| 1 | //! Extensions to the standard IP address types for common operations. |
| 2 | //! |
| 3 | //! The [`IpAdd`], [`IpSub`], [`IpBitAnd`], [`IpBitOr`] traits extend |
| 4 | //! the `Ipv4Addr` and `Ipv6Addr` types with methods to perform these |
| 5 | //! operations. |
| 6 | |
| 7 | use core::cmp::Ordering::{Less, Equal}; |
| 8 | use core::iter::{FusedIterator, DoubleEndedIterator}; |
| 9 | use core::mem; |
| 10 | #[cfg (not(feature = "std" ))] |
| 11 | use core::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| 12 | #[cfg (feature = "std" )] |
| 13 | use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| 14 | |
| 15 | /// Provides a `saturating_add()` method for `Ipv4Addr` and `Ipv6Addr`. |
| 16 | /// |
| 17 | /// Adding an integer to an IP address returns the modified IP address. |
| 18 | /// A `u32` may added to an IPv4 address and a `u128` may be added to |
| 19 | /// an IPv6 address. |
| 20 | /// |
| 21 | /// # Examples |
| 22 | /// |
| 23 | /// ``` |
| 24 | /// # #[cfg (not(feature = "std" ))] |
| 25 | /// # use core::net::{Ipv4Addr, Ipv6Addr}; |
| 26 | /// # #[cfg (feature = "std" )] |
| 27 | /// use std::net::{Ipv4Addr, Ipv6Addr}; |
| 28 | /// use ipnet::IpAdd; |
| 29 | /// |
| 30 | /// let ip0: Ipv4Addr = "192.168.0.0" .parse().unwrap(); |
| 31 | /// let ip1: Ipv4Addr = "192.168.0.5" .parse().unwrap(); |
| 32 | /// let ip2: Ipv4Addr = "255.255.255.254" .parse().unwrap(); |
| 33 | /// let max: Ipv4Addr = "255.255.255.255" .parse().unwrap(); |
| 34 | /// |
| 35 | /// assert_eq!(ip0.saturating_add(5), ip1); |
| 36 | /// assert_eq!(ip2.saturating_add(1), max); |
| 37 | /// assert_eq!(ip2.saturating_add(5), max); |
| 38 | /// |
| 39 | /// let ip0: Ipv6Addr = "fd00::" .parse().unwrap(); |
| 40 | /// let ip1: Ipv6Addr = "fd00::5" .parse().unwrap(); |
| 41 | /// let ip2: Ipv6Addr = "ffff:ffff:ffff:ffff:ffff:ffff:ffff:fffe" .parse().unwrap(); |
| 42 | /// let max: Ipv6Addr = "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff" .parse().unwrap(); |
| 43 | /// |
| 44 | /// assert_eq!(ip0.saturating_add(5), ip1); |
| 45 | /// assert_eq!(ip2.saturating_add(1), max); |
| 46 | /// assert_eq!(ip2.saturating_add(5), max); |
| 47 | /// ``` |
| 48 | pub trait IpAdd<RHS = Self> { |
| 49 | type Output; |
| 50 | fn saturating_add(self, rhs: RHS) -> Self::Output; |
| 51 | } |
| 52 | |
| 53 | /// Provides a `saturating_sub()` method for `Ipv4Addr` and `Ipv6Addr`. |
| 54 | /// |
| 55 | /// Subtracting an integer from an IP address returns the modified IP |
| 56 | /// address. A `u32` may be subtracted from an IPv4 address and a `u128` |
| 57 | /// may be subtracted from an IPv6 address. |
| 58 | /// |
| 59 | /// Subtracting an IP address from another IP address of the same type |
| 60 | /// returns an integer of the appropriate width. A `u32` for IPv4 and a |
| 61 | /// `u128` for IPv6. Subtracting IP addresses is useful for getting |
| 62 | /// the range between two IP addresses. |
| 63 | /// |
| 64 | /// # Examples |
| 65 | /// |
| 66 | /// ``` |
| 67 | /// # #[cfg (not(feature = "std" ))] |
| 68 | /// # use core::net::{Ipv4Addr, Ipv6Addr}; |
| 69 | /// # #[cfg (feature = "std" )] |
| 70 | /// use std::net::{Ipv4Addr, Ipv6Addr}; |
| 71 | /// use ipnet::IpSub; |
| 72 | /// |
| 73 | /// let min: Ipv4Addr = "0.0.0.0" .parse().unwrap(); |
| 74 | /// let ip1: Ipv4Addr = "192.168.1.5" .parse().unwrap(); |
| 75 | /// let ip2: Ipv4Addr = "192.168.1.100" .parse().unwrap(); |
| 76 | /// |
| 77 | /// assert_eq!(min.saturating_sub(ip1), 0); |
| 78 | /// assert_eq!(ip2.saturating_sub(ip1), 95); |
| 79 | /// assert_eq!(min.saturating_sub(5), min); |
| 80 | /// assert_eq!(ip2.saturating_sub(95), ip1); |
| 81 | /// |
| 82 | /// let min: Ipv6Addr = "::" .parse().unwrap(); |
| 83 | /// let ip1: Ipv6Addr = "fd00::5" .parse().unwrap(); |
| 84 | /// let ip2: Ipv6Addr = "fd00::64" .parse().unwrap(); |
| 85 | /// |
| 86 | /// assert_eq!(min.saturating_sub(ip1), 0); |
| 87 | /// assert_eq!(ip2.saturating_sub(ip1), 95); |
| 88 | /// assert_eq!(min.saturating_sub(5u128), min); |
| 89 | /// assert_eq!(ip2.saturating_sub(95u128), ip1); |
| 90 | /// ``` |
| 91 | pub trait IpSub<RHS = Self> { |
| 92 | type Output; |
| 93 | fn saturating_sub(self, rhs: RHS) -> Self::Output; |
| 94 | } |
| 95 | |
| 96 | /// Provides a `bitand()` method for `Ipv4Addr` and `Ipv6Addr`. |
| 97 | /// |
| 98 | /// # Examples |
| 99 | /// |
| 100 | /// ``` |
| 101 | /// # #[cfg (not(feature = "std" ))] |
| 102 | /// # use core::net::{Ipv4Addr, Ipv6Addr}; |
| 103 | /// # #[cfg (feature = "std" )] |
| 104 | /// use std::net::{Ipv4Addr, Ipv6Addr}; |
| 105 | /// use ipnet::IpBitAnd; |
| 106 | /// |
| 107 | /// let ip: Ipv4Addr = "192.168.1.1" .parse().unwrap(); |
| 108 | /// let mask: Ipv4Addr = "255.255.0.0" .parse().unwrap(); |
| 109 | /// let res: Ipv4Addr = "192.168.0.0" .parse().unwrap(); |
| 110 | /// |
| 111 | /// assert_eq!(ip.bitand(mask), res); |
| 112 | /// assert_eq!(ip.bitand(0xffff0000), res); |
| 113 | /// |
| 114 | /// let ip: Ipv6Addr = "fd00:1234::1" .parse().unwrap(); |
| 115 | /// let mask: Ipv6Addr = "ffff::" .parse().unwrap(); |
| 116 | /// let res: Ipv6Addr = "fd00::" .parse().unwrap(); |
| 117 | /// |
| 118 | /// assert_eq!(ip.bitand(mask), res); |
| 119 | /// assert_eq!(ip.bitand(0xffff_0000_0000_0000_0000_0000_0000_0000u128), res); |
| 120 | /// ``` |
| 121 | pub trait IpBitAnd<RHS = Self> { |
| 122 | type Output; |
| 123 | fn bitand(self, rhs: RHS) -> Self::Output; |
| 124 | } |
| 125 | |
| 126 | /// Provides a `bitor()` method for `Ipv4Addr` and `Ipv6Addr`. |
| 127 | /// |
| 128 | /// # Examples |
| 129 | /// |
| 130 | /// ``` |
| 131 | /// # #[cfg (not(feature = "std" ))] |
| 132 | /// # use core::net::{Ipv4Addr, Ipv6Addr}; |
| 133 | /// # #[cfg (feature = "std" )] |
| 134 | /// use std::net::{Ipv4Addr, Ipv6Addr}; |
| 135 | /// use ipnet::IpBitOr; |
| 136 | /// |
| 137 | /// let ip: Ipv4Addr = "10.1.1.1" .parse().unwrap(); |
| 138 | /// let mask: Ipv4Addr = "0.0.0.255" .parse().unwrap(); |
| 139 | /// let res: Ipv4Addr = "10.1.1.255" .parse().unwrap(); |
| 140 | /// |
| 141 | /// assert_eq!(ip.bitor(mask), res); |
| 142 | /// assert_eq!(ip.bitor(0x000000ff), res); |
| 143 | /// |
| 144 | /// let ip: Ipv6Addr = "fd00::1" .parse().unwrap(); |
| 145 | /// let mask: Ipv6Addr = "::ffff:ffff" .parse().unwrap(); |
| 146 | /// let res: Ipv6Addr = "fd00::ffff:ffff" .parse().unwrap(); |
| 147 | /// |
| 148 | /// assert_eq!(ip.bitor(mask), res); |
| 149 | /// assert_eq!(ip.bitor(u128::from(0xffffffffu32)), res); |
| 150 | /// ``` |
| 151 | pub trait IpBitOr<RHS = Self> { |
| 152 | type Output; |
| 153 | fn bitor(self, rhs: RHS) -> Self::Output; |
| 154 | } |
| 155 | |
| 156 | macro_rules! ip_add_impl { |
| 157 | ($lhs:ty, $rhs:ty, $output:ty, $inner:ty) => ( |
| 158 | impl IpAdd<$rhs> for $lhs { |
| 159 | type Output = $output; |
| 160 | |
| 161 | fn saturating_add(self, rhs: $rhs) -> $output { |
| 162 | let lhs: $inner = self.into(); |
| 163 | let rhs: $inner = rhs.into(); |
| 164 | (lhs.saturating_add(rhs.into())).into() |
| 165 | } |
| 166 | } |
| 167 | ) |
| 168 | } |
| 169 | |
| 170 | macro_rules! ip_sub_impl { |
| 171 | ($lhs:ty, $rhs:ty, $output:ty, $inner:ty) => ( |
| 172 | impl IpSub<$rhs> for $lhs { |
| 173 | type Output = $output; |
| 174 | |
| 175 | fn saturating_sub(self, rhs: $rhs) -> $output { |
| 176 | let lhs: $inner = self.into(); |
| 177 | let rhs: $inner = rhs.into(); |
| 178 | (lhs.saturating_sub(rhs.into())).into() |
| 179 | } |
| 180 | } |
| 181 | ) |
| 182 | } |
| 183 | |
| 184 | ip_add_impl!(Ipv4Addr, u32, Ipv4Addr, u32); |
| 185 | ip_add_impl!(Ipv6Addr, u128, Ipv6Addr, u128); |
| 186 | |
| 187 | ip_sub_impl!(Ipv4Addr, Ipv4Addr, u32, u32); |
| 188 | ip_sub_impl!(Ipv4Addr, u32, Ipv4Addr, u32); |
| 189 | ip_sub_impl!(Ipv6Addr, Ipv6Addr, u128, u128); |
| 190 | ip_sub_impl!(Ipv6Addr, u128, Ipv6Addr, u128); |
| 191 | |
| 192 | macro_rules! ip_bitops_impl { |
| 193 | ($(($lhs:ty, $rhs:ty, $t:ty),)*) => { |
| 194 | $( |
| 195 | impl IpBitAnd<$rhs> for $lhs { |
| 196 | type Output = $lhs; |
| 197 | |
| 198 | fn bitand(self, rhs: $rhs) -> $lhs { |
| 199 | let lhs: $t = self.into(); |
| 200 | let rhs: $t = rhs.into(); |
| 201 | (lhs & rhs).into() |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | impl IpBitOr<$rhs> for $lhs { |
| 206 | type Output = $lhs; |
| 207 | |
| 208 | fn bitor(self, rhs: $rhs) -> $lhs { |
| 209 | let lhs: $t = self.into(); |
| 210 | let rhs: $t = rhs.into(); |
| 211 | (lhs | rhs).into() |
| 212 | } |
| 213 | } |
| 214 | )* |
| 215 | } |
| 216 | } |
| 217 | |
| 218 | ip_bitops_impl! { |
| 219 | (Ipv4Addr, Ipv4Addr, u32), |
| 220 | (Ipv4Addr, u32, u32), |
| 221 | (Ipv6Addr, Ipv6Addr, u128), |
| 222 | (Ipv6Addr, u128, u128), |
| 223 | } |
| 224 | |
| 225 | // A barebones copy of the current unstable Step trait used by the |
| 226 | // IpAddrRange, Ipv4AddrRange, and Ipv6AddrRange types below, and the |
| 227 | // Subnets types in ipnet. |
| 228 | pub trait IpStep { |
| 229 | fn replace_one(&mut self) -> Self; |
| 230 | fn replace_zero(&mut self) -> Self; |
| 231 | fn add_one(&self) -> Self; |
| 232 | fn sub_one(&self) -> Self; |
| 233 | } |
| 234 | |
| 235 | impl IpStep for Ipv4Addr { |
| 236 | fn replace_one(&mut self) -> Self { |
| 237 | mem::replace(self, src:Ipv4Addr::new(a:0, b:0, c:0, d:1)) |
| 238 | } |
| 239 | fn replace_zero(&mut self) -> Self { |
| 240 | mem::replace(self, src:Ipv4Addr::new(a:0, b:0, c:0, d:0)) |
| 241 | } |
| 242 | fn add_one(&self) -> Self { |
| 243 | self.saturating_add(1) |
| 244 | } |
| 245 | fn sub_one(&self) -> Self { |
| 246 | self.saturating_sub(1) |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | impl IpStep for Ipv6Addr { |
| 251 | fn replace_one(&mut self) -> Self { |
| 252 | mem::replace(self, src:Ipv6Addr::new(a:0, b:0, c:0, d:0, e:0, f:0, g:0, h:1)) |
| 253 | } |
| 254 | fn replace_zero(&mut self) -> Self { |
| 255 | mem::replace(self, src:Ipv6Addr::new(a:0, b:0, c:0, d:0, e:0, f:0, g:0, h:0)) |
| 256 | } |
| 257 | fn add_one(&self) -> Self { |
| 258 | self.saturating_add(1) |
| 259 | } |
| 260 | fn sub_one(&self) -> Self { |
| 261 | self.saturating_sub(1) |
| 262 | } |
| 263 | } |
| 264 | |
| 265 | /// An `Iterator` over a range of IP addresses, either IPv4 or IPv6. |
| 266 | /// |
| 267 | /// # Examples |
| 268 | /// |
| 269 | /// ``` |
| 270 | /// use std::net::IpAddr; |
| 271 | /// use ipnet::{IpAddrRange, Ipv4AddrRange, Ipv6AddrRange}; |
| 272 | /// |
| 273 | /// let hosts = IpAddrRange::from(Ipv4AddrRange::new( |
| 274 | /// "10.0.0.0" .parse().unwrap(), |
| 275 | /// "10.0.0.3" .parse().unwrap(), |
| 276 | /// )); |
| 277 | /// |
| 278 | /// assert_eq!(hosts.collect::<Vec<IpAddr>>(), vec![ |
| 279 | /// "10.0.0.0" .parse::<IpAddr>().unwrap(), |
| 280 | /// "10.0.0.1" .parse().unwrap(), |
| 281 | /// "10.0.0.2" .parse().unwrap(), |
| 282 | /// "10.0.0.3" .parse().unwrap(), |
| 283 | /// ]); |
| 284 | /// |
| 285 | /// let hosts = IpAddrRange::from(Ipv6AddrRange::new( |
| 286 | /// "fd00::" .parse().unwrap(), |
| 287 | /// "fd00::3" .parse().unwrap(), |
| 288 | /// )); |
| 289 | /// |
| 290 | /// assert_eq!(hosts.collect::<Vec<IpAddr>>(), vec![ |
| 291 | /// "fd00::0" .parse::<IpAddr>().unwrap(), |
| 292 | /// "fd00::1" .parse().unwrap(), |
| 293 | /// "fd00::2" .parse().unwrap(), |
| 294 | /// "fd00::3" .parse().unwrap(), |
| 295 | /// ]); |
| 296 | /// ``` |
| 297 | #[derive (Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)] |
| 298 | pub enum IpAddrRange { |
| 299 | V4(Ipv4AddrRange), |
| 300 | V6(Ipv6AddrRange), |
| 301 | } |
| 302 | |
| 303 | /// An `Iterator` over a range of IPv4 addresses. |
| 304 | /// |
| 305 | /// # Examples |
| 306 | /// |
| 307 | /// ``` |
| 308 | /// # #[cfg (not(feature = "std" ))] |
| 309 | /// # use core::net::Ipv4Addr; |
| 310 | /// # #[cfg (feature = "std" )] |
| 311 | /// use std::net::Ipv4Addr; |
| 312 | /// use ipnet::Ipv4AddrRange; |
| 313 | /// |
| 314 | /// let hosts = Ipv4AddrRange::new( |
| 315 | /// "10.0.0.0" .parse().unwrap(), |
| 316 | /// "10.0.0.3" .parse().unwrap(), |
| 317 | /// ); |
| 318 | /// |
| 319 | /// assert_eq!(hosts.collect::<Vec<Ipv4Addr>>(), vec![ |
| 320 | /// "10.0.0.0" .parse::<Ipv4Addr>().unwrap(), |
| 321 | /// "10.0.0.1" .parse().unwrap(), |
| 322 | /// "10.0.0.2" .parse().unwrap(), |
| 323 | /// "10.0.0.3" .parse().unwrap(), |
| 324 | /// ]); |
| 325 | /// ``` |
| 326 | #[derive (Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)] |
| 327 | pub struct Ipv4AddrRange { |
| 328 | start: Ipv4Addr, |
| 329 | end: Ipv4Addr, |
| 330 | } |
| 331 | |
| 332 | /// An `Iterator` over a range of IPv6 addresses. |
| 333 | /// |
| 334 | /// # Examples |
| 335 | /// |
| 336 | /// ``` |
| 337 | /// # #[cfg (not(feature = "std" ))] |
| 338 | /// # use core::net::Ipv6Addr; |
| 339 | /// # #[cfg (feature = "std" )] |
| 340 | /// use std::net::Ipv6Addr; |
| 341 | /// use ipnet::Ipv6AddrRange; |
| 342 | /// |
| 343 | /// let hosts = Ipv6AddrRange::new( |
| 344 | /// "fd00::" .parse().unwrap(), |
| 345 | /// "fd00::3" .parse().unwrap(), |
| 346 | /// ); |
| 347 | /// |
| 348 | /// assert_eq!(hosts.collect::<Vec<Ipv6Addr>>(), vec![ |
| 349 | /// "fd00::" .parse::<Ipv6Addr>().unwrap(), |
| 350 | /// "fd00::1" .parse().unwrap(), |
| 351 | /// "fd00::2" .parse().unwrap(), |
| 352 | /// "fd00::3" .parse().unwrap(), |
| 353 | /// ]); |
| 354 | /// ``` |
| 355 | #[derive (Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)] |
| 356 | pub struct Ipv6AddrRange { |
| 357 | start: Ipv6Addr, |
| 358 | end: Ipv6Addr, |
| 359 | } |
| 360 | |
| 361 | impl From<Ipv4AddrRange> for IpAddrRange { |
| 362 | fn from(i: Ipv4AddrRange) -> IpAddrRange { |
| 363 | IpAddrRange::V4(i) |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | impl From<Ipv6AddrRange> for IpAddrRange { |
| 368 | fn from(i: Ipv6AddrRange) -> IpAddrRange { |
| 369 | IpAddrRange::V6(i) |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | impl Ipv4AddrRange { |
| 374 | pub fn new(start: Ipv4Addr, end: Ipv4Addr) -> Self { |
| 375 | Ipv4AddrRange { |
| 376 | start: start, |
| 377 | end: end, |
| 378 | } |
| 379 | } |
| 380 | /// Counts the number of Ipv4Addr in this range. |
| 381 | /// This method will never overflow or panic. |
| 382 | fn count_u64(&self) -> u64 { |
| 383 | match self.start.partial_cmp(&self.end) { |
| 384 | Some(Less) => { |
| 385 | let count: u32 = self.end.saturating_sub(self.start); |
| 386 | let count: u64 = count as u64 + 1; // Never overflows |
| 387 | count |
| 388 | }, |
| 389 | Some(Equal) => 1, |
| 390 | _ => 0, |
| 391 | } |
| 392 | } |
| 393 | } |
| 394 | |
| 395 | impl Ipv6AddrRange { |
| 396 | pub fn new(start: Ipv6Addr, end: Ipv6Addr) -> Self { |
| 397 | Ipv6AddrRange { |
| 398 | start: start, |
| 399 | end: end, |
| 400 | } |
| 401 | } |
| 402 | /// Counts the number of Ipv6Addr in this range. |
| 403 | /// This method may overflow or panic if start |
| 404 | /// is 0 and end is u128::MAX |
| 405 | fn count_u128(&self) -> u128 { |
| 406 | match self.start.partial_cmp(&self.end) { |
| 407 | Some(Less) => { |
| 408 | let count = self.end.saturating_sub(self.start); |
| 409 | // May overflow or panic |
| 410 | count + 1 |
| 411 | }, |
| 412 | Some(Equal) => 1, |
| 413 | _ => 0, |
| 414 | } |
| 415 | } |
| 416 | /// True only if count_u128 does not overflow |
| 417 | fn can_count_u128(&self) -> bool { |
| 418 | self.start != Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0) |
| 419 | || self.end != Ipv6Addr::new(0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff) |
| 420 | } |
| 421 | } |
| 422 | |
| 423 | impl Iterator for IpAddrRange { |
| 424 | type Item = IpAddr; |
| 425 | |
| 426 | fn next(&mut self) -> Option<Self::Item> { |
| 427 | match *self { |
| 428 | IpAddrRange::V4(ref mut a) => a.next().map(IpAddr::V4), |
| 429 | IpAddrRange::V6(ref mut a) => a.next().map(IpAddr::V6), |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | fn count(self) -> usize { |
| 434 | match self { |
| 435 | IpAddrRange::V4(a) => a.count(), |
| 436 | IpAddrRange::V6(a) => a.count(), |
| 437 | } |
| 438 | } |
| 439 | |
| 440 | fn last(self) -> Option<Self::Item> { |
| 441 | match self { |
| 442 | IpAddrRange::V4(a) => a.last().map(IpAddr::V4), |
| 443 | IpAddrRange::V6(a) => a.last().map(IpAddr::V6), |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | fn max(self) -> Option<Self::Item> { |
| 448 | match self { |
| 449 | IpAddrRange::V4(a) => Iterator::max(a).map(IpAddr::V4), |
| 450 | IpAddrRange::V6(a) => Iterator::max(a).map(IpAddr::V6), |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | fn min(self) -> Option<Self::Item> { |
| 455 | match self { |
| 456 | IpAddrRange::V4(a) => Iterator::min(a).map(IpAddr::V4), |
| 457 | IpAddrRange::V6(a) => Iterator::min(a).map(IpAddr::V6), |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | fn nth(&mut self, n: usize) -> Option<Self::Item> { |
| 462 | match *self { |
| 463 | IpAddrRange::V4(ref mut a) => a.nth(n).map(IpAddr::V4), |
| 464 | IpAddrRange::V6(ref mut a) => a.nth(n).map(IpAddr::V6), |
| 465 | } |
| 466 | } |
| 467 | |
| 468 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 469 | match *self { |
| 470 | IpAddrRange::V4(ref a) => a.size_hint(), |
| 471 | IpAddrRange::V6(ref a) => a.size_hint(), |
| 472 | } |
| 473 | } |
| 474 | } |
| 475 | |
| 476 | impl Iterator for Ipv4AddrRange { |
| 477 | type Item = Ipv4Addr; |
| 478 | |
| 479 | fn next(&mut self) -> Option<Self::Item> { |
| 480 | match self.start.partial_cmp(&self.end) { |
| 481 | Some(Less) => { |
| 482 | let next = self.start.add_one(); |
| 483 | Some(mem::replace(&mut self.start, next)) |
| 484 | }, |
| 485 | Some(Equal) => { |
| 486 | self.end.replace_zero(); |
| 487 | Some(self.start.replace_one()) |
| 488 | }, |
| 489 | _ => None, |
| 490 | } |
| 491 | } |
| 492 | |
| 493 | #[allow (arithmetic_overflow)] |
| 494 | fn count(self) -> usize { |
| 495 | match self.start.partial_cmp(&self.end) { |
| 496 | Some(Less) => { |
| 497 | // Adding one here might overflow u32. |
| 498 | // Instead, wait until after converted to usize |
| 499 | let count: u32 = self.end.saturating_sub(self.start); |
| 500 | |
| 501 | // usize might only be 16 bits, |
| 502 | // so need to explicitly check for overflow. |
| 503 | // 'usize::MAX as u32' is okay here - if usize is 64 bits, |
| 504 | // value truncates to u32::MAX |
| 505 | if count <= core::usize::MAX as u32 { |
| 506 | count as usize + 1 |
| 507 | // count overflows usize |
| 508 | } else { |
| 509 | // emulate standard overflow/panic behavior |
| 510 | core::usize::MAX + 2 + count as usize |
| 511 | } |
| 512 | }, |
| 513 | Some(Equal) => 1, |
| 514 | _ => 0 |
| 515 | } |
| 516 | } |
| 517 | |
| 518 | fn last(self) -> Option<Self::Item> { |
| 519 | match self.start.partial_cmp(&self.end) { |
| 520 | Some(Less) | Some(Equal) => Some(self.end), |
| 521 | _ => None, |
| 522 | } |
| 523 | } |
| 524 | |
| 525 | fn max(self) -> Option<Self::Item> { |
| 526 | self.last() |
| 527 | } |
| 528 | |
| 529 | fn min(self) -> Option<Self::Item> { |
| 530 | match self.start.partial_cmp(&self.end) { |
| 531 | Some(Less) | Some(Equal) => Some(self.start), |
| 532 | _ => None |
| 533 | } |
| 534 | } |
| 535 | |
| 536 | fn nth(&mut self, n: usize) -> Option<Self::Item> { |
| 537 | let n = n as u64; |
| 538 | let count = self.count_u64(); |
| 539 | if n >= count { |
| 540 | self.end.replace_zero(); |
| 541 | self.start.replace_one(); |
| 542 | None |
| 543 | } else if n == count - 1 { |
| 544 | self.start.replace_one(); |
| 545 | Some(self.end.replace_zero()) |
| 546 | } else { |
| 547 | let nth = self.start.saturating_add(n as u32); |
| 548 | self.start = nth.add_one(); |
| 549 | Some(nth) |
| 550 | } |
| 551 | } |
| 552 | |
| 553 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 554 | let count = self.count_u64(); |
| 555 | if count > core::usize::MAX as u64 { |
| 556 | (core::usize::MAX, None) |
| 557 | } else { |
| 558 | let count = count as usize; |
| 559 | (count, Some(count)) |
| 560 | } |
| 561 | } |
| 562 | } |
| 563 | |
| 564 | impl Iterator for Ipv6AddrRange { |
| 565 | type Item = Ipv6Addr; |
| 566 | |
| 567 | fn next(&mut self) -> Option<Self::Item> { |
| 568 | match self.start.partial_cmp(&self.end) { |
| 569 | Some(Less) => { |
| 570 | let next = self.start.add_one(); |
| 571 | Some(mem::replace(&mut self.start, next)) |
| 572 | }, |
| 573 | Some(Equal) => { |
| 574 | self.end.replace_zero(); |
| 575 | Some(self.start.replace_one()) |
| 576 | }, |
| 577 | _ => None, |
| 578 | } |
| 579 | } |
| 580 | |
| 581 | #[allow (arithmetic_overflow)] |
| 582 | fn count(self) -> usize { |
| 583 | let count = self.count_u128(); |
| 584 | // count fits in usize |
| 585 | if count <= core::usize::MAX as u128 { |
| 586 | count as usize |
| 587 | // count does not fit in usize |
| 588 | } else { |
| 589 | // emulate standard overflow/panic behavior |
| 590 | core::usize::MAX + 1 + count as usize |
| 591 | } |
| 592 | } |
| 593 | |
| 594 | fn last(self) -> Option<Self::Item> { |
| 595 | match self.start.partial_cmp(&self.end) { |
| 596 | Some(Less) | Some(Equal) => Some(self.end), |
| 597 | _ => None, |
| 598 | } |
| 599 | } |
| 600 | |
| 601 | fn max(self) -> Option<Self::Item> { |
| 602 | self.last() |
| 603 | } |
| 604 | |
| 605 | fn min(self) -> Option<Self::Item> { |
| 606 | match self.start.partial_cmp(&self.end) { |
| 607 | Some(Less) | Some(Equal) => Some(self.start), |
| 608 | _ => None |
| 609 | } |
| 610 | } |
| 611 | |
| 612 | fn nth(&mut self, n: usize) -> Option<Self::Item> { |
| 613 | let n = n as u128; |
| 614 | if self.can_count_u128() { |
| 615 | let count = self.count_u128(); |
| 616 | if n >= count { |
| 617 | self.end.replace_zero(); |
| 618 | self.start.replace_one(); |
| 619 | None |
| 620 | } else if n == count - 1 { |
| 621 | self.start.replace_one(); |
| 622 | Some(self.end.replace_zero()) |
| 623 | } else { |
| 624 | let nth = self.start.saturating_add(n); |
| 625 | self.start = nth.add_one(); |
| 626 | Some(nth) |
| 627 | } |
| 628 | // count overflows u128; n is 64-bits at most. |
| 629 | // therefore, n can never exceed count |
| 630 | } else { |
| 631 | let nth = self.start.saturating_add(n); |
| 632 | self.start = nth.add_one(); |
| 633 | Some(nth) |
| 634 | } |
| 635 | } |
| 636 | |
| 637 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 638 | if self.can_count_u128() { |
| 639 | let count = self.count_u128(); |
| 640 | if count > core::usize::MAX as u128 { |
| 641 | (core::usize::MAX, None) |
| 642 | } else { |
| 643 | let count = count as usize; |
| 644 | (count, Some(count)) |
| 645 | } |
| 646 | } else { |
| 647 | (core::usize::MAX, None) |
| 648 | } |
| 649 | } |
| 650 | } |
| 651 | |
| 652 | impl DoubleEndedIterator for IpAddrRange { |
| 653 | fn next_back(&mut self) -> Option<Self::Item> { |
| 654 | match *self { |
| 655 | IpAddrRange::V4(ref mut a: &mut Ipv4AddrRange) => a.next_back().map(IpAddr::V4), |
| 656 | IpAddrRange::V6(ref mut a: &mut Ipv6AddrRange) => a.next_back().map(IpAddr::V6), |
| 657 | } |
| 658 | } |
| 659 | fn nth_back(&mut self, n: usize) -> Option<Self::Item> { |
| 660 | match *self { |
| 661 | IpAddrRange::V4(ref mut a: &mut Ipv4AddrRange) => a.nth_back(n).map(IpAddr::V4), |
| 662 | IpAddrRange::V6(ref mut a: &mut Ipv6AddrRange) => a.nth_back(n).map(IpAddr::V6), |
| 663 | } |
| 664 | } |
| 665 | } |
| 666 | |
| 667 | impl DoubleEndedIterator for Ipv4AddrRange { |
| 668 | fn next_back(&mut self) -> Option<Self::Item> { |
| 669 | match self.start.partial_cmp(&self.end) { |
| 670 | Some(Less) => { |
| 671 | let next_back = self.end.sub_one(); |
| 672 | Some(mem::replace(&mut self.end, next_back)) |
| 673 | }, |
| 674 | Some(Equal) => { |
| 675 | self.end.replace_zero(); |
| 676 | Some(self.start.replace_one()) |
| 677 | }, |
| 678 | _ => None |
| 679 | } |
| 680 | } |
| 681 | fn nth_back(&mut self, n: usize) -> Option<Self::Item> { |
| 682 | let n = n as u64; |
| 683 | let count = self.count_u64(); |
| 684 | if n >= count { |
| 685 | self.end.replace_zero(); |
| 686 | self.start.replace_one(); |
| 687 | None |
| 688 | } else if n == count - 1 { |
| 689 | self.end.replace_zero(); |
| 690 | Some(self.start.replace_one()) |
| 691 | } else { |
| 692 | let nth_back = self.end.saturating_sub(n as u32); |
| 693 | self.end = nth_back.sub_one(); |
| 694 | Some(nth_back) |
| 695 | } |
| 696 | } |
| 697 | } |
| 698 | |
| 699 | impl DoubleEndedIterator for Ipv6AddrRange { |
| 700 | fn next_back(&mut self) -> Option<Self::Item> { |
| 701 | match self.start.partial_cmp(&self.end) { |
| 702 | Some(Less) => { |
| 703 | let next_back = self.end.sub_one(); |
| 704 | Some(mem::replace(&mut self.end, next_back)) |
| 705 | }, |
| 706 | Some(Equal) => { |
| 707 | self.end.replace_zero(); |
| 708 | Some(self.start.replace_one()) |
| 709 | }, |
| 710 | _ => None |
| 711 | } |
| 712 | } |
| 713 | fn nth_back(&mut self, n: usize) -> Option<Self::Item> { |
| 714 | let n = n as u128; |
| 715 | if self.can_count_u128() { |
| 716 | let count = self.count_u128(); |
| 717 | if n >= count { |
| 718 | self.end.replace_zero(); |
| 719 | self.start.replace_one(); |
| 720 | None |
| 721 | } |
| 722 | else if n == count - 1 { |
| 723 | self.end.replace_zero(); |
| 724 | Some(self.start.replace_one()) |
| 725 | } else { |
| 726 | let nth_back = self.end.saturating_sub(n); |
| 727 | self.end = nth_back.sub_one(); |
| 728 | Some(nth_back) |
| 729 | } |
| 730 | // count overflows u128; n is 64-bits at most. |
| 731 | // therefore, n can never exceed count |
| 732 | } else { |
| 733 | let nth_back = self.end.saturating_sub(n); |
| 734 | self.end = nth_back.sub_one(); |
| 735 | Some(nth_back) |
| 736 | } |
| 737 | } |
| 738 | } |
| 739 | |
| 740 | impl FusedIterator for IpAddrRange {} |
| 741 | impl FusedIterator for Ipv4AddrRange {} |
| 742 | impl FusedIterator for Ipv6AddrRange {} |
| 743 | |
| 744 | #[cfg (test)] |
| 745 | mod tests { |
| 746 | use alloc::vec::Vec; |
| 747 | use core::str::FromStr; |
| 748 | #[cfg (not(feature = "std" ))] |
| 749 | use core::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| 750 | #[cfg (feature = "std" )] |
| 751 | use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| 752 | use super::*; |
| 753 | |
| 754 | #[test ] |
| 755 | fn test_ipaddrrange() { |
| 756 | // Next, Next-Back |
| 757 | let i = Ipv4AddrRange::new( |
| 758 | Ipv4Addr::from_str("10.0.0.0" ).unwrap(), |
| 759 | Ipv4Addr::from_str("10.0.0.3" ).unwrap() |
| 760 | ); |
| 761 | |
| 762 | assert_eq!(i.collect::<Vec<Ipv4Addr>>(), vec![ |
| 763 | Ipv4Addr::from_str("10.0.0.0" ).unwrap(), |
| 764 | Ipv4Addr::from_str("10.0.0.1" ).unwrap(), |
| 765 | Ipv4Addr::from_str("10.0.0.2" ).unwrap(), |
| 766 | Ipv4Addr::from_str("10.0.0.3" ).unwrap(), |
| 767 | ]); |
| 768 | |
| 769 | let mut v = i.collect::<Vec<_>>(); |
| 770 | v.reverse(); |
| 771 | assert_eq!(v, i.rev().collect::<Vec<_>>()); |
| 772 | |
| 773 | let i = Ipv4AddrRange::new( |
| 774 | Ipv4Addr::from_str("255.255.255.254" ).unwrap(), |
| 775 | Ipv4Addr::from_str("255.255.255.255" ).unwrap() |
| 776 | ); |
| 777 | |
| 778 | assert_eq!(i.collect::<Vec<Ipv4Addr>>(), vec![ |
| 779 | Ipv4Addr::from_str("255.255.255.254" ).unwrap(), |
| 780 | Ipv4Addr::from_str("255.255.255.255" ).unwrap(), |
| 781 | ]); |
| 782 | |
| 783 | let i = Ipv6AddrRange::new( |
| 784 | Ipv6Addr::from_str("fd00::" ).unwrap(), |
| 785 | Ipv6Addr::from_str("fd00::3" ).unwrap(), |
| 786 | ); |
| 787 | |
| 788 | assert_eq!(i.collect::<Vec<Ipv6Addr>>(), vec![ |
| 789 | Ipv6Addr::from_str("fd00::" ).unwrap(), |
| 790 | Ipv6Addr::from_str("fd00::1" ).unwrap(), |
| 791 | Ipv6Addr::from_str("fd00::2" ).unwrap(), |
| 792 | Ipv6Addr::from_str("fd00::3" ).unwrap(), |
| 793 | ]); |
| 794 | |
| 795 | let mut v = i.collect::<Vec<_>>(); |
| 796 | v.reverse(); |
| 797 | assert_eq!(v, i.rev().collect::<Vec<_>>()); |
| 798 | |
| 799 | let i = Ipv6AddrRange::new( |
| 800 | Ipv6Addr::from_str("ffff:ffff:ffff:ffff:ffff:ffff:ffff:fffe" ).unwrap(), |
| 801 | Ipv6Addr::from_str("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff" ).unwrap(), |
| 802 | ); |
| 803 | |
| 804 | assert_eq!(i.collect::<Vec<Ipv6Addr>>(), vec![ |
| 805 | Ipv6Addr::from_str("ffff:ffff:ffff:ffff:ffff:ffff:ffff:fffe" ).unwrap(), |
| 806 | Ipv6Addr::from_str("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff" ).unwrap(), |
| 807 | ]); |
| 808 | |
| 809 | let i = IpAddrRange::from(Ipv4AddrRange::new( |
| 810 | Ipv4Addr::from_str("10.0.0.0" ).unwrap(), |
| 811 | Ipv4Addr::from_str("10.0.0.3" ).unwrap(), |
| 812 | )); |
| 813 | |
| 814 | assert_eq!(i.collect::<Vec<IpAddr>>(), vec![ |
| 815 | IpAddr::from_str("10.0.0.0" ).unwrap(), |
| 816 | IpAddr::from_str("10.0.0.1" ).unwrap(), |
| 817 | IpAddr::from_str("10.0.0.2" ).unwrap(), |
| 818 | IpAddr::from_str("10.0.0.3" ).unwrap(), |
| 819 | ]); |
| 820 | |
| 821 | let mut v = i.collect::<Vec<_>>(); |
| 822 | v.reverse(); |
| 823 | assert_eq!(v, i.rev().collect::<Vec<_>>()); |
| 824 | |
| 825 | let i = IpAddrRange::from(Ipv4AddrRange::new( |
| 826 | Ipv4Addr::from_str("255.255.255.254" ).unwrap(), |
| 827 | Ipv4Addr::from_str("255.255.255.255" ).unwrap() |
| 828 | )); |
| 829 | |
| 830 | assert_eq!(i.collect::<Vec<IpAddr>>(), vec![ |
| 831 | IpAddr::from_str("255.255.255.254" ).unwrap(), |
| 832 | IpAddr::from_str("255.255.255.255" ).unwrap(), |
| 833 | ]); |
| 834 | |
| 835 | let i = IpAddrRange::from(Ipv6AddrRange::new( |
| 836 | Ipv6Addr::from_str("fd00::" ).unwrap(), |
| 837 | Ipv6Addr::from_str("fd00::3" ).unwrap(), |
| 838 | )); |
| 839 | |
| 840 | assert_eq!(i.collect::<Vec<IpAddr>>(), vec![ |
| 841 | IpAddr::from_str("fd00::" ).unwrap(), |
| 842 | IpAddr::from_str("fd00::1" ).unwrap(), |
| 843 | IpAddr::from_str("fd00::2" ).unwrap(), |
| 844 | IpAddr::from_str("fd00::3" ).unwrap(), |
| 845 | ]); |
| 846 | |
| 847 | let mut v = i.collect::<Vec<_>>(); |
| 848 | v.reverse(); |
| 849 | assert_eq!(v, i.rev().collect::<Vec<_>>()); |
| 850 | |
| 851 | let i = IpAddrRange::from(Ipv6AddrRange::new( |
| 852 | Ipv6Addr::from_str("ffff:ffff:ffff:ffff:ffff:ffff:ffff:fffe" ).unwrap(), |
| 853 | Ipv6Addr::from_str("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff" ).unwrap(), |
| 854 | )); |
| 855 | |
| 856 | assert_eq!(i.collect::<Vec<IpAddr>>(), vec![ |
| 857 | IpAddr::from_str("ffff:ffff:ffff:ffff:ffff:ffff:ffff:fffe" ).unwrap(), |
| 858 | IpAddr::from_str("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff" ).unwrap(), |
| 859 | ]); |
| 860 | |
| 861 | // #11 (infinite iterator when start and stop are 0) |
| 862 | let zero4 = Ipv4Addr::from_str("0.0.0.0" ).unwrap(); |
| 863 | let zero6 = Ipv6Addr::from_str("::" ).unwrap(); |
| 864 | |
| 865 | let mut i = Ipv4AddrRange::new(zero4, zero4); |
| 866 | assert_eq!(Some(zero4), i.next()); |
| 867 | assert_eq!(None, i.next()); |
| 868 | |
| 869 | let mut i = Ipv6AddrRange::new(zero6, zero6); |
| 870 | assert_eq!(Some(zero6), i.next()); |
| 871 | assert_eq!(None, i.next()); |
| 872 | |
| 873 | // Count |
| 874 | let i = Ipv4AddrRange::new( |
| 875 | Ipv4Addr::from_str("10.0.0.0" ).unwrap(), |
| 876 | Ipv4Addr::from_str("10.0.0.3" ).unwrap() |
| 877 | ); |
| 878 | assert_eq!(i.count(), 4); |
| 879 | |
| 880 | let i = Ipv6AddrRange::new( |
| 881 | Ipv6Addr::from_str("fd00::" ).unwrap(), |
| 882 | Ipv6Addr::from_str("fd00::3" ).unwrap(), |
| 883 | ); |
| 884 | assert_eq!(i.count(), 4); |
| 885 | |
| 886 | // Size Hint |
| 887 | let i = Ipv4AddrRange::new( |
| 888 | Ipv4Addr::from_str("10.0.0.0" ).unwrap(), |
| 889 | Ipv4Addr::from_str("10.0.0.3" ).unwrap() |
| 890 | ); |
| 891 | assert_eq!(i.size_hint(), (4, Some(4))); |
| 892 | |
| 893 | let i = Ipv6AddrRange::new( |
| 894 | Ipv6Addr::from_str("fd00::" ).unwrap(), |
| 895 | Ipv6Addr::from_str("fd00::3" ).unwrap(), |
| 896 | ); |
| 897 | assert_eq!(i.size_hint(), (4, Some(4))); |
| 898 | |
| 899 | // Size Hint: a range where size clearly overflows usize |
| 900 | let i = Ipv6AddrRange::new( |
| 901 | Ipv6Addr::from_str("::" ).unwrap(), |
| 902 | Ipv6Addr::from_str("8000::" ).unwrap(), |
| 903 | ); |
| 904 | assert_eq!(i.size_hint(), (core::usize::MAX, None)); |
| 905 | |
| 906 | // Min, Max, Last |
| 907 | let i = Ipv4AddrRange::new( |
| 908 | Ipv4Addr::from_str("10.0.0.0" ).unwrap(), |
| 909 | Ipv4Addr::from_str("10.0.0.3" ).unwrap() |
| 910 | ); |
| 911 | assert_eq!(Iterator::min(i), Some(Ipv4Addr::from_str("10.0.0.0" ).unwrap())); |
| 912 | assert_eq!(Iterator::max(i), Some(Ipv4Addr::from_str("10.0.0.3" ).unwrap())); |
| 913 | assert_eq!(i.last(), Some(Ipv4Addr::from_str("10.0.0.3" ).unwrap())); |
| 914 | |
| 915 | let i = Ipv6AddrRange::new( |
| 916 | Ipv6Addr::from_str("fd00::" ).unwrap(), |
| 917 | Ipv6Addr::from_str("fd00::3" ).unwrap(), |
| 918 | ); |
| 919 | assert_eq!(Iterator::min(i), Some(Ipv6Addr::from_str("fd00::" ).unwrap())); |
| 920 | assert_eq!(Iterator::max(i), Some(Ipv6Addr::from_str("fd00::3" ).unwrap())); |
| 921 | assert_eq!(i.last(), Some(Ipv6Addr::from_str("fd00::3" ).unwrap())); |
| 922 | |
| 923 | // Nth |
| 924 | let i = Ipv4AddrRange::new( |
| 925 | Ipv4Addr::from_str("10.0.0.0" ).unwrap(), |
| 926 | Ipv4Addr::from_str("10.0.0.3" ).unwrap() |
| 927 | ); |
| 928 | assert_eq!(i.clone().nth(0), Some(Ipv4Addr::from_str("10.0.0.0" ).unwrap())); |
| 929 | assert_eq!(i.clone().nth(3), Some(Ipv4Addr::from_str("10.0.0.3" ).unwrap())); |
| 930 | assert_eq!(i.clone().nth(4), None); |
| 931 | assert_eq!(i.clone().nth(99), None); |
| 932 | let mut i2 = i.clone(); |
| 933 | assert_eq!(i2.nth(1), Some(Ipv4Addr::from_str("10.0.0.1" ).unwrap())); |
| 934 | assert_eq!(i2.nth(1), Some(Ipv4Addr::from_str("10.0.0.3" ).unwrap())); |
| 935 | assert_eq!(i2.nth(0), None); |
| 936 | let mut i3 = i.clone(); |
| 937 | assert_eq!(i3.nth(99), None); |
| 938 | assert_eq!(i3.next(), None); |
| 939 | |
| 940 | let i = Ipv6AddrRange::new( |
| 941 | Ipv6Addr::from_str("fd00::" ).unwrap(), |
| 942 | Ipv6Addr::from_str("fd00::3" ).unwrap(), |
| 943 | ); |
| 944 | assert_eq!(i.clone().nth(0), Some(Ipv6Addr::from_str("fd00::" ).unwrap())); |
| 945 | assert_eq!(i.clone().nth(3), Some(Ipv6Addr::from_str("fd00::3" ).unwrap())); |
| 946 | assert_eq!(i.clone().nth(4), None); |
| 947 | assert_eq!(i.clone().nth(99), None); |
| 948 | let mut i2 = i.clone(); |
| 949 | assert_eq!(i2.nth(1), Some(Ipv6Addr::from_str("fd00::1" ).unwrap())); |
| 950 | assert_eq!(i2.nth(1), Some(Ipv6Addr::from_str("fd00::3" ).unwrap())); |
| 951 | assert_eq!(i2.nth(0), None); |
| 952 | let mut i3 = i.clone(); |
| 953 | assert_eq!(i3.nth(99), None); |
| 954 | assert_eq!(i3.next(), None); |
| 955 | |
| 956 | // Nth Back |
| 957 | let i = Ipv4AddrRange::new( |
| 958 | Ipv4Addr::from_str("10.0.0.0" ).unwrap(), |
| 959 | Ipv4Addr::from_str("10.0.0.3" ).unwrap() |
| 960 | ); |
| 961 | assert_eq!(i.clone().nth_back(0), Some(Ipv4Addr::from_str("10.0.0.3" ).unwrap())); |
| 962 | assert_eq!(i.clone().nth_back(3), Some(Ipv4Addr::from_str("10.0.0.0" ).unwrap())); |
| 963 | assert_eq!(i.clone().nth_back(4), None); |
| 964 | assert_eq!(i.clone().nth_back(99), None); |
| 965 | let mut i2 = i.clone(); |
| 966 | assert_eq!(i2.nth_back(1), Some(Ipv4Addr::from_str("10.0.0.2" ).unwrap())); |
| 967 | assert_eq!(i2.nth_back(1), Some(Ipv4Addr::from_str("10.0.0.0" ).unwrap())); |
| 968 | assert_eq!(i2.nth_back(0), None); |
| 969 | let mut i3 = i.clone(); |
| 970 | assert_eq!(i3.nth_back(99), None); |
| 971 | assert_eq!(i3.next(), None); |
| 972 | |
| 973 | let i = Ipv6AddrRange::new( |
| 974 | Ipv6Addr::from_str("fd00::" ).unwrap(), |
| 975 | Ipv6Addr::from_str("fd00::3" ).unwrap(), |
| 976 | ); |
| 977 | assert_eq!(i.clone().nth_back(0), Some(Ipv6Addr::from_str("fd00::3" ).unwrap())); |
| 978 | assert_eq!(i.clone().nth_back(3), Some(Ipv6Addr::from_str("fd00::" ).unwrap())); |
| 979 | assert_eq!(i.clone().nth_back(4), None); |
| 980 | assert_eq!(i.clone().nth_back(99), None); |
| 981 | let mut i2 = i.clone(); |
| 982 | assert_eq!(i2.nth_back(1), Some(Ipv6Addr::from_str("fd00::2" ).unwrap())); |
| 983 | assert_eq!(i2.nth_back(1), Some(Ipv6Addr::from_str("fd00::" ).unwrap())); |
| 984 | assert_eq!(i2.nth_back(0), None); |
| 985 | let mut i3 = i.clone(); |
| 986 | assert_eq!(i3.nth_back(99), None); |
| 987 | assert_eq!(i3.next(), None); |
| 988 | } |
| 989 | } |
| 990 | |