1 | //! Extensions to the standard IP address types for common operations. |
2 | //! |
3 | //! The [`IpAdd`], [`IpSub`], [`IpBitAnd`], [`IpBitOr`] traits extend |
4 | //! the `Ipv4Addr` and `Ipv6Addr` types with methods to perform these |
5 | //! operations. |
6 | |
7 | use core::cmp::Ordering::{Less, Equal}; |
8 | use core::iter::{FusedIterator, DoubleEndedIterator}; |
9 | use core::mem; |
10 | #[cfg (not(feature = "std" ))] |
11 | use core::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
12 | #[cfg (feature = "std" )] |
13 | use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
14 | |
15 | /// Provides a `saturating_add()` method for `Ipv4Addr` and `Ipv6Addr`. |
16 | /// |
17 | /// Adding an integer to an IP address returns the modified IP address. |
18 | /// A `u32` may added to an IPv4 address and a `u128` may be added to |
19 | /// an IPv6 address. |
20 | /// |
21 | /// # Examples |
22 | /// |
23 | /// ``` |
24 | /// # #[cfg (not(feature = "std" ))] |
25 | /// # use core::net::{Ipv4Addr, Ipv6Addr}; |
26 | /// # #[cfg (feature = "std" )] |
27 | /// use std::net::{Ipv4Addr, Ipv6Addr}; |
28 | /// use ipnet::IpAdd; |
29 | /// |
30 | /// let ip0: Ipv4Addr = "192.168.0.0" .parse().unwrap(); |
31 | /// let ip1: Ipv4Addr = "192.168.0.5" .parse().unwrap(); |
32 | /// let ip2: Ipv4Addr = "255.255.255.254" .parse().unwrap(); |
33 | /// let max: Ipv4Addr = "255.255.255.255" .parse().unwrap(); |
34 | /// |
35 | /// assert_eq!(ip0.saturating_add(5), ip1); |
36 | /// assert_eq!(ip2.saturating_add(1), max); |
37 | /// assert_eq!(ip2.saturating_add(5), max); |
38 | /// |
39 | /// let ip0: Ipv6Addr = "fd00::" .parse().unwrap(); |
40 | /// let ip1: Ipv6Addr = "fd00::5" .parse().unwrap(); |
41 | /// let ip2: Ipv6Addr = "ffff:ffff:ffff:ffff:ffff:ffff:ffff:fffe" .parse().unwrap(); |
42 | /// let max: Ipv6Addr = "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff" .parse().unwrap(); |
43 | /// |
44 | /// assert_eq!(ip0.saturating_add(5), ip1); |
45 | /// assert_eq!(ip2.saturating_add(1), max); |
46 | /// assert_eq!(ip2.saturating_add(5), max); |
47 | /// ``` |
48 | pub trait IpAdd<RHS = Self> { |
49 | type Output; |
50 | fn saturating_add(self, rhs: RHS) -> Self::Output; |
51 | } |
52 | |
53 | /// Provides a `saturating_sub()` method for `Ipv4Addr` and `Ipv6Addr`. |
54 | /// |
55 | /// Subtracting an integer from an IP address returns the modified IP |
56 | /// address. A `u32` may be subtracted from an IPv4 address and a `u128` |
57 | /// may be subtracted from an IPv6 address. |
58 | /// |
59 | /// Subtracting an IP address from another IP address of the same type |
60 | /// returns an integer of the appropriate width. A `u32` for IPv4 and a |
61 | /// `u128` for IPv6. Subtracting IP addresses is useful for getting |
62 | /// the range between two IP addresses. |
63 | /// |
64 | /// # Examples |
65 | /// |
66 | /// ``` |
67 | /// # #[cfg (not(feature = "std" ))] |
68 | /// # use core::net::{Ipv4Addr, Ipv6Addr}; |
69 | /// # #[cfg (feature = "std" )] |
70 | /// use std::net::{Ipv4Addr, Ipv6Addr}; |
71 | /// use ipnet::IpSub; |
72 | /// |
73 | /// let min: Ipv4Addr = "0.0.0.0" .parse().unwrap(); |
74 | /// let ip1: Ipv4Addr = "192.168.1.5" .parse().unwrap(); |
75 | /// let ip2: Ipv4Addr = "192.168.1.100" .parse().unwrap(); |
76 | /// |
77 | /// assert_eq!(min.saturating_sub(ip1), 0); |
78 | /// assert_eq!(ip2.saturating_sub(ip1), 95); |
79 | /// assert_eq!(min.saturating_sub(5), min); |
80 | /// assert_eq!(ip2.saturating_sub(95), ip1); |
81 | /// |
82 | /// let min: Ipv6Addr = "::" .parse().unwrap(); |
83 | /// let ip1: Ipv6Addr = "fd00::5" .parse().unwrap(); |
84 | /// let ip2: Ipv6Addr = "fd00::64" .parse().unwrap(); |
85 | /// |
86 | /// assert_eq!(min.saturating_sub(ip1), 0); |
87 | /// assert_eq!(ip2.saturating_sub(ip1), 95); |
88 | /// assert_eq!(min.saturating_sub(5u128), min); |
89 | /// assert_eq!(ip2.saturating_sub(95u128), ip1); |
90 | /// ``` |
91 | pub trait IpSub<RHS = Self> { |
92 | type Output; |
93 | fn saturating_sub(self, rhs: RHS) -> Self::Output; |
94 | } |
95 | |
96 | /// Provides a `bitand()` method for `Ipv4Addr` and `Ipv6Addr`. |
97 | /// |
98 | /// # Examples |
99 | /// |
100 | /// ``` |
101 | /// # #[cfg (not(feature = "std" ))] |
102 | /// # use core::net::{Ipv4Addr, Ipv6Addr}; |
103 | /// # #[cfg (feature = "std" )] |
104 | /// use std::net::{Ipv4Addr, Ipv6Addr}; |
105 | /// use ipnet::IpBitAnd; |
106 | /// |
107 | /// let ip: Ipv4Addr = "192.168.1.1" .parse().unwrap(); |
108 | /// let mask: Ipv4Addr = "255.255.0.0" .parse().unwrap(); |
109 | /// let res: Ipv4Addr = "192.168.0.0" .parse().unwrap(); |
110 | /// |
111 | /// assert_eq!(ip.bitand(mask), res); |
112 | /// assert_eq!(ip.bitand(0xffff0000), res); |
113 | /// |
114 | /// let ip: Ipv6Addr = "fd00:1234::1" .parse().unwrap(); |
115 | /// let mask: Ipv6Addr = "ffff::" .parse().unwrap(); |
116 | /// let res: Ipv6Addr = "fd00::" .parse().unwrap(); |
117 | /// |
118 | /// assert_eq!(ip.bitand(mask), res); |
119 | /// assert_eq!(ip.bitand(0xffff_0000_0000_0000_0000_0000_0000_0000u128), res); |
120 | /// ``` |
121 | pub trait IpBitAnd<RHS = Self> { |
122 | type Output; |
123 | fn bitand(self, rhs: RHS) -> Self::Output; |
124 | } |
125 | |
126 | /// Provides a `bitor()` method for `Ipv4Addr` and `Ipv6Addr`. |
127 | /// |
128 | /// # Examples |
129 | /// |
130 | /// ``` |
131 | /// # #[cfg (not(feature = "std" ))] |
132 | /// # use core::net::{Ipv4Addr, Ipv6Addr}; |
133 | /// # #[cfg (feature = "std" )] |
134 | /// use std::net::{Ipv4Addr, Ipv6Addr}; |
135 | /// use ipnet::IpBitOr; |
136 | /// |
137 | /// let ip: Ipv4Addr = "10.1.1.1" .parse().unwrap(); |
138 | /// let mask: Ipv4Addr = "0.0.0.255" .parse().unwrap(); |
139 | /// let res: Ipv4Addr = "10.1.1.255" .parse().unwrap(); |
140 | /// |
141 | /// assert_eq!(ip.bitor(mask), res); |
142 | /// assert_eq!(ip.bitor(0x000000ff), res); |
143 | /// |
144 | /// let ip: Ipv6Addr = "fd00::1" .parse().unwrap(); |
145 | /// let mask: Ipv6Addr = "::ffff:ffff" .parse().unwrap(); |
146 | /// let res: Ipv6Addr = "fd00::ffff:ffff" .parse().unwrap(); |
147 | /// |
148 | /// assert_eq!(ip.bitor(mask), res); |
149 | /// assert_eq!(ip.bitor(u128::from(0xffffffffu32)), res); |
150 | /// ``` |
151 | pub trait IpBitOr<RHS = Self> { |
152 | type Output; |
153 | fn bitor(self, rhs: RHS) -> Self::Output; |
154 | } |
155 | |
156 | macro_rules! ip_add_impl { |
157 | ($lhs:ty, $rhs:ty, $output:ty, $inner:ty) => ( |
158 | impl IpAdd<$rhs> for $lhs { |
159 | type Output = $output; |
160 | |
161 | fn saturating_add(self, rhs: $rhs) -> $output { |
162 | let lhs: $inner = self.into(); |
163 | let rhs: $inner = rhs.into(); |
164 | (lhs.saturating_add(rhs.into())).into() |
165 | } |
166 | } |
167 | ) |
168 | } |
169 | |
170 | macro_rules! ip_sub_impl { |
171 | ($lhs:ty, $rhs:ty, $output:ty, $inner:ty) => ( |
172 | impl IpSub<$rhs> for $lhs { |
173 | type Output = $output; |
174 | |
175 | fn saturating_sub(self, rhs: $rhs) -> $output { |
176 | let lhs: $inner = self.into(); |
177 | let rhs: $inner = rhs.into(); |
178 | (lhs.saturating_sub(rhs.into())).into() |
179 | } |
180 | } |
181 | ) |
182 | } |
183 | |
184 | ip_add_impl!(Ipv4Addr, u32, Ipv4Addr, u32); |
185 | ip_add_impl!(Ipv6Addr, u128, Ipv6Addr, u128); |
186 | |
187 | ip_sub_impl!(Ipv4Addr, Ipv4Addr, u32, u32); |
188 | ip_sub_impl!(Ipv4Addr, u32, Ipv4Addr, u32); |
189 | ip_sub_impl!(Ipv6Addr, Ipv6Addr, u128, u128); |
190 | ip_sub_impl!(Ipv6Addr, u128, Ipv6Addr, u128); |
191 | |
192 | macro_rules! ip_bitops_impl { |
193 | ($(($lhs:ty, $rhs:ty, $t:ty),)*) => { |
194 | $( |
195 | impl IpBitAnd<$rhs> for $lhs { |
196 | type Output = $lhs; |
197 | |
198 | fn bitand(self, rhs: $rhs) -> $lhs { |
199 | let lhs: $t = self.into(); |
200 | let rhs: $t = rhs.into(); |
201 | (lhs & rhs).into() |
202 | } |
203 | } |
204 | |
205 | impl IpBitOr<$rhs> for $lhs { |
206 | type Output = $lhs; |
207 | |
208 | fn bitor(self, rhs: $rhs) -> $lhs { |
209 | let lhs: $t = self.into(); |
210 | let rhs: $t = rhs.into(); |
211 | (lhs | rhs).into() |
212 | } |
213 | } |
214 | )* |
215 | } |
216 | } |
217 | |
218 | ip_bitops_impl! { |
219 | (Ipv4Addr, Ipv4Addr, u32), |
220 | (Ipv4Addr, u32, u32), |
221 | (Ipv6Addr, Ipv6Addr, u128), |
222 | (Ipv6Addr, u128, u128), |
223 | } |
224 | |
225 | // A barebones copy of the current unstable Step trait used by the |
226 | // IpAddrRange, Ipv4AddrRange, and Ipv6AddrRange types below, and the |
227 | // Subnets types in ipnet. |
228 | pub trait IpStep { |
229 | fn replace_one(&mut self) -> Self; |
230 | fn replace_zero(&mut self) -> Self; |
231 | fn add_one(&self) -> Self; |
232 | fn sub_one(&self) -> Self; |
233 | } |
234 | |
235 | impl IpStep for Ipv4Addr { |
236 | fn replace_one(&mut self) -> Self { |
237 | mem::replace(self, src:Ipv4Addr::new(a:0, b:0, c:0, d:1)) |
238 | } |
239 | fn replace_zero(&mut self) -> Self { |
240 | mem::replace(self, src:Ipv4Addr::new(a:0, b:0, c:0, d:0)) |
241 | } |
242 | fn add_one(&self) -> Self { |
243 | self.saturating_add(1) |
244 | } |
245 | fn sub_one(&self) -> Self { |
246 | self.saturating_sub(1) |
247 | } |
248 | } |
249 | |
250 | impl IpStep for Ipv6Addr { |
251 | fn replace_one(&mut self) -> Self { |
252 | mem::replace(self, src:Ipv6Addr::new(a:0, b:0, c:0, d:0, e:0, f:0, g:0, h:1)) |
253 | } |
254 | fn replace_zero(&mut self) -> Self { |
255 | mem::replace(self, src:Ipv6Addr::new(a:0, b:0, c:0, d:0, e:0, f:0, g:0, h:0)) |
256 | } |
257 | fn add_one(&self) -> Self { |
258 | self.saturating_add(1) |
259 | } |
260 | fn sub_one(&self) -> Self { |
261 | self.saturating_sub(1) |
262 | } |
263 | } |
264 | |
265 | /// An `Iterator` over a range of IP addresses, either IPv4 or IPv6. |
266 | /// |
267 | /// # Examples |
268 | /// |
269 | /// ``` |
270 | /// use std::net::IpAddr; |
271 | /// use ipnet::{IpAddrRange, Ipv4AddrRange, Ipv6AddrRange}; |
272 | /// |
273 | /// let hosts = IpAddrRange::from(Ipv4AddrRange::new( |
274 | /// "10.0.0.0" .parse().unwrap(), |
275 | /// "10.0.0.3" .parse().unwrap(), |
276 | /// )); |
277 | /// |
278 | /// assert_eq!(hosts.collect::<Vec<IpAddr>>(), vec![ |
279 | /// "10.0.0.0" .parse::<IpAddr>().unwrap(), |
280 | /// "10.0.0.1" .parse().unwrap(), |
281 | /// "10.0.0.2" .parse().unwrap(), |
282 | /// "10.0.0.3" .parse().unwrap(), |
283 | /// ]); |
284 | /// |
285 | /// let hosts = IpAddrRange::from(Ipv6AddrRange::new( |
286 | /// "fd00::" .parse().unwrap(), |
287 | /// "fd00::3" .parse().unwrap(), |
288 | /// )); |
289 | /// |
290 | /// assert_eq!(hosts.collect::<Vec<IpAddr>>(), vec![ |
291 | /// "fd00::0" .parse::<IpAddr>().unwrap(), |
292 | /// "fd00::1" .parse().unwrap(), |
293 | /// "fd00::2" .parse().unwrap(), |
294 | /// "fd00::3" .parse().unwrap(), |
295 | /// ]); |
296 | /// ``` |
297 | #[derive (Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)] |
298 | pub enum IpAddrRange { |
299 | V4(Ipv4AddrRange), |
300 | V6(Ipv6AddrRange), |
301 | } |
302 | |
303 | /// An `Iterator` over a range of IPv4 addresses. |
304 | /// |
305 | /// # Examples |
306 | /// |
307 | /// ``` |
308 | /// # #[cfg (not(feature = "std" ))] |
309 | /// # use core::net::Ipv4Addr; |
310 | /// # #[cfg (feature = "std" )] |
311 | /// use std::net::Ipv4Addr; |
312 | /// use ipnet::Ipv4AddrRange; |
313 | /// |
314 | /// let hosts = Ipv4AddrRange::new( |
315 | /// "10.0.0.0" .parse().unwrap(), |
316 | /// "10.0.0.3" .parse().unwrap(), |
317 | /// ); |
318 | /// |
319 | /// assert_eq!(hosts.collect::<Vec<Ipv4Addr>>(), vec![ |
320 | /// "10.0.0.0" .parse::<Ipv4Addr>().unwrap(), |
321 | /// "10.0.0.1" .parse().unwrap(), |
322 | /// "10.0.0.2" .parse().unwrap(), |
323 | /// "10.0.0.3" .parse().unwrap(), |
324 | /// ]); |
325 | /// ``` |
326 | #[derive (Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)] |
327 | pub struct Ipv4AddrRange { |
328 | start: Ipv4Addr, |
329 | end: Ipv4Addr, |
330 | } |
331 | |
332 | /// An `Iterator` over a range of IPv6 addresses. |
333 | /// |
334 | /// # Examples |
335 | /// |
336 | /// ``` |
337 | /// # #[cfg (not(feature = "std" ))] |
338 | /// # use core::net::Ipv6Addr; |
339 | /// # #[cfg (feature = "std" )] |
340 | /// use std::net::Ipv6Addr; |
341 | /// use ipnet::Ipv6AddrRange; |
342 | /// |
343 | /// let hosts = Ipv6AddrRange::new( |
344 | /// "fd00::" .parse().unwrap(), |
345 | /// "fd00::3" .parse().unwrap(), |
346 | /// ); |
347 | /// |
348 | /// assert_eq!(hosts.collect::<Vec<Ipv6Addr>>(), vec![ |
349 | /// "fd00::" .parse::<Ipv6Addr>().unwrap(), |
350 | /// "fd00::1" .parse().unwrap(), |
351 | /// "fd00::2" .parse().unwrap(), |
352 | /// "fd00::3" .parse().unwrap(), |
353 | /// ]); |
354 | /// ``` |
355 | #[derive (Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)] |
356 | pub struct Ipv6AddrRange { |
357 | start: Ipv6Addr, |
358 | end: Ipv6Addr, |
359 | } |
360 | |
361 | impl From<Ipv4AddrRange> for IpAddrRange { |
362 | fn from(i: Ipv4AddrRange) -> IpAddrRange { |
363 | IpAddrRange::V4(i) |
364 | } |
365 | } |
366 | |
367 | impl From<Ipv6AddrRange> for IpAddrRange { |
368 | fn from(i: Ipv6AddrRange) -> IpAddrRange { |
369 | IpAddrRange::V6(i) |
370 | } |
371 | } |
372 | |
373 | impl Ipv4AddrRange { |
374 | pub fn new(start: Ipv4Addr, end: Ipv4Addr) -> Self { |
375 | Ipv4AddrRange { |
376 | start: start, |
377 | end: end, |
378 | } |
379 | } |
380 | /// Counts the number of Ipv4Addr in this range. |
381 | /// This method will never overflow or panic. |
382 | fn count_u64(&self) -> u64 { |
383 | match self.start.partial_cmp(&self.end) { |
384 | Some(Less) => { |
385 | let count: u32 = self.end.saturating_sub(self.start); |
386 | let count: u64 = count as u64 + 1; // Never overflows |
387 | count |
388 | }, |
389 | Some(Equal) => 1, |
390 | _ => 0, |
391 | } |
392 | } |
393 | } |
394 | |
395 | impl Ipv6AddrRange { |
396 | pub fn new(start: Ipv6Addr, end: Ipv6Addr) -> Self { |
397 | Ipv6AddrRange { |
398 | start: start, |
399 | end: end, |
400 | } |
401 | } |
402 | /// Counts the number of Ipv6Addr in this range. |
403 | /// This method may overflow or panic if start |
404 | /// is 0 and end is u128::MAX |
405 | fn count_u128(&self) -> u128 { |
406 | match self.start.partial_cmp(&self.end) { |
407 | Some(Less) => { |
408 | let count = self.end.saturating_sub(self.start); |
409 | // May overflow or panic |
410 | count + 1 |
411 | }, |
412 | Some(Equal) => 1, |
413 | _ => 0, |
414 | } |
415 | } |
416 | /// True only if count_u128 does not overflow |
417 | fn can_count_u128(&self) -> bool { |
418 | self.start != Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0) |
419 | || self.end != Ipv6Addr::new(0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff) |
420 | } |
421 | } |
422 | |
423 | impl Iterator for IpAddrRange { |
424 | type Item = IpAddr; |
425 | |
426 | fn next(&mut self) -> Option<Self::Item> { |
427 | match *self { |
428 | IpAddrRange::V4(ref mut a) => a.next().map(IpAddr::V4), |
429 | IpAddrRange::V6(ref mut a) => a.next().map(IpAddr::V6), |
430 | } |
431 | } |
432 | |
433 | fn count(self) -> usize { |
434 | match self { |
435 | IpAddrRange::V4(a) => a.count(), |
436 | IpAddrRange::V6(a) => a.count(), |
437 | } |
438 | } |
439 | |
440 | fn last(self) -> Option<Self::Item> { |
441 | match self { |
442 | IpAddrRange::V4(a) => a.last().map(IpAddr::V4), |
443 | IpAddrRange::V6(a) => a.last().map(IpAddr::V6), |
444 | } |
445 | } |
446 | |
447 | fn max(self) -> Option<Self::Item> { |
448 | match self { |
449 | IpAddrRange::V4(a) => Iterator::max(a).map(IpAddr::V4), |
450 | IpAddrRange::V6(a) => Iterator::max(a).map(IpAddr::V6), |
451 | } |
452 | } |
453 | |
454 | fn min(self) -> Option<Self::Item> { |
455 | match self { |
456 | IpAddrRange::V4(a) => Iterator::min(a).map(IpAddr::V4), |
457 | IpAddrRange::V6(a) => Iterator::min(a).map(IpAddr::V6), |
458 | } |
459 | } |
460 | |
461 | fn nth(&mut self, n: usize) -> Option<Self::Item> { |
462 | match *self { |
463 | IpAddrRange::V4(ref mut a) => a.nth(n).map(IpAddr::V4), |
464 | IpAddrRange::V6(ref mut a) => a.nth(n).map(IpAddr::V6), |
465 | } |
466 | } |
467 | |
468 | fn size_hint(&self) -> (usize, Option<usize>) { |
469 | match *self { |
470 | IpAddrRange::V4(ref a) => a.size_hint(), |
471 | IpAddrRange::V6(ref a) => a.size_hint(), |
472 | } |
473 | } |
474 | } |
475 | |
476 | impl Iterator for Ipv4AddrRange { |
477 | type Item = Ipv4Addr; |
478 | |
479 | fn next(&mut self) -> Option<Self::Item> { |
480 | match self.start.partial_cmp(&self.end) { |
481 | Some(Less) => { |
482 | let next = self.start.add_one(); |
483 | Some(mem::replace(&mut self.start, next)) |
484 | }, |
485 | Some(Equal) => { |
486 | self.end.replace_zero(); |
487 | Some(self.start.replace_one()) |
488 | }, |
489 | _ => None, |
490 | } |
491 | } |
492 | |
493 | #[allow (arithmetic_overflow)] |
494 | fn count(self) -> usize { |
495 | match self.start.partial_cmp(&self.end) { |
496 | Some(Less) => { |
497 | // Adding one here might overflow u32. |
498 | // Instead, wait until after converted to usize |
499 | let count: u32 = self.end.saturating_sub(self.start); |
500 | |
501 | // usize might only be 16 bits, |
502 | // so need to explicitly check for overflow. |
503 | // 'usize::MAX as u32' is okay here - if usize is 64 bits, |
504 | // value truncates to u32::MAX |
505 | if count <= core::usize::MAX as u32 { |
506 | count as usize + 1 |
507 | // count overflows usize |
508 | } else { |
509 | // emulate standard overflow/panic behavior |
510 | core::usize::MAX + 2 + count as usize |
511 | } |
512 | }, |
513 | Some(Equal) => 1, |
514 | _ => 0 |
515 | } |
516 | } |
517 | |
518 | fn last(self) -> Option<Self::Item> { |
519 | match self.start.partial_cmp(&self.end) { |
520 | Some(Less) | Some(Equal) => Some(self.end), |
521 | _ => None, |
522 | } |
523 | } |
524 | |
525 | fn max(self) -> Option<Self::Item> { |
526 | self.last() |
527 | } |
528 | |
529 | fn min(self) -> Option<Self::Item> { |
530 | match self.start.partial_cmp(&self.end) { |
531 | Some(Less) | Some(Equal) => Some(self.start), |
532 | _ => None |
533 | } |
534 | } |
535 | |
536 | fn nth(&mut self, n: usize) -> Option<Self::Item> { |
537 | let n = n as u64; |
538 | let count = self.count_u64(); |
539 | if n >= count { |
540 | self.end.replace_zero(); |
541 | self.start.replace_one(); |
542 | None |
543 | } else if n == count - 1 { |
544 | self.start.replace_one(); |
545 | Some(self.end.replace_zero()) |
546 | } else { |
547 | let nth = self.start.saturating_add(n as u32); |
548 | self.start = nth.add_one(); |
549 | Some(nth) |
550 | } |
551 | } |
552 | |
553 | fn size_hint(&self) -> (usize, Option<usize>) { |
554 | let count = self.count_u64(); |
555 | if count > core::usize::MAX as u64 { |
556 | (core::usize::MAX, None) |
557 | } else { |
558 | let count = count as usize; |
559 | (count, Some(count)) |
560 | } |
561 | } |
562 | } |
563 | |
564 | impl Iterator for Ipv6AddrRange { |
565 | type Item = Ipv6Addr; |
566 | |
567 | fn next(&mut self) -> Option<Self::Item> { |
568 | match self.start.partial_cmp(&self.end) { |
569 | Some(Less) => { |
570 | let next = self.start.add_one(); |
571 | Some(mem::replace(&mut self.start, next)) |
572 | }, |
573 | Some(Equal) => { |
574 | self.end.replace_zero(); |
575 | Some(self.start.replace_one()) |
576 | }, |
577 | _ => None, |
578 | } |
579 | } |
580 | |
581 | #[allow (arithmetic_overflow)] |
582 | fn count(self) -> usize { |
583 | let count = self.count_u128(); |
584 | // count fits in usize |
585 | if count <= core::usize::MAX as u128 { |
586 | count as usize |
587 | // count does not fit in usize |
588 | } else { |
589 | // emulate standard overflow/panic behavior |
590 | core::usize::MAX + 1 + count as usize |
591 | } |
592 | } |
593 | |
594 | fn last(self) -> Option<Self::Item> { |
595 | match self.start.partial_cmp(&self.end) { |
596 | Some(Less) | Some(Equal) => Some(self.end), |
597 | _ => None, |
598 | } |
599 | } |
600 | |
601 | fn max(self) -> Option<Self::Item> { |
602 | self.last() |
603 | } |
604 | |
605 | fn min(self) -> Option<Self::Item> { |
606 | match self.start.partial_cmp(&self.end) { |
607 | Some(Less) | Some(Equal) => Some(self.start), |
608 | _ => None |
609 | } |
610 | } |
611 | |
612 | fn nth(&mut self, n: usize) -> Option<Self::Item> { |
613 | let n = n as u128; |
614 | if self.can_count_u128() { |
615 | let count = self.count_u128(); |
616 | if n >= count { |
617 | self.end.replace_zero(); |
618 | self.start.replace_one(); |
619 | None |
620 | } else if n == count - 1 { |
621 | self.start.replace_one(); |
622 | Some(self.end.replace_zero()) |
623 | } else { |
624 | let nth = self.start.saturating_add(n); |
625 | self.start = nth.add_one(); |
626 | Some(nth) |
627 | } |
628 | // count overflows u128; n is 64-bits at most. |
629 | // therefore, n can never exceed count |
630 | } else { |
631 | let nth = self.start.saturating_add(n); |
632 | self.start = nth.add_one(); |
633 | Some(nth) |
634 | } |
635 | } |
636 | |
637 | fn size_hint(&self) -> (usize, Option<usize>) { |
638 | if self.can_count_u128() { |
639 | let count = self.count_u128(); |
640 | if count > core::usize::MAX as u128 { |
641 | (core::usize::MAX, None) |
642 | } else { |
643 | let count = count as usize; |
644 | (count, Some(count)) |
645 | } |
646 | } else { |
647 | (core::usize::MAX, None) |
648 | } |
649 | } |
650 | } |
651 | |
652 | impl DoubleEndedIterator for IpAddrRange { |
653 | fn next_back(&mut self) -> Option<Self::Item> { |
654 | match *self { |
655 | IpAddrRange::V4(ref mut a: &mut Ipv4AddrRange) => a.next_back().map(IpAddr::V4), |
656 | IpAddrRange::V6(ref mut a: &mut Ipv6AddrRange) => a.next_back().map(IpAddr::V6), |
657 | } |
658 | } |
659 | fn nth_back(&mut self, n: usize) -> Option<Self::Item> { |
660 | match *self { |
661 | IpAddrRange::V4(ref mut a: &mut Ipv4AddrRange) => a.nth_back(n).map(IpAddr::V4), |
662 | IpAddrRange::V6(ref mut a: &mut Ipv6AddrRange) => a.nth_back(n).map(IpAddr::V6), |
663 | } |
664 | } |
665 | } |
666 | |
667 | impl DoubleEndedIterator for Ipv4AddrRange { |
668 | fn next_back(&mut self) -> Option<Self::Item> { |
669 | match self.start.partial_cmp(&self.end) { |
670 | Some(Less) => { |
671 | let next_back = self.end.sub_one(); |
672 | Some(mem::replace(&mut self.end, next_back)) |
673 | }, |
674 | Some(Equal) => { |
675 | self.end.replace_zero(); |
676 | Some(self.start.replace_one()) |
677 | }, |
678 | _ => None |
679 | } |
680 | } |
681 | fn nth_back(&mut self, n: usize) -> Option<Self::Item> { |
682 | let n = n as u64; |
683 | let count = self.count_u64(); |
684 | if n >= count { |
685 | self.end.replace_zero(); |
686 | self.start.replace_one(); |
687 | None |
688 | } else if n == count - 1 { |
689 | self.end.replace_zero(); |
690 | Some(self.start.replace_one()) |
691 | } else { |
692 | let nth_back = self.end.saturating_sub(n as u32); |
693 | self.end = nth_back.sub_one(); |
694 | Some(nth_back) |
695 | } |
696 | } |
697 | } |
698 | |
699 | impl DoubleEndedIterator for Ipv6AddrRange { |
700 | fn next_back(&mut self) -> Option<Self::Item> { |
701 | match self.start.partial_cmp(&self.end) { |
702 | Some(Less) => { |
703 | let next_back = self.end.sub_one(); |
704 | Some(mem::replace(&mut self.end, next_back)) |
705 | }, |
706 | Some(Equal) => { |
707 | self.end.replace_zero(); |
708 | Some(self.start.replace_one()) |
709 | }, |
710 | _ => None |
711 | } |
712 | } |
713 | fn nth_back(&mut self, n: usize) -> Option<Self::Item> { |
714 | let n = n as u128; |
715 | if self.can_count_u128() { |
716 | let count = self.count_u128(); |
717 | if n >= count { |
718 | self.end.replace_zero(); |
719 | self.start.replace_one(); |
720 | None |
721 | } |
722 | else if n == count - 1 { |
723 | self.end.replace_zero(); |
724 | Some(self.start.replace_one()) |
725 | } else { |
726 | let nth_back = self.end.saturating_sub(n); |
727 | self.end = nth_back.sub_one(); |
728 | Some(nth_back) |
729 | } |
730 | // count overflows u128; n is 64-bits at most. |
731 | // therefore, n can never exceed count |
732 | } else { |
733 | let nth_back = self.end.saturating_sub(n); |
734 | self.end = nth_back.sub_one(); |
735 | Some(nth_back) |
736 | } |
737 | } |
738 | } |
739 | |
740 | impl FusedIterator for IpAddrRange {} |
741 | impl FusedIterator for Ipv4AddrRange {} |
742 | impl FusedIterator for Ipv6AddrRange {} |
743 | |
744 | #[cfg (test)] |
745 | mod tests { |
746 | use alloc::vec::Vec; |
747 | use core::str::FromStr; |
748 | #[cfg (not(feature = "std" ))] |
749 | use core::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
750 | #[cfg (feature = "std" )] |
751 | use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
752 | use super::*; |
753 | |
754 | #[test ] |
755 | fn test_ipaddrrange() { |
756 | // Next, Next-Back |
757 | let i = Ipv4AddrRange::new( |
758 | Ipv4Addr::from_str("10.0.0.0" ).unwrap(), |
759 | Ipv4Addr::from_str("10.0.0.3" ).unwrap() |
760 | ); |
761 | |
762 | assert_eq!(i.collect::<Vec<Ipv4Addr>>(), vec![ |
763 | Ipv4Addr::from_str("10.0.0.0" ).unwrap(), |
764 | Ipv4Addr::from_str("10.0.0.1" ).unwrap(), |
765 | Ipv4Addr::from_str("10.0.0.2" ).unwrap(), |
766 | Ipv4Addr::from_str("10.0.0.3" ).unwrap(), |
767 | ]); |
768 | |
769 | let mut v = i.collect::<Vec<_>>(); |
770 | v.reverse(); |
771 | assert_eq!(v, i.rev().collect::<Vec<_>>()); |
772 | |
773 | let i = Ipv4AddrRange::new( |
774 | Ipv4Addr::from_str("255.255.255.254" ).unwrap(), |
775 | Ipv4Addr::from_str("255.255.255.255" ).unwrap() |
776 | ); |
777 | |
778 | assert_eq!(i.collect::<Vec<Ipv4Addr>>(), vec![ |
779 | Ipv4Addr::from_str("255.255.255.254" ).unwrap(), |
780 | Ipv4Addr::from_str("255.255.255.255" ).unwrap(), |
781 | ]); |
782 | |
783 | let i = Ipv6AddrRange::new( |
784 | Ipv6Addr::from_str("fd00::" ).unwrap(), |
785 | Ipv6Addr::from_str("fd00::3" ).unwrap(), |
786 | ); |
787 | |
788 | assert_eq!(i.collect::<Vec<Ipv6Addr>>(), vec![ |
789 | Ipv6Addr::from_str("fd00::" ).unwrap(), |
790 | Ipv6Addr::from_str("fd00::1" ).unwrap(), |
791 | Ipv6Addr::from_str("fd00::2" ).unwrap(), |
792 | Ipv6Addr::from_str("fd00::3" ).unwrap(), |
793 | ]); |
794 | |
795 | let mut v = i.collect::<Vec<_>>(); |
796 | v.reverse(); |
797 | assert_eq!(v, i.rev().collect::<Vec<_>>()); |
798 | |
799 | let i = Ipv6AddrRange::new( |
800 | Ipv6Addr::from_str("ffff:ffff:ffff:ffff:ffff:ffff:ffff:fffe" ).unwrap(), |
801 | Ipv6Addr::from_str("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff" ).unwrap(), |
802 | ); |
803 | |
804 | assert_eq!(i.collect::<Vec<Ipv6Addr>>(), vec![ |
805 | Ipv6Addr::from_str("ffff:ffff:ffff:ffff:ffff:ffff:ffff:fffe" ).unwrap(), |
806 | Ipv6Addr::from_str("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff" ).unwrap(), |
807 | ]); |
808 | |
809 | let i = IpAddrRange::from(Ipv4AddrRange::new( |
810 | Ipv4Addr::from_str("10.0.0.0" ).unwrap(), |
811 | Ipv4Addr::from_str("10.0.0.3" ).unwrap(), |
812 | )); |
813 | |
814 | assert_eq!(i.collect::<Vec<IpAddr>>(), vec![ |
815 | IpAddr::from_str("10.0.0.0" ).unwrap(), |
816 | IpAddr::from_str("10.0.0.1" ).unwrap(), |
817 | IpAddr::from_str("10.0.0.2" ).unwrap(), |
818 | IpAddr::from_str("10.0.0.3" ).unwrap(), |
819 | ]); |
820 | |
821 | let mut v = i.collect::<Vec<_>>(); |
822 | v.reverse(); |
823 | assert_eq!(v, i.rev().collect::<Vec<_>>()); |
824 | |
825 | let i = IpAddrRange::from(Ipv4AddrRange::new( |
826 | Ipv4Addr::from_str("255.255.255.254" ).unwrap(), |
827 | Ipv4Addr::from_str("255.255.255.255" ).unwrap() |
828 | )); |
829 | |
830 | assert_eq!(i.collect::<Vec<IpAddr>>(), vec![ |
831 | IpAddr::from_str("255.255.255.254" ).unwrap(), |
832 | IpAddr::from_str("255.255.255.255" ).unwrap(), |
833 | ]); |
834 | |
835 | let i = IpAddrRange::from(Ipv6AddrRange::new( |
836 | Ipv6Addr::from_str("fd00::" ).unwrap(), |
837 | Ipv6Addr::from_str("fd00::3" ).unwrap(), |
838 | )); |
839 | |
840 | assert_eq!(i.collect::<Vec<IpAddr>>(), vec![ |
841 | IpAddr::from_str("fd00::" ).unwrap(), |
842 | IpAddr::from_str("fd00::1" ).unwrap(), |
843 | IpAddr::from_str("fd00::2" ).unwrap(), |
844 | IpAddr::from_str("fd00::3" ).unwrap(), |
845 | ]); |
846 | |
847 | let mut v = i.collect::<Vec<_>>(); |
848 | v.reverse(); |
849 | assert_eq!(v, i.rev().collect::<Vec<_>>()); |
850 | |
851 | let i = IpAddrRange::from(Ipv6AddrRange::new( |
852 | Ipv6Addr::from_str("ffff:ffff:ffff:ffff:ffff:ffff:ffff:fffe" ).unwrap(), |
853 | Ipv6Addr::from_str("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff" ).unwrap(), |
854 | )); |
855 | |
856 | assert_eq!(i.collect::<Vec<IpAddr>>(), vec![ |
857 | IpAddr::from_str("ffff:ffff:ffff:ffff:ffff:ffff:ffff:fffe" ).unwrap(), |
858 | IpAddr::from_str("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff" ).unwrap(), |
859 | ]); |
860 | |
861 | // #11 (infinite iterator when start and stop are 0) |
862 | let zero4 = Ipv4Addr::from_str("0.0.0.0" ).unwrap(); |
863 | let zero6 = Ipv6Addr::from_str("::" ).unwrap(); |
864 | |
865 | let mut i = Ipv4AddrRange::new(zero4, zero4); |
866 | assert_eq!(Some(zero4), i.next()); |
867 | assert_eq!(None, i.next()); |
868 | |
869 | let mut i = Ipv6AddrRange::new(zero6, zero6); |
870 | assert_eq!(Some(zero6), i.next()); |
871 | assert_eq!(None, i.next()); |
872 | |
873 | // Count |
874 | let i = Ipv4AddrRange::new( |
875 | Ipv4Addr::from_str("10.0.0.0" ).unwrap(), |
876 | Ipv4Addr::from_str("10.0.0.3" ).unwrap() |
877 | ); |
878 | assert_eq!(i.count(), 4); |
879 | |
880 | let i = Ipv6AddrRange::new( |
881 | Ipv6Addr::from_str("fd00::" ).unwrap(), |
882 | Ipv6Addr::from_str("fd00::3" ).unwrap(), |
883 | ); |
884 | assert_eq!(i.count(), 4); |
885 | |
886 | // Size Hint |
887 | let i = Ipv4AddrRange::new( |
888 | Ipv4Addr::from_str("10.0.0.0" ).unwrap(), |
889 | Ipv4Addr::from_str("10.0.0.3" ).unwrap() |
890 | ); |
891 | assert_eq!(i.size_hint(), (4, Some(4))); |
892 | |
893 | let i = Ipv6AddrRange::new( |
894 | Ipv6Addr::from_str("fd00::" ).unwrap(), |
895 | Ipv6Addr::from_str("fd00::3" ).unwrap(), |
896 | ); |
897 | assert_eq!(i.size_hint(), (4, Some(4))); |
898 | |
899 | // Size Hint: a range where size clearly overflows usize |
900 | let i = Ipv6AddrRange::new( |
901 | Ipv6Addr::from_str("::" ).unwrap(), |
902 | Ipv6Addr::from_str("8000::" ).unwrap(), |
903 | ); |
904 | assert_eq!(i.size_hint(), (core::usize::MAX, None)); |
905 | |
906 | // Min, Max, Last |
907 | let i = Ipv4AddrRange::new( |
908 | Ipv4Addr::from_str("10.0.0.0" ).unwrap(), |
909 | Ipv4Addr::from_str("10.0.0.3" ).unwrap() |
910 | ); |
911 | assert_eq!(Iterator::min(i), Some(Ipv4Addr::from_str("10.0.0.0" ).unwrap())); |
912 | assert_eq!(Iterator::max(i), Some(Ipv4Addr::from_str("10.0.0.3" ).unwrap())); |
913 | assert_eq!(i.last(), Some(Ipv4Addr::from_str("10.0.0.3" ).unwrap())); |
914 | |
915 | let i = Ipv6AddrRange::new( |
916 | Ipv6Addr::from_str("fd00::" ).unwrap(), |
917 | Ipv6Addr::from_str("fd00::3" ).unwrap(), |
918 | ); |
919 | assert_eq!(Iterator::min(i), Some(Ipv6Addr::from_str("fd00::" ).unwrap())); |
920 | assert_eq!(Iterator::max(i), Some(Ipv6Addr::from_str("fd00::3" ).unwrap())); |
921 | assert_eq!(i.last(), Some(Ipv6Addr::from_str("fd00::3" ).unwrap())); |
922 | |
923 | // Nth |
924 | let i = Ipv4AddrRange::new( |
925 | Ipv4Addr::from_str("10.0.0.0" ).unwrap(), |
926 | Ipv4Addr::from_str("10.0.0.3" ).unwrap() |
927 | ); |
928 | assert_eq!(i.clone().nth(0), Some(Ipv4Addr::from_str("10.0.0.0" ).unwrap())); |
929 | assert_eq!(i.clone().nth(3), Some(Ipv4Addr::from_str("10.0.0.3" ).unwrap())); |
930 | assert_eq!(i.clone().nth(4), None); |
931 | assert_eq!(i.clone().nth(99), None); |
932 | let mut i2 = i.clone(); |
933 | assert_eq!(i2.nth(1), Some(Ipv4Addr::from_str("10.0.0.1" ).unwrap())); |
934 | assert_eq!(i2.nth(1), Some(Ipv4Addr::from_str("10.0.0.3" ).unwrap())); |
935 | assert_eq!(i2.nth(0), None); |
936 | let mut i3 = i.clone(); |
937 | assert_eq!(i3.nth(99), None); |
938 | assert_eq!(i3.next(), None); |
939 | |
940 | let i = Ipv6AddrRange::new( |
941 | Ipv6Addr::from_str("fd00::" ).unwrap(), |
942 | Ipv6Addr::from_str("fd00::3" ).unwrap(), |
943 | ); |
944 | assert_eq!(i.clone().nth(0), Some(Ipv6Addr::from_str("fd00::" ).unwrap())); |
945 | assert_eq!(i.clone().nth(3), Some(Ipv6Addr::from_str("fd00::3" ).unwrap())); |
946 | assert_eq!(i.clone().nth(4), None); |
947 | assert_eq!(i.clone().nth(99), None); |
948 | let mut i2 = i.clone(); |
949 | assert_eq!(i2.nth(1), Some(Ipv6Addr::from_str("fd00::1" ).unwrap())); |
950 | assert_eq!(i2.nth(1), Some(Ipv6Addr::from_str("fd00::3" ).unwrap())); |
951 | assert_eq!(i2.nth(0), None); |
952 | let mut i3 = i.clone(); |
953 | assert_eq!(i3.nth(99), None); |
954 | assert_eq!(i3.next(), None); |
955 | |
956 | // Nth Back |
957 | let i = Ipv4AddrRange::new( |
958 | Ipv4Addr::from_str("10.0.0.0" ).unwrap(), |
959 | Ipv4Addr::from_str("10.0.0.3" ).unwrap() |
960 | ); |
961 | assert_eq!(i.clone().nth_back(0), Some(Ipv4Addr::from_str("10.0.0.3" ).unwrap())); |
962 | assert_eq!(i.clone().nth_back(3), Some(Ipv4Addr::from_str("10.0.0.0" ).unwrap())); |
963 | assert_eq!(i.clone().nth_back(4), None); |
964 | assert_eq!(i.clone().nth_back(99), None); |
965 | let mut i2 = i.clone(); |
966 | assert_eq!(i2.nth_back(1), Some(Ipv4Addr::from_str("10.0.0.2" ).unwrap())); |
967 | assert_eq!(i2.nth_back(1), Some(Ipv4Addr::from_str("10.0.0.0" ).unwrap())); |
968 | assert_eq!(i2.nth_back(0), None); |
969 | let mut i3 = i.clone(); |
970 | assert_eq!(i3.nth_back(99), None); |
971 | assert_eq!(i3.next(), None); |
972 | |
973 | let i = Ipv6AddrRange::new( |
974 | Ipv6Addr::from_str("fd00::" ).unwrap(), |
975 | Ipv6Addr::from_str("fd00::3" ).unwrap(), |
976 | ); |
977 | assert_eq!(i.clone().nth_back(0), Some(Ipv6Addr::from_str("fd00::3" ).unwrap())); |
978 | assert_eq!(i.clone().nth_back(3), Some(Ipv6Addr::from_str("fd00::" ).unwrap())); |
979 | assert_eq!(i.clone().nth_back(4), None); |
980 | assert_eq!(i.clone().nth_back(99), None); |
981 | let mut i2 = i.clone(); |
982 | assert_eq!(i2.nth_back(1), Some(Ipv6Addr::from_str("fd00::2" ).unwrap())); |
983 | assert_eq!(i2.nth_back(1), Some(Ipv6Addr::from_str("fd00::" ).unwrap())); |
984 | assert_eq!(i2.nth_back(0), None); |
985 | let mut i3 = i.clone(); |
986 | assert_eq!(i3.nth_back(99), None); |
987 | assert_eq!(i3.next(), None); |
988 | } |
989 | } |
990 | |