| 1 | use std::ops::{Index, IndexMut}; |
| 2 | |
| 3 | use num_traits::{NumCast, ToPrimitive, Zero}; |
| 4 | |
| 5 | use crate::traits::{Enlargeable, Pixel, Primitive}; |
| 6 | |
| 7 | /// An enumeration over supported color types and bit depths |
| 8 | #[derive (Copy, PartialEq, Eq, Debug, Clone, Hash)] |
| 9 | #[non_exhaustive ] |
| 10 | pub enum ColorType { |
| 11 | /// Pixel is 8-bit luminance |
| 12 | L8, |
| 13 | /// Pixel is 8-bit luminance with an alpha channel |
| 14 | La8, |
| 15 | /// Pixel contains 8-bit R, G and B channels |
| 16 | Rgb8, |
| 17 | /// Pixel is 8-bit RGB with an alpha channel |
| 18 | Rgba8, |
| 19 | |
| 20 | /// Pixel is 16-bit luminance |
| 21 | L16, |
| 22 | /// Pixel is 16-bit luminance with an alpha channel |
| 23 | La16, |
| 24 | /// Pixel is 16-bit RGB |
| 25 | Rgb16, |
| 26 | /// Pixel is 16-bit RGBA |
| 27 | Rgba16, |
| 28 | |
| 29 | /// Pixel is 32-bit float RGB |
| 30 | Rgb32F, |
| 31 | /// Pixel is 32-bit float RGBA |
| 32 | Rgba32F, |
| 33 | } |
| 34 | |
| 35 | impl ColorType { |
| 36 | /// Returns the number of bytes contained in a pixel of `ColorType` ```c``` |
| 37 | #[must_use ] |
| 38 | pub fn bytes_per_pixel(self) -> u8 { |
| 39 | match self { |
| 40 | ColorType::L8 => 1, |
| 41 | ColorType::L16 | ColorType::La8 => 2, |
| 42 | ColorType::Rgb8 => 3, |
| 43 | ColorType::Rgba8 | ColorType::La16 => 4, |
| 44 | ColorType::Rgb16 => 6, |
| 45 | ColorType::Rgba16 => 8, |
| 46 | ColorType::Rgb32F => 3 * 4, |
| 47 | ColorType::Rgba32F => 4 * 4, |
| 48 | } |
| 49 | } |
| 50 | |
| 51 | /// Returns if there is an alpha channel. |
| 52 | #[must_use ] |
| 53 | pub fn has_alpha(self) -> bool { |
| 54 | use ColorType::*; |
| 55 | match self { |
| 56 | L8 | L16 | Rgb8 | Rgb16 | Rgb32F => false, |
| 57 | La8 | Rgba8 | La16 | Rgba16 | Rgba32F => true, |
| 58 | } |
| 59 | } |
| 60 | |
| 61 | /// Returns false if the color scheme is grayscale, true otherwise. |
| 62 | #[must_use ] |
| 63 | pub fn has_color(self) -> bool { |
| 64 | use ColorType::*; |
| 65 | match self { |
| 66 | L8 | L16 | La8 | La16 => false, |
| 67 | Rgb8 | Rgb16 | Rgba8 | Rgba16 | Rgb32F | Rgba32F => true, |
| 68 | } |
| 69 | } |
| 70 | |
| 71 | /// Returns the number of bits contained in a pixel of `ColorType` ```c``` (which will always be |
| 72 | /// a multiple of 8). |
| 73 | #[must_use ] |
| 74 | pub fn bits_per_pixel(self) -> u16 { |
| 75 | <u16 as From<u8>>::from(self.bytes_per_pixel()) * 8 |
| 76 | } |
| 77 | |
| 78 | /// Returns the number of color channels that make up this pixel |
| 79 | #[must_use ] |
| 80 | pub fn channel_count(self) -> u8 { |
| 81 | let e: ExtendedColorType = self.into(); |
| 82 | e.channel_count() |
| 83 | } |
| 84 | } |
| 85 | |
| 86 | /// An enumeration of color types encountered in image formats. |
| 87 | /// |
| 88 | /// This is not exhaustive over all existing image formats but should be granular enough to allow |
| 89 | /// round tripping of decoding and encoding as much as possible. The variants will be extended as |
| 90 | /// necessary to enable this. |
| 91 | /// |
| 92 | /// Another purpose is to advise users of a rough estimate of the accuracy and effort of the |
| 93 | /// decoding from and encoding to such an image format. |
| 94 | #[derive (Copy, PartialEq, Eq, Debug, Clone, Hash)] |
| 95 | #[non_exhaustive ] |
| 96 | pub enum ExtendedColorType { |
| 97 | /// Pixel is 8-bit alpha |
| 98 | A8, |
| 99 | /// Pixel is 1-bit luminance |
| 100 | L1, |
| 101 | /// Pixel is 1-bit luminance with an alpha channel |
| 102 | La1, |
| 103 | /// Pixel contains 1-bit R, G and B channels |
| 104 | Rgb1, |
| 105 | /// Pixel is 1-bit RGB with an alpha channel |
| 106 | Rgba1, |
| 107 | /// Pixel is 2-bit luminance |
| 108 | L2, |
| 109 | /// Pixel is 2-bit luminance with an alpha channel |
| 110 | La2, |
| 111 | /// Pixel contains 2-bit R, G and B channels |
| 112 | Rgb2, |
| 113 | /// Pixel is 2-bit RGB with an alpha channel |
| 114 | Rgba2, |
| 115 | /// Pixel is 4-bit luminance |
| 116 | L4, |
| 117 | /// Pixel is 4-bit luminance with an alpha channel |
| 118 | La4, |
| 119 | /// Pixel contains 4-bit R, G and B channels |
| 120 | Rgb4, |
| 121 | /// Pixel is 4-bit RGB with an alpha channel |
| 122 | Rgba4, |
| 123 | /// Pixel is 8-bit luminance |
| 124 | L8, |
| 125 | /// Pixel is 8-bit luminance with an alpha channel |
| 126 | La8, |
| 127 | /// Pixel contains 8-bit R, G and B channels |
| 128 | Rgb8, |
| 129 | /// Pixel is 8-bit RGB with an alpha channel |
| 130 | Rgba8, |
| 131 | /// Pixel is 16-bit luminance |
| 132 | L16, |
| 133 | /// Pixel is 16-bit luminance with an alpha channel |
| 134 | La16, |
| 135 | /// Pixel contains 16-bit R, G and B channels |
| 136 | Rgb16, |
| 137 | /// Pixel is 16-bit RGB with an alpha channel |
| 138 | Rgba16, |
| 139 | /// Pixel contains 8-bit B, G and R channels |
| 140 | Bgr8, |
| 141 | /// Pixel is 8-bit BGR with an alpha channel |
| 142 | Bgra8, |
| 143 | |
| 144 | // TODO f16 types? |
| 145 | /// Pixel is 32-bit float RGB |
| 146 | Rgb32F, |
| 147 | /// Pixel is 32-bit float RGBA |
| 148 | Rgba32F, |
| 149 | |
| 150 | /// Pixel is 8-bit CMYK |
| 151 | Cmyk8, |
| 152 | |
| 153 | /// Pixel is of unknown color type with the specified bits per pixel. This can apply to pixels |
| 154 | /// which are associated with an external palette. In that case, the pixel value is an index |
| 155 | /// into the palette. |
| 156 | Unknown(u8), |
| 157 | } |
| 158 | |
| 159 | impl ExtendedColorType { |
| 160 | /// Get the number of channels for colors of this type. |
| 161 | /// |
| 162 | /// Note that the `Unknown` variant returns a value of `1` since pixels can only be treated as |
| 163 | /// an opaque datum by the library. |
| 164 | #[must_use ] |
| 165 | pub fn channel_count(self) -> u8 { |
| 166 | match self { |
| 167 | ExtendedColorType::A8 |
| 168 | | ExtendedColorType::L1 |
| 169 | | ExtendedColorType::L2 |
| 170 | | ExtendedColorType::L4 |
| 171 | | ExtendedColorType::L8 |
| 172 | | ExtendedColorType::L16 |
| 173 | | ExtendedColorType::Unknown(_) => 1, |
| 174 | ExtendedColorType::La1 |
| 175 | | ExtendedColorType::La2 |
| 176 | | ExtendedColorType::La4 |
| 177 | | ExtendedColorType::La8 |
| 178 | | ExtendedColorType::La16 => 2, |
| 179 | ExtendedColorType::Rgb1 |
| 180 | | ExtendedColorType::Rgb2 |
| 181 | | ExtendedColorType::Rgb4 |
| 182 | | ExtendedColorType::Rgb8 |
| 183 | | ExtendedColorType::Rgb16 |
| 184 | | ExtendedColorType::Rgb32F |
| 185 | | ExtendedColorType::Bgr8 => 3, |
| 186 | ExtendedColorType::Rgba1 |
| 187 | | ExtendedColorType::Rgba2 |
| 188 | | ExtendedColorType::Rgba4 |
| 189 | | ExtendedColorType::Rgba8 |
| 190 | | ExtendedColorType::Rgba16 |
| 191 | | ExtendedColorType::Rgba32F |
| 192 | | ExtendedColorType::Bgra8 |
| 193 | | ExtendedColorType::Cmyk8 => 4, |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | /// Returns the number of bits per pixel for this color type. |
| 198 | #[must_use ] |
| 199 | pub fn bits_per_pixel(&self) -> u16 { |
| 200 | match *self { |
| 201 | ExtendedColorType::A8 => 8, |
| 202 | ExtendedColorType::L1 => 1, |
| 203 | ExtendedColorType::La1 => 2, |
| 204 | ExtendedColorType::Rgb1 => 3, |
| 205 | ExtendedColorType::Rgba1 => 4, |
| 206 | ExtendedColorType::L2 => 2, |
| 207 | ExtendedColorType::La2 => 4, |
| 208 | ExtendedColorType::Rgb2 => 6, |
| 209 | ExtendedColorType::Rgba2 => 8, |
| 210 | ExtendedColorType::L4 => 4, |
| 211 | ExtendedColorType::La4 => 8, |
| 212 | ExtendedColorType::Rgb4 => 12, |
| 213 | ExtendedColorType::Rgba4 => 16, |
| 214 | ExtendedColorType::L8 => 8, |
| 215 | ExtendedColorType::La8 => 16, |
| 216 | ExtendedColorType::Rgb8 => 24, |
| 217 | ExtendedColorType::Rgba8 => 32, |
| 218 | ExtendedColorType::L16 => 16, |
| 219 | ExtendedColorType::La16 => 32, |
| 220 | ExtendedColorType::Rgb16 => 48, |
| 221 | ExtendedColorType::Rgba16 => 64, |
| 222 | ExtendedColorType::Rgb32F => 96, |
| 223 | ExtendedColorType::Rgba32F => 128, |
| 224 | ExtendedColorType::Bgr8 => 24, |
| 225 | ExtendedColorType::Bgra8 => 32, |
| 226 | ExtendedColorType::Cmyk8 => 32, |
| 227 | ExtendedColorType::Unknown(bpp) => bpp as u16, |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | /// Returns the number of bytes required to hold a width x height image of this color type. |
| 232 | pub(crate) fn buffer_size(self, width: u32, height: u32) -> u64 { |
| 233 | let bpp = self.bits_per_pixel() as u64; |
| 234 | let row_pitch = (width as u64 * bpp + 7) / 8; |
| 235 | row_pitch.saturating_mul(height as u64) |
| 236 | } |
| 237 | } |
| 238 | impl From<ColorType> for ExtendedColorType { |
| 239 | fn from(c: ColorType) -> Self { |
| 240 | match c { |
| 241 | ColorType::L8 => ExtendedColorType::L8, |
| 242 | ColorType::La8 => ExtendedColorType::La8, |
| 243 | ColorType::Rgb8 => ExtendedColorType::Rgb8, |
| 244 | ColorType::Rgba8 => ExtendedColorType::Rgba8, |
| 245 | ColorType::L16 => ExtendedColorType::L16, |
| 246 | ColorType::La16 => ExtendedColorType::La16, |
| 247 | ColorType::Rgb16 => ExtendedColorType::Rgb16, |
| 248 | ColorType::Rgba16 => ExtendedColorType::Rgba16, |
| 249 | ColorType::Rgb32F => ExtendedColorType::Rgb32F, |
| 250 | ColorType::Rgba32F => ExtendedColorType::Rgba32F, |
| 251 | } |
| 252 | } |
| 253 | } |
| 254 | |
| 255 | macro_rules! define_colors { |
| 256 | {$( |
| 257 | $(#[$doc:meta])* |
| 258 | pub struct $ident:ident<T: $($bound:ident)*>([T; $channels:expr, $alphas:expr]) |
| 259 | = $interpretation:literal; |
| 260 | )*} => { |
| 261 | |
| 262 | $( // START Structure definitions |
| 263 | |
| 264 | $(#[$doc])* |
| 265 | #[derive(PartialEq, Eq, Clone, Debug, Copy, Hash)] |
| 266 | #[repr(transparent)] |
| 267 | #[allow(missing_docs)] |
| 268 | pub struct $ident<T> (pub [T; $channels]); |
| 269 | |
| 270 | impl<T: $($bound+)*> Pixel for $ident<T> { |
| 271 | type Subpixel = T; |
| 272 | |
| 273 | const CHANNEL_COUNT: u8 = $channels; |
| 274 | |
| 275 | #[inline(always)] |
| 276 | fn channels(&self) -> &[T] { |
| 277 | &self.0 |
| 278 | } |
| 279 | |
| 280 | #[inline(always)] |
| 281 | fn channels_mut(&mut self) -> &mut [T] { |
| 282 | &mut self.0 |
| 283 | } |
| 284 | |
| 285 | const COLOR_MODEL: &'static str = $interpretation; |
| 286 | |
| 287 | fn channels4(&self) -> (T, T, T, T) { |
| 288 | const CHANNELS: usize = $channels; |
| 289 | let mut channels = [T::DEFAULT_MAX_VALUE; 4]; |
| 290 | channels[0..CHANNELS].copy_from_slice(&self.0); |
| 291 | (channels[0], channels[1], channels[2], channels[3]) |
| 292 | } |
| 293 | |
| 294 | fn from_channels(a: T, b: T, c: T, d: T,) -> $ident<T> { |
| 295 | const CHANNELS: usize = $channels; |
| 296 | *<$ident<T> as Pixel>::from_slice(&[a, b, c, d][..CHANNELS]) |
| 297 | } |
| 298 | |
| 299 | fn from_slice(slice: &[T]) -> &$ident<T> { |
| 300 | assert_eq!(slice.len(), $channels); |
| 301 | unsafe { &*(slice.as_ptr() as *const $ident<T>) } |
| 302 | } |
| 303 | fn from_slice_mut(slice: &mut [T]) -> &mut $ident<T> { |
| 304 | assert_eq!(slice.len(), $channels); |
| 305 | unsafe { &mut *(slice.as_mut_ptr() as *mut $ident<T>) } |
| 306 | } |
| 307 | |
| 308 | fn to_rgb(&self) -> Rgb<T> { |
| 309 | let mut pix = Rgb([Zero::zero(), Zero::zero(), Zero::zero()]); |
| 310 | pix.from_color(self); |
| 311 | pix |
| 312 | } |
| 313 | |
| 314 | fn to_rgba(&self) -> Rgba<T> { |
| 315 | let mut pix = Rgba([Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero()]); |
| 316 | pix.from_color(self); |
| 317 | pix |
| 318 | } |
| 319 | |
| 320 | fn to_luma(&self) -> Luma<T> { |
| 321 | let mut pix = Luma([Zero::zero()]); |
| 322 | pix.from_color(self); |
| 323 | pix |
| 324 | } |
| 325 | |
| 326 | fn to_luma_alpha(&self) -> LumaA<T> { |
| 327 | let mut pix = LumaA([Zero::zero(), Zero::zero()]); |
| 328 | pix.from_color(self); |
| 329 | pix |
| 330 | } |
| 331 | |
| 332 | fn map<F>(& self, f: F) -> $ident<T> where F: FnMut(T) -> T { |
| 333 | let mut this = (*self).clone(); |
| 334 | this.apply(f); |
| 335 | this |
| 336 | } |
| 337 | |
| 338 | fn apply<F>(&mut self, mut f: F) where F: FnMut(T) -> T { |
| 339 | for v in &mut self.0 { |
| 340 | *v = f(*v) |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | fn map_with_alpha<F, G>(&self, f: F, g: G) -> $ident<T> where F: FnMut(T) -> T, G: FnMut(T) -> T { |
| 345 | let mut this = (*self).clone(); |
| 346 | this.apply_with_alpha(f, g); |
| 347 | this |
| 348 | } |
| 349 | |
| 350 | fn apply_with_alpha<F, G>(&mut self, mut f: F, mut g: G) where F: FnMut(T) -> T, G: FnMut(T) -> T { |
| 351 | const ALPHA: usize = $channels - $alphas; |
| 352 | for v in self.0[..ALPHA].iter_mut() { |
| 353 | *v = f(*v) |
| 354 | } |
| 355 | // The branch of this match is `const`. This way ensures that no subexpression fails the |
| 356 | // `const_err` lint (the expression `self.0[ALPHA]` would). |
| 357 | if let Some(v) = self.0.get_mut(ALPHA) { |
| 358 | *v = g(*v) |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | fn map2<F>(&self, other: &Self, f: F) -> $ident<T> where F: FnMut(T, T) -> T { |
| 363 | let mut this = (*self).clone(); |
| 364 | this.apply2(other, f); |
| 365 | this |
| 366 | } |
| 367 | |
| 368 | fn apply2<F>(&mut self, other: &$ident<T>, mut f: F) where F: FnMut(T, T) -> T { |
| 369 | for (a, &b) in self.0.iter_mut().zip(other.0.iter()) { |
| 370 | *a = f(*a, b) |
| 371 | } |
| 372 | } |
| 373 | |
| 374 | fn invert(&mut self) { |
| 375 | Invert::invert(self) |
| 376 | } |
| 377 | |
| 378 | fn blend(&mut self, other: &$ident<T>) { |
| 379 | Blend::blend(self, other) |
| 380 | } |
| 381 | } |
| 382 | |
| 383 | impl<T> Index<usize> for $ident<T> { |
| 384 | type Output = T; |
| 385 | #[inline(always)] |
| 386 | fn index(&self, _index: usize) -> &T { |
| 387 | &self.0[_index] |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | impl<T> IndexMut<usize> for $ident<T> { |
| 392 | #[inline(always)] |
| 393 | fn index_mut(&mut self, _index: usize) -> &mut T { |
| 394 | &mut self.0[_index] |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | impl<T> From<[T; $channels]> for $ident<T> { |
| 399 | fn from(c: [T; $channels]) -> Self { |
| 400 | Self(c) |
| 401 | } |
| 402 | } |
| 403 | |
| 404 | )* // END Structure definitions |
| 405 | |
| 406 | } |
| 407 | } |
| 408 | |
| 409 | define_colors! { |
| 410 | /// RGB colors. |
| 411 | /// |
| 412 | /// For the purpose of color conversion, as well as blending, the implementation of `Pixel` |
| 413 | /// assumes an `sRGB` color space of its data. |
| 414 | pub struct Rgb<T: Primitive Enlargeable>([T; 3, 0]) = "RGB" ; |
| 415 | /// Grayscale colors. |
| 416 | pub struct Luma<T: Primitive>([T; 1, 0]) = "Y" ; |
| 417 | /// RGB colors + alpha channel |
| 418 | pub struct Rgba<T: Primitive Enlargeable>([T; 4, 1]) = "RGBA" ; |
| 419 | /// Grayscale colors + alpha channel |
| 420 | pub struct LumaA<T: Primitive>([T; 2, 1]) = "YA" ; |
| 421 | } |
| 422 | |
| 423 | /// Convert from one pixel component type to another. For example, convert from `u8` to `f32` pixel values. |
| 424 | pub trait FromPrimitive<Component> { |
| 425 | /// Converts from any pixel component type to this type. |
| 426 | fn from_primitive(component: Component) -> Self; |
| 427 | } |
| 428 | |
| 429 | impl<T: Primitive> FromPrimitive<T> for T { |
| 430 | fn from_primitive(sample: T) -> Self { |
| 431 | sample |
| 432 | } |
| 433 | } |
| 434 | |
| 435 | // from f32: |
| 436 | // Note that in to-integer-conversion we are performing rounding but NumCast::from is implemented |
| 437 | // as truncate towards zero. We emulate rounding by adding a bias. |
| 438 | |
| 439 | // All other special values are clamped inbetween 0.0 and 1.0 (infinities and subnormals) |
| 440 | // NaN however always maps to NaN therefore we have to force it towards some value. |
| 441 | // 1.0 (white) was picked as firefox and chrome choose to map NaN to that. |
| 442 | #[inline ] |
| 443 | fn normalize_float(float: f32, max: f32) -> f32 { |
| 444 | #[allow (clippy::neg_cmp_op_on_partial_ord)] |
| 445 | let clamped: f32 = if !(float < 1.0) { 1.0 } else { float.max(0.0) }; |
| 446 | (clamped * max).round() |
| 447 | } |
| 448 | |
| 449 | impl FromPrimitive<f32> for u8 { |
| 450 | fn from_primitive(float: f32) -> Self { |
| 451 | NumCast::from(normalize_float(float, u8::MAX as f32)).unwrap() |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | impl FromPrimitive<f32> for u16 { |
| 456 | fn from_primitive(float: f32) -> Self { |
| 457 | NumCast::from(normalize_float(float, u16::MAX as f32)).unwrap() |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | // from u16: |
| 462 | |
| 463 | impl FromPrimitive<u16> for u8 { |
| 464 | fn from_primitive(c16: u16) -> Self { |
| 465 | fn from(c: impl Into<u32>) -> u32 { |
| 466 | c.into() |
| 467 | } |
| 468 | // The input c is the numerator of `c / u16::MAX`. |
| 469 | // Derive numerator of `num / u8::MAX`, with rounding. |
| 470 | // |
| 471 | // This method is based on the inverse (see FromPrimitive<u8> for u16) and was tested |
| 472 | // exhaustively in Python. It's the same as the reference function: |
| 473 | // round(c * (2**8 - 1) / (2**16 - 1)) |
| 474 | NumCast::from((from(c16) + 128) / 257).unwrap() |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | impl FromPrimitive<u16> for f32 { |
| 479 | fn from_primitive(int: u16) -> Self { |
| 480 | (int as f32 / u16::MAX as f32).clamp(min:0.0, max:1.0) |
| 481 | } |
| 482 | } |
| 483 | |
| 484 | // from u8: |
| 485 | |
| 486 | impl FromPrimitive<u8> for f32 { |
| 487 | fn from_primitive(int: u8) -> Self { |
| 488 | (int as f32 / u8::MAX as f32).clamp(min:0.0, max:1.0) |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | impl FromPrimitive<u8> for u16 { |
| 493 | fn from_primitive(c8: u8) -> Self { |
| 494 | let x: u64 = c8.to_u64().unwrap(); |
| 495 | NumCast::from((x << 8) | x).unwrap() |
| 496 | } |
| 497 | } |
| 498 | |
| 499 | /// Provides color conversions for the different pixel types. |
| 500 | pub trait FromColor<Other> { |
| 501 | /// Changes `self` to represent `Other` in the color space of `Self` |
| 502 | #[allow (clippy::wrong_self_convention)] |
| 503 | fn from_color(&mut self, _: &Other); |
| 504 | } |
| 505 | |
| 506 | /// Copy-based conversions to target pixel types using `FromColor`. |
| 507 | // FIXME: this trait should be removed and replaced with real color space models |
| 508 | // rather than assuming sRGB. |
| 509 | pub(crate) trait IntoColor<Other> { |
| 510 | /// Constructs a pixel of the target type and converts this pixel into it. |
| 511 | #[allow (clippy::wrong_self_convention)] |
| 512 | fn into_color(&self) -> Other; |
| 513 | } |
| 514 | |
| 515 | impl<O, S> IntoColor<O> for S |
| 516 | where |
| 517 | O: Pixel + FromColor<S>, |
| 518 | { |
| 519 | #[allow (clippy::wrong_self_convention)] |
| 520 | fn into_color(&self) -> O { |
| 521 | // Note we cannot use Pixel::CHANNELS_COUNT here to directly construct |
| 522 | // the pixel due to a current bug/limitation of consts. |
| 523 | #[allow (deprecated)] |
| 524 | let mut pix: O = O::from_channels(a:Zero::zero(), b:Zero::zero(), c:Zero::zero(), d:Zero::zero()); |
| 525 | pix.from_color(self); |
| 526 | pix |
| 527 | } |
| 528 | } |
| 529 | |
| 530 | /// Coefficients to transform from sRGB to a CIE Y (luminance) value. |
| 531 | const SRGB_LUMA: [u32; 3] = [2126, 7152, 722]; |
| 532 | const SRGB_LUMA_DIV: u32 = 10000; |
| 533 | |
| 534 | #[inline ] |
| 535 | fn rgb_to_luma<T: Primitive + Enlargeable>(rgb: &[T]) -> T { |
| 536 | let l: ::Larger = <T::Larger as NumCast>::from(SRGB_LUMA[0]).unwrap() * rgb[0].to_larger() |
| 537 | + <T::Larger as NumCast>::from(SRGB_LUMA[1]).unwrap() * rgb[1].to_larger() |
| 538 | + <T::Larger as NumCast>::from(SRGB_LUMA[2]).unwrap() * rgb[2].to_larger(); |
| 539 | T::clamp_from(l / <T::Larger as NumCast>::from(SRGB_LUMA_DIV).unwrap()) |
| 540 | } |
| 541 | |
| 542 | // `FromColor` for Luma |
| 543 | impl<S: Primitive, T: Primitive> FromColor<Luma<S>> for Luma<T> |
| 544 | where |
| 545 | T: FromPrimitive<S>, |
| 546 | { |
| 547 | fn from_color(&mut self, other: &Luma<S>) { |
| 548 | let own: &mut [T] = self.channels_mut(); |
| 549 | let other: &[S] = other.channels(); |
| 550 | own[0] = T::from_primitive(component:other[0]); |
| 551 | } |
| 552 | } |
| 553 | |
| 554 | impl<S: Primitive, T: Primitive> FromColor<LumaA<S>> for Luma<T> |
| 555 | where |
| 556 | T: FromPrimitive<S>, |
| 557 | { |
| 558 | fn from_color(&mut self, other: &LumaA<S>) { |
| 559 | self.channels_mut()[0] = T::from_primitive(component:other.channels()[0]); |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | impl<S: Primitive + Enlargeable, T: Primitive> FromColor<Rgb<S>> for Luma<T> |
| 564 | where |
| 565 | T: FromPrimitive<S>, |
| 566 | { |
| 567 | fn from_color(&mut self, other: &Rgb<S>) { |
| 568 | let gray: &mut [T] = self.channels_mut(); |
| 569 | let rgb: &[S] = other.channels(); |
| 570 | gray[0] = T::from_primitive(component:rgb_to_luma(rgb)); |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | impl<S: Primitive + Enlargeable, T: Primitive> FromColor<Rgba<S>> for Luma<T> |
| 575 | where |
| 576 | T: FromPrimitive<S>, |
| 577 | { |
| 578 | fn from_color(&mut self, other: &Rgba<S>) { |
| 579 | let gray: &mut [T] = self.channels_mut(); |
| 580 | let rgb: &[S] = other.channels(); |
| 581 | let l: S = rgb_to_luma(rgb); |
| 582 | gray[0] = T::from_primitive(component:l); |
| 583 | } |
| 584 | } |
| 585 | |
| 586 | // `FromColor` for LumaA |
| 587 | |
| 588 | impl<S: Primitive, T: Primitive> FromColor<LumaA<S>> for LumaA<T> |
| 589 | where |
| 590 | T: FromPrimitive<S>, |
| 591 | { |
| 592 | fn from_color(&mut self, other: &LumaA<S>) { |
| 593 | let own: &mut [T] = self.channels_mut(); |
| 594 | let other: &[S] = other.channels(); |
| 595 | own[0] = T::from_primitive(component:other[0]); |
| 596 | own[1] = T::from_primitive(component:other[1]); |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | impl<S: Primitive + Enlargeable, T: Primitive> FromColor<Rgb<S>> for LumaA<T> |
| 601 | where |
| 602 | T: FromPrimitive<S>, |
| 603 | { |
| 604 | fn from_color(&mut self, other: &Rgb<S>) { |
| 605 | let gray_a: &mut [T] = self.channels_mut(); |
| 606 | let rgb: &[S] = other.channels(); |
| 607 | gray_a[0] = T::from_primitive(component:rgb_to_luma(rgb)); |
| 608 | gray_a[1] = T::DEFAULT_MAX_VALUE; |
| 609 | } |
| 610 | } |
| 611 | |
| 612 | impl<S: Primitive + Enlargeable, T: Primitive> FromColor<Rgba<S>> for LumaA<T> |
| 613 | where |
| 614 | T: FromPrimitive<S>, |
| 615 | { |
| 616 | fn from_color(&mut self, other: &Rgba<S>) { |
| 617 | let gray_a: &mut [T] = self.channels_mut(); |
| 618 | let rgba: &[S] = other.channels(); |
| 619 | gray_a[0] = T::from_primitive(component:rgb_to_luma(rgb:rgba)); |
| 620 | gray_a[1] = T::from_primitive(component:rgba[3]); |
| 621 | } |
| 622 | } |
| 623 | |
| 624 | impl<S: Primitive, T: Primitive> FromColor<Luma<S>> for LumaA<T> |
| 625 | where |
| 626 | T: FromPrimitive<S>, |
| 627 | { |
| 628 | fn from_color(&mut self, other: &Luma<S>) { |
| 629 | let gray_a: &mut [T] = self.channels_mut(); |
| 630 | gray_a[0] = T::from_primitive(component:other.channels()[0]); |
| 631 | gray_a[1] = T::DEFAULT_MAX_VALUE; |
| 632 | } |
| 633 | } |
| 634 | |
| 635 | // `FromColor` for RGBA |
| 636 | |
| 637 | impl<S: Primitive, T: Primitive> FromColor<Rgba<S>> for Rgba<T> |
| 638 | where |
| 639 | T: FromPrimitive<S>, |
| 640 | { |
| 641 | fn from_color(&mut self, other: &Rgba<S>) { |
| 642 | let own: &mut [T; 4] = &mut self.0; |
| 643 | let other: &[S; 4] = &other.0; |
| 644 | own[0] = T::from_primitive(component:other[0]); |
| 645 | own[1] = T::from_primitive(component:other[1]); |
| 646 | own[2] = T::from_primitive(component:other[2]); |
| 647 | own[3] = T::from_primitive(component:other[3]); |
| 648 | } |
| 649 | } |
| 650 | |
| 651 | impl<S: Primitive, T: Primitive> FromColor<Rgb<S>> for Rgba<T> |
| 652 | where |
| 653 | T: FromPrimitive<S>, |
| 654 | { |
| 655 | fn from_color(&mut self, other: &Rgb<S>) { |
| 656 | let rgba: &mut [T; 4] = &mut self.0; |
| 657 | let rgb: &[S; 3] = &other.0; |
| 658 | rgba[0] = T::from_primitive(component:rgb[0]); |
| 659 | rgba[1] = T::from_primitive(component:rgb[1]); |
| 660 | rgba[2] = T::from_primitive(component:rgb[2]); |
| 661 | rgba[3] = T::DEFAULT_MAX_VALUE; |
| 662 | } |
| 663 | } |
| 664 | |
| 665 | impl<S: Primitive, T: Primitive> FromColor<LumaA<S>> for Rgba<T> |
| 666 | where |
| 667 | T: FromPrimitive<S>, |
| 668 | { |
| 669 | fn from_color(&mut self, gray: &LumaA<S>) { |
| 670 | let rgba: &mut [T; 4] = &mut self.0; |
| 671 | let gray: &[S; 2] = &gray.0; |
| 672 | rgba[0] = T::from_primitive(component:gray[0]); |
| 673 | rgba[1] = T::from_primitive(component:gray[0]); |
| 674 | rgba[2] = T::from_primitive(component:gray[0]); |
| 675 | rgba[3] = T::from_primitive(component:gray[1]); |
| 676 | } |
| 677 | } |
| 678 | |
| 679 | impl<S: Primitive, T: Primitive> FromColor<Luma<S>> for Rgba<T> |
| 680 | where |
| 681 | T: FromPrimitive<S>, |
| 682 | { |
| 683 | fn from_color(&mut self, gray: &Luma<S>) { |
| 684 | let rgba: &mut [T; 4] = &mut self.0; |
| 685 | let gray: S = gray.0[0]; |
| 686 | rgba[0] = T::from_primitive(component:gray); |
| 687 | rgba[1] = T::from_primitive(component:gray); |
| 688 | rgba[2] = T::from_primitive(component:gray); |
| 689 | rgba[3] = T::DEFAULT_MAX_VALUE; |
| 690 | } |
| 691 | } |
| 692 | |
| 693 | // `FromColor` for RGB |
| 694 | |
| 695 | impl<S: Primitive, T: Primitive> FromColor<Rgb<S>> for Rgb<T> |
| 696 | where |
| 697 | T: FromPrimitive<S>, |
| 698 | { |
| 699 | fn from_color(&mut self, other: &Rgb<S>) { |
| 700 | let own: &mut [T; 3] = &mut self.0; |
| 701 | let other: &[S; 3] = &other.0; |
| 702 | own[0] = T::from_primitive(component:other[0]); |
| 703 | own[1] = T::from_primitive(component:other[1]); |
| 704 | own[2] = T::from_primitive(component:other[2]); |
| 705 | } |
| 706 | } |
| 707 | |
| 708 | impl<S: Primitive, T: Primitive> FromColor<Rgba<S>> for Rgb<T> |
| 709 | where |
| 710 | T: FromPrimitive<S>, |
| 711 | { |
| 712 | fn from_color(&mut self, other: &Rgba<S>) { |
| 713 | let rgb: &mut [T; 3] = &mut self.0; |
| 714 | let rgba: &[S; 4] = &other.0; |
| 715 | rgb[0] = T::from_primitive(component:rgba[0]); |
| 716 | rgb[1] = T::from_primitive(component:rgba[1]); |
| 717 | rgb[2] = T::from_primitive(component:rgba[2]); |
| 718 | } |
| 719 | } |
| 720 | |
| 721 | impl<S: Primitive, T: Primitive> FromColor<LumaA<S>> for Rgb<T> |
| 722 | where |
| 723 | T: FromPrimitive<S>, |
| 724 | { |
| 725 | fn from_color(&mut self, other: &LumaA<S>) { |
| 726 | let rgb: &mut [T; 3] = &mut self.0; |
| 727 | let gray: S = other.0[0]; |
| 728 | rgb[0] = T::from_primitive(component:gray); |
| 729 | rgb[1] = T::from_primitive(component:gray); |
| 730 | rgb[2] = T::from_primitive(component:gray); |
| 731 | } |
| 732 | } |
| 733 | |
| 734 | impl<S: Primitive, T: Primitive> FromColor<Luma<S>> for Rgb<T> |
| 735 | where |
| 736 | T: FromPrimitive<S>, |
| 737 | { |
| 738 | fn from_color(&mut self, other: &Luma<S>) { |
| 739 | let rgb: &mut [T; 3] = &mut self.0; |
| 740 | let gray: S = other.0[0]; |
| 741 | rgb[0] = T::from_primitive(component:gray); |
| 742 | rgb[1] = T::from_primitive(component:gray); |
| 743 | rgb[2] = T::from_primitive(component:gray); |
| 744 | } |
| 745 | } |
| 746 | |
| 747 | /// Blends a color inter another one |
| 748 | pub(crate) trait Blend { |
| 749 | /// Blends a color in-place. |
| 750 | fn blend(&mut self, other: &Self); |
| 751 | } |
| 752 | |
| 753 | impl<T: Primitive> Blend for LumaA<T> { |
| 754 | fn blend(&mut self, other: &LumaA<T>) { |
| 755 | let max_t = T::DEFAULT_MAX_VALUE; |
| 756 | let max_t = max_t.to_f32().unwrap(); |
| 757 | let (bg_luma, bg_a) = (self.0[0], self.0[1]); |
| 758 | let (fg_luma, fg_a) = (other.0[0], other.0[1]); |
| 759 | |
| 760 | let (bg_luma, bg_a) = ( |
| 761 | bg_luma.to_f32().unwrap() / max_t, |
| 762 | bg_a.to_f32().unwrap() / max_t, |
| 763 | ); |
| 764 | let (fg_luma, fg_a) = ( |
| 765 | fg_luma.to_f32().unwrap() / max_t, |
| 766 | fg_a.to_f32().unwrap() / max_t, |
| 767 | ); |
| 768 | |
| 769 | let alpha_final = bg_a + fg_a - bg_a * fg_a; |
| 770 | if alpha_final == 0.0 { |
| 771 | return; |
| 772 | }; |
| 773 | let bg_luma_a = bg_luma * bg_a; |
| 774 | let fg_luma_a = fg_luma * fg_a; |
| 775 | |
| 776 | let out_luma_a = fg_luma_a + bg_luma_a * (1.0 - fg_a); |
| 777 | let out_luma = out_luma_a / alpha_final; |
| 778 | |
| 779 | *self = LumaA([ |
| 780 | NumCast::from(max_t * out_luma).unwrap(), |
| 781 | NumCast::from(max_t * alpha_final).unwrap(), |
| 782 | ]); |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | impl<T: Primitive> Blend for Luma<T> { |
| 787 | fn blend(&mut self, other: &Luma<T>) { |
| 788 | *self = *other; |
| 789 | } |
| 790 | } |
| 791 | |
| 792 | impl<T: Primitive> Blend for Rgba<T> { |
| 793 | fn blend(&mut self, other: &Rgba<T>) { |
| 794 | // http://stackoverflow.com/questions/7438263/alpha-compositing-algorithm-blend-modes#answer-11163848 |
| 795 | |
| 796 | if other.0[3].is_zero() { |
| 797 | return; |
| 798 | } |
| 799 | if other.0[3] == T::DEFAULT_MAX_VALUE { |
| 800 | *self = *other; |
| 801 | return; |
| 802 | } |
| 803 | |
| 804 | // First, as we don't know what type our pixel is, we have to convert to floats between 0.0 and 1.0 |
| 805 | let max_t = T::DEFAULT_MAX_VALUE; |
| 806 | let max_t = max_t.to_f32().unwrap(); |
| 807 | let (bg_r, bg_g, bg_b, bg_a) = (self.0[0], self.0[1], self.0[2], self.0[3]); |
| 808 | let (fg_r, fg_g, fg_b, fg_a) = (other.0[0], other.0[1], other.0[2], other.0[3]); |
| 809 | let (bg_r, bg_g, bg_b, bg_a) = ( |
| 810 | bg_r.to_f32().unwrap() / max_t, |
| 811 | bg_g.to_f32().unwrap() / max_t, |
| 812 | bg_b.to_f32().unwrap() / max_t, |
| 813 | bg_a.to_f32().unwrap() / max_t, |
| 814 | ); |
| 815 | let (fg_r, fg_g, fg_b, fg_a) = ( |
| 816 | fg_r.to_f32().unwrap() / max_t, |
| 817 | fg_g.to_f32().unwrap() / max_t, |
| 818 | fg_b.to_f32().unwrap() / max_t, |
| 819 | fg_a.to_f32().unwrap() / max_t, |
| 820 | ); |
| 821 | |
| 822 | // Work out what the final alpha level will be |
| 823 | let alpha_final = bg_a + fg_a - bg_a * fg_a; |
| 824 | if alpha_final == 0.0 { |
| 825 | return; |
| 826 | }; |
| 827 | |
| 828 | // We premultiply our channels by their alpha, as this makes it easier to calculate |
| 829 | let (bg_r_a, bg_g_a, bg_b_a) = (bg_r * bg_a, bg_g * bg_a, bg_b * bg_a); |
| 830 | let (fg_r_a, fg_g_a, fg_b_a) = (fg_r * fg_a, fg_g * fg_a, fg_b * fg_a); |
| 831 | |
| 832 | // Standard formula for src-over alpha compositing |
| 833 | let (out_r_a, out_g_a, out_b_a) = ( |
| 834 | fg_r_a + bg_r_a * (1.0 - fg_a), |
| 835 | fg_g_a + bg_g_a * (1.0 - fg_a), |
| 836 | fg_b_a + bg_b_a * (1.0 - fg_a), |
| 837 | ); |
| 838 | |
| 839 | // Unmultiply the channels by our resultant alpha channel |
| 840 | let (out_r, out_g, out_b) = ( |
| 841 | out_r_a / alpha_final, |
| 842 | out_g_a / alpha_final, |
| 843 | out_b_a / alpha_final, |
| 844 | ); |
| 845 | |
| 846 | // Cast back to our initial type on return |
| 847 | *self = Rgba([ |
| 848 | NumCast::from(max_t * out_r).unwrap(), |
| 849 | NumCast::from(max_t * out_g).unwrap(), |
| 850 | NumCast::from(max_t * out_b).unwrap(), |
| 851 | NumCast::from(max_t * alpha_final).unwrap(), |
| 852 | ]); |
| 853 | } |
| 854 | } |
| 855 | |
| 856 | impl<T: Primitive> Blend for Rgb<T> { |
| 857 | fn blend(&mut self, other: &Rgb<T>) { |
| 858 | *self = *other; |
| 859 | } |
| 860 | } |
| 861 | |
| 862 | /// Invert a color |
| 863 | pub(crate) trait Invert { |
| 864 | /// Inverts a color in-place. |
| 865 | fn invert(&mut self); |
| 866 | } |
| 867 | |
| 868 | impl<T: Primitive> Invert for LumaA<T> { |
| 869 | fn invert(&mut self) { |
| 870 | let l: [T; 2] = self.0; |
| 871 | let max: T = T::DEFAULT_MAX_VALUE; |
| 872 | |
| 873 | *self = LumaA([max - l[0], l[1]]); |
| 874 | } |
| 875 | } |
| 876 | |
| 877 | impl<T: Primitive> Invert for Luma<T> { |
| 878 | fn invert(&mut self) { |
| 879 | let l: [T; 1] = self.0; |
| 880 | |
| 881 | let max: T = T::DEFAULT_MAX_VALUE; |
| 882 | let l1: T = max - l[0]; |
| 883 | |
| 884 | *self = Luma([l1]); |
| 885 | } |
| 886 | } |
| 887 | |
| 888 | impl<T: Primitive> Invert for Rgba<T> { |
| 889 | fn invert(&mut self) { |
| 890 | let rgba: [T; 4] = self.0; |
| 891 | |
| 892 | let max: T = T::DEFAULT_MAX_VALUE; |
| 893 | |
| 894 | *self = Rgba([max - rgba[0], max - rgba[1], max - rgba[2], rgba[3]]); |
| 895 | } |
| 896 | } |
| 897 | |
| 898 | impl<T: Primitive> Invert for Rgb<T> { |
| 899 | fn invert(&mut self) { |
| 900 | let rgb: [T; 3] = self.0; |
| 901 | |
| 902 | let max: T = T::DEFAULT_MAX_VALUE; |
| 903 | |
| 904 | let r1: T = max - rgb[0]; |
| 905 | let g1: T = max - rgb[1]; |
| 906 | let b1: T = max - rgb[2]; |
| 907 | |
| 908 | *self = Rgb([r1, g1, b1]); |
| 909 | } |
| 910 | } |
| 911 | |
| 912 | #[cfg (test)] |
| 913 | mod tests { |
| 914 | use super::{Luma, LumaA, Pixel, Rgb, Rgba}; |
| 915 | |
| 916 | #[test ] |
| 917 | fn test_apply_with_alpha_rgba() { |
| 918 | let mut rgba = Rgba([0, 0, 0, 0]); |
| 919 | rgba.apply_with_alpha(|s| s, |_| 0xFF); |
| 920 | assert_eq!(rgba, Rgba([0, 0, 0, 0xFF])); |
| 921 | } |
| 922 | |
| 923 | #[test ] |
| 924 | fn test_apply_with_alpha_rgb() { |
| 925 | let mut rgb = Rgb([0, 0, 0]); |
| 926 | rgb.apply_with_alpha(|s| s, |_| panic!("bug" )); |
| 927 | assert_eq!(rgb, Rgb([0, 0, 0])); |
| 928 | } |
| 929 | |
| 930 | #[test ] |
| 931 | fn test_map_with_alpha_rgba() { |
| 932 | let rgba = Rgba([0, 0, 0, 0]).map_with_alpha(|s| s, |_| 0xFF); |
| 933 | assert_eq!(rgba, Rgba([0, 0, 0, 0xFF])); |
| 934 | } |
| 935 | |
| 936 | #[test ] |
| 937 | fn test_map_with_alpha_rgb() { |
| 938 | let rgb = Rgb([0, 0, 0]).map_with_alpha(|s| s, |_| panic!("bug" )); |
| 939 | assert_eq!(rgb, Rgb([0, 0, 0])); |
| 940 | } |
| 941 | |
| 942 | #[test ] |
| 943 | fn test_blend_luma_alpha() { |
| 944 | let a = &mut LumaA([255_u8, 255]); |
| 945 | let b = LumaA([255_u8, 255]); |
| 946 | a.blend(&b); |
| 947 | assert_eq!(a.0[0], 255); |
| 948 | assert_eq!(a.0[1], 255); |
| 949 | |
| 950 | let a = &mut LumaA([255_u8, 0]); |
| 951 | let b = LumaA([255_u8, 255]); |
| 952 | a.blend(&b); |
| 953 | assert_eq!(a.0[0], 255); |
| 954 | assert_eq!(a.0[1], 255); |
| 955 | |
| 956 | let a = &mut LumaA([255_u8, 255]); |
| 957 | let b = LumaA([255_u8, 0]); |
| 958 | a.blend(&b); |
| 959 | assert_eq!(a.0[0], 255); |
| 960 | assert_eq!(a.0[1], 255); |
| 961 | |
| 962 | let a = &mut LumaA([255_u8, 0]); |
| 963 | let b = LumaA([255_u8, 0]); |
| 964 | a.blend(&b); |
| 965 | assert_eq!(a.0[0], 255); |
| 966 | assert_eq!(a.0[1], 0); |
| 967 | } |
| 968 | |
| 969 | #[test ] |
| 970 | fn test_blend_rgba() { |
| 971 | let a = &mut Rgba([255_u8, 255, 255, 255]); |
| 972 | let b = Rgba([255_u8, 255, 255, 255]); |
| 973 | a.blend(&b); |
| 974 | assert_eq!(a.0, [255, 255, 255, 255]); |
| 975 | |
| 976 | let a = &mut Rgba([255_u8, 255, 255, 0]); |
| 977 | let b = Rgba([255_u8, 255, 255, 255]); |
| 978 | a.blend(&b); |
| 979 | assert_eq!(a.0, [255, 255, 255, 255]); |
| 980 | |
| 981 | let a = &mut Rgba([255_u8, 255, 255, 255]); |
| 982 | let b = Rgba([255_u8, 255, 255, 0]); |
| 983 | a.blend(&b); |
| 984 | assert_eq!(a.0, [255, 255, 255, 255]); |
| 985 | |
| 986 | let a = &mut Rgba([255_u8, 255, 255, 0]); |
| 987 | let b = Rgba([255_u8, 255, 255, 0]); |
| 988 | a.blend(&b); |
| 989 | assert_eq!(a.0, [255, 255, 255, 0]); |
| 990 | } |
| 991 | |
| 992 | #[test ] |
| 993 | fn test_apply_without_alpha_rgba() { |
| 994 | let mut rgba = Rgba([0, 0, 0, 0]); |
| 995 | rgba.apply_without_alpha(|s| s + 1); |
| 996 | assert_eq!(rgba, Rgba([1, 1, 1, 0])); |
| 997 | } |
| 998 | |
| 999 | #[test ] |
| 1000 | fn test_apply_without_alpha_rgb() { |
| 1001 | let mut rgb = Rgb([0, 0, 0]); |
| 1002 | rgb.apply_without_alpha(|s| s + 1); |
| 1003 | assert_eq!(rgb, Rgb([1, 1, 1])); |
| 1004 | } |
| 1005 | |
| 1006 | #[test ] |
| 1007 | fn test_map_without_alpha_rgba() { |
| 1008 | let rgba = Rgba([0, 0, 0, 0]).map_without_alpha(|s| s + 1); |
| 1009 | assert_eq!(rgba, Rgba([1, 1, 1, 0])); |
| 1010 | } |
| 1011 | |
| 1012 | #[test ] |
| 1013 | fn test_map_without_alpha_rgb() { |
| 1014 | let rgb = Rgb([0, 0, 0]).map_without_alpha(|s| s + 1); |
| 1015 | assert_eq!(rgb, Rgb([1, 1, 1])); |
| 1016 | } |
| 1017 | |
| 1018 | macro_rules! test_lossless_conversion { |
| 1019 | ($a:ty, $b:ty, $c:ty) => { |
| 1020 | let a: $a = [<$a as Pixel>::Subpixel::DEFAULT_MAX_VALUE >> 2; |
| 1021 | <$a as Pixel>::CHANNEL_COUNT as usize] |
| 1022 | .into(); |
| 1023 | let b: $b = a.into_color(); |
| 1024 | let c: $c = b.into_color(); |
| 1025 | assert_eq!(a.channels(), c.channels()); |
| 1026 | }; |
| 1027 | } |
| 1028 | |
| 1029 | #[test ] |
| 1030 | fn test_lossless_conversions() { |
| 1031 | use super::IntoColor; |
| 1032 | use crate::traits::Primitive; |
| 1033 | |
| 1034 | test_lossless_conversion!(Luma<u8>, Luma<u16>, Luma<u8>); |
| 1035 | test_lossless_conversion!(LumaA<u8>, LumaA<u16>, LumaA<u8>); |
| 1036 | test_lossless_conversion!(Rgb<u8>, Rgb<u16>, Rgb<u8>); |
| 1037 | test_lossless_conversion!(Rgba<u8>, Rgba<u16>, Rgba<u8>); |
| 1038 | } |
| 1039 | |
| 1040 | #[test ] |
| 1041 | fn accuracy_conversion() { |
| 1042 | use super::{Luma, Pixel, Rgb}; |
| 1043 | let pixel = Rgb::from([13, 13, 13]); |
| 1044 | let Luma([luma]) = pixel.to_luma(); |
| 1045 | assert_eq!(luma, 13); |
| 1046 | } |
| 1047 | } |
| 1048 | |