 | Buffer: AsMut<[P::Subpixel]> + AsRef<[P::Subpixel]>, |
1472 | { |
1473 | fn get_pixel_mut(&mut self, x: u32, y: u32) -> &mut Self::Pixel { |
1474 | if !self.inner.in_bounds(channel:0, x, y) { |
1475 | panic_pixel_out_of_bounds((x, y), self.dimensions()) |
1476 | } |
1477 | |
1478 | let base_index: usize = self.inner.in_bounds_index(channel:0, x, y); |
1479 | let channel_count: usize = <P as Pixel>::CHANNEL_COUNT as usize; |
1480 | let pixel_range: Range = base_index..base_index + channel_count; |
1481 | P::from_slice_mut(&mut self.inner.samples.as_mut()[pixel_range]) |
1482 | } |
1483 | |
1484 | #[allow (deprecated)] |
1485 | fn put_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel) { |
1486 | *self.get_pixel_mut(x, y) = pixel; |
1487 | } |
1488 | |
1489 | #[allow (deprecated)] |
1490 | fn blend_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel) { |
1491 | self.get_pixel_mut(x, y).blend(&pixel); |
1492 | } |
1493 | } |
1494 | |
1495 | impl From<Error> for ImageError { |
1496 | fn from(error: Error) -> ImageError { |
1497 | #[derive (Debug)] |
1498 | struct NormalFormRequiredError(NormalForm); |
1499 | impl fmt::Display for NormalFormRequiredError { |
1500 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1501 | write!(f, "Required sample buffer in normal form {:?}" , self.0) |
1502 | } |
1503 | } |
1504 | impl error::Error for NormalFormRequiredError {} |
1505 | |
1506 | match error { |
1507 | Error::TooLarge => ImageError::Parameter(ParameterError::from_kind( |
1508 | ParameterErrorKind::DimensionMismatch, |
1509 | )), |
1510 | Error::NormalFormRequired(form) => ImageError::Decoding(DecodingError::new( |
1511 | ImageFormatHint::Unknown, |
1512 | NormalFormRequiredError(form), |
1513 | )), |
1514 | Error::ChannelCountMismatch(_lc, _pc) => ImageError::Parameter( |
1515 | ParameterError::from_kind(ParameterErrorKind::DimensionMismatch), |
1516 | ), |
1517 | Error::WrongColor(color) => { |
1518 | ImageError::Unsupported(UnsupportedError::from_format_and_kind( |
1519 | ImageFormatHint::Unknown, |
1520 | UnsupportedErrorKind::Color(color.into()), |
1521 | )) |
1522 | } |
1523 | } |
1524 | } |
1525 | } |
1526 | |
1527 | impl fmt::Display for Error { |
1528 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1529 | match self { |
1530 | Error::TooLarge => write!(f, "The layout is too large" ), |
1531 | Error::NormalFormRequired(form) => write!( |
1532 | f, |
1533 | "The layout needs to {}" , |
1534 | match form { |
1535 | NormalForm::ColumnMajorPacked => "be packed and in column major form" , |
1536 | NormalForm::ImagePacked => "be fully packed" , |
1537 | NormalForm::PixelPacked => "have packed pixels" , |
1538 | NormalForm::RowMajorPacked => "be packed and in row major form" , |
1539 | NormalForm::Unaliased => "not have any aliasing channels" , |
1540 | } |
1541 | ), |
1542 | Error::ChannelCountMismatch(layout_channels, pixel_channels) => write!( |
1543 | f, |
1544 | "The channel count of the chosen pixel (= {}) does agree with the layout (= {})" , |
1545 | pixel_channels, layout_channels |
1546 | ), |
1547 | Error::WrongColor(color) => write!( |
1548 | f, |
1549 | "The chosen color type does not match the hint {:?}" , |
1550 | color |
1551 | ), |
1552 | } |
1553 | } |
1554 | } |
1555 | |
1556 | impl error::Error for Error {} |
1557 | |
1558 | impl PartialOrd for NormalForm { |
1559 | /// Compares the logical preconditions. |
1560 | /// |
1561 | /// `a < b` if the normal form `a` has less preconditions than `b`. |
1562 | fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> { |
1563 | match (*self, *other) { |
1564 | (NormalForm::Unaliased, NormalForm::Unaliased) => Some(cmp::Ordering::Equal), |
1565 | (NormalForm::PixelPacked, NormalForm::PixelPacked) => Some(cmp::Ordering::Equal), |
1566 | (NormalForm::ImagePacked, NormalForm::ImagePacked) => Some(cmp::Ordering::Equal), |
1567 | (NormalForm::RowMajorPacked, NormalForm::RowMajorPacked) => Some(cmp::Ordering::Equal), |
1568 | (NormalForm::ColumnMajorPacked, NormalForm::ColumnMajorPacked) => { |
1569 | Some(cmp::Ordering::Equal) |
1570 | } |
1571 | |
1572 | (NormalForm::Unaliased, _) => Some(cmp::Ordering::Less), |
1573 | (_, NormalForm::Unaliased) => Some(cmp::Ordering::Greater), |
1574 | |
1575 | (NormalForm::PixelPacked, NormalForm::ColumnMajorPacked) => Some(cmp::Ordering::Less), |
1576 | (NormalForm::PixelPacked, NormalForm::RowMajorPacked) => Some(cmp::Ordering::Less), |
1577 | (NormalForm::RowMajorPacked, NormalForm::PixelPacked) => Some(cmp::Ordering::Greater), |
1578 | (NormalForm::ColumnMajorPacked, NormalForm::PixelPacked) => { |
1579 | Some(cmp::Ordering::Greater) |
1580 | } |
1581 | |
1582 | (NormalForm::ImagePacked, NormalForm::ColumnMajorPacked) => Some(cmp::Ordering::Less), |
1583 | (NormalForm::ImagePacked, NormalForm::RowMajorPacked) => Some(cmp::Ordering::Less), |
1584 | (NormalForm::RowMajorPacked, NormalForm::ImagePacked) => Some(cmp::Ordering::Greater), |
1585 | (NormalForm::ColumnMajorPacked, NormalForm::ImagePacked) => { |
1586 | Some(cmp::Ordering::Greater) |
1587 | } |
1588 | |
1589 | (NormalForm::ImagePacked, NormalForm::PixelPacked) => None, |
1590 | (NormalForm::PixelPacked, NormalForm::ImagePacked) => None, |
1591 | (NormalForm::RowMajorPacked, NormalForm::ColumnMajorPacked) => None, |
1592 | (NormalForm::ColumnMajorPacked, NormalForm::RowMajorPacked) => None, |
1593 | } |
1594 | } |
1595 | } |
1596 | |
1597 | #[cfg (test)] |
1598 | mod tests { |
1599 | use super::*; |
1600 | use crate::buffer_::GrayAlphaImage; |
1601 | use crate::color::{LumaA, Rgb}; |
1602 | |
1603 | #[test ] |
1604 | fn aliasing_view() { |
1605 | let buffer = FlatSamples { |
1606 | samples: &[42], |
1607 | layout: SampleLayout { |
1608 | channels: 3, |
1609 | channel_stride: 0, |
1610 | width: 100, |
1611 | width_stride: 0, |
1612 | height: 100, |
1613 | height_stride: 0, |
1614 | }, |
1615 | color_hint: None, |
1616 | }; |
1617 | |
1618 | let view = buffer.as_view::<Rgb<u8>>().expect("This is a valid view" ); |
1619 | let pixel_count = view |
1620 | .pixels() |
1621 | .inspect(|pixel| assert!(pixel.2 == Rgb([42, 42, 42]))) |
1622 | .count(); |
1623 | assert_eq!(pixel_count, 100 * 100); |
1624 | } |
1625 | |
1626 | #[test ] |
1627 | fn mutable_view() { |
1628 | let mut buffer = FlatSamples { |
1629 | samples: [0; 18], |
1630 | layout: SampleLayout { |
1631 | channels: 2, |
1632 | channel_stride: 1, |
1633 | width: 3, |
1634 | width_stride: 2, |
1635 | height: 3, |
1636 | height_stride: 6, |
1637 | }, |
1638 | color_hint: None, |
1639 | }; |
1640 | |
1641 | { |
1642 | let mut view = buffer |
1643 | .as_view_mut::<LumaA<u16>>() |
1644 | .expect("This should be a valid mutable buffer" ); |
1645 | assert_eq!(view.dimensions(), (3, 3)); |
1646 | #[allow (deprecated)] |
1647 | for i in 0..9 { |
1648 | *view.get_pixel_mut(i % 3, i / 3) = LumaA([2 * i as u16, 2 * i as u16 + 1]); |
1649 | } |
1650 | } |
1651 | |
1652 | buffer |
1653 | .samples |
1654 | .iter() |
1655 | .enumerate() |
1656 | .for_each(|(idx, sample)| assert_eq!(idx, *sample as usize)); |
1657 | } |
1658 | |
1659 | #[test ] |
1660 | fn normal_forms() { |
1661 | assert!(FlatSamples { |
1662 | samples: [0u8; 0], |
1663 | layout: SampleLayout { |
1664 | channels: 2, |
1665 | channel_stride: 1, |
1666 | width: 3, |
1667 | width_stride: 9, |
1668 | height: 3, |
1669 | height_stride: 28, |
1670 | }, |
1671 | color_hint: None, |
1672 | } |
1673 | .is_normal(NormalForm::PixelPacked)); |
1674 | |
1675 | assert!(FlatSamples { |
1676 | samples: [0u8; 0], |
1677 | layout: SampleLayout { |
1678 | channels: 2, |
1679 | channel_stride: 8, |
1680 | width: 4, |
1681 | width_stride: 1, |
1682 | height: 2, |
1683 | height_stride: 4, |
1684 | }, |
1685 | color_hint: None, |
1686 | } |
1687 | .is_normal(NormalForm::ImagePacked)); |
1688 | |
1689 | assert!(FlatSamples { |
1690 | samples: [0u8; 0], |
1691 | layout: SampleLayout { |
1692 | channels: 2, |
1693 | channel_stride: 1, |
1694 | width: 4, |
1695 | width_stride: 2, |
1696 | height: 2, |
1697 | height_stride: 8, |
1698 | }, |
1699 | color_hint: None, |
1700 | } |
1701 | .is_normal(NormalForm::RowMajorPacked)); |
1702 | |
1703 | assert!(FlatSamples { |
1704 | samples: [0u8; 0], |
1705 | layout: SampleLayout { |
1706 | channels: 2, |
1707 | channel_stride: 1, |
1708 | width: 4, |
1709 | width_stride: 4, |
1710 | height: 2, |
1711 | height_stride: 2, |
1712 | }, |
1713 | color_hint: None, |
1714 | } |
1715 | .is_normal(NormalForm::ColumnMajorPacked)); |
1716 | } |
1717 | |
1718 | #[test ] |
1719 | fn image_buffer_conversion() { |
1720 | let expected_layout = SampleLayout { |
1721 | channels: 2, |
1722 | channel_stride: 1, |
1723 | width: 4, |
1724 | width_stride: 2, |
1725 | height: 2, |
1726 | height_stride: 8, |
1727 | }; |
1728 | |
1729 | let initial = GrayAlphaImage::new(expected_layout.width, expected_layout.height); |
1730 | let buffer = initial.into_flat_samples(); |
1731 | |
1732 | assert_eq!(buffer.layout, expected_layout); |
1733 | |
1734 | let _: GrayAlphaImage = buffer.try_into_buffer().unwrap_or_else(|(error, _)| { |
1735 | panic!("Expected buffer to be convertible but {:?}" , error) |
1736 | }); |
1737 | } |
1738 | } |
1739 | |