1 | #![cfg (feature = "use_std" )] |
2 | |
3 | use crate::MinMaxResult; |
4 | use std::cmp::Ordering; |
5 | use std::collections::HashMap; |
6 | use std::fmt; |
7 | use std::hash::Hash; |
8 | use std::iter::Iterator; |
9 | use std::ops::{Add, Mul}; |
10 | |
11 | /// A wrapper to allow for an easy [`into_grouping_map_by`](crate::Itertools::into_grouping_map_by) |
12 | #[derive (Clone)] |
13 | pub struct MapForGrouping<I, F>(I, F); |
14 | |
15 | impl<I: fmt::Debug, F> fmt::Debug for MapForGrouping<I, F> { |
16 | debug_fmt_fields!(MapForGrouping, 0); |
17 | } |
18 | |
19 | impl<I, F> MapForGrouping<I, F> { |
20 | pub(crate) fn new(iter: I, key_mapper: F) -> Self { |
21 | Self(iter, key_mapper) |
22 | } |
23 | } |
24 | |
25 | impl<K, V, I, F> Iterator for MapForGrouping<I, F> |
26 | where |
27 | I: Iterator<Item = V>, |
28 | K: Hash + Eq, |
29 | F: FnMut(&V) -> K, |
30 | { |
31 | type Item = (K, V); |
32 | fn next(&mut self) -> Option<Self::Item> { |
33 | self.0.next().map(|val: V| ((self.1)(&val), val)) |
34 | } |
35 | } |
36 | |
37 | /// Creates a new `GroupingMap` from `iter` |
38 | pub fn new<I, K, V>(iter: I) -> GroupingMap<I> |
39 | where |
40 | I: Iterator<Item = (K, V)>, |
41 | K: Hash + Eq, |
42 | { |
43 | GroupingMap { iter } |
44 | } |
45 | |
46 | /// `GroupingMapBy` is an intermediate struct for efficient group-and-fold operations. |
47 | /// |
48 | /// See [`GroupingMap`] for more informations. |
49 | pub type GroupingMapBy<I, F> = GroupingMap<MapForGrouping<I, F>>; |
50 | |
51 | /// `GroupingMap` is an intermediate struct for efficient group-and-fold operations. |
52 | /// It groups elements by their key and at the same time fold each group |
53 | /// using some aggregating operation. |
54 | /// |
55 | /// No method on this struct performs temporary allocations. |
56 | #[derive (Clone, Debug)] |
57 | #[must_use = "GroupingMap is lazy and do nothing unless consumed" ] |
58 | pub struct GroupingMap<I> { |
59 | iter: I, |
60 | } |
61 | |
62 | impl<I, K, V> GroupingMap<I> |
63 | where |
64 | I: Iterator<Item = (K, V)>, |
65 | K: Hash + Eq, |
66 | { |
67 | /// This is the generic way to perform any operation on a `GroupingMap`. |
68 | /// It's suggested to use this method only to implement custom operations |
69 | /// when the already provided ones are not enough. |
70 | /// |
71 | /// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements |
72 | /// of each group sequentially, passing the previously accumulated value, a reference to the key |
73 | /// and the current element as arguments, and stores the results in an `HashMap`. |
74 | /// |
75 | /// The `operation` function is invoked on each element with the following parameters: |
76 | /// - the current value of the accumulator of the group if there is currently one; |
77 | /// - a reference to the key of the group this element belongs to; |
78 | /// - the element from the source being aggregated; |
79 | /// |
80 | /// If `operation` returns `Some(element)` then the accumulator is updated with `element`, |
81 | /// otherwise the previous accumulation is discarded. |
82 | /// |
83 | /// Return a `HashMap` associating the key of each group with the result of aggregation of |
84 | /// that group's elements. If the aggregation of the last element of a group discards the |
85 | /// accumulator then there won't be an entry associated to that group's key. |
86 | /// |
87 | /// ``` |
88 | /// use itertools::Itertools; |
89 | /// |
90 | /// let data = vec![2, 8, 5, 7, 9, 0, 4, 10]; |
91 | /// let lookup = data.into_iter() |
92 | /// .into_grouping_map_by(|&n| n % 4) |
93 | /// .aggregate(|acc, _key, val| { |
94 | /// if val == 0 || val == 10 { |
95 | /// None |
96 | /// } else { |
97 | /// Some(acc.unwrap_or(0) + val) |
98 | /// } |
99 | /// }); |
100 | /// |
101 | /// assert_eq!(lookup[&0], 4); // 0 resets the accumulator so only 4 is summed |
102 | /// assert_eq!(lookup[&1], 5 + 9); |
103 | /// assert_eq!(lookup.get(&2), None); // 10 resets the accumulator and nothing is summed afterward |
104 | /// assert_eq!(lookup[&3], 7); |
105 | /// assert_eq!(lookup.len(), 3); // The final keys are only 0, 1 and 2 |
106 | /// ``` |
107 | pub fn aggregate<FO, R>(self, mut operation: FO) -> HashMap<K, R> |
108 | where |
109 | FO: FnMut(Option<R>, &K, V) -> Option<R>, |
110 | { |
111 | let mut destination_map = HashMap::new(); |
112 | |
113 | self.iter.for_each(|(key, val)| { |
114 | let acc = destination_map.remove(&key); |
115 | if let Some(op_res) = operation(acc, &key, val) { |
116 | destination_map.insert(key, op_res); |
117 | } |
118 | }); |
119 | |
120 | destination_map |
121 | } |
122 | |
123 | /// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements |
124 | /// of each group sequentially, passing the previously accumulated value, a reference to the key |
125 | /// and the current element as arguments, and stores the results in a new map. |
126 | /// |
127 | /// `init` is called to obtain the initial value of each accumulator. |
128 | /// |
129 | /// `operation` is a function that is invoked on each element with the following parameters: |
130 | /// - the current value of the accumulator of the group; |
131 | /// - a reference to the key of the group this element belongs to; |
132 | /// - the element from the source being accumulated. |
133 | /// |
134 | /// Return a `HashMap` associating the key of each group with the result of folding that group's elements. |
135 | /// |
136 | /// ``` |
137 | /// use itertools::Itertools; |
138 | /// |
139 | /// #[derive(Debug, Default)] |
140 | /// struct Accumulator { |
141 | /// acc: usize, |
142 | /// } |
143 | /// |
144 | /// let lookup = (1..=7) |
145 | /// .into_grouping_map_by(|&n| n % 3) |
146 | /// .fold_with(|_key, _val| Default::default(), |Accumulator { acc }, _key, val| { |
147 | /// let acc = acc + val; |
148 | /// Accumulator { acc } |
149 | /// }); |
150 | /// |
151 | /// assert_eq!(lookup[&0].acc, 3 + 6); |
152 | /// assert_eq!(lookup[&1].acc, 1 + 4 + 7); |
153 | /// assert_eq!(lookup[&2].acc, 2 + 5); |
154 | /// assert_eq!(lookup.len(), 3); |
155 | /// ``` |
156 | pub fn fold_with<FI, FO, R>(self, mut init: FI, mut operation: FO) -> HashMap<K, R> |
157 | where |
158 | FI: FnMut(&K, &V) -> R, |
159 | FO: FnMut(R, &K, V) -> R, |
160 | { |
161 | self.aggregate(|acc, key, val| { |
162 | let acc = acc.unwrap_or_else(|| init(key, &val)); |
163 | Some(operation(acc, key, val)) |
164 | }) |
165 | } |
166 | |
167 | /// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements |
168 | /// of each group sequentially, passing the previously accumulated value, a reference to the key |
169 | /// and the current element as arguments, and stores the results in a new map. |
170 | /// |
171 | /// `init` is the value from which will be cloned the initial value of each accumulator. |
172 | /// |
173 | /// `operation` is a function that is invoked on each element with the following parameters: |
174 | /// - the current value of the accumulator of the group; |
175 | /// - a reference to the key of the group this element belongs to; |
176 | /// - the element from the source being accumulated. |
177 | /// |
178 | /// Return a `HashMap` associating the key of each group with the result of folding that group's elements. |
179 | /// |
180 | /// ``` |
181 | /// use itertools::Itertools; |
182 | /// |
183 | /// let lookup = (1..=7) |
184 | /// .into_grouping_map_by(|&n| n % 3) |
185 | /// .fold(0, |acc, _key, val| acc + val); |
186 | /// |
187 | /// assert_eq!(lookup[&0], 3 + 6); |
188 | /// assert_eq!(lookup[&1], 1 + 4 + 7); |
189 | /// assert_eq!(lookup[&2], 2 + 5); |
190 | /// assert_eq!(lookup.len(), 3); |
191 | /// ``` |
192 | pub fn fold<FO, R>(self, init: R, operation: FO) -> HashMap<K, R> |
193 | where |
194 | R: Clone, |
195 | FO: FnMut(R, &K, V) -> R, |
196 | { |
197 | self.fold_with(|_, _| init.clone(), operation) |
198 | } |
199 | |
200 | /// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements |
201 | /// of each group sequentially, passing the previously accumulated value, a reference to the key |
202 | /// and the current element as arguments, and stores the results in a new map. |
203 | /// |
204 | /// This is similar to [`fold`] but the initial value of the accumulator is the first element of the group. |
205 | /// |
206 | /// `operation` is a function that is invoked on each element with the following parameters: |
207 | /// - the current value of the accumulator of the group; |
208 | /// - a reference to the key of the group this element belongs to; |
209 | /// - the element from the source being accumulated. |
210 | /// |
211 | /// Return a `HashMap` associating the key of each group with the result of folding that group's elements. |
212 | /// |
213 | /// [`fold`]: GroupingMap::fold |
214 | /// |
215 | /// ``` |
216 | /// use itertools::Itertools; |
217 | /// |
218 | /// let lookup = (1..=7) |
219 | /// .into_grouping_map_by(|&n| n % 3) |
220 | /// .fold_first(|acc, _key, val| acc + val); |
221 | /// |
222 | /// assert_eq!(lookup[&0], 3 + 6); |
223 | /// assert_eq!(lookup[&1], 1 + 4 + 7); |
224 | /// assert_eq!(lookup[&2], 2 + 5); |
225 | /// assert_eq!(lookup.len(), 3); |
226 | /// ``` |
227 | pub fn fold_first<FO>(self, mut operation: FO) -> HashMap<K, V> |
228 | where |
229 | FO: FnMut(V, &K, V) -> V, |
230 | { |
231 | self.aggregate(|acc, key, val| { |
232 | Some(match acc { |
233 | Some(acc) => operation(acc, key, val), |
234 | None => val, |
235 | }) |
236 | }) |
237 | } |
238 | |
239 | /// Groups elements from the `GroupingMap` source by key and collects the elements of each group in |
240 | /// an instance of `C`. The iteration order is preserved when inserting elements. |
241 | /// |
242 | /// Return a `HashMap` associating the key of each group with the collection containing that group's elements. |
243 | /// |
244 | /// ``` |
245 | /// use itertools::Itertools; |
246 | /// use std::collections::HashSet; |
247 | /// |
248 | /// let lookup = vec![0, 1, 2, 3, 4, 5, 6, 2, 3, 6].into_iter() |
249 | /// .into_grouping_map_by(|&n| n % 3) |
250 | /// .collect::<HashSet<_>>(); |
251 | /// |
252 | /// assert_eq!(lookup[&0], vec![0, 3, 6].into_iter().collect::<HashSet<_>>()); |
253 | /// assert_eq!(lookup[&1], vec![1, 4].into_iter().collect::<HashSet<_>>()); |
254 | /// assert_eq!(lookup[&2], vec![2, 5].into_iter().collect::<HashSet<_>>()); |
255 | /// assert_eq!(lookup.len(), 3); |
256 | /// ``` |
257 | pub fn collect<C>(self) -> HashMap<K, C> |
258 | where |
259 | C: Default + Extend<V>, |
260 | { |
261 | let mut destination_map = HashMap::new(); |
262 | |
263 | self.iter.for_each(|(key, val)| { |
264 | destination_map |
265 | .entry(key) |
266 | .or_insert_with(C::default) |
267 | .extend(Some(val)); |
268 | }); |
269 | |
270 | destination_map |
271 | } |
272 | |
273 | /// Groups elements from the `GroupingMap` source by key and finds the maximum of each group. |
274 | /// |
275 | /// If several elements are equally maximum, the last element is picked. |
276 | /// |
277 | /// Returns a `HashMap` associating the key of each group with the maximum of that group's elements. |
278 | /// |
279 | /// ``` |
280 | /// use itertools::Itertools; |
281 | /// |
282 | /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
283 | /// .into_grouping_map_by(|&n| n % 3) |
284 | /// .max(); |
285 | /// |
286 | /// assert_eq!(lookup[&0], 12); |
287 | /// assert_eq!(lookup[&1], 7); |
288 | /// assert_eq!(lookup[&2], 8); |
289 | /// assert_eq!(lookup.len(), 3); |
290 | /// ``` |
291 | pub fn max(self) -> HashMap<K, V> |
292 | where |
293 | V: Ord, |
294 | { |
295 | self.max_by(|_, v1, v2| V::cmp(v1, v2)) |
296 | } |
297 | |
298 | /// Groups elements from the `GroupingMap` source by key and finds the maximum of each group |
299 | /// with respect to the specified comparison function. |
300 | /// |
301 | /// If several elements are equally maximum, the last element is picked. |
302 | /// |
303 | /// Returns a `HashMap` associating the key of each group with the maximum of that group's elements. |
304 | /// |
305 | /// ``` |
306 | /// use itertools::Itertools; |
307 | /// |
308 | /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
309 | /// .into_grouping_map_by(|&n| n % 3) |
310 | /// .max_by(|_key, x, y| y.cmp(x)); |
311 | /// |
312 | /// assert_eq!(lookup[&0], 3); |
313 | /// assert_eq!(lookup[&1], 1); |
314 | /// assert_eq!(lookup[&2], 5); |
315 | /// assert_eq!(lookup.len(), 3); |
316 | /// ``` |
317 | pub fn max_by<F>(self, mut compare: F) -> HashMap<K, V> |
318 | where |
319 | F: FnMut(&K, &V, &V) -> Ordering, |
320 | { |
321 | self.fold_first(|acc, key, val| match compare(key, &acc, &val) { |
322 | Ordering::Less | Ordering::Equal => val, |
323 | Ordering::Greater => acc, |
324 | }) |
325 | } |
326 | |
327 | /// Groups elements from the `GroupingMap` source by key and finds the element of each group |
328 | /// that gives the maximum from the specified function. |
329 | /// |
330 | /// If several elements are equally maximum, the last element is picked. |
331 | /// |
332 | /// Returns a `HashMap` associating the key of each group with the maximum of that group's elements. |
333 | /// |
334 | /// ``` |
335 | /// use itertools::Itertools; |
336 | /// |
337 | /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
338 | /// .into_grouping_map_by(|&n| n % 3) |
339 | /// .max_by_key(|_key, &val| val % 4); |
340 | /// |
341 | /// assert_eq!(lookup[&0], 3); |
342 | /// assert_eq!(lookup[&1], 7); |
343 | /// assert_eq!(lookup[&2], 5); |
344 | /// assert_eq!(lookup.len(), 3); |
345 | /// ``` |
346 | pub fn max_by_key<F, CK>(self, mut f: F) -> HashMap<K, V> |
347 | where |
348 | F: FnMut(&K, &V) -> CK, |
349 | CK: Ord, |
350 | { |
351 | self.max_by(|key, v1, v2| f(key, v1).cmp(&f(key, v2))) |
352 | } |
353 | |
354 | /// Groups elements from the `GroupingMap` source by key and finds the minimum of each group. |
355 | /// |
356 | /// If several elements are equally minimum, the first element is picked. |
357 | /// |
358 | /// Returns a `HashMap` associating the key of each group with the minimum of that group's elements. |
359 | /// |
360 | /// ``` |
361 | /// use itertools::Itertools; |
362 | /// |
363 | /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
364 | /// .into_grouping_map_by(|&n| n % 3) |
365 | /// .min(); |
366 | /// |
367 | /// assert_eq!(lookup[&0], 3); |
368 | /// assert_eq!(lookup[&1], 1); |
369 | /// assert_eq!(lookup[&2], 5); |
370 | /// assert_eq!(lookup.len(), 3); |
371 | /// ``` |
372 | pub fn min(self) -> HashMap<K, V> |
373 | where |
374 | V: Ord, |
375 | { |
376 | self.min_by(|_, v1, v2| V::cmp(v1, v2)) |
377 | } |
378 | |
379 | /// Groups elements from the `GroupingMap` source by key and finds the minimum of each group |
380 | /// with respect to the specified comparison function. |
381 | /// |
382 | /// If several elements are equally minimum, the first element is picked. |
383 | /// |
384 | /// Returns a `HashMap` associating the key of each group with the minimum of that group's elements. |
385 | /// |
386 | /// ``` |
387 | /// use itertools::Itertools; |
388 | /// |
389 | /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
390 | /// .into_grouping_map_by(|&n| n % 3) |
391 | /// .min_by(|_key, x, y| y.cmp(x)); |
392 | /// |
393 | /// assert_eq!(lookup[&0], 12); |
394 | /// assert_eq!(lookup[&1], 7); |
395 | /// assert_eq!(lookup[&2], 8); |
396 | /// assert_eq!(lookup.len(), 3); |
397 | /// ``` |
398 | pub fn min_by<F>(self, mut compare: F) -> HashMap<K, V> |
399 | where |
400 | F: FnMut(&K, &V, &V) -> Ordering, |
401 | { |
402 | self.fold_first(|acc, key, val| match compare(key, &acc, &val) { |
403 | Ordering::Less | Ordering::Equal => acc, |
404 | Ordering::Greater => val, |
405 | }) |
406 | } |
407 | |
408 | /// Groups elements from the `GroupingMap` source by key and finds the element of each group |
409 | /// that gives the minimum from the specified function. |
410 | /// |
411 | /// If several elements are equally minimum, the first element is picked. |
412 | /// |
413 | /// Returns a `HashMap` associating the key of each group with the minimum of that group's elements. |
414 | /// |
415 | /// ``` |
416 | /// use itertools::Itertools; |
417 | /// |
418 | /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
419 | /// .into_grouping_map_by(|&n| n % 3) |
420 | /// .min_by_key(|_key, &val| val % 4); |
421 | /// |
422 | /// assert_eq!(lookup[&0], 12); |
423 | /// assert_eq!(lookup[&1], 4); |
424 | /// assert_eq!(lookup[&2], 8); |
425 | /// assert_eq!(lookup.len(), 3); |
426 | /// ``` |
427 | pub fn min_by_key<F, CK>(self, mut f: F) -> HashMap<K, V> |
428 | where |
429 | F: FnMut(&K, &V) -> CK, |
430 | CK: Ord, |
431 | { |
432 | self.min_by(|key, v1, v2| f(key, v1).cmp(&f(key, v2))) |
433 | } |
434 | |
435 | /// Groups elements from the `GroupingMap` source by key and find the maximum and minimum of |
436 | /// each group. |
437 | /// |
438 | /// If several elements are equally maximum, the last element is picked. |
439 | /// If several elements are equally minimum, the first element is picked. |
440 | /// |
441 | /// See [.minmax()](crate::Itertools::minmax) for the non-grouping version. |
442 | /// |
443 | /// Differences from the non grouping version: |
444 | /// - It never produces a `MinMaxResult::NoElements` |
445 | /// - It doesn't have any speedup |
446 | /// |
447 | /// Returns a `HashMap` associating the key of each group with the minimum and maximum of that group's elements. |
448 | /// |
449 | /// ``` |
450 | /// use itertools::Itertools; |
451 | /// use itertools::MinMaxResult::{OneElement, MinMax}; |
452 | /// |
453 | /// let lookup = vec![1, 3, 4, 5, 7, 9, 12].into_iter() |
454 | /// .into_grouping_map_by(|&n| n % 3) |
455 | /// .minmax(); |
456 | /// |
457 | /// assert_eq!(lookup[&0], MinMax(3, 12)); |
458 | /// assert_eq!(lookup[&1], MinMax(1, 7)); |
459 | /// assert_eq!(lookup[&2], OneElement(5)); |
460 | /// assert_eq!(lookup.len(), 3); |
461 | /// ``` |
462 | pub fn minmax(self) -> HashMap<K, MinMaxResult<V>> |
463 | where |
464 | V: Ord, |
465 | { |
466 | self.minmax_by(|_, v1, v2| V::cmp(v1, v2)) |
467 | } |
468 | |
469 | /// Groups elements from the `GroupingMap` source by key and find the maximum and minimum of |
470 | /// each group with respect to the specified comparison function. |
471 | /// |
472 | /// If several elements are equally maximum, the last element is picked. |
473 | /// If several elements are equally minimum, the first element is picked. |
474 | /// |
475 | /// It has the same differences from the non-grouping version as `minmax`. |
476 | /// |
477 | /// Returns a `HashMap` associating the key of each group with the minimum and maximum of that group's elements. |
478 | /// |
479 | /// ``` |
480 | /// use itertools::Itertools; |
481 | /// use itertools::MinMaxResult::{OneElement, MinMax}; |
482 | /// |
483 | /// let lookup = vec![1, 3, 4, 5, 7, 9, 12].into_iter() |
484 | /// .into_grouping_map_by(|&n| n % 3) |
485 | /// .minmax_by(|_key, x, y| y.cmp(x)); |
486 | /// |
487 | /// assert_eq!(lookup[&0], MinMax(12, 3)); |
488 | /// assert_eq!(lookup[&1], MinMax(7, 1)); |
489 | /// assert_eq!(lookup[&2], OneElement(5)); |
490 | /// assert_eq!(lookup.len(), 3); |
491 | /// ``` |
492 | pub fn minmax_by<F>(self, mut compare: F) -> HashMap<K, MinMaxResult<V>> |
493 | where |
494 | F: FnMut(&K, &V, &V) -> Ordering, |
495 | { |
496 | self.aggregate(|acc, key, val| { |
497 | Some(match acc { |
498 | Some(MinMaxResult::OneElement(e)) => { |
499 | if compare(key, &val, &e) == Ordering::Less { |
500 | MinMaxResult::MinMax(val, e) |
501 | } else { |
502 | MinMaxResult::MinMax(e, val) |
503 | } |
504 | } |
505 | Some(MinMaxResult::MinMax(min, max)) => { |
506 | if compare(key, &val, &min) == Ordering::Less { |
507 | MinMaxResult::MinMax(val, max) |
508 | } else if compare(key, &val, &max) != Ordering::Less { |
509 | MinMaxResult::MinMax(min, val) |
510 | } else { |
511 | MinMaxResult::MinMax(min, max) |
512 | } |
513 | } |
514 | None => MinMaxResult::OneElement(val), |
515 | Some(MinMaxResult::NoElements) => unreachable!(), |
516 | }) |
517 | }) |
518 | } |
519 | |
520 | /// Groups elements from the `GroupingMap` source by key and find the elements of each group |
521 | /// that gives the minimum and maximum from the specified function. |
522 | /// |
523 | /// If several elements are equally maximum, the last element is picked. |
524 | /// If several elements are equally minimum, the first element is picked. |
525 | /// |
526 | /// It has the same differences from the non-grouping version as `minmax`. |
527 | /// |
528 | /// Returns a `HashMap` associating the key of each group with the minimum and maximum of that group's elements. |
529 | /// |
530 | /// ``` |
531 | /// use itertools::Itertools; |
532 | /// use itertools::MinMaxResult::{OneElement, MinMax}; |
533 | /// |
534 | /// let lookup = vec![1, 3, 4, 5, 7, 9, 12].into_iter() |
535 | /// .into_grouping_map_by(|&n| n % 3) |
536 | /// .minmax_by_key(|_key, &val| val % 4); |
537 | /// |
538 | /// assert_eq!(lookup[&0], MinMax(12, 3)); |
539 | /// assert_eq!(lookup[&1], MinMax(4, 7)); |
540 | /// assert_eq!(lookup[&2], OneElement(5)); |
541 | /// assert_eq!(lookup.len(), 3); |
542 | /// ``` |
543 | pub fn minmax_by_key<F, CK>(self, mut f: F) -> HashMap<K, MinMaxResult<V>> |
544 | where |
545 | F: FnMut(&K, &V) -> CK, |
546 | CK: Ord, |
547 | { |
548 | self.minmax_by(|key, v1, v2| f(key, v1).cmp(&f(key, v2))) |
549 | } |
550 | |
551 | /// Groups elements from the `GroupingMap` source by key and sums them. |
552 | /// |
553 | /// This is just a shorthand for `self.fold_first(|acc, _, val| acc + val)`. |
554 | /// It is more limited than `Iterator::sum` since it doesn't use the `Sum` trait. |
555 | /// |
556 | /// Returns a `HashMap` associating the key of each group with the sum of that group's elements. |
557 | /// |
558 | /// ``` |
559 | /// use itertools::Itertools; |
560 | /// |
561 | /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
562 | /// .into_grouping_map_by(|&n| n % 3) |
563 | /// .sum(); |
564 | /// |
565 | /// assert_eq!(lookup[&0], 3 + 9 + 12); |
566 | /// assert_eq!(lookup[&1], 1 + 4 + 7); |
567 | /// assert_eq!(lookup[&2], 5 + 8); |
568 | /// assert_eq!(lookup.len(), 3); |
569 | /// ``` |
570 | pub fn sum(self) -> HashMap<K, V> |
571 | where |
572 | V: Add<V, Output = V>, |
573 | { |
574 | self.fold_first(|acc, _, val| acc + val) |
575 | } |
576 | |
577 | /// Groups elements from the `GroupingMap` source by key and multiply them. |
578 | /// |
579 | /// This is just a shorthand for `self.fold_first(|acc, _, val| acc * val)`. |
580 | /// It is more limited than `Iterator::product` since it doesn't use the `Product` trait. |
581 | /// |
582 | /// Returns a `HashMap` associating the key of each group with the product of that group's elements. |
583 | /// |
584 | /// ``` |
585 | /// use itertools::Itertools; |
586 | /// |
587 | /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
588 | /// .into_grouping_map_by(|&n| n % 3) |
589 | /// .product(); |
590 | /// |
591 | /// assert_eq!(lookup[&0], 3 * 9 * 12); |
592 | /// assert_eq!(lookup[&1], 1 * 4 * 7); |
593 | /// assert_eq!(lookup[&2], 5 * 8); |
594 | /// assert_eq!(lookup.len(), 3); |
595 | /// ``` |
596 | pub fn product(self) -> HashMap<K, V> |
597 | where |
598 | V: Mul<V, Output = V>, |
599 | { |
600 | self.fold_first(|acc, _, val| acc * val) |
601 | } |
602 | } |
603 | |