1 | #![warn (missing_docs)] |
2 | #![crate_name = "itertools" ] |
3 | #![cfg_attr (not(feature = "use_std" ), no_std)] |
4 | |
5 | //! Extra iterator adaptors, functions and macros. |
6 | //! |
7 | //! To extend [`Iterator`] with methods in this crate, import |
8 | //! the [`Itertools`] trait: |
9 | //! |
10 | //! ``` |
11 | //! use itertools::Itertools; |
12 | //! ``` |
13 | //! |
14 | //! Now, new methods like [`interleave`](Itertools::interleave) |
15 | //! are available on all iterators: |
16 | //! |
17 | //! ``` |
18 | //! use itertools::Itertools; |
19 | //! |
20 | //! let it = (1..3).interleave(vec![-1, -2]); |
21 | //! itertools::assert_equal(it, vec![1, -1, 2, -2]); |
22 | //! ``` |
23 | //! |
24 | //! Most iterator methods are also provided as functions (with the benefit |
25 | //! that they convert parameters using [`IntoIterator`]): |
26 | //! |
27 | //! ``` |
28 | //! use itertools::interleave; |
29 | //! |
30 | //! for elt in interleave(&[1, 2, 3], &[2, 3, 4]) { |
31 | //! /* loop body */ |
32 | //! } |
33 | //! ``` |
34 | //! |
35 | //! ## Crate Features |
36 | //! |
37 | //! - `use_std` |
38 | //! - Enabled by default. |
39 | //! - Disable to compile itertools using `#![no_std]`. This disables |
40 | //! any items that depend on collections (like `group_by`, `unique`, |
41 | //! `kmerge`, `join` and many more). |
42 | //! |
43 | //! ## Rust Version |
44 | //! |
45 | //! This version of itertools requires Rust 1.43.1 or later. |
46 | |
47 | #[cfg (not(feature = "use_std" ))] |
48 | extern crate core as std; |
49 | |
50 | #[cfg (feature = "use_alloc" )] |
51 | extern crate alloc; |
52 | |
53 | #[cfg (feature = "use_alloc" )] |
54 | use alloc::{string::String, vec::Vec}; |
55 | |
56 | pub use either::Either; |
57 | |
58 | use core::borrow::Borrow; |
59 | use std::cmp::Ordering; |
60 | #[cfg (feature = "use_std" )] |
61 | use std::collections::HashMap; |
62 | #[cfg (feature = "use_std" )] |
63 | use std::collections::HashSet; |
64 | use std::fmt; |
65 | #[cfg (feature = "use_alloc" )] |
66 | use std::fmt::Write; |
67 | #[cfg (feature = "use_std" )] |
68 | use std::hash::Hash; |
69 | use std::iter::{once, IntoIterator}; |
70 | #[cfg (feature = "use_alloc" )] |
71 | type VecIntoIter<T> = alloc::vec::IntoIter<T>; |
72 | use std::iter::FromIterator; |
73 | |
74 | #[macro_use ] |
75 | mod impl_macros; |
76 | |
77 | // for compatibility with no std and macros |
78 | #[doc (hidden)] |
79 | pub use std::iter as __std_iter; |
80 | |
81 | /// The concrete iterator types. |
82 | pub mod structs { |
83 | #[cfg (feature = "use_alloc" )] |
84 | pub use crate::adaptors::MultiProduct; |
85 | pub use crate::adaptors::{ |
86 | Batching, Coalesce, Dedup, DedupBy, DedupByWithCount, DedupWithCount, FilterMapOk, |
87 | FilterOk, Interleave, InterleaveShortest, MapInto, MapOk, Positions, Product, PutBack, |
88 | TakeWhileRef, TupleCombinations, Update, WhileSome, |
89 | }; |
90 | #[allow (deprecated)] |
91 | pub use crate::adaptors::{MapResults, Step}; |
92 | #[cfg (feature = "use_alloc" )] |
93 | pub use crate::combinations::Combinations; |
94 | #[cfg (feature = "use_alloc" )] |
95 | pub use crate::combinations_with_replacement::CombinationsWithReplacement; |
96 | pub use crate::cons_tuples_impl::ConsTuples; |
97 | #[cfg (feature = "use_std" )] |
98 | pub use crate::duplicates_impl::{Duplicates, DuplicatesBy}; |
99 | pub use crate::exactly_one_err::ExactlyOneError; |
100 | pub use crate::flatten_ok::FlattenOk; |
101 | pub use crate::format::{Format, FormatWith}; |
102 | #[cfg (feature = "use_alloc" )] |
103 | pub use crate::groupbylazy::{Chunk, Chunks, Group, GroupBy, Groups, IntoChunks}; |
104 | #[cfg (feature = "use_std" )] |
105 | pub use crate::grouping_map::{GroupingMap, GroupingMapBy}; |
106 | pub use crate::intersperse::{Intersperse, IntersperseWith}; |
107 | #[cfg (feature = "use_alloc" )] |
108 | pub use crate::kmerge_impl::{KMerge, KMergeBy}; |
109 | pub use crate::merge_join::{Merge, MergeBy, MergeJoinBy}; |
110 | #[cfg (feature = "use_alloc" )] |
111 | pub use crate::multipeek_impl::MultiPeek; |
112 | pub use crate::pad_tail::PadUsing; |
113 | #[cfg (feature = "use_alloc" )] |
114 | pub use crate::peek_nth::PeekNth; |
115 | pub use crate::peeking_take_while::PeekingTakeWhile; |
116 | #[cfg (feature = "use_alloc" )] |
117 | pub use crate::permutations::Permutations; |
118 | #[cfg (feature = "use_alloc" )] |
119 | pub use crate::powerset::Powerset; |
120 | pub use crate::process_results_impl::ProcessResults; |
121 | #[cfg (feature = "use_alloc" )] |
122 | pub use crate::put_back_n_impl::PutBackN; |
123 | #[cfg (feature = "use_alloc" )] |
124 | pub use crate::rciter_impl::RcIter; |
125 | pub use crate::repeatn::RepeatN; |
126 | #[allow (deprecated)] |
127 | pub use crate::sources::{Iterate, RepeatCall, Unfold}; |
128 | pub use crate::take_while_inclusive::TakeWhileInclusive; |
129 | #[cfg (feature = "use_alloc" )] |
130 | pub use crate::tee::Tee; |
131 | pub use crate::tuple_impl::{CircularTupleWindows, TupleBuffer, TupleWindows, Tuples}; |
132 | #[cfg (feature = "use_std" )] |
133 | pub use crate::unique_impl::{Unique, UniqueBy}; |
134 | pub use crate::with_position::WithPosition; |
135 | pub use crate::zip_eq_impl::ZipEq; |
136 | pub use crate::zip_longest::ZipLongest; |
137 | pub use crate::ziptuple::Zip; |
138 | } |
139 | |
140 | /// Traits helpful for using certain `Itertools` methods in generic contexts. |
141 | pub mod traits { |
142 | pub use crate::tuple_impl::HomogeneousTuple; |
143 | } |
144 | |
145 | pub use crate::concat_impl::concat; |
146 | pub use crate::cons_tuples_impl::cons_tuples; |
147 | pub use crate::diff::diff_with; |
148 | pub use crate::diff::Diff; |
149 | #[cfg (feature = "use_alloc" )] |
150 | pub use crate::kmerge_impl::kmerge_by; |
151 | pub use crate::minmax::MinMaxResult; |
152 | pub use crate::peeking_take_while::PeekingNext; |
153 | pub use crate::process_results_impl::process_results; |
154 | pub use crate::repeatn::repeat_n; |
155 | #[allow (deprecated)] |
156 | pub use crate::sources::{iterate, repeat_call, unfold}; |
157 | #[allow (deprecated)] |
158 | pub use crate::structs::*; |
159 | pub use crate::unziptuple::{multiunzip, MultiUnzip}; |
160 | pub use crate::with_position::Position; |
161 | pub use crate::ziptuple::multizip; |
162 | mod adaptors; |
163 | mod either_or_both; |
164 | pub use crate::either_or_both::EitherOrBoth; |
165 | #[doc (hidden)] |
166 | pub mod free; |
167 | #[doc (inline)] |
168 | pub use crate::free::*; |
169 | #[cfg (feature = "use_alloc" )] |
170 | mod combinations; |
171 | #[cfg (feature = "use_alloc" )] |
172 | mod combinations_with_replacement; |
173 | mod concat_impl; |
174 | mod cons_tuples_impl; |
175 | mod diff; |
176 | #[cfg (feature = "use_std" )] |
177 | mod duplicates_impl; |
178 | mod exactly_one_err; |
179 | #[cfg (feature = "use_alloc" )] |
180 | mod extrema_set; |
181 | mod flatten_ok; |
182 | mod format; |
183 | #[cfg (feature = "use_alloc" )] |
184 | mod group_map; |
185 | #[cfg (feature = "use_alloc" )] |
186 | mod groupbylazy; |
187 | #[cfg (feature = "use_std" )] |
188 | mod grouping_map; |
189 | mod intersperse; |
190 | #[cfg (feature = "use_alloc" )] |
191 | mod k_smallest; |
192 | #[cfg (feature = "use_alloc" )] |
193 | mod kmerge_impl; |
194 | #[cfg (feature = "use_alloc" )] |
195 | mod lazy_buffer; |
196 | mod merge_join; |
197 | mod minmax; |
198 | #[cfg (feature = "use_alloc" )] |
199 | mod multipeek_impl; |
200 | mod pad_tail; |
201 | #[cfg (feature = "use_alloc" )] |
202 | mod peek_nth; |
203 | mod peeking_take_while; |
204 | #[cfg (feature = "use_alloc" )] |
205 | mod permutations; |
206 | #[cfg (feature = "use_alloc" )] |
207 | mod powerset; |
208 | mod process_results_impl; |
209 | #[cfg (feature = "use_alloc" )] |
210 | mod put_back_n_impl; |
211 | #[cfg (feature = "use_alloc" )] |
212 | mod rciter_impl; |
213 | mod repeatn; |
214 | mod size_hint; |
215 | mod sources; |
216 | mod take_while_inclusive; |
217 | #[cfg (feature = "use_alloc" )] |
218 | mod tee; |
219 | mod tuple_impl; |
220 | #[cfg (feature = "use_std" )] |
221 | mod unique_impl; |
222 | mod unziptuple; |
223 | mod with_position; |
224 | mod zip_eq_impl; |
225 | mod zip_longest; |
226 | mod ziptuple; |
227 | |
228 | #[macro_export ] |
229 | /// Create an iterator over the “cartesian product” of iterators. |
230 | /// |
231 | /// Iterator element type is like `(A, B, ..., E)` if formed |
232 | /// from iterators `(I, J, ..., M)` with element types `I::Item = A`, `J::Item = B`, etc. |
233 | /// |
234 | /// ``` |
235 | /// # use itertools::iproduct; |
236 | /// # |
237 | /// # fn main() { |
238 | /// // Iterate over the coordinates of a 4 x 4 x 4 grid |
239 | /// // from (0, 0, 0), (0, 0, 1), .., (0, 1, 0), (0, 1, 1), .. etc until (3, 3, 3) |
240 | /// for (i, j, k) in iproduct!(0..4, 0..4, 0..4) { |
241 | /// // .. |
242 | /// } |
243 | /// # } |
244 | /// ``` |
245 | macro_rules! iproduct { |
246 | (@flatten $I:expr,) => ( |
247 | $I |
248 | ); |
249 | (@flatten $I:expr, $J:expr, $($K:expr,)*) => ( |
250 | $crate::iproduct!(@flatten $crate::cons_tuples($crate::iproduct!($I, $J)), $($K,)*) |
251 | ); |
252 | ($I:expr) => ( |
253 | $crate::__std_iter::IntoIterator::into_iter($I) |
254 | ); |
255 | ($I:expr, $J:expr) => ( |
256 | $crate::Itertools::cartesian_product($crate::iproduct!($I), $crate::iproduct!($J)) |
257 | ); |
258 | ($I:expr, $J:expr, $($K:expr),+) => ( |
259 | $crate::iproduct!(@flatten $crate::iproduct!($I, $J), $($K,)+) |
260 | ); |
261 | } |
262 | |
263 | #[macro_export ] |
264 | /// Create an iterator running multiple iterators in lockstep. |
265 | /// |
266 | /// The `izip!` iterator yields elements until any subiterator |
267 | /// returns `None`. |
268 | /// |
269 | /// This is a version of the standard ``.zip()`` that's supporting more than |
270 | /// two iterators. The iterator element type is a tuple with one element |
271 | /// from each of the input iterators. Just like ``.zip()``, the iteration stops |
272 | /// when the shortest of the inputs reaches its end. |
273 | /// |
274 | /// **Note:** The result of this macro is in the general case an iterator |
275 | /// composed of repeated `.zip()` and a `.map()`; it has an anonymous type. |
276 | /// The special cases of one and two arguments produce the equivalent of |
277 | /// `$a.into_iter()` and `$a.into_iter().zip($b)` respectively. |
278 | /// |
279 | /// Prefer this macro `izip!()` over [`multizip`] for the performance benefits |
280 | /// of using the standard library `.zip()`. |
281 | /// |
282 | /// ``` |
283 | /// # use itertools::izip; |
284 | /// # |
285 | /// # fn main() { |
286 | /// |
287 | /// // iterate over three sequences side-by-side |
288 | /// let mut results = [0, 0, 0, 0]; |
289 | /// let inputs = [3, 7, 9, 6]; |
290 | /// |
291 | /// for (r, index, input) in izip!(&mut results, 0..10, &inputs) { |
292 | /// *r = index * 10 + input; |
293 | /// } |
294 | /// |
295 | /// assert_eq!(results, [0 + 3, 10 + 7, 29, 36]); |
296 | /// # } |
297 | /// ``` |
298 | macro_rules! izip { |
299 | // @closure creates a tuple-flattening closure for .map() call. usage: |
300 | // @closure partial_pattern => partial_tuple , rest , of , iterators |
301 | // eg. izip!( @closure ((a, b), c) => (a, b, c) , dd , ee ) |
302 | ( @closure $p:pat => $tup:expr ) => { |
303 | |$p| $tup |
304 | }; |
305 | |
306 | // The "b" identifier is a different identifier on each recursion level thanks to hygiene. |
307 | ( @closure $p:pat => ( $($tup:tt)* ) , $_iter:expr $( , $tail:expr )* ) => { |
308 | $crate::izip!(@closure ($p, b) => ( $($tup)*, b ) $( , $tail )*) |
309 | }; |
310 | |
311 | // unary |
312 | ($first:expr $(,)*) => { |
313 | $crate::__std_iter::IntoIterator::into_iter($first) |
314 | }; |
315 | |
316 | // binary |
317 | ($first:expr, $second:expr $(,)*) => { |
318 | $crate::izip!($first) |
319 | .zip($second) |
320 | }; |
321 | |
322 | // n-ary where n > 2 |
323 | ( $first:expr $( , $rest:expr )* $(,)* ) => { |
324 | $crate::izip!($first) |
325 | $( |
326 | .zip($rest) |
327 | )* |
328 | .map( |
329 | $crate::izip!(@closure a => (a) $( , $rest )*) |
330 | ) |
331 | }; |
332 | } |
333 | |
334 | #[macro_export ] |
335 | /// [Chain][`chain`] zero or more iterators together into one sequence. |
336 | /// |
337 | /// The comma-separated arguments must implement [`IntoIterator`]. |
338 | /// The final argument may be followed by a trailing comma. |
339 | /// |
340 | /// [`chain`]: Iterator::chain |
341 | /// |
342 | /// # Examples |
343 | /// |
344 | /// Empty invocations of `chain!` expand to an invocation of [`std::iter::empty`]: |
345 | /// ``` |
346 | /// use std::iter; |
347 | /// use itertools::chain; |
348 | /// |
349 | /// let _: iter::Empty<()> = chain!(); |
350 | /// let _: iter::Empty<i8> = chain!(); |
351 | /// ``` |
352 | /// |
353 | /// Invocations of `chain!` with one argument expand to [`arg.into_iter()`](IntoIterator): |
354 | /// ``` |
355 | /// use std::{ops::Range, slice}; |
356 | /// use itertools::chain; |
357 | /// let _: <Range<_> as IntoIterator>::IntoIter = chain!((2..6),); // trailing comma optional! |
358 | /// let _: <&[_] as IntoIterator>::IntoIter = chain!(&[2, 3, 4]); |
359 | /// ``` |
360 | /// |
361 | /// Invocations of `chain!` with multiple arguments [`.into_iter()`](IntoIterator) each |
362 | /// argument, and then [`chain`] them together: |
363 | /// ``` |
364 | /// use std::{iter::*, ops::Range, slice}; |
365 | /// use itertools::{assert_equal, chain}; |
366 | /// |
367 | /// // e.g., this: |
368 | /// let with_macro: Chain<Chain<Once<_>, Take<Repeat<_>>>, slice::Iter<_>> = |
369 | /// chain![once(&0), repeat(&1).take(2), &[2, 3, 5],]; |
370 | /// |
371 | /// // ...is equivalent to this: |
372 | /// let with_method: Chain<Chain<Once<_>, Take<Repeat<_>>>, slice::Iter<_>> = |
373 | /// once(&0) |
374 | /// .chain(repeat(&1).take(2)) |
375 | /// .chain(&[2, 3, 5]); |
376 | /// |
377 | /// assert_equal(with_macro, with_method); |
378 | /// ``` |
379 | macro_rules! chain { |
380 | () => { |
381 | core::iter::empty() |
382 | }; |
383 | ($first:expr $(, $rest:expr )* $(,)?) => { |
384 | { |
385 | let iter = core::iter::IntoIterator::into_iter($first); |
386 | $( |
387 | let iter = |
388 | core::iter::Iterator::chain( |
389 | iter, |
390 | core::iter::IntoIterator::into_iter($rest)); |
391 | )* |
392 | iter |
393 | } |
394 | }; |
395 | } |
396 | |
397 | /// An [`Iterator`] blanket implementation that provides extra adaptors and |
398 | /// methods. |
399 | /// |
400 | /// This trait defines a number of methods. They are divided into two groups: |
401 | /// |
402 | /// * *Adaptors* take an iterator and parameter as input, and return |
403 | /// a new iterator value. These are listed first in the trait. An example |
404 | /// of an adaptor is [`.interleave()`](Itertools::interleave) |
405 | /// |
406 | /// * *Regular methods* are those that don't return iterators and instead |
407 | /// return a regular value of some other kind. |
408 | /// [`.next_tuple()`](Itertools::next_tuple) is an example and the first regular |
409 | /// method in the list. |
410 | pub trait Itertools: Iterator { |
411 | // adaptors |
412 | |
413 | /// Alternate elements from two iterators until both have run out. |
414 | /// |
415 | /// Iterator element type is `Self::Item`. |
416 | /// |
417 | /// This iterator is *fused*. |
418 | /// |
419 | /// ``` |
420 | /// use itertools::Itertools; |
421 | /// |
422 | /// let it = (1..7).interleave(vec![-1, -2]); |
423 | /// itertools::assert_equal(it, vec![1, -1, 2, -2, 3, 4, 5, 6]); |
424 | /// ``` |
425 | fn interleave<J>(self, other: J) -> Interleave<Self, J::IntoIter> |
426 | where |
427 | J: IntoIterator<Item = Self::Item>, |
428 | Self: Sized, |
429 | { |
430 | interleave(self, other) |
431 | } |
432 | |
433 | /// Alternate elements from two iterators until at least one of them has run |
434 | /// out. |
435 | /// |
436 | /// Iterator element type is `Self::Item`. |
437 | /// |
438 | /// ``` |
439 | /// use itertools::Itertools; |
440 | /// |
441 | /// let it = (1..7).interleave_shortest(vec![-1, -2]); |
442 | /// itertools::assert_equal(it, vec![1, -1, 2, -2, 3]); |
443 | /// ``` |
444 | fn interleave_shortest<J>(self, other: J) -> InterleaveShortest<Self, J::IntoIter> |
445 | where |
446 | J: IntoIterator<Item = Self::Item>, |
447 | Self: Sized, |
448 | { |
449 | adaptors::interleave_shortest(self, other.into_iter()) |
450 | } |
451 | |
452 | /// An iterator adaptor to insert a particular value |
453 | /// between each element of the adapted iterator. |
454 | /// |
455 | /// Iterator element type is `Self::Item`. |
456 | /// |
457 | /// This iterator is *fused*. |
458 | /// |
459 | /// ``` |
460 | /// use itertools::Itertools; |
461 | /// |
462 | /// itertools::assert_equal((0..3).intersperse(8), vec![0, 8, 1, 8, 2]); |
463 | /// ``` |
464 | fn intersperse(self, element: Self::Item) -> Intersperse<Self> |
465 | where |
466 | Self: Sized, |
467 | Self::Item: Clone, |
468 | { |
469 | intersperse::intersperse(self, element) |
470 | } |
471 | |
472 | /// An iterator adaptor to insert a particular value created by a function |
473 | /// between each element of the adapted iterator. |
474 | /// |
475 | /// Iterator element type is `Self::Item`. |
476 | /// |
477 | /// This iterator is *fused*. |
478 | /// |
479 | /// ``` |
480 | /// use itertools::Itertools; |
481 | /// |
482 | /// let mut i = 10; |
483 | /// itertools::assert_equal((0..3).intersperse_with(|| { i -= 1; i }), vec![0, 9, 1, 8, 2]); |
484 | /// assert_eq!(i, 8); |
485 | /// ``` |
486 | fn intersperse_with<F>(self, element: F) -> IntersperseWith<Self, F> |
487 | where |
488 | Self: Sized, |
489 | F: FnMut() -> Self::Item, |
490 | { |
491 | intersperse::intersperse_with(self, element) |
492 | } |
493 | |
494 | /// Create an iterator which iterates over both this and the specified |
495 | /// iterator simultaneously, yielding pairs of two optional elements. |
496 | /// |
497 | /// This iterator is *fused*. |
498 | /// |
499 | /// As long as neither input iterator is exhausted yet, it yields two values |
500 | /// via `EitherOrBoth::Both`. |
501 | /// |
502 | /// When the parameter iterator is exhausted, it only yields a value from the |
503 | /// `self` iterator via `EitherOrBoth::Left`. |
504 | /// |
505 | /// When the `self` iterator is exhausted, it only yields a value from the |
506 | /// parameter iterator via `EitherOrBoth::Right`. |
507 | /// |
508 | /// When both iterators return `None`, all further invocations of `.next()` |
509 | /// will return `None`. |
510 | /// |
511 | /// Iterator element type is |
512 | /// [`EitherOrBoth<Self::Item, J::Item>`](EitherOrBoth). |
513 | /// |
514 | /// ```rust |
515 | /// use itertools::EitherOrBoth::{Both, Right}; |
516 | /// use itertools::Itertools; |
517 | /// let it = (0..1).zip_longest(1..3); |
518 | /// itertools::assert_equal(it, vec![Both(0, 1), Right(2)]); |
519 | /// ``` |
520 | #[inline ] |
521 | fn zip_longest<J>(self, other: J) -> ZipLongest<Self, J::IntoIter> |
522 | where |
523 | J: IntoIterator, |
524 | Self: Sized, |
525 | { |
526 | zip_longest::zip_longest(self, other.into_iter()) |
527 | } |
528 | |
529 | /// Create an iterator which iterates over both this and the specified |
530 | /// iterator simultaneously, yielding pairs of elements. |
531 | /// |
532 | /// **Panics** if the iterators reach an end and they are not of equal |
533 | /// lengths. |
534 | #[inline ] |
535 | fn zip_eq<J>(self, other: J) -> ZipEq<Self, J::IntoIter> |
536 | where |
537 | J: IntoIterator, |
538 | Self: Sized, |
539 | { |
540 | zip_eq(self, other) |
541 | } |
542 | |
543 | /// A “meta iterator adaptor”. Its closure receives a reference to the |
544 | /// iterator and may pick off as many elements as it likes, to produce the |
545 | /// next iterator element. |
546 | /// |
547 | /// Iterator element type is `B`. |
548 | /// |
549 | /// ``` |
550 | /// use itertools::Itertools; |
551 | /// |
552 | /// // An adaptor that gathers elements in pairs |
553 | /// let pit = (0..4).batching(|it| { |
554 | /// match it.next() { |
555 | /// None => None, |
556 | /// Some(x) => match it.next() { |
557 | /// None => None, |
558 | /// Some(y) => Some((x, y)), |
559 | /// } |
560 | /// } |
561 | /// }); |
562 | /// |
563 | /// itertools::assert_equal(pit, vec![(0, 1), (2, 3)]); |
564 | /// ``` |
565 | /// |
566 | fn batching<B, F>(self, f: F) -> Batching<Self, F> |
567 | where |
568 | F: FnMut(&mut Self) -> Option<B>, |
569 | Self: Sized, |
570 | { |
571 | adaptors::batching(self, f) |
572 | } |
573 | |
574 | /// Return an *iterable* that can group iterator elements. |
575 | /// Consecutive elements that map to the same key (“runs”), are assigned |
576 | /// to the same group. |
577 | /// |
578 | /// `GroupBy` is the storage for the lazy grouping operation. |
579 | /// |
580 | /// If the groups are consumed in order, or if each group's iterator is |
581 | /// dropped without keeping it around, then `GroupBy` uses no |
582 | /// allocations. It needs allocations only if several group iterators |
583 | /// are alive at the same time. |
584 | /// |
585 | /// This type implements [`IntoIterator`] (it is **not** an iterator |
586 | /// itself), because the group iterators need to borrow from this |
587 | /// value. It should be stored in a local variable or temporary and |
588 | /// iterated. |
589 | /// |
590 | /// Iterator element type is `(K, Group)`: the group's key and the |
591 | /// group iterator. |
592 | /// |
593 | /// ``` |
594 | /// use itertools::Itertools; |
595 | /// |
596 | /// // group data into runs of larger than zero or not. |
597 | /// let data = vec![1, 3, -2, -2, 1, 0, 1, 2]; |
598 | /// // groups: |---->|------>|--------->| |
599 | /// |
600 | /// // Note: The `&` is significant here, `GroupBy` is iterable |
601 | /// // only by reference. You can also call `.into_iter()` explicitly. |
602 | /// let mut data_grouped = Vec::new(); |
603 | /// for (key, group) in &data.into_iter().group_by(|elt| *elt >= 0) { |
604 | /// data_grouped.push((key, group.collect())); |
605 | /// } |
606 | /// assert_eq!(data_grouped, vec![(true, vec![1, 3]), (false, vec![-2, -2]), (true, vec![1, 0, 1, 2])]); |
607 | /// ``` |
608 | #[cfg (feature = "use_alloc" )] |
609 | fn group_by<K, F>(self, key: F) -> GroupBy<K, Self, F> |
610 | where |
611 | Self: Sized, |
612 | F: FnMut(&Self::Item) -> K, |
613 | K: PartialEq, |
614 | { |
615 | groupbylazy::new(self, key) |
616 | } |
617 | |
618 | /// Return an *iterable* that can chunk the iterator. |
619 | /// |
620 | /// Yield subiterators (chunks) that each yield a fixed number elements, |
621 | /// determined by `size`. The last chunk will be shorter if there aren't |
622 | /// enough elements. |
623 | /// |
624 | /// `IntoChunks` is based on `GroupBy`: it is iterable (implements |
625 | /// `IntoIterator`, **not** `Iterator`), and it only buffers if several |
626 | /// chunk iterators are alive at the same time. |
627 | /// |
628 | /// Iterator element type is `Chunk`, each chunk's iterator. |
629 | /// |
630 | /// **Panics** if `size` is 0. |
631 | /// |
632 | /// ``` |
633 | /// use itertools::Itertools; |
634 | /// |
635 | /// let data = vec![1, 1, 2, -2, 6, 0, 3, 1]; |
636 | /// //chunk size=3 |------->|-------->|--->| |
637 | /// |
638 | /// // Note: The `&` is significant here, `IntoChunks` is iterable |
639 | /// // only by reference. You can also call `.into_iter()` explicitly. |
640 | /// for chunk in &data.into_iter().chunks(3) { |
641 | /// // Check that the sum of each chunk is 4. |
642 | /// assert_eq!(4, chunk.sum()); |
643 | /// } |
644 | /// ``` |
645 | #[cfg (feature = "use_alloc" )] |
646 | fn chunks(self, size: usize) -> IntoChunks<Self> |
647 | where |
648 | Self: Sized, |
649 | { |
650 | assert!(size != 0); |
651 | groupbylazy::new_chunks(self, size) |
652 | } |
653 | |
654 | /// Return an iterator over all contiguous windows producing tuples of |
655 | /// a specific size (up to 12). |
656 | /// |
657 | /// `tuple_windows` clones the iterator elements so that they can be |
658 | /// part of successive windows, this makes it most suited for iterators |
659 | /// of references and other values that are cheap to copy. |
660 | /// |
661 | /// ``` |
662 | /// use itertools::Itertools; |
663 | /// let mut v = Vec::new(); |
664 | /// |
665 | /// // pairwise iteration |
666 | /// for (a, b) in (1..5).tuple_windows() { |
667 | /// v.push((a, b)); |
668 | /// } |
669 | /// assert_eq!(v, vec![(1, 2), (2, 3), (3, 4)]); |
670 | /// |
671 | /// let mut it = (1..5).tuple_windows(); |
672 | /// assert_eq!(Some((1, 2, 3)), it.next()); |
673 | /// assert_eq!(Some((2, 3, 4)), it.next()); |
674 | /// assert_eq!(None, it.next()); |
675 | /// |
676 | /// // this requires a type hint |
677 | /// let it = (1..5).tuple_windows::<(_, _, _)>(); |
678 | /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]); |
679 | /// |
680 | /// // you can also specify the complete type |
681 | /// use itertools::TupleWindows; |
682 | /// use std::ops::Range; |
683 | /// |
684 | /// let it: TupleWindows<Range<u32>, (u32, u32, u32)> = (1..5).tuple_windows(); |
685 | /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]); |
686 | /// ``` |
687 | fn tuple_windows<T>(self) -> TupleWindows<Self, T> |
688 | where |
689 | Self: Sized + Iterator<Item = T::Item>, |
690 | T: traits::HomogeneousTuple, |
691 | T::Item: Clone, |
692 | { |
693 | tuple_impl::tuple_windows(self) |
694 | } |
695 | |
696 | /// Return an iterator over all windows, wrapping back to the first |
697 | /// elements when the window would otherwise exceed the length of the |
698 | /// iterator, producing tuples of a specific size (up to 12). |
699 | /// |
700 | /// `circular_tuple_windows` clones the iterator elements so that they can be |
701 | /// part of successive windows, this makes it most suited for iterators |
702 | /// of references and other values that are cheap to copy. |
703 | /// |
704 | /// ``` |
705 | /// use itertools::Itertools; |
706 | /// let mut v = Vec::new(); |
707 | /// for (a, b) in (1..5).circular_tuple_windows() { |
708 | /// v.push((a, b)); |
709 | /// } |
710 | /// assert_eq!(v, vec![(1, 2), (2, 3), (3, 4), (4, 1)]); |
711 | /// |
712 | /// let mut it = (1..5).circular_tuple_windows(); |
713 | /// assert_eq!(Some((1, 2, 3)), it.next()); |
714 | /// assert_eq!(Some((2, 3, 4)), it.next()); |
715 | /// assert_eq!(Some((3, 4, 1)), it.next()); |
716 | /// assert_eq!(Some((4, 1, 2)), it.next()); |
717 | /// assert_eq!(None, it.next()); |
718 | /// |
719 | /// // this requires a type hint |
720 | /// let it = (1..5).circular_tuple_windows::<(_, _, _)>(); |
721 | /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4), (3, 4, 1), (4, 1, 2)]); |
722 | /// ``` |
723 | fn circular_tuple_windows<T>(self) -> CircularTupleWindows<Self, T> |
724 | where |
725 | Self: Sized + Clone + Iterator<Item = T::Item> + ExactSizeIterator, |
726 | T: tuple_impl::TupleCollect + Clone, |
727 | T::Item: Clone, |
728 | { |
729 | tuple_impl::circular_tuple_windows(self) |
730 | } |
731 | /// Return an iterator that groups the items in tuples of a specific size |
732 | /// (up to 12). |
733 | /// |
734 | /// See also the method [`.next_tuple()`](Itertools::next_tuple). |
735 | /// |
736 | /// ``` |
737 | /// use itertools::Itertools; |
738 | /// let mut v = Vec::new(); |
739 | /// for (a, b) in (1..5).tuples() { |
740 | /// v.push((a, b)); |
741 | /// } |
742 | /// assert_eq!(v, vec![(1, 2), (3, 4)]); |
743 | /// |
744 | /// let mut it = (1..7).tuples(); |
745 | /// assert_eq!(Some((1, 2, 3)), it.next()); |
746 | /// assert_eq!(Some((4, 5, 6)), it.next()); |
747 | /// assert_eq!(None, it.next()); |
748 | /// |
749 | /// // this requires a type hint |
750 | /// let it = (1..7).tuples::<(_, _, _)>(); |
751 | /// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]); |
752 | /// |
753 | /// // you can also specify the complete type |
754 | /// use itertools::Tuples; |
755 | /// use std::ops::Range; |
756 | /// |
757 | /// let it: Tuples<Range<u32>, (u32, u32, u32)> = (1..7).tuples(); |
758 | /// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]); |
759 | /// ``` |
760 | /// |
761 | /// See also [`Tuples::into_buffer`]. |
762 | fn tuples<T>(self) -> Tuples<Self, T> |
763 | where |
764 | Self: Sized + Iterator<Item = T::Item>, |
765 | T: traits::HomogeneousTuple, |
766 | { |
767 | tuple_impl::tuples(self) |
768 | } |
769 | |
770 | /// Split into an iterator pair that both yield all elements from |
771 | /// the original iterator. |
772 | /// |
773 | /// **Note:** If the iterator is clonable, prefer using that instead |
774 | /// of using this method. Cloning is likely to be more efficient. |
775 | /// |
776 | /// Iterator element type is `Self::Item`. |
777 | /// |
778 | /// ``` |
779 | /// use itertools::Itertools; |
780 | /// let xs = vec![0, 1, 2, 3]; |
781 | /// |
782 | /// let (mut t1, t2) = xs.into_iter().tee(); |
783 | /// itertools::assert_equal(t1.next(), Some(0)); |
784 | /// itertools::assert_equal(t2, 0..4); |
785 | /// itertools::assert_equal(t1, 1..4); |
786 | /// ``` |
787 | #[cfg (feature = "use_alloc" )] |
788 | fn tee(self) -> (Tee<Self>, Tee<Self>) |
789 | where |
790 | Self: Sized, |
791 | Self::Item: Clone, |
792 | { |
793 | tee::new(self) |
794 | } |
795 | |
796 | /// Return an iterator adaptor that steps `n` elements in the base iterator |
797 | /// for each iteration. |
798 | /// |
799 | /// The iterator steps by yielding the next element from the base iterator, |
800 | /// then skipping forward `n - 1` elements. |
801 | /// |
802 | /// Iterator element type is `Self::Item`. |
803 | /// |
804 | /// **Panics** if the step is 0. |
805 | /// |
806 | /// ``` |
807 | /// use itertools::Itertools; |
808 | /// |
809 | /// let it = (0..8).step(3); |
810 | /// itertools::assert_equal(it, vec![0, 3, 6]); |
811 | /// ``` |
812 | #[deprecated (note = "Use std .step_by() instead" , since = "0.8.0" )] |
813 | #[allow (deprecated)] |
814 | fn step(self, n: usize) -> Step<Self> |
815 | where |
816 | Self: Sized, |
817 | { |
818 | adaptors::step(self, n) |
819 | } |
820 | |
821 | /// Convert each item of the iterator using the [`Into`] trait. |
822 | /// |
823 | /// ```rust |
824 | /// use itertools::Itertools; |
825 | /// |
826 | /// (1i32..42i32).map_into::<f64>().collect_vec(); |
827 | /// ``` |
828 | fn map_into<R>(self) -> MapInto<Self, R> |
829 | where |
830 | Self: Sized, |
831 | Self::Item: Into<R>, |
832 | { |
833 | adaptors::map_into(self) |
834 | } |
835 | |
836 | /// See [`.map_ok()`](Itertools::map_ok). |
837 | #[deprecated (note = "Use .map_ok() instead" , since = "0.10.0" )] |
838 | fn map_results<F, T, U, E>(self, f: F) -> MapOk<Self, F> |
839 | where |
840 | Self: Iterator<Item = Result<T, E>> + Sized, |
841 | F: FnMut(T) -> U, |
842 | { |
843 | self.map_ok(f) |
844 | } |
845 | |
846 | /// Return an iterator adaptor that applies the provided closure |
847 | /// to every `Result::Ok` value. `Result::Err` values are |
848 | /// unchanged. |
849 | /// |
850 | /// ``` |
851 | /// use itertools::Itertools; |
852 | /// |
853 | /// let input = vec![Ok(41), Err(false), Ok(11)]; |
854 | /// let it = input.into_iter().map_ok(|i| i + 1); |
855 | /// itertools::assert_equal(it, vec![Ok(42), Err(false), Ok(12)]); |
856 | /// ``` |
857 | fn map_ok<F, T, U, E>(self, f: F) -> MapOk<Self, F> |
858 | where |
859 | Self: Iterator<Item = Result<T, E>> + Sized, |
860 | F: FnMut(T) -> U, |
861 | { |
862 | adaptors::map_ok(self, f) |
863 | } |
864 | |
865 | /// Return an iterator adaptor that filters every `Result::Ok` |
866 | /// value with the provided closure. `Result::Err` values are |
867 | /// unchanged. |
868 | /// |
869 | /// ``` |
870 | /// use itertools::Itertools; |
871 | /// |
872 | /// let input = vec![Ok(22), Err(false), Ok(11)]; |
873 | /// let it = input.into_iter().filter_ok(|&i| i > 20); |
874 | /// itertools::assert_equal(it, vec![Ok(22), Err(false)]); |
875 | /// ``` |
876 | fn filter_ok<F, T, E>(self, f: F) -> FilterOk<Self, F> |
877 | where |
878 | Self: Iterator<Item = Result<T, E>> + Sized, |
879 | F: FnMut(&T) -> bool, |
880 | { |
881 | adaptors::filter_ok(self, f) |
882 | } |
883 | |
884 | /// Return an iterator adaptor that filters and transforms every |
885 | /// `Result::Ok` value with the provided closure. `Result::Err` |
886 | /// values are unchanged. |
887 | /// |
888 | /// ``` |
889 | /// use itertools::Itertools; |
890 | /// |
891 | /// let input = vec![Ok(22), Err(false), Ok(11)]; |
892 | /// let it = input.into_iter().filter_map_ok(|i| if i > 20 { Some(i * 2) } else { None }); |
893 | /// itertools::assert_equal(it, vec![Ok(44), Err(false)]); |
894 | /// ``` |
895 | fn filter_map_ok<F, T, U, E>(self, f: F) -> FilterMapOk<Self, F> |
896 | where |
897 | Self: Iterator<Item = Result<T, E>> + Sized, |
898 | F: FnMut(T) -> Option<U>, |
899 | { |
900 | adaptors::filter_map_ok(self, f) |
901 | } |
902 | |
903 | /// Return an iterator adaptor that flattens every `Result::Ok` value into |
904 | /// a series of `Result::Ok` values. `Result::Err` values are unchanged. |
905 | /// |
906 | /// This is useful when you have some common error type for your crate and |
907 | /// need to propagate it upwards, but the `Result::Ok` case needs to be flattened. |
908 | /// |
909 | /// ``` |
910 | /// use itertools::Itertools; |
911 | /// |
912 | /// let input = vec![Ok(0..2), Err(false), Ok(2..4)]; |
913 | /// let it = input.iter().cloned().flatten_ok(); |
914 | /// itertools::assert_equal(it.clone(), vec![Ok(0), Ok(1), Err(false), Ok(2), Ok(3)]); |
915 | /// |
916 | /// // This can also be used to propagate errors when collecting. |
917 | /// let output_result: Result<Vec<i32>, bool> = it.collect(); |
918 | /// assert_eq!(output_result, Err(false)); |
919 | /// ``` |
920 | fn flatten_ok<T, E>(self) -> FlattenOk<Self, T, E> |
921 | where |
922 | Self: Iterator<Item = Result<T, E>> + Sized, |
923 | T: IntoIterator, |
924 | { |
925 | flatten_ok::flatten_ok(self) |
926 | } |
927 | |
928 | /// “Lift” a function of the values of the current iterator so as to process |
929 | /// an iterator of `Result` values instead. |
930 | /// |
931 | /// `processor` is a closure that receives an adapted version of the iterator |
932 | /// as the only argument — the adapted iterator produces elements of type `T`, |
933 | /// as long as the original iterator produces `Ok` values. |
934 | /// |
935 | /// If the original iterable produces an error at any point, the adapted |
936 | /// iterator ends and it will return the error iself. |
937 | /// |
938 | /// Otherwise, the return value from the closure is returned wrapped |
939 | /// inside `Ok`. |
940 | /// |
941 | /// # Example |
942 | /// |
943 | /// ``` |
944 | /// use itertools::Itertools; |
945 | /// |
946 | /// type Item = Result<i32, &'static str>; |
947 | /// |
948 | /// let first_values: Vec<Item> = vec![Ok(1), Ok(0), Ok(3)]; |
949 | /// let second_values: Vec<Item> = vec![Ok(2), Ok(1), Err("overflow" )]; |
950 | /// |
951 | /// // “Lift” the iterator .max() method to work on the Ok-values. |
952 | /// let first_max = first_values.into_iter().process_results(|iter| iter.max().unwrap_or(0)); |
953 | /// let second_max = second_values.into_iter().process_results(|iter| iter.max().unwrap_or(0)); |
954 | /// |
955 | /// assert_eq!(first_max, Ok(3)); |
956 | /// assert!(second_max.is_err()); |
957 | /// ``` |
958 | fn process_results<F, T, E, R>(self, processor: F) -> Result<R, E> |
959 | where |
960 | Self: Iterator<Item = Result<T, E>> + Sized, |
961 | F: FnOnce(ProcessResults<Self, E>) -> R, |
962 | { |
963 | process_results(self, processor) |
964 | } |
965 | |
966 | /// Return an iterator adaptor that merges the two base iterators in |
967 | /// ascending order. If both base iterators are sorted (ascending), the |
968 | /// result is sorted. |
969 | /// |
970 | /// Iterator element type is `Self::Item`. |
971 | /// |
972 | /// ``` |
973 | /// use itertools::Itertools; |
974 | /// |
975 | /// let a = (0..11).step_by(3); |
976 | /// let b = (0..11).step_by(5); |
977 | /// let it = a.merge(b); |
978 | /// itertools::assert_equal(it, vec![0, 0, 3, 5, 6, 9, 10]); |
979 | /// ``` |
980 | fn merge<J>(self, other: J) -> Merge<Self, J::IntoIter> |
981 | where |
982 | Self: Sized, |
983 | Self::Item: PartialOrd, |
984 | J: IntoIterator<Item = Self::Item>, |
985 | { |
986 | merge(self, other) |
987 | } |
988 | |
989 | /// Return an iterator adaptor that merges the two base iterators in order. |
990 | /// This is much like [`.merge()`](Itertools::merge) but allows for a custom ordering. |
991 | /// |
992 | /// This can be especially useful for sequences of tuples. |
993 | /// |
994 | /// Iterator element type is `Self::Item`. |
995 | /// |
996 | /// ``` |
997 | /// use itertools::Itertools; |
998 | /// |
999 | /// let a = (0..).zip("bc" .chars()); |
1000 | /// let b = (0..).zip("ad" .chars()); |
1001 | /// let it = a.merge_by(b, |x, y| x.1 <= y.1); |
1002 | /// itertools::assert_equal(it, vec![(0, 'a' ), (0, 'b' ), (1, 'c' ), (1, 'd' )]); |
1003 | /// ``` |
1004 | |
1005 | fn merge_by<J, F>(self, other: J, is_first: F) -> MergeBy<Self, J::IntoIter, F> |
1006 | where |
1007 | Self: Sized, |
1008 | J: IntoIterator<Item = Self::Item>, |
1009 | F: FnMut(&Self::Item, &Self::Item) -> bool, |
1010 | { |
1011 | merge_join::merge_by_new(self, other, is_first) |
1012 | } |
1013 | |
1014 | /// Create an iterator that merges items from both this and the specified |
1015 | /// iterator in ascending order. |
1016 | /// |
1017 | /// The function can either return an `Ordering` variant or a boolean. |
1018 | /// |
1019 | /// If `cmp_fn` returns `Ordering`, |
1020 | /// it chooses whether to pair elements based on the `Ordering` returned by the |
1021 | /// specified compare function. At any point, inspecting the tip of the |
1022 | /// iterators `I` and `J` as items `i` of type `I::Item` and `j` of type |
1023 | /// `J::Item` respectively, the resulting iterator will: |
1024 | /// |
1025 | /// - Emit `EitherOrBoth::Left(i)` when `i < j`, |
1026 | /// and remove `i` from its source iterator |
1027 | /// - Emit `EitherOrBoth::Right(j)` when `i > j`, |
1028 | /// and remove `j` from its source iterator |
1029 | /// - Emit `EitherOrBoth::Both(i, j)` when `i == j`, |
1030 | /// and remove both `i` and `j` from their respective source iterators |
1031 | /// |
1032 | /// ``` |
1033 | /// use itertools::Itertools; |
1034 | /// use itertools::EitherOrBoth::{Left, Right, Both}; |
1035 | /// |
1036 | /// let a = vec![0, 2, 4, 6, 1].into_iter(); |
1037 | /// let b = (0..10).step_by(3); |
1038 | /// |
1039 | /// itertools::assert_equal( |
1040 | /// a.merge_join_by(b, |i, j| i.cmp(j)), |
1041 | /// vec![Both(0, 0), Left(2), Right(3), Left(4), Both(6, 6), Left(1), Right(9)] |
1042 | /// ); |
1043 | /// ``` |
1044 | /// |
1045 | /// If `cmp_fn` returns `bool`, |
1046 | /// it chooses whether to pair elements based on the boolean returned by the |
1047 | /// specified function. At any point, inspecting the tip of the |
1048 | /// iterators `I` and `J` as items `i` of type `I::Item` and `j` of type |
1049 | /// `J::Item` respectively, the resulting iterator will: |
1050 | /// |
1051 | /// - Emit `Either::Left(i)` when `true`, |
1052 | /// and remove `i` from its source iterator |
1053 | /// - Emit `Either::Right(j)` when `false`, |
1054 | /// and remove `j` from its source iterator |
1055 | /// |
1056 | /// It is similar to the `Ordering` case if the first argument is considered |
1057 | /// "less" than the second argument. |
1058 | /// |
1059 | /// ``` |
1060 | /// use itertools::Itertools; |
1061 | /// use itertools::Either::{Left, Right}; |
1062 | /// |
1063 | /// let a = vec![0, 2, 4, 6, 1].into_iter(); |
1064 | /// let b = (0..10).step_by(3); |
1065 | /// |
1066 | /// itertools::assert_equal( |
1067 | /// a.merge_join_by(b, |i, j| i <= j), |
1068 | /// vec![Left(0), Right(0), Left(2), Right(3), Left(4), Left(6), Left(1), Right(6), Right(9)] |
1069 | /// ); |
1070 | /// ``` |
1071 | #[inline ] |
1072 | fn merge_join_by<J, F, T>(self, other: J, cmp_fn: F) -> MergeJoinBy<Self, J::IntoIter, F> |
1073 | where |
1074 | J: IntoIterator, |
1075 | F: FnMut(&Self::Item, &J::Item) -> T, |
1076 | Self: Sized, |
1077 | { |
1078 | merge_join_by(self, other, cmp_fn) |
1079 | } |
1080 | |
1081 | /// Return an iterator adaptor that flattens an iterator of iterators by |
1082 | /// merging them in ascending order. |
1083 | /// |
1084 | /// If all base iterators are sorted (ascending), the result is sorted. |
1085 | /// |
1086 | /// Iterator element type is `Self::Item`. |
1087 | /// |
1088 | /// ``` |
1089 | /// use itertools::Itertools; |
1090 | /// |
1091 | /// let a = (0..6).step_by(3); |
1092 | /// let b = (1..6).step_by(3); |
1093 | /// let c = (2..6).step_by(3); |
1094 | /// let it = vec![a, b, c].into_iter().kmerge(); |
1095 | /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5]); |
1096 | /// ``` |
1097 | #[cfg (feature = "use_alloc" )] |
1098 | fn kmerge(self) -> KMerge<<Self::Item as IntoIterator>::IntoIter> |
1099 | where |
1100 | Self: Sized, |
1101 | Self::Item: IntoIterator, |
1102 | <Self::Item as IntoIterator>::Item: PartialOrd, |
1103 | { |
1104 | kmerge(self) |
1105 | } |
1106 | |
1107 | /// Return an iterator adaptor that flattens an iterator of iterators by |
1108 | /// merging them according to the given closure. |
1109 | /// |
1110 | /// The closure `first` is called with two elements *a*, *b* and should |
1111 | /// return `true` if *a* is ordered before *b*. |
1112 | /// |
1113 | /// If all base iterators are sorted according to `first`, the result is |
1114 | /// sorted. |
1115 | /// |
1116 | /// Iterator element type is `Self::Item`. |
1117 | /// |
1118 | /// ``` |
1119 | /// use itertools::Itertools; |
1120 | /// |
1121 | /// let a = vec![-1f64, 2., 3., -5., 6., -7.]; |
1122 | /// let b = vec![0., 2., -4.]; |
1123 | /// let mut it = vec![a, b].into_iter().kmerge_by(|a, b| a.abs() < b.abs()); |
1124 | /// assert_eq!(it.next(), Some(0.)); |
1125 | /// assert_eq!(it.last(), Some(-7.)); |
1126 | /// ``` |
1127 | #[cfg (feature = "use_alloc" )] |
1128 | fn kmerge_by<F>(self, first: F) -> KMergeBy<<Self::Item as IntoIterator>::IntoIter, F> |
1129 | where |
1130 | Self: Sized, |
1131 | Self::Item: IntoIterator, |
1132 | F: FnMut(&<Self::Item as IntoIterator>::Item, &<Self::Item as IntoIterator>::Item) -> bool, |
1133 | { |
1134 | kmerge_by(self, first) |
1135 | } |
1136 | |
1137 | /// Return an iterator adaptor that iterates over the cartesian product of |
1138 | /// the element sets of two iterators `self` and `J`. |
1139 | /// |
1140 | /// Iterator element type is `(Self::Item, J::Item)`. |
1141 | /// |
1142 | /// ``` |
1143 | /// use itertools::Itertools; |
1144 | /// |
1145 | /// let it = (0..2).cartesian_product("αβ" .chars()); |
1146 | /// itertools::assert_equal(it, vec![(0, 'α' ), (0, 'β' ), (1, 'α' ), (1, 'β' )]); |
1147 | /// ``` |
1148 | fn cartesian_product<J>(self, other: J) -> Product<Self, J::IntoIter> |
1149 | where |
1150 | Self: Sized, |
1151 | Self::Item: Clone, |
1152 | J: IntoIterator, |
1153 | J::IntoIter: Clone, |
1154 | { |
1155 | adaptors::cartesian_product(self, other.into_iter()) |
1156 | } |
1157 | |
1158 | /// Return an iterator adaptor that iterates over the cartesian product of |
1159 | /// all subiterators returned by meta-iterator `self`. |
1160 | /// |
1161 | /// All provided iterators must yield the same `Item` type. To generate |
1162 | /// the product of iterators yielding multiple types, use the |
1163 | /// [`iproduct`] macro instead. |
1164 | /// |
1165 | /// |
1166 | /// The iterator element type is `Vec<T>`, where `T` is the iterator element |
1167 | /// of the subiterators. |
1168 | /// |
1169 | /// ``` |
1170 | /// use itertools::Itertools; |
1171 | /// let mut multi_prod = (0..3).map(|i| (i * 2)..(i * 2 + 2)) |
1172 | /// .multi_cartesian_product(); |
1173 | /// assert_eq!(multi_prod.next(), Some(vec![0, 2, 4])); |
1174 | /// assert_eq!(multi_prod.next(), Some(vec![0, 2, 5])); |
1175 | /// assert_eq!(multi_prod.next(), Some(vec![0, 3, 4])); |
1176 | /// assert_eq!(multi_prod.next(), Some(vec![0, 3, 5])); |
1177 | /// assert_eq!(multi_prod.next(), Some(vec![1, 2, 4])); |
1178 | /// assert_eq!(multi_prod.next(), Some(vec![1, 2, 5])); |
1179 | /// assert_eq!(multi_prod.next(), Some(vec![1, 3, 4])); |
1180 | /// assert_eq!(multi_prod.next(), Some(vec![1, 3, 5])); |
1181 | /// assert_eq!(multi_prod.next(), None); |
1182 | /// ``` |
1183 | #[cfg (feature = "use_alloc" )] |
1184 | fn multi_cartesian_product(self) -> MultiProduct<<Self::Item as IntoIterator>::IntoIter> |
1185 | where |
1186 | Self: Sized, |
1187 | Self::Item: IntoIterator, |
1188 | <Self::Item as IntoIterator>::IntoIter: Clone, |
1189 | <Self::Item as IntoIterator>::Item: Clone, |
1190 | { |
1191 | adaptors::multi_cartesian_product(self) |
1192 | } |
1193 | |
1194 | /// Return an iterator adaptor that uses the passed-in closure to |
1195 | /// optionally merge together consecutive elements. |
1196 | /// |
1197 | /// The closure `f` is passed two elements, `previous` and `current` and may |
1198 | /// return either (1) `Ok(combined)` to merge the two values or |
1199 | /// (2) `Err((previous', current'))` to indicate they can't be merged. |
1200 | /// In (2), the value `previous'` is emitted by the iterator. |
1201 | /// Either (1) `combined` or (2) `current'` becomes the previous value |
1202 | /// when coalesce continues with the next pair of elements to merge. The |
1203 | /// value that remains at the end is also emitted by the iterator. |
1204 | /// |
1205 | /// Iterator element type is `Self::Item`. |
1206 | /// |
1207 | /// This iterator is *fused*. |
1208 | /// |
1209 | /// ``` |
1210 | /// use itertools::Itertools; |
1211 | /// |
1212 | /// // sum same-sign runs together |
1213 | /// let data = vec![-1., -2., -3., 3., 1., 0., -1.]; |
1214 | /// itertools::assert_equal(data.into_iter().coalesce(|x, y| |
1215 | /// if (x >= 0.) == (y >= 0.) { |
1216 | /// Ok(x + y) |
1217 | /// } else { |
1218 | /// Err((x, y)) |
1219 | /// }), |
1220 | /// vec![-6., 4., -1.]); |
1221 | /// ``` |
1222 | fn coalesce<F>(self, f: F) -> Coalesce<Self, F> |
1223 | where |
1224 | Self: Sized, |
1225 | F: FnMut(Self::Item, Self::Item) -> Result<Self::Item, (Self::Item, Self::Item)>, |
1226 | { |
1227 | adaptors::coalesce(self, f) |
1228 | } |
1229 | |
1230 | /// Remove duplicates from sections of consecutive identical elements. |
1231 | /// If the iterator is sorted, all elements will be unique. |
1232 | /// |
1233 | /// Iterator element type is `Self::Item`. |
1234 | /// |
1235 | /// This iterator is *fused*. |
1236 | /// |
1237 | /// ``` |
1238 | /// use itertools::Itertools; |
1239 | /// |
1240 | /// let data = vec![1., 1., 2., 3., 3., 2., 2.]; |
1241 | /// itertools::assert_equal(data.into_iter().dedup(), |
1242 | /// vec![1., 2., 3., 2.]); |
1243 | /// ``` |
1244 | fn dedup(self) -> Dedup<Self> |
1245 | where |
1246 | Self: Sized, |
1247 | Self::Item: PartialEq, |
1248 | { |
1249 | adaptors::dedup(self) |
1250 | } |
1251 | |
1252 | /// Remove duplicates from sections of consecutive identical elements, |
1253 | /// determining equality using a comparison function. |
1254 | /// If the iterator is sorted, all elements will be unique. |
1255 | /// |
1256 | /// Iterator element type is `Self::Item`. |
1257 | /// |
1258 | /// This iterator is *fused*. |
1259 | /// |
1260 | /// ``` |
1261 | /// use itertools::Itertools; |
1262 | /// |
1263 | /// let data = vec![(0, 1.), (1, 1.), (0, 2.), (0, 3.), (1, 3.), (1, 2.), (2, 2.)]; |
1264 | /// itertools::assert_equal(data.into_iter().dedup_by(|x, y| x.1 == y.1), |
1265 | /// vec![(0, 1.), (0, 2.), (0, 3.), (1, 2.)]); |
1266 | /// ``` |
1267 | fn dedup_by<Cmp>(self, cmp: Cmp) -> DedupBy<Self, Cmp> |
1268 | where |
1269 | Self: Sized, |
1270 | Cmp: FnMut(&Self::Item, &Self::Item) -> bool, |
1271 | { |
1272 | adaptors::dedup_by(self, cmp) |
1273 | } |
1274 | |
1275 | /// Remove duplicates from sections of consecutive identical elements, while keeping a count of |
1276 | /// how many repeated elements were present. |
1277 | /// If the iterator is sorted, all elements will be unique. |
1278 | /// |
1279 | /// Iterator element type is `(usize, Self::Item)`. |
1280 | /// |
1281 | /// This iterator is *fused*. |
1282 | /// |
1283 | /// ``` |
1284 | /// use itertools::Itertools; |
1285 | /// |
1286 | /// let data = vec!['a' , 'a' , 'b' , 'c' , 'c' , 'b' , 'b' ]; |
1287 | /// itertools::assert_equal(data.into_iter().dedup_with_count(), |
1288 | /// vec![(2, 'a' ), (1, 'b' ), (2, 'c' ), (2, 'b' )]); |
1289 | /// ``` |
1290 | fn dedup_with_count(self) -> DedupWithCount<Self> |
1291 | where |
1292 | Self: Sized, |
1293 | { |
1294 | adaptors::dedup_with_count(self) |
1295 | } |
1296 | |
1297 | /// Remove duplicates from sections of consecutive identical elements, while keeping a count of |
1298 | /// how many repeated elements were present. |
1299 | /// This will determine equality using a comparison function. |
1300 | /// If the iterator is sorted, all elements will be unique. |
1301 | /// |
1302 | /// Iterator element type is `(usize, Self::Item)`. |
1303 | /// |
1304 | /// This iterator is *fused*. |
1305 | /// |
1306 | /// ``` |
1307 | /// use itertools::Itertools; |
1308 | /// |
1309 | /// let data = vec![(0, 'a' ), (1, 'a' ), (0, 'b' ), (0, 'c' ), (1, 'c' ), (1, 'b' ), (2, 'b' )]; |
1310 | /// itertools::assert_equal(data.into_iter().dedup_by_with_count(|x, y| x.1 == y.1), |
1311 | /// vec![(2, (0, 'a' )), (1, (0, 'b' )), (2, (0, 'c' )), (2, (1, 'b' ))]); |
1312 | /// ``` |
1313 | fn dedup_by_with_count<Cmp>(self, cmp: Cmp) -> DedupByWithCount<Self, Cmp> |
1314 | where |
1315 | Self: Sized, |
1316 | Cmp: FnMut(&Self::Item, &Self::Item) -> bool, |
1317 | { |
1318 | adaptors::dedup_by_with_count(self, cmp) |
1319 | } |
1320 | |
1321 | /// Return an iterator adaptor that produces elements that appear more than once during the |
1322 | /// iteration. Duplicates are detected using hash and equality. |
1323 | /// |
1324 | /// The iterator is stable, returning the duplicate items in the order in which they occur in |
1325 | /// the adapted iterator. Each duplicate item is returned exactly once. If an item appears more |
1326 | /// than twice, the second item is the item retained and the rest are discarded. |
1327 | /// |
1328 | /// ``` |
1329 | /// use itertools::Itertools; |
1330 | /// |
1331 | /// let data = vec![10, 20, 30, 20, 40, 10, 50]; |
1332 | /// itertools::assert_equal(data.into_iter().duplicates(), |
1333 | /// vec![20, 10]); |
1334 | /// ``` |
1335 | #[cfg (feature = "use_std" )] |
1336 | fn duplicates(self) -> Duplicates<Self> |
1337 | where |
1338 | Self: Sized, |
1339 | Self::Item: Eq + Hash, |
1340 | { |
1341 | duplicates_impl::duplicates(self) |
1342 | } |
1343 | |
1344 | /// Return an iterator adaptor that produces elements that appear more than once during the |
1345 | /// iteration. Duplicates are detected using hash and equality. |
1346 | /// |
1347 | /// Duplicates are detected by comparing the key they map to with the keying function `f` by |
1348 | /// hash and equality. The keys are stored in a hash map in the iterator. |
1349 | /// |
1350 | /// The iterator is stable, returning the duplicate items in the order in which they occur in |
1351 | /// the adapted iterator. Each duplicate item is returned exactly once. If an item appears more |
1352 | /// than twice, the second item is the item retained and the rest are discarded. |
1353 | /// |
1354 | /// ``` |
1355 | /// use itertools::Itertools; |
1356 | /// |
1357 | /// let data = vec!["a" , "bb" , "aa" , "c" , "ccc" ]; |
1358 | /// itertools::assert_equal(data.into_iter().duplicates_by(|s| s.len()), |
1359 | /// vec!["aa" , "c" ]); |
1360 | /// ``` |
1361 | #[cfg (feature = "use_std" )] |
1362 | fn duplicates_by<V, F>(self, f: F) -> DuplicatesBy<Self, V, F> |
1363 | where |
1364 | Self: Sized, |
1365 | V: Eq + Hash, |
1366 | F: FnMut(&Self::Item) -> V, |
1367 | { |
1368 | duplicates_impl::duplicates_by(self, f) |
1369 | } |
1370 | |
1371 | /// Return an iterator adaptor that filters out elements that have |
1372 | /// already been produced once during the iteration. Duplicates |
1373 | /// are detected using hash and equality. |
1374 | /// |
1375 | /// Clones of visited elements are stored in a hash set in the |
1376 | /// iterator. |
1377 | /// |
1378 | /// The iterator is stable, returning the non-duplicate items in the order |
1379 | /// in which they occur in the adapted iterator. In a set of duplicate |
1380 | /// items, the first item encountered is the item retained. |
1381 | /// |
1382 | /// ``` |
1383 | /// use itertools::Itertools; |
1384 | /// |
1385 | /// let data = vec![10, 20, 30, 20, 40, 10, 50]; |
1386 | /// itertools::assert_equal(data.into_iter().unique(), |
1387 | /// vec![10, 20, 30, 40, 50]); |
1388 | /// ``` |
1389 | #[cfg (feature = "use_std" )] |
1390 | fn unique(self) -> Unique<Self> |
1391 | where |
1392 | Self: Sized, |
1393 | Self::Item: Clone + Eq + Hash, |
1394 | { |
1395 | unique_impl::unique(self) |
1396 | } |
1397 | |
1398 | /// Return an iterator adaptor that filters out elements that have |
1399 | /// already been produced once during the iteration. |
1400 | /// |
1401 | /// Duplicates are detected by comparing the key they map to |
1402 | /// with the keying function `f` by hash and equality. |
1403 | /// The keys are stored in a hash set in the iterator. |
1404 | /// |
1405 | /// The iterator is stable, returning the non-duplicate items in the order |
1406 | /// in which they occur in the adapted iterator. In a set of duplicate |
1407 | /// items, the first item encountered is the item retained. |
1408 | /// |
1409 | /// ``` |
1410 | /// use itertools::Itertools; |
1411 | /// |
1412 | /// let data = vec!["a" , "bb" , "aa" , "c" , "ccc" ]; |
1413 | /// itertools::assert_equal(data.into_iter().unique_by(|s| s.len()), |
1414 | /// vec!["a" , "bb" , "ccc" ]); |
1415 | /// ``` |
1416 | #[cfg (feature = "use_std" )] |
1417 | fn unique_by<V, F>(self, f: F) -> UniqueBy<Self, V, F> |
1418 | where |
1419 | Self: Sized, |
1420 | V: Eq + Hash, |
1421 | F: FnMut(&Self::Item) -> V, |
1422 | { |
1423 | unique_impl::unique_by(self, f) |
1424 | } |
1425 | |
1426 | /// Return an iterator adaptor that borrows from this iterator and |
1427 | /// takes items while the closure `accept` returns `true`. |
1428 | /// |
1429 | /// This adaptor can only be used on iterators that implement `PeekingNext` |
1430 | /// like `.peekable()`, `put_back` and a few other collection iterators. |
1431 | /// |
1432 | /// The last and rejected element (first `false`) is still available when |
1433 | /// `peeking_take_while` is done. |
1434 | /// |
1435 | /// |
1436 | /// See also [`.take_while_ref()`](Itertools::take_while_ref) |
1437 | /// which is a similar adaptor. |
1438 | fn peeking_take_while<F>(&mut self, accept: F) -> PeekingTakeWhile<Self, F> |
1439 | where |
1440 | Self: Sized + PeekingNext, |
1441 | F: FnMut(&Self::Item) -> bool, |
1442 | { |
1443 | peeking_take_while::peeking_take_while(self, accept) |
1444 | } |
1445 | |
1446 | /// Return an iterator adaptor that borrows from a `Clone`-able iterator |
1447 | /// to only pick off elements while the predicate `accept` returns `true`. |
1448 | /// |
1449 | /// It uses the `Clone` trait to restore the original iterator so that the |
1450 | /// last and rejected element (first `false`) is still available when |
1451 | /// `take_while_ref` is done. |
1452 | /// |
1453 | /// ``` |
1454 | /// use itertools::Itertools; |
1455 | /// |
1456 | /// let mut hexadecimals = "0123456789abcdef" .chars(); |
1457 | /// |
1458 | /// let decimals = hexadecimals.take_while_ref(|c| c.is_numeric()) |
1459 | /// .collect::<String>(); |
1460 | /// assert_eq!(decimals, "0123456789" ); |
1461 | /// assert_eq!(hexadecimals.next(), Some('a' )); |
1462 | /// |
1463 | /// ``` |
1464 | fn take_while_ref<F>(&mut self, accept: F) -> TakeWhileRef<Self, F> |
1465 | where |
1466 | Self: Clone, |
1467 | F: FnMut(&Self::Item) -> bool, |
1468 | { |
1469 | adaptors::take_while_ref(self, accept) |
1470 | } |
1471 | |
1472 | /// Returns an iterator adaptor that consumes elements while the given |
1473 | /// predicate is `true`, *including* the element for which the predicate |
1474 | /// first returned `false`. |
1475 | /// |
1476 | /// The [`.take_while()`][std::iter::Iterator::take_while] adaptor is useful |
1477 | /// when you want items satisfying a predicate, but to know when to stop |
1478 | /// taking elements, we have to consume that first element that doesn't |
1479 | /// satisfy the predicate. This adaptor includes that element where |
1480 | /// [`.take_while()`][std::iter::Iterator::take_while] would drop it. |
1481 | /// |
1482 | /// The [`.take_while_ref()`][crate::Itertools::take_while_ref] adaptor |
1483 | /// serves a similar purpose, but this adaptor doesn't require [`Clone`]ing |
1484 | /// the underlying elements. |
1485 | /// |
1486 | /// ```rust |
1487 | /// # use itertools::Itertools; |
1488 | /// let items = vec![1, 2, 3, 4, 5]; |
1489 | /// let filtered: Vec<_> = items |
1490 | /// .into_iter() |
1491 | /// .take_while_inclusive(|&n| n % 3 != 0) |
1492 | /// .collect(); |
1493 | /// |
1494 | /// assert_eq!(filtered, vec![1, 2, 3]); |
1495 | /// ``` |
1496 | /// |
1497 | /// ```rust |
1498 | /// # use itertools::Itertools; |
1499 | /// let items = vec![1, 2, 3, 4, 5]; |
1500 | /// |
1501 | /// let take_while_inclusive_result: Vec<_> = items |
1502 | /// .iter() |
1503 | /// .copied() |
1504 | /// .take_while_inclusive(|&n| n % 3 != 0) |
1505 | /// .collect(); |
1506 | /// let take_while_result: Vec<_> = items |
1507 | /// .into_iter() |
1508 | /// .take_while(|&n| n % 3 != 0) |
1509 | /// .collect(); |
1510 | /// |
1511 | /// assert_eq!(take_while_inclusive_result, vec![1, 2, 3]); |
1512 | /// assert_eq!(take_while_result, vec![1, 2]); |
1513 | /// // both iterators have the same items remaining at this point---the 3 |
1514 | /// // is lost from the `take_while` vec |
1515 | /// ``` |
1516 | /// |
1517 | /// ```rust |
1518 | /// # use itertools::Itertools; |
1519 | /// #[derive(Debug, PartialEq)] |
1520 | /// struct NoCloneImpl(i32); |
1521 | /// |
1522 | /// let non_clonable_items: Vec<_> = vec![1, 2, 3, 4, 5] |
1523 | /// .into_iter() |
1524 | /// .map(NoCloneImpl) |
1525 | /// .collect(); |
1526 | /// let filtered: Vec<_> = non_clonable_items |
1527 | /// .into_iter() |
1528 | /// .take_while_inclusive(|n| n.0 % 3 != 0) |
1529 | /// .collect(); |
1530 | /// let expected: Vec<_> = vec![1, 2, 3].into_iter().map(NoCloneImpl).collect(); |
1531 | /// assert_eq!(filtered, expected); |
1532 | fn take_while_inclusive<F>(self, accept: F) -> TakeWhileInclusive<Self, F> |
1533 | where |
1534 | Self: Sized, |
1535 | F: FnMut(&Self::Item) -> bool, |
1536 | { |
1537 | take_while_inclusive::TakeWhileInclusive::new(self, accept) |
1538 | } |
1539 | |
1540 | /// Return an iterator adaptor that filters `Option<A>` iterator elements |
1541 | /// and produces `A`. Stops on the first `None` encountered. |
1542 | /// |
1543 | /// Iterator element type is `A`, the unwrapped element. |
1544 | /// |
1545 | /// ``` |
1546 | /// use itertools::Itertools; |
1547 | /// |
1548 | /// // List all hexadecimal digits |
1549 | /// itertools::assert_equal( |
1550 | /// (0..).map(|i| std::char::from_digit(i, 16)).while_some(), |
1551 | /// "0123456789abcdef" .chars()); |
1552 | /// |
1553 | /// ``` |
1554 | fn while_some<A>(self) -> WhileSome<Self> |
1555 | where |
1556 | Self: Sized + Iterator<Item = Option<A>>, |
1557 | { |
1558 | adaptors::while_some(self) |
1559 | } |
1560 | |
1561 | /// Return an iterator adaptor that iterates over the combinations of the |
1562 | /// elements from an iterator. |
1563 | /// |
1564 | /// Iterator element can be any homogeneous tuple of type `Self::Item` with |
1565 | /// size up to 12. |
1566 | /// |
1567 | /// ``` |
1568 | /// use itertools::Itertools; |
1569 | /// |
1570 | /// let mut v = Vec::new(); |
1571 | /// for (a, b) in (1..5).tuple_combinations() { |
1572 | /// v.push((a, b)); |
1573 | /// } |
1574 | /// assert_eq!(v, vec![(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]); |
1575 | /// |
1576 | /// let mut it = (1..5).tuple_combinations(); |
1577 | /// assert_eq!(Some((1, 2, 3)), it.next()); |
1578 | /// assert_eq!(Some((1, 2, 4)), it.next()); |
1579 | /// assert_eq!(Some((1, 3, 4)), it.next()); |
1580 | /// assert_eq!(Some((2, 3, 4)), it.next()); |
1581 | /// assert_eq!(None, it.next()); |
1582 | /// |
1583 | /// // this requires a type hint |
1584 | /// let it = (1..5).tuple_combinations::<(_, _, _)>(); |
1585 | /// itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]); |
1586 | /// |
1587 | /// // you can also specify the complete type |
1588 | /// use itertools::TupleCombinations; |
1589 | /// use std::ops::Range; |
1590 | /// |
1591 | /// let it: TupleCombinations<Range<u32>, (u32, u32, u32)> = (1..5).tuple_combinations(); |
1592 | /// itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]); |
1593 | /// ``` |
1594 | /// |
1595 | /// # Guarantees |
1596 | /// |
1597 | /// If the adapted iterator is deterministic, |
1598 | /// this iterator adapter yields items in a reliable order. |
1599 | fn tuple_combinations<T>(self) -> TupleCombinations<Self, T> |
1600 | where |
1601 | Self: Sized + Clone, |
1602 | Self::Item: Clone, |
1603 | T: adaptors::HasCombination<Self>, |
1604 | { |
1605 | adaptors::tuple_combinations(self) |
1606 | } |
1607 | |
1608 | /// Return an iterator adaptor that iterates over the `k`-length combinations of |
1609 | /// the elements from an iterator. |
1610 | /// |
1611 | /// Iterator element type is `Vec<Self::Item>`. The iterator produces a new Vec per iteration, |
1612 | /// and clones the iterator elements. |
1613 | /// |
1614 | /// ``` |
1615 | /// use itertools::Itertools; |
1616 | /// |
1617 | /// let it = (1..5).combinations(3); |
1618 | /// itertools::assert_equal(it, vec![ |
1619 | /// vec![1, 2, 3], |
1620 | /// vec![1, 2, 4], |
1621 | /// vec![1, 3, 4], |
1622 | /// vec![2, 3, 4], |
1623 | /// ]); |
1624 | /// ``` |
1625 | /// |
1626 | /// Note: Combinations does not take into account the equality of the iterated values. |
1627 | /// ``` |
1628 | /// use itertools::Itertools; |
1629 | /// |
1630 | /// let it = vec![1, 2, 2].into_iter().combinations(2); |
1631 | /// itertools::assert_equal(it, vec![ |
1632 | /// vec![1, 2], // Note: these are the same |
1633 | /// vec![1, 2], // Note: these are the same |
1634 | /// vec![2, 2], |
1635 | /// ]); |
1636 | /// ``` |
1637 | /// |
1638 | /// # Guarantees |
1639 | /// |
1640 | /// If the adapted iterator is deterministic, |
1641 | /// this iterator adapter yields items in a reliable order. |
1642 | #[cfg (feature = "use_alloc" )] |
1643 | fn combinations(self, k: usize) -> Combinations<Self> |
1644 | where |
1645 | Self: Sized, |
1646 | Self::Item: Clone, |
1647 | { |
1648 | combinations::combinations(self, k) |
1649 | } |
1650 | |
1651 | /// Return an iterator that iterates over the `k`-length combinations of |
1652 | /// the elements from an iterator, with replacement. |
1653 | /// |
1654 | /// Iterator element type is `Vec<Self::Item>`. The iterator produces a new Vec per iteration, |
1655 | /// and clones the iterator elements. |
1656 | /// |
1657 | /// ``` |
1658 | /// use itertools::Itertools; |
1659 | /// |
1660 | /// let it = (1..4).combinations_with_replacement(2); |
1661 | /// itertools::assert_equal(it, vec![ |
1662 | /// vec![1, 1], |
1663 | /// vec![1, 2], |
1664 | /// vec![1, 3], |
1665 | /// vec![2, 2], |
1666 | /// vec![2, 3], |
1667 | /// vec![3, 3], |
1668 | /// ]); |
1669 | /// ``` |
1670 | #[cfg (feature = "use_alloc" )] |
1671 | fn combinations_with_replacement(self, k: usize) -> CombinationsWithReplacement<Self> |
1672 | where |
1673 | Self: Sized, |
1674 | Self::Item: Clone, |
1675 | { |
1676 | combinations_with_replacement::combinations_with_replacement(self, k) |
1677 | } |
1678 | |
1679 | /// Return an iterator adaptor that iterates over all k-permutations of the |
1680 | /// elements from an iterator. |
1681 | /// |
1682 | /// Iterator element type is `Vec<Self::Item>` with length `k`. The iterator |
1683 | /// produces a new Vec per iteration, and clones the iterator elements. |
1684 | /// |
1685 | /// If `k` is greater than the length of the input iterator, the resultant |
1686 | /// iterator adaptor will be empty. |
1687 | /// |
1688 | /// If you are looking for permutations with replacements, |
1689 | /// use `repeat_n(iter, k).multi_cartesian_product()` instead. |
1690 | /// |
1691 | /// ``` |
1692 | /// use itertools::Itertools; |
1693 | /// |
1694 | /// let perms = (5..8).permutations(2); |
1695 | /// itertools::assert_equal(perms, vec![ |
1696 | /// vec![5, 6], |
1697 | /// vec![5, 7], |
1698 | /// vec![6, 5], |
1699 | /// vec![6, 7], |
1700 | /// vec![7, 5], |
1701 | /// vec![7, 6], |
1702 | /// ]); |
1703 | /// ``` |
1704 | /// |
1705 | /// Note: Permutations does not take into account the equality of the iterated values. |
1706 | /// |
1707 | /// ``` |
1708 | /// use itertools::Itertools; |
1709 | /// |
1710 | /// let it = vec![2, 2].into_iter().permutations(2); |
1711 | /// itertools::assert_equal(it, vec![ |
1712 | /// vec![2, 2], // Note: these are the same |
1713 | /// vec![2, 2], // Note: these are the same |
1714 | /// ]); |
1715 | /// ``` |
1716 | /// |
1717 | /// Note: The source iterator is collected lazily, and will not be |
1718 | /// re-iterated if the permutations adaptor is completed and re-iterated. |
1719 | #[cfg (feature = "use_alloc" )] |
1720 | fn permutations(self, k: usize) -> Permutations<Self> |
1721 | where |
1722 | Self: Sized, |
1723 | Self::Item: Clone, |
1724 | { |
1725 | permutations::permutations(self, k) |
1726 | } |
1727 | |
1728 | /// Return an iterator that iterates through the powerset of the elements from an |
1729 | /// iterator. |
1730 | /// |
1731 | /// Iterator element type is `Vec<Self::Item>`. The iterator produces a new `Vec` |
1732 | /// per iteration, and clones the iterator elements. |
1733 | /// |
1734 | /// The powerset of a set contains all subsets including the empty set and the full |
1735 | /// input set. A powerset has length _2^n_ where _n_ is the length of the input |
1736 | /// set. |
1737 | /// |
1738 | /// Each `Vec` produced by this iterator represents a subset of the elements |
1739 | /// produced by the source iterator. |
1740 | /// |
1741 | /// ``` |
1742 | /// use itertools::Itertools; |
1743 | /// |
1744 | /// let sets = (1..4).powerset().collect::<Vec<_>>(); |
1745 | /// itertools::assert_equal(sets, vec![ |
1746 | /// vec![], |
1747 | /// vec![1], |
1748 | /// vec![2], |
1749 | /// vec![3], |
1750 | /// vec![1, 2], |
1751 | /// vec![1, 3], |
1752 | /// vec![2, 3], |
1753 | /// vec![1, 2, 3], |
1754 | /// ]); |
1755 | /// ``` |
1756 | #[cfg (feature = "use_alloc" )] |
1757 | fn powerset(self) -> Powerset<Self> |
1758 | where |
1759 | Self: Sized, |
1760 | Self::Item: Clone, |
1761 | { |
1762 | powerset::powerset(self) |
1763 | } |
1764 | |
1765 | /// Return an iterator adaptor that pads the sequence to a minimum length of |
1766 | /// `min` by filling missing elements using a closure `f`. |
1767 | /// |
1768 | /// Iterator element type is `Self::Item`. |
1769 | /// |
1770 | /// ``` |
1771 | /// use itertools::Itertools; |
1772 | /// |
1773 | /// let it = (0..5).pad_using(10, |i| 2*i); |
1774 | /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 10, 12, 14, 16, 18]); |
1775 | /// |
1776 | /// let it = (0..10).pad_using(5, |i| 2*i); |
1777 | /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]); |
1778 | /// |
1779 | /// let it = (0..5).pad_using(10, |i| 2*i).rev(); |
1780 | /// itertools::assert_equal(it, vec![18, 16, 14, 12, 10, 4, 3, 2, 1, 0]); |
1781 | /// ``` |
1782 | fn pad_using<F>(self, min: usize, f: F) -> PadUsing<Self, F> |
1783 | where |
1784 | Self: Sized, |
1785 | F: FnMut(usize) -> Self::Item, |
1786 | { |
1787 | pad_tail::pad_using(self, min, f) |
1788 | } |
1789 | |
1790 | /// Return an iterator adaptor that combines each element with a `Position` to |
1791 | /// ease special-case handling of the first or last elements. |
1792 | /// |
1793 | /// Iterator element type is |
1794 | /// [`(Position, Self::Item)`](Position) |
1795 | /// |
1796 | /// ``` |
1797 | /// use itertools::{Itertools, Position}; |
1798 | /// |
1799 | /// let it = (0..4).with_position(); |
1800 | /// itertools::assert_equal(it, |
1801 | /// vec![(Position::First, 0), |
1802 | /// (Position::Middle, 1), |
1803 | /// (Position::Middle, 2), |
1804 | /// (Position::Last, 3)]); |
1805 | /// |
1806 | /// let it = (0..1).with_position(); |
1807 | /// itertools::assert_equal(it, vec![(Position::Only, 0)]); |
1808 | /// ``` |
1809 | fn with_position(self) -> WithPosition<Self> |
1810 | where |
1811 | Self: Sized, |
1812 | { |
1813 | with_position::with_position(self) |
1814 | } |
1815 | |
1816 | /// Return an iterator adaptor that yields the indices of all elements |
1817 | /// satisfying a predicate, counted from the start of the iterator. |
1818 | /// |
1819 | /// Equivalent to `iter.enumerate().filter(|(_, v)| predicate(*v)).map(|(i, _)| i)`. |
1820 | /// |
1821 | /// ``` |
1822 | /// use itertools::Itertools; |
1823 | /// |
1824 | /// let data = vec![1, 2, 3, 3, 4, 6, 7, 9]; |
1825 | /// itertools::assert_equal(data.iter().positions(|v| v % 2 == 0), vec![1, 4, 5]); |
1826 | /// |
1827 | /// itertools::assert_equal(data.iter().positions(|v| v % 2 == 1).rev(), vec![7, 6, 3, 2, 0]); |
1828 | /// ``` |
1829 | fn positions<P>(self, predicate: P) -> Positions<Self, P> |
1830 | where |
1831 | Self: Sized, |
1832 | P: FnMut(Self::Item) -> bool, |
1833 | { |
1834 | adaptors::positions(self, predicate) |
1835 | } |
1836 | |
1837 | /// Return an iterator adaptor that applies a mutating function |
1838 | /// to each element before yielding it. |
1839 | /// |
1840 | /// ``` |
1841 | /// use itertools::Itertools; |
1842 | /// |
1843 | /// let input = vec![vec![1], vec![3, 2, 1]]; |
1844 | /// let it = input.into_iter().update(|mut v| v.push(0)); |
1845 | /// itertools::assert_equal(it, vec![vec![1, 0], vec![3, 2, 1, 0]]); |
1846 | /// ``` |
1847 | fn update<F>(self, updater: F) -> Update<Self, F> |
1848 | where |
1849 | Self: Sized, |
1850 | F: FnMut(&mut Self::Item), |
1851 | { |
1852 | adaptors::update(self, updater) |
1853 | } |
1854 | |
1855 | // non-adaptor methods |
1856 | /// Advances the iterator and returns the next items grouped in a tuple of |
1857 | /// a specific size (up to 12). |
1858 | /// |
1859 | /// If there are enough elements to be grouped in a tuple, then the tuple is |
1860 | /// returned inside `Some`, otherwise `None` is returned. |
1861 | /// |
1862 | /// ``` |
1863 | /// use itertools::Itertools; |
1864 | /// |
1865 | /// let mut iter = 1..5; |
1866 | /// |
1867 | /// assert_eq!(Some((1, 2)), iter.next_tuple()); |
1868 | /// ``` |
1869 | fn next_tuple<T>(&mut self) -> Option<T> |
1870 | where |
1871 | Self: Sized + Iterator<Item = T::Item>, |
1872 | T: traits::HomogeneousTuple, |
1873 | { |
1874 | T::collect_from_iter_no_buf(self) |
1875 | } |
1876 | |
1877 | /// Collects all items from the iterator into a tuple of a specific size |
1878 | /// (up to 12). |
1879 | /// |
1880 | /// If the number of elements inside the iterator is **exactly** equal to |
1881 | /// the tuple size, then the tuple is returned inside `Some`, otherwise |
1882 | /// `None` is returned. |
1883 | /// |
1884 | /// ``` |
1885 | /// use itertools::Itertools; |
1886 | /// |
1887 | /// let iter = 1..3; |
1888 | /// |
1889 | /// if let Some((x, y)) = iter.collect_tuple() { |
1890 | /// assert_eq!((x, y), (1, 2)) |
1891 | /// } else { |
1892 | /// panic!("Expected two elements" ) |
1893 | /// } |
1894 | /// ``` |
1895 | fn collect_tuple<T>(mut self) -> Option<T> |
1896 | where |
1897 | Self: Sized + Iterator<Item = T::Item>, |
1898 | T: traits::HomogeneousTuple, |
1899 | { |
1900 | match self.next_tuple() { |
1901 | elt @ Some(_) => match self.next() { |
1902 | Some(_) => None, |
1903 | None => elt, |
1904 | }, |
1905 | _ => None, |
1906 | } |
1907 | } |
1908 | |
1909 | /// Find the position and value of the first element satisfying a predicate. |
1910 | /// |
1911 | /// The iterator is not advanced past the first element found. |
1912 | /// |
1913 | /// ``` |
1914 | /// use itertools::Itertools; |
1915 | /// |
1916 | /// let text = "Hα" ; |
1917 | /// assert_eq!(text.chars().find_position(|ch| ch.is_lowercase()), Some((1, 'α' ))); |
1918 | /// ``` |
1919 | fn find_position<P>(&mut self, mut pred: P) -> Option<(usize, Self::Item)> |
1920 | where |
1921 | P: FnMut(&Self::Item) -> bool, |
1922 | { |
1923 | self.enumerate().find(|(_, elt)| pred(elt)) |
1924 | } |
1925 | /// Find the value of the first element satisfying a predicate or return the last element, if any. |
1926 | /// |
1927 | /// The iterator is not advanced past the first element found. |
1928 | /// |
1929 | /// ``` |
1930 | /// use itertools::Itertools; |
1931 | /// |
1932 | /// let numbers = [1, 2, 3, 4]; |
1933 | /// assert_eq!(numbers.iter().find_or_last(|&&x| x > 5), Some(&4)); |
1934 | /// assert_eq!(numbers.iter().find_or_last(|&&x| x > 2), Some(&3)); |
1935 | /// assert_eq!(std::iter::empty::<i32>().find_or_last(|&x| x > 5), None); |
1936 | /// ``` |
1937 | fn find_or_last<P>(mut self, mut predicate: P) -> Option<Self::Item> |
1938 | where |
1939 | Self: Sized, |
1940 | P: FnMut(&Self::Item) -> bool, |
1941 | { |
1942 | let mut prev = None; |
1943 | self.find_map(|x| { |
1944 | if predicate(&x) { |
1945 | Some(x) |
1946 | } else { |
1947 | prev = Some(x); |
1948 | None |
1949 | } |
1950 | }) |
1951 | .or(prev) |
1952 | } |
1953 | /// Find the value of the first element satisfying a predicate or return the first element, if any. |
1954 | /// |
1955 | /// The iterator is not advanced past the first element found. |
1956 | /// |
1957 | /// ``` |
1958 | /// use itertools::Itertools; |
1959 | /// |
1960 | /// let numbers = [1, 2, 3, 4]; |
1961 | /// assert_eq!(numbers.iter().find_or_first(|&&x| x > 5), Some(&1)); |
1962 | /// assert_eq!(numbers.iter().find_or_first(|&&x| x > 2), Some(&3)); |
1963 | /// assert_eq!(std::iter::empty::<i32>().find_or_first(|&x| x > 5), None); |
1964 | /// ``` |
1965 | fn find_or_first<P>(mut self, mut predicate: P) -> Option<Self::Item> |
1966 | where |
1967 | Self: Sized, |
1968 | P: FnMut(&Self::Item) -> bool, |
1969 | { |
1970 | let first = self.next()?; |
1971 | Some(if predicate(&first) { |
1972 | first |
1973 | } else { |
1974 | self.find(|x| predicate(x)).unwrap_or(first) |
1975 | }) |
1976 | } |
1977 | /// Returns `true` if the given item is present in this iterator. |
1978 | /// |
1979 | /// This method is short-circuiting. If the given item is present in this |
1980 | /// iterator, this method will consume the iterator up-to-and-including |
1981 | /// the item. If the given item is not present in this iterator, the |
1982 | /// iterator will be exhausted. |
1983 | /// |
1984 | /// ``` |
1985 | /// use itertools::Itertools; |
1986 | /// |
1987 | /// #[derive(PartialEq, Debug)] |
1988 | /// enum Enum { A, B, C, D, E, } |
1989 | /// |
1990 | /// let mut iter = vec![Enum::A, Enum::B, Enum::C, Enum::D].into_iter(); |
1991 | /// |
1992 | /// // search `iter` for `B` |
1993 | /// assert_eq!(iter.contains(&Enum::B), true); |
1994 | /// // `B` was found, so the iterator now rests at the item after `B` (i.e, `C`). |
1995 | /// assert_eq!(iter.next(), Some(Enum::C)); |
1996 | /// |
1997 | /// // search `iter` for `E` |
1998 | /// assert_eq!(iter.contains(&Enum::E), false); |
1999 | /// // `E` wasn't found, so `iter` is now exhausted |
2000 | /// assert_eq!(iter.next(), None); |
2001 | /// ``` |
2002 | fn contains<Q>(&mut self, query: &Q) -> bool |
2003 | where |
2004 | Self: Sized, |
2005 | Self::Item: Borrow<Q>, |
2006 | Q: PartialEq, |
2007 | { |
2008 | self.any(|x| x.borrow() == query) |
2009 | } |
2010 | |
2011 | /// Check whether all elements compare equal. |
2012 | /// |
2013 | /// Empty iterators are considered to have equal elements: |
2014 | /// |
2015 | /// ``` |
2016 | /// use itertools::Itertools; |
2017 | /// |
2018 | /// let data = vec![1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5]; |
2019 | /// assert!(!data.iter().all_equal()); |
2020 | /// assert!(data[0..3].iter().all_equal()); |
2021 | /// assert!(data[3..5].iter().all_equal()); |
2022 | /// assert!(data[5..8].iter().all_equal()); |
2023 | /// |
2024 | /// let data : Option<usize> = None; |
2025 | /// assert!(data.into_iter().all_equal()); |
2026 | /// ``` |
2027 | fn all_equal(&mut self) -> bool |
2028 | where |
2029 | Self: Sized, |
2030 | Self::Item: PartialEq, |
2031 | { |
2032 | match self.next() { |
2033 | None => true, |
2034 | Some(a) => self.all(|x| a == x), |
2035 | } |
2036 | } |
2037 | |
2038 | /// If there are elements and they are all equal, return a single copy of that element. |
2039 | /// If there are no elements, return an Error containing None. |
2040 | /// If there are elements and they are not all equal, return a tuple containing the first |
2041 | /// two non-equal elements found. |
2042 | /// |
2043 | /// ``` |
2044 | /// use itertools::Itertools; |
2045 | /// |
2046 | /// let data = vec![1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5]; |
2047 | /// assert_eq!(data.iter().all_equal_value(), Err(Some((&1, &2)))); |
2048 | /// assert_eq!(data[0..3].iter().all_equal_value(), Ok(&1)); |
2049 | /// assert_eq!(data[3..5].iter().all_equal_value(), Ok(&2)); |
2050 | /// assert_eq!(data[5..8].iter().all_equal_value(), Ok(&3)); |
2051 | /// |
2052 | /// let data : Option<usize> = None; |
2053 | /// assert_eq!(data.into_iter().all_equal_value(), Err(None)); |
2054 | /// ``` |
2055 | #[allow (clippy::type_complexity)] |
2056 | fn all_equal_value(&mut self) -> Result<Self::Item, Option<(Self::Item, Self::Item)>> |
2057 | where |
2058 | Self: Sized, |
2059 | Self::Item: PartialEq, |
2060 | { |
2061 | let first = self.next().ok_or(None)?; |
2062 | let other = self.find(|x| x != &first); |
2063 | if let Some(other) = other { |
2064 | Err(Some((first, other))) |
2065 | } else { |
2066 | Ok(first) |
2067 | } |
2068 | } |
2069 | |
2070 | /// Check whether all elements are unique (non equal). |
2071 | /// |
2072 | /// Empty iterators are considered to have unique elements: |
2073 | /// |
2074 | /// ``` |
2075 | /// use itertools::Itertools; |
2076 | /// |
2077 | /// let data = vec![1, 2, 3, 4, 1, 5]; |
2078 | /// assert!(!data.iter().all_unique()); |
2079 | /// assert!(data[0..4].iter().all_unique()); |
2080 | /// assert!(data[1..6].iter().all_unique()); |
2081 | /// |
2082 | /// let data : Option<usize> = None; |
2083 | /// assert!(data.into_iter().all_unique()); |
2084 | /// ``` |
2085 | #[cfg (feature = "use_std" )] |
2086 | fn all_unique(&mut self) -> bool |
2087 | where |
2088 | Self: Sized, |
2089 | Self::Item: Eq + Hash, |
2090 | { |
2091 | let mut used = HashSet::new(); |
2092 | self.all(move |elt| used.insert(elt)) |
2093 | } |
2094 | |
2095 | /// Consume the first `n` elements from the iterator eagerly, |
2096 | /// and return the same iterator again. |
2097 | /// |
2098 | /// It works similarly to *.skip(* `n` *)* except it is eager and |
2099 | /// preserves the iterator type. |
2100 | /// |
2101 | /// ``` |
2102 | /// use itertools::Itertools; |
2103 | /// |
2104 | /// let mut iter = "αβγ" .chars().dropping(2); |
2105 | /// itertools::assert_equal(iter, "γ" .chars()); |
2106 | /// ``` |
2107 | /// |
2108 | /// *Fusing notes: if the iterator is exhausted by dropping, |
2109 | /// the result of calling `.next()` again depends on the iterator implementation.* |
2110 | fn dropping(mut self, n: usize) -> Self |
2111 | where |
2112 | Self: Sized, |
2113 | { |
2114 | if n > 0 { |
2115 | self.nth(n - 1); |
2116 | } |
2117 | self |
2118 | } |
2119 | |
2120 | /// Consume the last `n` elements from the iterator eagerly, |
2121 | /// and return the same iterator again. |
2122 | /// |
2123 | /// This is only possible on double ended iterators. `n` may be |
2124 | /// larger than the number of elements. |
2125 | /// |
2126 | /// Note: This method is eager, dropping the back elements immediately and |
2127 | /// preserves the iterator type. |
2128 | /// |
2129 | /// ``` |
2130 | /// use itertools::Itertools; |
2131 | /// |
2132 | /// let init = vec![0, 3, 6, 9].into_iter().dropping_back(1); |
2133 | /// itertools::assert_equal(init, vec![0, 3, 6]); |
2134 | /// ``` |
2135 | fn dropping_back(mut self, n: usize) -> Self |
2136 | where |
2137 | Self: Sized + DoubleEndedIterator, |
2138 | { |
2139 | if n > 0 { |
2140 | (&mut self).rev().nth(n - 1); |
2141 | } |
2142 | self |
2143 | } |
2144 | |
2145 | /// Run the closure `f` eagerly on each element of the iterator. |
2146 | /// |
2147 | /// Consumes the iterator until its end. |
2148 | /// |
2149 | /// ``` |
2150 | /// use std::sync::mpsc::channel; |
2151 | /// use itertools::Itertools; |
2152 | /// |
2153 | /// let (tx, rx) = channel(); |
2154 | /// |
2155 | /// // use .foreach() to apply a function to each value -- sending it |
2156 | /// (0..5).map(|x| x * 2 + 1).foreach(|x| { tx.send(x).unwrap(); } ); |
2157 | /// |
2158 | /// drop(tx); |
2159 | /// |
2160 | /// itertools::assert_equal(rx.iter(), vec![1, 3, 5, 7, 9]); |
2161 | /// ``` |
2162 | #[deprecated (note = "Use .for_each() instead" , since = "0.8.0" )] |
2163 | fn foreach<F>(self, f: F) |
2164 | where |
2165 | F: FnMut(Self::Item), |
2166 | Self: Sized, |
2167 | { |
2168 | self.for_each(f); |
2169 | } |
2170 | |
2171 | /// Combine all an iterator's elements into one element by using [`Extend`]. |
2172 | /// |
2173 | /// This combinator will extend the first item with each of the rest of the |
2174 | /// items of the iterator. If the iterator is empty, the default value of |
2175 | /// `I::Item` is returned. |
2176 | /// |
2177 | /// ```rust |
2178 | /// use itertools::Itertools; |
2179 | /// |
2180 | /// let input = vec![vec![1], vec![2, 3], vec![4, 5, 6]]; |
2181 | /// assert_eq!(input.into_iter().concat(), |
2182 | /// vec![1, 2, 3, 4, 5, 6]); |
2183 | /// ``` |
2184 | fn concat(self) -> Self::Item |
2185 | where |
2186 | Self: Sized, |
2187 | Self::Item: |
2188 | Extend<<<Self as Iterator>::Item as IntoIterator>::Item> + IntoIterator + Default, |
2189 | { |
2190 | concat(self) |
2191 | } |
2192 | |
2193 | /// `.collect_vec()` is simply a type specialization of [`Iterator::collect`], |
2194 | /// for convenience. |
2195 | #[cfg (feature = "use_alloc" )] |
2196 | fn collect_vec(self) -> Vec<Self::Item> |
2197 | where |
2198 | Self: Sized, |
2199 | { |
2200 | self.collect() |
2201 | } |
2202 | |
2203 | /// `.try_collect()` is more convenient way of writing |
2204 | /// `.collect::<Result<_, _>>()` |
2205 | /// |
2206 | /// # Example |
2207 | /// |
2208 | /// ``` |
2209 | /// use std::{fs, io}; |
2210 | /// use itertools::Itertools; |
2211 | /// |
2212 | /// fn process_dir_entries(entries: &[fs::DirEntry]) { |
2213 | /// // ... |
2214 | /// } |
2215 | /// |
2216 | /// fn do_stuff() -> std::io::Result<()> { |
2217 | /// let entries: Vec<_> = fs::read_dir("." )?.try_collect()?; |
2218 | /// process_dir_entries(&entries); |
2219 | /// |
2220 | /// Ok(()) |
2221 | /// } |
2222 | /// ``` |
2223 | fn try_collect<T, U, E>(self) -> Result<U, E> |
2224 | where |
2225 | Self: Sized + Iterator<Item = Result<T, E>>, |
2226 | Result<U, E>: FromIterator<Result<T, E>>, |
2227 | { |
2228 | self.collect() |
2229 | } |
2230 | |
2231 | /// Assign to each reference in `self` from the `from` iterator, |
2232 | /// stopping at the shortest of the two iterators. |
2233 | /// |
2234 | /// The `from` iterator is queried for its next element before the `self` |
2235 | /// iterator, and if either is exhausted the method is done. |
2236 | /// |
2237 | /// Return the number of elements written. |
2238 | /// |
2239 | /// ``` |
2240 | /// use itertools::Itertools; |
2241 | /// |
2242 | /// let mut xs = [0; 4]; |
2243 | /// xs.iter_mut().set_from(1..); |
2244 | /// assert_eq!(xs, [1, 2, 3, 4]); |
2245 | /// ``` |
2246 | #[inline ] |
2247 | fn set_from<'a, A: 'a, J>(&mut self, from: J) -> usize |
2248 | where |
2249 | Self: Iterator<Item = &'a mut A>, |
2250 | J: IntoIterator<Item = A>, |
2251 | { |
2252 | let mut count = 0; |
2253 | for elt in from { |
2254 | match self.next() { |
2255 | None => break, |
2256 | Some(ptr) => *ptr = elt, |
2257 | } |
2258 | count += 1; |
2259 | } |
2260 | count |
2261 | } |
2262 | |
2263 | /// Combine all iterator elements into one String, separated by `sep`. |
2264 | /// |
2265 | /// Use the `Display` implementation of each element. |
2266 | /// |
2267 | /// ``` |
2268 | /// use itertools::Itertools; |
2269 | /// |
2270 | /// assert_eq!(["a" , "b" , "c" ].iter().join(", " ), "a, b, c" ); |
2271 | /// assert_eq!([1, 2, 3].iter().join(", " ), "1, 2, 3" ); |
2272 | /// ``` |
2273 | #[cfg (feature = "use_alloc" )] |
2274 | fn join(&mut self, sep: &str) -> String |
2275 | where |
2276 | Self::Item: std::fmt::Display, |
2277 | { |
2278 | match self.next() { |
2279 | None => String::new(), |
2280 | Some(first_elt) => { |
2281 | // estimate lower bound of capacity needed |
2282 | let (lower, _) = self.size_hint(); |
2283 | let mut result = String::with_capacity(sep.len() * lower); |
2284 | write!(&mut result, " {}" , first_elt).unwrap(); |
2285 | self.for_each(|elt| { |
2286 | result.push_str(sep); |
2287 | write!(&mut result, " {}" , elt).unwrap(); |
2288 | }); |
2289 | result |
2290 | } |
2291 | } |
2292 | } |
2293 | |
2294 | /// Format all iterator elements, separated by `sep`. |
2295 | /// |
2296 | /// All elements are formatted (any formatting trait) |
2297 | /// with `sep` inserted between each element. |
2298 | /// |
2299 | /// **Panics** if the formatter helper is formatted more than once. |
2300 | /// |
2301 | /// ``` |
2302 | /// use itertools::Itertools; |
2303 | /// |
2304 | /// let data = [1.1, 2.71828, -3.]; |
2305 | /// assert_eq!( |
2306 | /// format!("{:.2}" , data.iter().format(", " )), |
2307 | /// "1.10, 2.72, -3.00" ); |
2308 | /// ``` |
2309 | fn format(self, sep: &str) -> Format<Self> |
2310 | where |
2311 | Self: Sized, |
2312 | { |
2313 | format::new_format_default(self, sep) |
2314 | } |
2315 | |
2316 | /// Format all iterator elements, separated by `sep`. |
2317 | /// |
2318 | /// This is a customizable version of [`.format()`](Itertools::format). |
2319 | /// |
2320 | /// The supplied closure `format` is called once per iterator element, |
2321 | /// with two arguments: the element and a callback that takes a |
2322 | /// `&Display` value, i.e. any reference to type that implements `Display`. |
2323 | /// |
2324 | /// Using `&format_args!(...)` is the most versatile way to apply custom |
2325 | /// element formatting. The callback can be called multiple times if needed. |
2326 | /// |
2327 | /// **Panics** if the formatter helper is formatted more than once. |
2328 | /// |
2329 | /// ``` |
2330 | /// use itertools::Itertools; |
2331 | /// |
2332 | /// let data = [1.1, 2.71828, -3.]; |
2333 | /// let data_formatter = data.iter().format_with(", " , |elt, f| f(&format_args!("{:.2}" , elt))); |
2334 | /// assert_eq!(format!("{}" , data_formatter), |
2335 | /// "1.10, 2.72, -3.00" ); |
2336 | /// |
2337 | /// // .format_with() is recursively composable |
2338 | /// let matrix = [[1., 2., 3.], |
2339 | /// [4., 5., 6.]]; |
2340 | /// let matrix_formatter = matrix.iter().format_with(" \n" , |row, f| { |
2341 | /// f(&row.iter().format_with(", " , |elt, g| g(&elt))) |
2342 | /// }); |
2343 | /// assert_eq!(format!("{}" , matrix_formatter), |
2344 | /// "1, 2, 3 \n4, 5, 6" ); |
2345 | /// |
2346 | /// |
2347 | /// ``` |
2348 | fn format_with<F>(self, sep: &str, format: F) -> FormatWith<Self, F> |
2349 | where |
2350 | Self: Sized, |
2351 | F: FnMut(Self::Item, &mut dyn FnMut(&dyn fmt::Display) -> fmt::Result) -> fmt::Result, |
2352 | { |
2353 | format::new_format(self, sep, format) |
2354 | } |
2355 | |
2356 | /// See [`.fold_ok()`](Itertools::fold_ok). |
2357 | #[deprecated (note = "Use .fold_ok() instead" , since = "0.10.0" )] |
2358 | fn fold_results<A, E, B, F>(&mut self, start: B, f: F) -> Result<B, E> |
2359 | where |
2360 | Self: Iterator<Item = Result<A, E>>, |
2361 | F: FnMut(B, A) -> B, |
2362 | { |
2363 | self.fold_ok(start, f) |
2364 | } |
2365 | |
2366 | /// Fold `Result` values from an iterator. |
2367 | /// |
2368 | /// Only `Ok` values are folded. If no error is encountered, the folded |
2369 | /// value is returned inside `Ok`. Otherwise, the operation terminates |
2370 | /// and returns the first `Err` value it encounters. No iterator elements are |
2371 | /// consumed after the first error. |
2372 | /// |
2373 | /// The first accumulator value is the `start` parameter. |
2374 | /// Each iteration passes the accumulator value and the next value inside `Ok` |
2375 | /// to the fold function `f` and its return value becomes the new accumulator value. |
2376 | /// |
2377 | /// For example the sequence *Ok(1), Ok(2), Ok(3)* will result in a |
2378 | /// computation like this: |
2379 | /// |
2380 | /// ```no_run |
2381 | /// # let start = 0; |
2382 | /// # let f = |x, y| x + y; |
2383 | /// let mut accum = start; |
2384 | /// accum = f(accum, 1); |
2385 | /// accum = f(accum, 2); |
2386 | /// accum = f(accum, 3); |
2387 | /// ``` |
2388 | /// |
2389 | /// With a `start` value of 0 and an addition as folding function, |
2390 | /// this effectively results in *((0 + 1) + 2) + 3* |
2391 | /// |
2392 | /// ``` |
2393 | /// use std::ops::Add; |
2394 | /// use itertools::Itertools; |
2395 | /// |
2396 | /// let values = [1, 2, -2, -1, 2, 1]; |
2397 | /// assert_eq!( |
2398 | /// values.iter() |
2399 | /// .map(Ok::<_, ()>) |
2400 | /// .fold_ok(0, Add::add), |
2401 | /// Ok(3) |
2402 | /// ); |
2403 | /// assert!( |
2404 | /// values.iter() |
2405 | /// .map(|&x| if x >= 0 { Ok(x) } else { Err("Negative number" ) }) |
2406 | /// .fold_ok(0, Add::add) |
2407 | /// .is_err() |
2408 | /// ); |
2409 | /// ``` |
2410 | fn fold_ok<A, E, B, F>(&mut self, mut start: B, mut f: F) -> Result<B, E> |
2411 | where |
2412 | Self: Iterator<Item = Result<A, E>>, |
2413 | F: FnMut(B, A) -> B, |
2414 | { |
2415 | for elt in self { |
2416 | match elt { |
2417 | Ok(v) => start = f(start, v), |
2418 | Err(u) => return Err(u), |
2419 | } |
2420 | } |
2421 | Ok(start) |
2422 | } |
2423 | |
2424 | /// Fold `Option` values from an iterator. |
2425 | /// |
2426 | /// Only `Some` values are folded. If no `None` is encountered, the folded |
2427 | /// value is returned inside `Some`. Otherwise, the operation terminates |
2428 | /// and returns `None`. No iterator elements are consumed after the `None`. |
2429 | /// |
2430 | /// This is the `Option` equivalent to [`fold_ok`](Itertools::fold_ok). |
2431 | /// |
2432 | /// ``` |
2433 | /// use std::ops::Add; |
2434 | /// use itertools::Itertools; |
2435 | /// |
2436 | /// let mut values = vec![Some(1), Some(2), Some(-2)].into_iter(); |
2437 | /// assert_eq!(values.fold_options(5, Add::add), Some(5 + 1 + 2 - 2)); |
2438 | /// |
2439 | /// let mut more_values = vec![Some(2), None, Some(0)].into_iter(); |
2440 | /// assert!(more_values.fold_options(0, Add::add).is_none()); |
2441 | /// assert_eq!(more_values.next().unwrap(), Some(0)); |
2442 | /// ``` |
2443 | fn fold_options<A, B, F>(&mut self, mut start: B, mut f: F) -> Option<B> |
2444 | where |
2445 | Self: Iterator<Item = Option<A>>, |
2446 | F: FnMut(B, A) -> B, |
2447 | { |
2448 | for elt in self { |
2449 | match elt { |
2450 | Some(v) => start = f(start, v), |
2451 | None => return None, |
2452 | } |
2453 | } |
2454 | Some(start) |
2455 | } |
2456 | |
2457 | /// Accumulator of the elements in the iterator. |
2458 | /// |
2459 | /// Like `.fold()`, without a base case. If the iterator is |
2460 | /// empty, return `None`. With just one element, return it. |
2461 | /// Otherwise elements are accumulated in sequence using the closure `f`. |
2462 | /// |
2463 | /// ``` |
2464 | /// use itertools::Itertools; |
2465 | /// |
2466 | /// assert_eq!((0..10).fold1(|x, y| x + y).unwrap_or(0), 45); |
2467 | /// assert_eq!((0..0).fold1(|x, y| x * y), None); |
2468 | /// ``` |
2469 | #[deprecated (since = "0.10.2" , note = "Use `Iterator::reduce` instead" )] |
2470 | fn fold1<F>(mut self, f: F) -> Option<Self::Item> |
2471 | where |
2472 | F: FnMut(Self::Item, Self::Item) -> Self::Item, |
2473 | Self: Sized, |
2474 | { |
2475 | self.next().map(move |x| self.fold(x, f)) |
2476 | } |
2477 | |
2478 | /// Accumulate the elements in the iterator in a tree-like manner. |
2479 | /// |
2480 | /// You can think of it as, while there's more than one item, repeatedly |
2481 | /// combining adjacent items. It does so in bottom-up-merge-sort order, |
2482 | /// however, so that it needs only logarithmic stack space. |
2483 | /// |
2484 | /// This produces a call tree like the following (where the calls under |
2485 | /// an item are done after reading that item): |
2486 | /// |
2487 | /// ```text |
2488 | /// 1 2 3 4 5 6 7 |
2489 | /// │ │ │ │ │ │ │ |
2490 | /// └─f └─f └─f │ |
2491 | /// │ │ │ │ |
2492 | /// └───f └─f |
2493 | /// │ │ |
2494 | /// └─────f |
2495 | /// ``` |
2496 | /// |
2497 | /// Which, for non-associative functions, will typically produce a different |
2498 | /// result than the linear call tree used by [`Iterator::reduce`]: |
2499 | /// |
2500 | /// ```text |
2501 | /// 1 2 3 4 5 6 7 |
2502 | /// │ │ │ │ │ │ │ |
2503 | /// └─f─f─f─f─f─f |
2504 | /// ``` |
2505 | /// |
2506 | /// If `f` is associative you should also decide carefully: |
2507 | /// |
2508 | /// - if `f` is a trivial operation like `u32::wrapping_add`, prefer the normal |
2509 | /// [`Iterator::reduce`] instead since it will most likely result in the generation of simpler |
2510 | /// code because the compiler is able to optimize it |
2511 | /// - otherwise if `f` is non-trivial like `format!`, you should use `tree_fold1` since it |
2512 | /// reduces the number of operations from `O(n)` to `O(ln(n))` |
2513 | /// |
2514 | /// Here "non-trivial" means: |
2515 | /// |
2516 | /// - any allocating operation |
2517 | /// - any function that is a composition of many operations |
2518 | /// |
2519 | /// ``` |
2520 | /// use itertools::Itertools; |
2521 | /// |
2522 | /// // The same tree as above |
2523 | /// let num_strings = (1..8).map(|x| x.to_string()); |
2524 | /// assert_eq!(num_strings.tree_fold1(|x, y| format!("f({}, {})" , x, y)), |
2525 | /// Some(String::from("f(f(f(1, 2), f(3, 4)), f(f(5, 6), 7))" ))); |
2526 | /// |
2527 | /// // Like fold1, an empty iterator produces None |
2528 | /// assert_eq!((0..0).tree_fold1(|x, y| x * y), None); |
2529 | /// |
2530 | /// // tree_fold1 matches fold1 for associative operations... |
2531 | /// assert_eq!((0..10).tree_fold1(|x, y| x + y), |
2532 | /// (0..10).fold1(|x, y| x + y)); |
2533 | /// // ...but not for non-associative ones |
2534 | /// assert_ne!((0..10).tree_fold1(|x, y| x - y), |
2535 | /// (0..10).fold1(|x, y| x - y)); |
2536 | /// ``` |
2537 | fn tree_fold1<F>(mut self, mut f: F) -> Option<Self::Item> |
2538 | where |
2539 | F: FnMut(Self::Item, Self::Item) -> Self::Item, |
2540 | Self: Sized, |
2541 | { |
2542 | type State<T> = Result<T, Option<T>>; |
2543 | |
2544 | fn inner0<T, II, FF>(it: &mut II, f: &mut FF) -> State<T> |
2545 | where |
2546 | II: Iterator<Item = T>, |
2547 | FF: FnMut(T, T) -> T, |
2548 | { |
2549 | // This function could be replaced with `it.next().ok_or(None)`, |
2550 | // but half the useful tree_fold1 work is combining adjacent items, |
2551 | // so put that in a form that LLVM is more likely to optimize well. |
2552 | |
2553 | let a = if let Some(v) = it.next() { |
2554 | v |
2555 | } else { |
2556 | return Err(None); |
2557 | }; |
2558 | let b = if let Some(v) = it.next() { |
2559 | v |
2560 | } else { |
2561 | return Err(Some(a)); |
2562 | }; |
2563 | Ok(f(a, b)) |
2564 | } |
2565 | |
2566 | fn inner<T, II, FF>(stop: usize, it: &mut II, f: &mut FF) -> State<T> |
2567 | where |
2568 | II: Iterator<Item = T>, |
2569 | FF: FnMut(T, T) -> T, |
2570 | { |
2571 | let mut x = inner0(it, f)?; |
2572 | for height in 0..stop { |
2573 | // Try to get another tree the same size with which to combine it, |
2574 | // creating a new tree that's twice as big for next time around. |
2575 | let next = if height == 0 { |
2576 | inner0(it, f) |
2577 | } else { |
2578 | inner(height, it, f) |
2579 | }; |
2580 | match next { |
2581 | Ok(y) => x = f(x, y), |
2582 | |
2583 | // If we ran out of items, combine whatever we did manage |
2584 | // to get. It's better combined with the current value |
2585 | // than something in a parent frame, because the tree in |
2586 | // the parent is always as least as big as this one. |
2587 | Err(None) => return Err(Some(x)), |
2588 | Err(Some(y)) => return Err(Some(f(x, y))), |
2589 | } |
2590 | } |
2591 | Ok(x) |
2592 | } |
2593 | |
2594 | match inner(usize::max_value(), &mut self, &mut f) { |
2595 | Err(x) => x, |
2596 | _ => unreachable!(), |
2597 | } |
2598 | } |
2599 | |
2600 | /// An iterator method that applies a function, producing a single, final value. |
2601 | /// |
2602 | /// `fold_while()` is basically equivalent to [`Iterator::fold`] but with additional support for |
2603 | /// early exit via short-circuiting. |
2604 | /// |
2605 | /// ``` |
2606 | /// use itertools::Itertools; |
2607 | /// use itertools::FoldWhile::{Continue, Done}; |
2608 | /// |
2609 | /// let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; |
2610 | /// |
2611 | /// let mut result = 0; |
2612 | /// |
2613 | /// // for loop: |
2614 | /// for i in &numbers { |
2615 | /// if *i > 5 { |
2616 | /// break; |
2617 | /// } |
2618 | /// result = result + i; |
2619 | /// } |
2620 | /// |
2621 | /// // fold: |
2622 | /// let result2 = numbers.iter().fold(0, |acc, x| { |
2623 | /// if *x > 5 { acc } else { acc + x } |
2624 | /// }); |
2625 | /// |
2626 | /// // fold_while: |
2627 | /// let result3 = numbers.iter().fold_while(0, |acc, x| { |
2628 | /// if *x > 5 { Done(acc) } else { Continue(acc + x) } |
2629 | /// }).into_inner(); |
2630 | /// |
2631 | /// // they're the same |
2632 | /// assert_eq!(result, result2); |
2633 | /// assert_eq!(result2, result3); |
2634 | /// ``` |
2635 | /// |
2636 | /// The big difference between the computations of `result2` and `result3` is that while |
2637 | /// `fold()` called the provided closure for every item of the callee iterator, |
2638 | /// `fold_while()` actually stopped iterating as soon as it encountered `Fold::Done(_)`. |
2639 | fn fold_while<B, F>(&mut self, init: B, mut f: F) -> FoldWhile<B> |
2640 | where |
2641 | Self: Sized, |
2642 | F: FnMut(B, Self::Item) -> FoldWhile<B>, |
2643 | { |
2644 | use Result::{Err as Break, Ok as Continue}; |
2645 | |
2646 | let result = self.try_fold( |
2647 | init, |
2648 | #[inline (always)] |
2649 | |acc, v| match f(acc, v) { |
2650 | FoldWhile::Continue(acc) => Continue(acc), |
2651 | FoldWhile::Done(acc) => Break(acc), |
2652 | }, |
2653 | ); |
2654 | |
2655 | match result { |
2656 | Continue(acc) => FoldWhile::Continue(acc), |
2657 | Break(acc) => FoldWhile::Done(acc), |
2658 | } |
2659 | } |
2660 | |
2661 | /// Iterate over the entire iterator and add all the elements. |
2662 | /// |
2663 | /// An empty iterator returns `None`, otherwise `Some(sum)`. |
2664 | /// |
2665 | /// # Panics |
2666 | /// |
2667 | /// When calling `sum1()` and a primitive integer type is being returned, this |
2668 | /// method will panic if the computation overflows and debug assertions are |
2669 | /// enabled. |
2670 | /// |
2671 | /// # Examples |
2672 | /// |
2673 | /// ``` |
2674 | /// use itertools::Itertools; |
2675 | /// |
2676 | /// let empty_sum = (1..1).sum1::<i32>(); |
2677 | /// assert_eq!(empty_sum, None); |
2678 | /// |
2679 | /// let nonempty_sum = (1..11).sum1::<i32>(); |
2680 | /// assert_eq!(nonempty_sum, Some(55)); |
2681 | /// ``` |
2682 | fn sum1<S>(mut self) -> Option<S> |
2683 | where |
2684 | Self: Sized, |
2685 | S: std::iter::Sum<Self::Item>, |
2686 | { |
2687 | self.next().map(|first| once(first).chain(self).sum()) |
2688 | } |
2689 | |
2690 | /// Iterate over the entire iterator and multiply all the elements. |
2691 | /// |
2692 | /// An empty iterator returns `None`, otherwise `Some(product)`. |
2693 | /// |
2694 | /// # Panics |
2695 | /// |
2696 | /// When calling `product1()` and a primitive integer type is being returned, |
2697 | /// method will panic if the computation overflows and debug assertions are |
2698 | /// enabled. |
2699 | /// |
2700 | /// # Examples |
2701 | /// ``` |
2702 | /// use itertools::Itertools; |
2703 | /// |
2704 | /// let empty_product = (1..1).product1::<i32>(); |
2705 | /// assert_eq!(empty_product, None); |
2706 | /// |
2707 | /// let nonempty_product = (1..11).product1::<i32>(); |
2708 | /// assert_eq!(nonempty_product, Some(3628800)); |
2709 | /// ``` |
2710 | fn product1<P>(mut self) -> Option<P> |
2711 | where |
2712 | Self: Sized, |
2713 | P: std::iter::Product<Self::Item>, |
2714 | { |
2715 | self.next().map(|first| once(first).chain(self).product()) |
2716 | } |
2717 | |
2718 | /// Sort all iterator elements into a new iterator in ascending order. |
2719 | /// |
2720 | /// **Note:** This consumes the entire iterator, uses the |
2721 | /// [`slice::sort_unstable`] method and returns the result as a new |
2722 | /// iterator that owns its elements. |
2723 | /// |
2724 | /// This sort is unstable (i.e., may reorder equal elements). |
2725 | /// |
2726 | /// The sorted iterator, if directly collected to a `Vec`, is converted |
2727 | /// without any extra copying or allocation cost. |
2728 | /// |
2729 | /// ``` |
2730 | /// use itertools::Itertools; |
2731 | /// |
2732 | /// // sort the letters of the text in ascending order |
2733 | /// let text = "bdacfe" ; |
2734 | /// itertools::assert_equal(text.chars().sorted_unstable(), |
2735 | /// "abcdef" .chars()); |
2736 | /// ``` |
2737 | #[cfg (feature = "use_alloc" )] |
2738 | fn sorted_unstable(self) -> VecIntoIter<Self::Item> |
2739 | where |
2740 | Self: Sized, |
2741 | Self::Item: Ord, |
2742 | { |
2743 | // Use .sort_unstable() directly since it is not quite identical with |
2744 | // .sort_by(Ord::cmp) |
2745 | let mut v = Vec::from_iter(self); |
2746 | v.sort_unstable(); |
2747 | v.into_iter() |
2748 | } |
2749 | |
2750 | /// Sort all iterator elements into a new iterator in ascending order. |
2751 | /// |
2752 | /// **Note:** This consumes the entire iterator, uses the |
2753 | /// [`slice::sort_unstable_by`] method and returns the result as a new |
2754 | /// iterator that owns its elements. |
2755 | /// |
2756 | /// This sort is unstable (i.e., may reorder equal elements). |
2757 | /// |
2758 | /// The sorted iterator, if directly collected to a `Vec`, is converted |
2759 | /// without any extra copying or allocation cost. |
2760 | /// |
2761 | /// ``` |
2762 | /// use itertools::Itertools; |
2763 | /// |
2764 | /// // sort people in descending order by age |
2765 | /// let people = vec![("Jane" , 20), ("John" , 18), ("Jill" , 30), ("Jack" , 27)]; |
2766 | /// |
2767 | /// let oldest_people_first = people |
2768 | /// .into_iter() |
2769 | /// .sorted_unstable_by(|a, b| Ord::cmp(&b.1, &a.1)) |
2770 | /// .map(|(person, _age)| person); |
2771 | /// |
2772 | /// itertools::assert_equal(oldest_people_first, |
2773 | /// vec!["Jill" , "Jack" , "Jane" , "John" ]); |
2774 | /// ``` |
2775 | #[cfg (feature = "use_alloc" )] |
2776 | fn sorted_unstable_by<F>(self, cmp: F) -> VecIntoIter<Self::Item> |
2777 | where |
2778 | Self: Sized, |
2779 | F: FnMut(&Self::Item, &Self::Item) -> Ordering, |
2780 | { |
2781 | let mut v = Vec::from_iter(self); |
2782 | v.sort_unstable_by(cmp); |
2783 | v.into_iter() |
2784 | } |
2785 | |
2786 | /// Sort all iterator elements into a new iterator in ascending order. |
2787 | /// |
2788 | /// **Note:** This consumes the entire iterator, uses the |
2789 | /// [`slice::sort_unstable_by_key`] method and returns the result as a new |
2790 | /// iterator that owns its elements. |
2791 | /// |
2792 | /// This sort is unstable (i.e., may reorder equal elements). |
2793 | /// |
2794 | /// The sorted iterator, if directly collected to a `Vec`, is converted |
2795 | /// without any extra copying or allocation cost. |
2796 | /// |
2797 | /// ``` |
2798 | /// use itertools::Itertools; |
2799 | /// |
2800 | /// // sort people in descending order by age |
2801 | /// let people = vec![("Jane" , 20), ("John" , 18), ("Jill" , 30), ("Jack" , 27)]; |
2802 | /// |
2803 | /// let oldest_people_first = people |
2804 | /// .into_iter() |
2805 | /// .sorted_unstable_by_key(|x| -x.1) |
2806 | /// .map(|(person, _age)| person); |
2807 | /// |
2808 | /// itertools::assert_equal(oldest_people_first, |
2809 | /// vec!["Jill" , "Jack" , "Jane" , "John" ]); |
2810 | /// ``` |
2811 | #[cfg (feature = "use_alloc" )] |
2812 | fn sorted_unstable_by_key<K, F>(self, f: F) -> VecIntoIter<Self::Item> |
2813 | where |
2814 | Self: Sized, |
2815 | K: Ord, |
2816 | F: FnMut(&Self::Item) -> K, |
2817 | { |
2818 | let mut v = Vec::from_iter(self); |
2819 | v.sort_unstable_by_key(f); |
2820 | v.into_iter() |
2821 | } |
2822 | |
2823 | /// Sort all iterator elements into a new iterator in ascending order. |
2824 | /// |
2825 | /// **Note:** This consumes the entire iterator, uses the |
2826 | /// [`slice::sort`] method and returns the result as a new |
2827 | /// iterator that owns its elements. |
2828 | /// |
2829 | /// This sort is stable (i.e., does not reorder equal elements). |
2830 | /// |
2831 | /// The sorted iterator, if directly collected to a `Vec`, is converted |
2832 | /// without any extra copying or allocation cost. |
2833 | /// |
2834 | /// ``` |
2835 | /// use itertools::Itertools; |
2836 | /// |
2837 | /// // sort the letters of the text in ascending order |
2838 | /// let text = "bdacfe" ; |
2839 | /// itertools::assert_equal(text.chars().sorted(), |
2840 | /// "abcdef" .chars()); |
2841 | /// ``` |
2842 | #[cfg (feature = "use_alloc" )] |
2843 | fn sorted(self) -> VecIntoIter<Self::Item> |
2844 | where |
2845 | Self: Sized, |
2846 | Self::Item: Ord, |
2847 | { |
2848 | // Use .sort() directly since it is not quite identical with |
2849 | // .sort_by(Ord::cmp) |
2850 | let mut v = Vec::from_iter(self); |
2851 | v.sort(); |
2852 | v.into_iter() |
2853 | } |
2854 | |
2855 | /// Sort all iterator elements into a new iterator in ascending order. |
2856 | /// |
2857 | /// **Note:** This consumes the entire iterator, uses the |
2858 | /// [`slice::sort_by`] method and returns the result as a new |
2859 | /// iterator that owns its elements. |
2860 | /// |
2861 | /// This sort is stable (i.e., does not reorder equal elements). |
2862 | /// |
2863 | /// The sorted iterator, if directly collected to a `Vec`, is converted |
2864 | /// without any extra copying or allocation cost. |
2865 | /// |
2866 | /// ``` |
2867 | /// use itertools::Itertools; |
2868 | /// |
2869 | /// // sort people in descending order by age |
2870 | /// let people = vec![("Jane" , 20), ("John" , 18), ("Jill" , 30), ("Jack" , 30)]; |
2871 | /// |
2872 | /// let oldest_people_first = people |
2873 | /// .into_iter() |
2874 | /// .sorted_by(|a, b| Ord::cmp(&b.1, &a.1)) |
2875 | /// .map(|(person, _age)| person); |
2876 | /// |
2877 | /// itertools::assert_equal(oldest_people_first, |
2878 | /// vec!["Jill" , "Jack" , "Jane" , "John" ]); |
2879 | /// ``` |
2880 | #[cfg (feature = "use_alloc" )] |
2881 | fn sorted_by<F>(self, cmp: F) -> VecIntoIter<Self::Item> |
2882 | where |
2883 | Self: Sized, |
2884 | F: FnMut(&Self::Item, &Self::Item) -> Ordering, |
2885 | { |
2886 | let mut v = Vec::from_iter(self); |
2887 | v.sort_by(cmp); |
2888 | v.into_iter() |
2889 | } |
2890 | |
2891 | /// Sort all iterator elements into a new iterator in ascending order. |
2892 | /// |
2893 | /// **Note:** This consumes the entire iterator, uses the |
2894 | /// [`slice::sort_by_key`] method and returns the result as a new |
2895 | /// iterator that owns its elements. |
2896 | /// |
2897 | /// This sort is stable (i.e., does not reorder equal elements). |
2898 | /// |
2899 | /// The sorted iterator, if directly collected to a `Vec`, is converted |
2900 | /// without any extra copying or allocation cost. |
2901 | /// |
2902 | /// ``` |
2903 | /// use itertools::Itertools; |
2904 | /// |
2905 | /// // sort people in descending order by age |
2906 | /// let people = vec![("Jane" , 20), ("John" , 18), ("Jill" , 30), ("Jack" , 30)]; |
2907 | /// |
2908 | /// let oldest_people_first = people |
2909 | /// .into_iter() |
2910 | /// .sorted_by_key(|x| -x.1) |
2911 | /// .map(|(person, _age)| person); |
2912 | /// |
2913 | /// itertools::assert_equal(oldest_people_first, |
2914 | /// vec!["Jill" , "Jack" , "Jane" , "John" ]); |
2915 | /// ``` |
2916 | #[cfg (feature = "use_alloc" )] |
2917 | fn sorted_by_key<K, F>(self, f: F) -> VecIntoIter<Self::Item> |
2918 | where |
2919 | Self: Sized, |
2920 | K: Ord, |
2921 | F: FnMut(&Self::Item) -> K, |
2922 | { |
2923 | let mut v = Vec::from_iter(self); |
2924 | v.sort_by_key(f); |
2925 | v.into_iter() |
2926 | } |
2927 | |
2928 | /// Sort all iterator elements into a new iterator in ascending order. The key function is |
2929 | /// called exactly once per key. |
2930 | /// |
2931 | /// **Note:** This consumes the entire iterator, uses the |
2932 | /// [`slice::sort_by_cached_key`] method and returns the result as a new |
2933 | /// iterator that owns its elements. |
2934 | /// |
2935 | /// This sort is stable (i.e., does not reorder equal elements). |
2936 | /// |
2937 | /// The sorted iterator, if directly collected to a `Vec`, is converted |
2938 | /// without any extra copying or allocation cost. |
2939 | /// |
2940 | /// ``` |
2941 | /// use itertools::Itertools; |
2942 | /// |
2943 | /// // sort people in descending order by age |
2944 | /// let people = vec![("Jane" , 20), ("John" , 18), ("Jill" , 30), ("Jack" , 30)]; |
2945 | /// |
2946 | /// let oldest_people_first = people |
2947 | /// .into_iter() |
2948 | /// .sorted_by_cached_key(|x| -x.1) |
2949 | /// .map(|(person, _age)| person); |
2950 | /// |
2951 | /// itertools::assert_equal(oldest_people_first, |
2952 | /// vec!["Jill" , "Jack" , "Jane" , "John" ]); |
2953 | /// ``` |
2954 | #[cfg (feature = "use_alloc" )] |
2955 | fn sorted_by_cached_key<K, F>(self, f: F) -> VecIntoIter<Self::Item> |
2956 | where |
2957 | Self: Sized, |
2958 | K: Ord, |
2959 | F: FnMut(&Self::Item) -> K, |
2960 | { |
2961 | let mut v = Vec::from_iter(self); |
2962 | v.sort_by_cached_key(f); |
2963 | v.into_iter() |
2964 | } |
2965 | |
2966 | /// Sort the k smallest elements into a new iterator, in ascending order. |
2967 | /// |
2968 | /// **Note:** This consumes the entire iterator, and returns the result |
2969 | /// as a new iterator that owns its elements. If the input contains |
2970 | /// less than k elements, the result is equivalent to `self.sorted()`. |
2971 | /// |
2972 | /// This is guaranteed to use `k * sizeof(Self::Item) + O(1)` memory |
2973 | /// and `O(n log k)` time, with `n` the number of elements in the input. |
2974 | /// |
2975 | /// The sorted iterator, if directly collected to a `Vec`, is converted |
2976 | /// without any extra copying or allocation cost. |
2977 | /// |
2978 | /// **Note:** This is functionally-equivalent to `self.sorted().take(k)` |
2979 | /// but much more efficient. |
2980 | /// |
2981 | /// ``` |
2982 | /// use itertools::Itertools; |
2983 | /// |
2984 | /// // A random permutation of 0..15 |
2985 | /// let numbers = vec![6, 9, 1, 14, 0, 4, 8, 7, 11, 2, 10, 3, 13, 12, 5]; |
2986 | /// |
2987 | /// let five_smallest = numbers |
2988 | /// .into_iter() |
2989 | /// .k_smallest(5); |
2990 | /// |
2991 | /// itertools::assert_equal(five_smallest, 0..5); |
2992 | /// ``` |
2993 | #[cfg (feature = "use_alloc" )] |
2994 | fn k_smallest(self, k: usize) -> VecIntoIter<Self::Item> |
2995 | where |
2996 | Self: Sized, |
2997 | Self::Item: Ord, |
2998 | { |
2999 | crate::k_smallest::k_smallest(self, k) |
3000 | .into_sorted_vec() |
3001 | .into_iter() |
3002 | } |
3003 | |
3004 | /// Collect all iterator elements into one of two |
3005 | /// partitions. Unlike [`Iterator::partition`], each partition may |
3006 | /// have a distinct type. |
3007 | /// |
3008 | /// ``` |
3009 | /// use itertools::{Itertools, Either}; |
3010 | /// |
3011 | /// let successes_and_failures = vec![Ok(1), Err(false), Err(true), Ok(2)]; |
3012 | /// |
3013 | /// let (successes, failures): (Vec<_>, Vec<_>) = successes_and_failures |
3014 | /// .into_iter() |
3015 | /// .partition_map(|r| { |
3016 | /// match r { |
3017 | /// Ok(v) => Either::Left(v), |
3018 | /// Err(v) => Either::Right(v), |
3019 | /// } |
3020 | /// }); |
3021 | /// |
3022 | /// assert_eq!(successes, [1, 2]); |
3023 | /// assert_eq!(failures, [false, true]); |
3024 | /// ``` |
3025 | fn partition_map<A, B, F, L, R>(self, mut predicate: F) -> (A, B) |
3026 | where |
3027 | Self: Sized, |
3028 | F: FnMut(Self::Item) -> Either<L, R>, |
3029 | A: Default + Extend<L>, |
3030 | B: Default + Extend<R>, |
3031 | { |
3032 | let mut left = A::default(); |
3033 | let mut right = B::default(); |
3034 | |
3035 | self.for_each(|val| match predicate(val) { |
3036 | Either::Left(v) => left.extend(Some(v)), |
3037 | Either::Right(v) => right.extend(Some(v)), |
3038 | }); |
3039 | |
3040 | (left, right) |
3041 | } |
3042 | |
3043 | /// Partition a sequence of `Result`s into one list of all the `Ok` elements |
3044 | /// and another list of all the `Err` elements. |
3045 | /// |
3046 | /// ``` |
3047 | /// use itertools::Itertools; |
3048 | /// |
3049 | /// let successes_and_failures = vec![Ok(1), Err(false), Err(true), Ok(2)]; |
3050 | /// |
3051 | /// let (successes, failures): (Vec<_>, Vec<_>) = successes_and_failures |
3052 | /// .into_iter() |
3053 | /// .partition_result(); |
3054 | /// |
3055 | /// assert_eq!(successes, [1, 2]); |
3056 | /// assert_eq!(failures, [false, true]); |
3057 | /// ``` |
3058 | fn partition_result<A, B, T, E>(self) -> (A, B) |
3059 | where |
3060 | Self: Iterator<Item = Result<T, E>> + Sized, |
3061 | A: Default + Extend<T>, |
3062 | B: Default + Extend<E>, |
3063 | { |
3064 | self.partition_map(|r| match r { |
3065 | Ok(v) => Either::Left(v), |
3066 | Err(v) => Either::Right(v), |
3067 | }) |
3068 | } |
3069 | |
3070 | /// Return a `HashMap` of keys mapped to `Vec`s of values. Keys and values |
3071 | /// are taken from `(Key, Value)` tuple pairs yielded by the input iterator. |
3072 | /// |
3073 | /// Essentially a shorthand for `.into_grouping_map().collect::<Vec<_>>()`. |
3074 | /// |
3075 | /// ``` |
3076 | /// use itertools::Itertools; |
3077 | /// |
3078 | /// let data = vec![(0, 10), (2, 12), (3, 13), (0, 20), (3, 33), (2, 42)]; |
3079 | /// let lookup = data.into_iter().into_group_map(); |
3080 | /// |
3081 | /// assert_eq!(lookup[&0], vec![10, 20]); |
3082 | /// assert_eq!(lookup.get(&1), None); |
3083 | /// assert_eq!(lookup[&2], vec![12, 42]); |
3084 | /// assert_eq!(lookup[&3], vec![13, 33]); |
3085 | /// ``` |
3086 | #[cfg (feature = "use_std" )] |
3087 | fn into_group_map<K, V>(self) -> HashMap<K, Vec<V>> |
3088 | where |
3089 | Self: Iterator<Item = (K, V)> + Sized, |
3090 | K: Hash + Eq, |
3091 | { |
3092 | group_map::into_group_map(self) |
3093 | } |
3094 | |
3095 | /// Return an `Iterator` on a `HashMap`. Keys mapped to `Vec`s of values. The key is specified |
3096 | /// in the closure. |
3097 | /// |
3098 | /// Essentially a shorthand for `.into_grouping_map_by(f).collect::<Vec<_>>()`. |
3099 | /// |
3100 | /// ``` |
3101 | /// use itertools::Itertools; |
3102 | /// use std::collections::HashMap; |
3103 | /// |
3104 | /// let data = vec![(0, 10), (2, 12), (3, 13), (0, 20), (3, 33), (2, 42)]; |
3105 | /// let lookup: HashMap<u32,Vec<(u32, u32)>> = |
3106 | /// data.clone().into_iter().into_group_map_by(|a| a.0); |
3107 | /// |
3108 | /// assert_eq!(lookup[&0], vec![(0,10),(0,20)]); |
3109 | /// assert_eq!(lookup.get(&1), None); |
3110 | /// assert_eq!(lookup[&2], vec![(2,12), (2,42)]); |
3111 | /// assert_eq!(lookup[&3], vec![(3,13), (3,33)]); |
3112 | /// |
3113 | /// assert_eq!( |
3114 | /// data.into_iter() |
3115 | /// .into_group_map_by(|x| x.0) |
3116 | /// .into_iter() |
3117 | /// .map(|(key, values)| (key, values.into_iter().fold(0,|acc, (_,v)| acc + v ))) |
3118 | /// .collect::<HashMap<u32,u32>>()[&0], |
3119 | /// 30, |
3120 | /// ); |
3121 | /// ``` |
3122 | #[cfg (feature = "use_std" )] |
3123 | fn into_group_map_by<K, V, F>(self, f: F) -> HashMap<K, Vec<V>> |
3124 | where |
3125 | Self: Iterator<Item = V> + Sized, |
3126 | K: Hash + Eq, |
3127 | F: Fn(&V) -> K, |
3128 | { |
3129 | group_map::into_group_map_by(self, f) |
3130 | } |
3131 | |
3132 | /// Constructs a `GroupingMap` to be used later with one of the efficient |
3133 | /// group-and-fold operations it allows to perform. |
3134 | /// |
3135 | /// The input iterator must yield item in the form of `(K, V)` where the |
3136 | /// value of type `K` will be used as key to identify the groups and the |
3137 | /// value of type `V` as value for the folding operation. |
3138 | /// |
3139 | /// See [`GroupingMap`] for more informations |
3140 | /// on what operations are available. |
3141 | #[cfg (feature = "use_std" )] |
3142 | fn into_grouping_map<K, V>(self) -> GroupingMap<Self> |
3143 | where |
3144 | Self: Iterator<Item = (K, V)> + Sized, |
3145 | K: Hash + Eq, |
3146 | { |
3147 | grouping_map::new(self) |
3148 | } |
3149 | |
3150 | /// Constructs a `GroupingMap` to be used later with one of the efficient |
3151 | /// group-and-fold operations it allows to perform. |
3152 | /// |
3153 | /// The values from this iterator will be used as values for the folding operation |
3154 | /// while the keys will be obtained from the values by calling `key_mapper`. |
3155 | /// |
3156 | /// See [`GroupingMap`] for more informations |
3157 | /// on what operations are available. |
3158 | #[cfg (feature = "use_std" )] |
3159 | fn into_grouping_map_by<K, V, F>(self, key_mapper: F) -> GroupingMapBy<Self, F> |
3160 | where |
3161 | Self: Iterator<Item = V> + Sized, |
3162 | K: Hash + Eq, |
3163 | F: FnMut(&V) -> K, |
3164 | { |
3165 | grouping_map::new(grouping_map::MapForGrouping::new(self, key_mapper)) |
3166 | } |
3167 | |
3168 | /// Return all minimum elements of an iterator. |
3169 | /// |
3170 | /// # Examples |
3171 | /// |
3172 | /// ``` |
3173 | /// use itertools::Itertools; |
3174 | /// |
3175 | /// let a: [i32; 0] = []; |
3176 | /// assert_eq!(a.iter().min_set(), Vec::<&i32>::new()); |
3177 | /// |
3178 | /// let a = [1]; |
3179 | /// assert_eq!(a.iter().min_set(), vec![&1]); |
3180 | /// |
3181 | /// let a = [1, 2, 3, 4, 5]; |
3182 | /// assert_eq!(a.iter().min_set(), vec![&1]); |
3183 | /// |
3184 | /// let a = [1, 1, 1, 1]; |
3185 | /// assert_eq!(a.iter().min_set(), vec![&1, &1, &1, &1]); |
3186 | /// ``` |
3187 | /// |
3188 | /// The elements can be floats but no particular result is guaranteed |
3189 | /// if an element is NaN. |
3190 | #[cfg (feature = "use_alloc" )] |
3191 | fn min_set(self) -> Vec<Self::Item> |
3192 | where |
3193 | Self: Sized, |
3194 | Self::Item: Ord, |
3195 | { |
3196 | extrema_set::min_set_impl(self, |_| (), |x, y, _, _| x.cmp(y)) |
3197 | } |
3198 | |
3199 | /// Return all minimum elements of an iterator, as determined by |
3200 | /// the specified function. |
3201 | /// |
3202 | /// # Examples |
3203 | /// |
3204 | /// ``` |
3205 | /// # use std::cmp::Ordering; |
3206 | /// use itertools::Itertools; |
3207 | /// |
3208 | /// let a: [(i32, i32); 0] = []; |
3209 | /// assert_eq!(a.iter().min_set_by(|_, _| Ordering::Equal), Vec::<&(i32, i32)>::new()); |
3210 | /// |
3211 | /// let a = [(1, 2)]; |
3212 | /// assert_eq!(a.iter().min_set_by(|&&(k1,_), &&(k2, _)| k1.cmp(&k2)), vec![&(1, 2)]); |
3213 | /// |
3214 | /// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)]; |
3215 | /// assert_eq!(a.iter().min_set_by(|&&(_,k1), &&(_,k2)| k1.cmp(&k2)), vec![&(1, 2), &(2, 2)]); |
3216 | /// |
3217 | /// let a = [(1, 2), (1, 3), (1, 4), (1, 5)]; |
3218 | /// assert_eq!(a.iter().min_set_by(|&&(k1,_), &&(k2, _)| k1.cmp(&k2)), vec![&(1, 2), &(1, 3), &(1, 4), &(1, 5)]); |
3219 | /// ``` |
3220 | /// |
3221 | /// The elements can be floats but no particular result is guaranteed |
3222 | /// if an element is NaN. |
3223 | #[cfg (feature = "use_alloc" )] |
3224 | fn min_set_by<F>(self, mut compare: F) -> Vec<Self::Item> |
3225 | where |
3226 | Self: Sized, |
3227 | F: FnMut(&Self::Item, &Self::Item) -> Ordering, |
3228 | { |
3229 | extrema_set::min_set_impl(self, |_| (), |x, y, _, _| compare(x, y)) |
3230 | } |
3231 | |
3232 | /// Return all minimum elements of an iterator, as determined by |
3233 | /// the specified function. |
3234 | /// |
3235 | /// # Examples |
3236 | /// |
3237 | /// ``` |
3238 | /// use itertools::Itertools; |
3239 | /// |
3240 | /// let a: [(i32, i32); 0] = []; |
3241 | /// assert_eq!(a.iter().min_set_by_key(|_| ()), Vec::<&(i32, i32)>::new()); |
3242 | /// |
3243 | /// let a = [(1, 2)]; |
3244 | /// assert_eq!(a.iter().min_set_by_key(|&&(k,_)| k), vec![&(1, 2)]); |
3245 | /// |
3246 | /// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)]; |
3247 | /// assert_eq!(a.iter().min_set_by_key(|&&(_, k)| k), vec![&(1, 2), &(2, 2)]); |
3248 | /// |
3249 | /// let a = [(1, 2), (1, 3), (1, 4), (1, 5)]; |
3250 | /// assert_eq!(a.iter().min_set_by_key(|&&(k, _)| k), vec![&(1, 2), &(1, 3), &(1, 4), &(1, 5)]); |
3251 | /// ``` |
3252 | /// |
3253 | /// The elements can be floats but no particular result is guaranteed |
3254 | /// if an element is NaN. |
3255 | #[cfg (feature = "use_alloc" )] |
3256 | fn min_set_by_key<K, F>(self, key: F) -> Vec<Self::Item> |
3257 | where |
3258 | Self: Sized, |
3259 | K: Ord, |
3260 | F: FnMut(&Self::Item) -> K, |
3261 | { |
3262 | extrema_set::min_set_impl(self, key, |_, _, kx, ky| kx.cmp(ky)) |
3263 | } |
3264 | |
3265 | /// Return all maximum elements of an iterator. |
3266 | /// |
3267 | /// # Examples |
3268 | /// |
3269 | /// ``` |
3270 | /// use itertools::Itertools; |
3271 | /// |
3272 | /// let a: [i32; 0] = []; |
3273 | /// assert_eq!(a.iter().max_set(), Vec::<&i32>::new()); |
3274 | /// |
3275 | /// let a = [1]; |
3276 | /// assert_eq!(a.iter().max_set(), vec![&1]); |
3277 | /// |
3278 | /// let a = [1, 2, 3, 4, 5]; |
3279 | /// assert_eq!(a.iter().max_set(), vec![&5]); |
3280 | /// |
3281 | /// let a = [1, 1, 1, 1]; |
3282 | /// assert_eq!(a.iter().max_set(), vec![&1, &1, &1, &1]); |
3283 | /// ``` |
3284 | /// |
3285 | /// The elements can be floats but no particular result is guaranteed |
3286 | /// if an element is NaN. |
3287 | #[cfg (feature = "use_alloc" )] |
3288 | fn max_set(self) -> Vec<Self::Item> |
3289 | where |
3290 | Self: Sized, |
3291 | Self::Item: Ord, |
3292 | { |
3293 | extrema_set::max_set_impl(self, |_| (), |x, y, _, _| x.cmp(y)) |
3294 | } |
3295 | |
3296 | /// Return all maximum elements of an iterator, as determined by |
3297 | /// the specified function. |
3298 | /// |
3299 | /// # Examples |
3300 | /// |
3301 | /// ``` |
3302 | /// # use std::cmp::Ordering; |
3303 | /// use itertools::Itertools; |
3304 | /// |
3305 | /// let a: [(i32, i32); 0] = []; |
3306 | /// assert_eq!(a.iter().max_set_by(|_, _| Ordering::Equal), Vec::<&(i32, i32)>::new()); |
3307 | /// |
3308 | /// let a = [(1, 2)]; |
3309 | /// assert_eq!(a.iter().max_set_by(|&&(k1,_), &&(k2, _)| k1.cmp(&k2)), vec![&(1, 2)]); |
3310 | /// |
3311 | /// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)]; |
3312 | /// assert_eq!(a.iter().max_set_by(|&&(_,k1), &&(_,k2)| k1.cmp(&k2)), vec![&(3, 9), &(5, 9)]); |
3313 | /// |
3314 | /// let a = [(1, 2), (1, 3), (1, 4), (1, 5)]; |
3315 | /// assert_eq!(a.iter().max_set_by(|&&(k1,_), &&(k2, _)| k1.cmp(&k2)), vec![&(1, 2), &(1, 3), &(1, 4), &(1, 5)]); |
3316 | /// ``` |
3317 | /// |
3318 | /// The elements can be floats but no particular result is guaranteed |
3319 | /// if an element is NaN. |
3320 | #[cfg (feature = "use_alloc" )] |
3321 | fn max_set_by<F>(self, mut compare: F) -> Vec<Self::Item> |
3322 | where |
3323 | Self: Sized, |
3324 | F: FnMut(&Self::Item, &Self::Item) -> Ordering, |
3325 | { |
3326 | extrema_set::max_set_impl(self, |_| (), |x, y, _, _| compare(x, y)) |
3327 | } |
3328 | |
3329 | /// Return all maximum elements of an iterator, as determined by |
3330 | /// the specified function. |
3331 | /// |
3332 | /// # Examples |
3333 | /// |
3334 | /// ``` |
3335 | /// use itertools::Itertools; |
3336 | /// |
3337 | /// let a: [(i32, i32); 0] = []; |
3338 | /// assert_eq!(a.iter().max_set_by_key(|_| ()), Vec::<&(i32, i32)>::new()); |
3339 | /// |
3340 | /// let a = [(1, 2)]; |
3341 | /// assert_eq!(a.iter().max_set_by_key(|&&(k,_)| k), vec![&(1, 2)]); |
3342 | /// |
3343 | /// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)]; |
3344 | /// assert_eq!(a.iter().max_set_by_key(|&&(_, k)| k), vec![&(3, 9), &(5, 9)]); |
3345 | /// |
3346 | /// let a = [(1, 2), (1, 3), (1, 4), (1, 5)]; |
3347 | /// assert_eq!(a.iter().max_set_by_key(|&&(k, _)| k), vec![&(1, 2), &(1, 3), &(1, 4), &(1, 5)]); |
3348 | /// ``` |
3349 | /// |
3350 | /// The elements can be floats but no particular result is guaranteed |
3351 | /// if an element is NaN. |
3352 | #[cfg (feature = "use_alloc" )] |
3353 | fn max_set_by_key<K, F>(self, key: F) -> Vec<Self::Item> |
3354 | where |
3355 | Self: Sized, |
3356 | K: Ord, |
3357 | F: FnMut(&Self::Item) -> K, |
3358 | { |
3359 | extrema_set::max_set_impl(self, key, |_, _, kx, ky| kx.cmp(ky)) |
3360 | } |
3361 | |
3362 | /// Return the minimum and maximum elements in the iterator. |
3363 | /// |
3364 | /// The return type `MinMaxResult` is an enum of three variants: |
3365 | /// |
3366 | /// - `NoElements` if the iterator is empty. |
3367 | /// - `OneElement(x)` if the iterator has exactly one element. |
3368 | /// - `MinMax(x, y)` is returned otherwise, where `x <= y`. Two |
3369 | /// values are equal if and only if there is more than one |
3370 | /// element in the iterator and all elements are equal. |
3371 | /// |
3372 | /// On an iterator of length `n`, `minmax` does `1.5 * n` comparisons, |
3373 | /// and so is faster than calling `min` and `max` separately which does |
3374 | /// `2 * n` comparisons. |
3375 | /// |
3376 | /// # Examples |
3377 | /// |
3378 | /// ``` |
3379 | /// use itertools::Itertools; |
3380 | /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax}; |
3381 | /// |
3382 | /// let a: [i32; 0] = []; |
3383 | /// assert_eq!(a.iter().minmax(), NoElements); |
3384 | /// |
3385 | /// let a = [1]; |
3386 | /// assert_eq!(a.iter().minmax(), OneElement(&1)); |
3387 | /// |
3388 | /// let a = [1, 2, 3, 4, 5]; |
3389 | /// assert_eq!(a.iter().minmax(), MinMax(&1, &5)); |
3390 | /// |
3391 | /// let a = [1, 1, 1, 1]; |
3392 | /// assert_eq!(a.iter().minmax(), MinMax(&1, &1)); |
3393 | /// ``` |
3394 | /// |
3395 | /// The elements can be floats but no particular result is guaranteed |
3396 | /// if an element is NaN. |
3397 | fn minmax(self) -> MinMaxResult<Self::Item> |
3398 | where |
3399 | Self: Sized, |
3400 | Self::Item: PartialOrd, |
3401 | { |
3402 | minmax::minmax_impl(self, |_| (), |x, y, _, _| x < y) |
3403 | } |
3404 | |
3405 | /// Return the minimum and maximum element of an iterator, as determined by |
3406 | /// the specified function. |
3407 | /// |
3408 | /// The return value is a variant of [`MinMaxResult`] like for [`.minmax()`](Itertools::minmax). |
3409 | /// |
3410 | /// For the minimum, the first minimal element is returned. For the maximum, |
3411 | /// the last maximal element wins. This matches the behavior of the standard |
3412 | /// [`Iterator::min`] and [`Iterator::max`] methods. |
3413 | /// |
3414 | /// The keys can be floats but no particular result is guaranteed |
3415 | /// if a key is NaN. |
3416 | fn minmax_by_key<K, F>(self, key: F) -> MinMaxResult<Self::Item> |
3417 | where |
3418 | Self: Sized, |
3419 | K: PartialOrd, |
3420 | F: FnMut(&Self::Item) -> K, |
3421 | { |
3422 | minmax::minmax_impl(self, key, |_, _, xk, yk| xk < yk) |
3423 | } |
3424 | |
3425 | /// Return the minimum and maximum element of an iterator, as determined by |
3426 | /// the specified comparison function. |
3427 | /// |
3428 | /// The return value is a variant of [`MinMaxResult`] like for [`.minmax()`](Itertools::minmax). |
3429 | /// |
3430 | /// For the minimum, the first minimal element is returned. For the maximum, |
3431 | /// the last maximal element wins. This matches the behavior of the standard |
3432 | /// [`Iterator::min`] and [`Iterator::max`] methods. |
3433 | fn minmax_by<F>(self, mut compare: F) -> MinMaxResult<Self::Item> |
3434 | where |
3435 | Self: Sized, |
3436 | F: FnMut(&Self::Item, &Self::Item) -> Ordering, |
3437 | { |
3438 | minmax::minmax_impl(self, |_| (), |x, y, _, _| Ordering::Less == compare(x, y)) |
3439 | } |
3440 | |
3441 | /// Return the position of the maximum element in the iterator. |
3442 | /// |
3443 | /// If several elements are equally maximum, the position of the |
3444 | /// last of them is returned. |
3445 | /// |
3446 | /// # Examples |
3447 | /// |
3448 | /// ``` |
3449 | /// use itertools::Itertools; |
3450 | /// |
3451 | /// let a: [i32; 0] = []; |
3452 | /// assert_eq!(a.iter().position_max(), None); |
3453 | /// |
3454 | /// let a = [-3, 0, 1, 5, -10]; |
3455 | /// assert_eq!(a.iter().position_max(), Some(3)); |
3456 | /// |
3457 | /// let a = [1, 1, -1, -1]; |
3458 | /// assert_eq!(a.iter().position_max(), Some(1)); |
3459 | /// ``` |
3460 | fn position_max(self) -> Option<usize> |
3461 | where |
3462 | Self: Sized, |
3463 | Self::Item: Ord, |
3464 | { |
3465 | self.enumerate() |
3466 | .max_by(|x, y| Ord::cmp(&x.1, &y.1)) |
3467 | .map(|x| x.0) |
3468 | } |
3469 | |
3470 | /// Return the position of the maximum element in the iterator, as |
3471 | /// determined by the specified function. |
3472 | /// |
3473 | /// If several elements are equally maximum, the position of the |
3474 | /// last of them is returned. |
3475 | /// |
3476 | /// # Examples |
3477 | /// |
3478 | /// ``` |
3479 | /// use itertools::Itertools; |
3480 | /// |
3481 | /// let a: [i32; 0] = []; |
3482 | /// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), None); |
3483 | /// |
3484 | /// let a = [-3_i32, 0, 1, 5, -10]; |
3485 | /// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), Some(4)); |
3486 | /// |
3487 | /// let a = [1_i32, 1, -1, -1]; |
3488 | /// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), Some(3)); |
3489 | /// ``` |
3490 | fn position_max_by_key<K, F>(self, mut key: F) -> Option<usize> |
3491 | where |
3492 | Self: Sized, |
3493 | K: Ord, |
3494 | F: FnMut(&Self::Item) -> K, |
3495 | { |
3496 | self.enumerate() |
3497 | .max_by(|x, y| Ord::cmp(&key(&x.1), &key(&y.1))) |
3498 | .map(|x| x.0) |
3499 | } |
3500 | |
3501 | /// Return the position of the maximum element in the iterator, as |
3502 | /// determined by the specified comparison function. |
3503 | /// |
3504 | /// If several elements are equally maximum, the position of the |
3505 | /// last of them is returned. |
3506 | /// |
3507 | /// # Examples |
3508 | /// |
3509 | /// ``` |
3510 | /// use itertools::Itertools; |
3511 | /// |
3512 | /// let a: [i32; 0] = []; |
3513 | /// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), None); |
3514 | /// |
3515 | /// let a = [-3_i32, 0, 1, 5, -10]; |
3516 | /// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), Some(3)); |
3517 | /// |
3518 | /// let a = [1_i32, 1, -1, -1]; |
3519 | /// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), Some(1)); |
3520 | /// ``` |
3521 | fn position_max_by<F>(self, mut compare: F) -> Option<usize> |
3522 | where |
3523 | Self: Sized, |
3524 | F: FnMut(&Self::Item, &Self::Item) -> Ordering, |
3525 | { |
3526 | self.enumerate() |
3527 | .max_by(|x, y| compare(&x.1, &y.1)) |
3528 | .map(|x| x.0) |
3529 | } |
3530 | |
3531 | /// Return the position of the minimum element in the iterator. |
3532 | /// |
3533 | /// If several elements are equally minimum, the position of the |
3534 | /// first of them is returned. |
3535 | /// |
3536 | /// # Examples |
3537 | /// |
3538 | /// ``` |
3539 | /// use itertools::Itertools; |
3540 | /// |
3541 | /// let a: [i32; 0] = []; |
3542 | /// assert_eq!(a.iter().position_min(), None); |
3543 | /// |
3544 | /// let a = [-3, 0, 1, 5, -10]; |
3545 | /// assert_eq!(a.iter().position_min(), Some(4)); |
3546 | /// |
3547 | /// let a = [1, 1, -1, -1]; |
3548 | /// assert_eq!(a.iter().position_min(), Some(2)); |
3549 | /// ``` |
3550 | fn position_min(self) -> Option<usize> |
3551 | where |
3552 | Self: Sized, |
3553 | Self::Item: Ord, |
3554 | { |
3555 | self.enumerate() |
3556 | .min_by(|x, y| Ord::cmp(&x.1, &y.1)) |
3557 | .map(|x| x.0) |
3558 | } |
3559 | |
3560 | /// Return the position of the minimum element in the iterator, as |
3561 | /// determined by the specified function. |
3562 | /// |
3563 | /// If several elements are equally minimum, the position of the |
3564 | /// first of them is returned. |
3565 | /// |
3566 | /// # Examples |
3567 | /// |
3568 | /// ``` |
3569 | /// use itertools::Itertools; |
3570 | /// |
3571 | /// let a: [i32; 0] = []; |
3572 | /// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), None); |
3573 | /// |
3574 | /// let a = [-3_i32, 0, 1, 5, -10]; |
3575 | /// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), Some(1)); |
3576 | /// |
3577 | /// let a = [1_i32, 1, -1, -1]; |
3578 | /// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), Some(0)); |
3579 | /// ``` |
3580 | fn position_min_by_key<K, F>(self, mut key: F) -> Option<usize> |
3581 | where |
3582 | Self: Sized, |
3583 | K: Ord, |
3584 | F: FnMut(&Self::Item) -> K, |
3585 | { |
3586 | self.enumerate() |
3587 | .min_by(|x, y| Ord::cmp(&key(&x.1), &key(&y.1))) |
3588 | .map(|x| x.0) |
3589 | } |
3590 | |
3591 | /// Return the position of the minimum element in the iterator, as |
3592 | /// determined by the specified comparison function. |
3593 | /// |
3594 | /// If several elements are equally minimum, the position of the |
3595 | /// first of them is returned. |
3596 | /// |
3597 | /// # Examples |
3598 | /// |
3599 | /// ``` |
3600 | /// use itertools::Itertools; |
3601 | /// |
3602 | /// let a: [i32; 0] = []; |
3603 | /// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), None); |
3604 | /// |
3605 | /// let a = [-3_i32, 0, 1, 5, -10]; |
3606 | /// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), Some(4)); |
3607 | /// |
3608 | /// let a = [1_i32, 1, -1, -1]; |
3609 | /// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), Some(2)); |
3610 | /// ``` |
3611 | fn position_min_by<F>(self, mut compare: F) -> Option<usize> |
3612 | where |
3613 | Self: Sized, |
3614 | F: FnMut(&Self::Item, &Self::Item) -> Ordering, |
3615 | { |
3616 | self.enumerate() |
3617 | .min_by(|x, y| compare(&x.1, &y.1)) |
3618 | .map(|x| x.0) |
3619 | } |
3620 | |
3621 | /// Return the positions of the minimum and maximum elements in |
3622 | /// the iterator. |
3623 | /// |
3624 | /// The return type [`MinMaxResult`] is an enum of three variants: |
3625 | /// |
3626 | /// - `NoElements` if the iterator is empty. |
3627 | /// - `OneElement(xpos)` if the iterator has exactly one element. |
3628 | /// - `MinMax(xpos, ypos)` is returned otherwise, where the |
3629 | /// element at `xpos` ≤ the element at `ypos`. While the |
3630 | /// referenced elements themselves may be equal, `xpos` cannot |
3631 | /// be equal to `ypos`. |
3632 | /// |
3633 | /// On an iterator of length `n`, `position_minmax` does `1.5 * n` |
3634 | /// comparisons, and so is faster than calling `position_min` and |
3635 | /// `position_max` separately which does `2 * n` comparisons. |
3636 | /// |
3637 | /// For the minimum, if several elements are equally minimum, the |
3638 | /// position of the first of them is returned. For the maximum, if |
3639 | /// several elements are equally maximum, the position of the last |
3640 | /// of them is returned. |
3641 | /// |
3642 | /// The elements can be floats but no particular result is |
3643 | /// guaranteed if an element is NaN. |
3644 | /// |
3645 | /// # Examples |
3646 | /// |
3647 | /// ``` |
3648 | /// use itertools::Itertools; |
3649 | /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax}; |
3650 | /// |
3651 | /// let a: [i32; 0] = []; |
3652 | /// assert_eq!(a.iter().position_minmax(), NoElements); |
3653 | /// |
3654 | /// let a = [10]; |
3655 | /// assert_eq!(a.iter().position_minmax(), OneElement(0)); |
3656 | /// |
3657 | /// let a = [-3, 0, 1, 5, -10]; |
3658 | /// assert_eq!(a.iter().position_minmax(), MinMax(4, 3)); |
3659 | /// |
3660 | /// let a = [1, 1, -1, -1]; |
3661 | /// assert_eq!(a.iter().position_minmax(), MinMax(2, 1)); |
3662 | /// ``` |
3663 | fn position_minmax(self) -> MinMaxResult<usize> |
3664 | where |
3665 | Self: Sized, |
3666 | Self::Item: PartialOrd, |
3667 | { |
3668 | use crate::MinMaxResult::{MinMax, NoElements, OneElement}; |
3669 | match minmax::minmax_impl(self.enumerate(), |_| (), |x, y, _, _| x.1 < y.1) { |
3670 | NoElements => NoElements, |
3671 | OneElement(x) => OneElement(x.0), |
3672 | MinMax(x, y) => MinMax(x.0, y.0), |
3673 | } |
3674 | } |
3675 | |
3676 | /// Return the postions of the minimum and maximum elements of an |
3677 | /// iterator, as determined by the specified function. |
3678 | /// |
3679 | /// The return value is a variant of [`MinMaxResult`] like for |
3680 | /// [`position_minmax`]. |
3681 | /// |
3682 | /// For the minimum, if several elements are equally minimum, the |
3683 | /// position of the first of them is returned. For the maximum, if |
3684 | /// several elements are equally maximum, the position of the last |
3685 | /// of them is returned. |
3686 | /// |
3687 | /// The keys can be floats but no particular result is guaranteed |
3688 | /// if a key is NaN. |
3689 | /// |
3690 | /// # Examples |
3691 | /// |
3692 | /// ``` |
3693 | /// use itertools::Itertools; |
3694 | /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax}; |
3695 | /// |
3696 | /// let a: [i32; 0] = []; |
3697 | /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), NoElements); |
3698 | /// |
3699 | /// let a = [10_i32]; |
3700 | /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), OneElement(0)); |
3701 | /// |
3702 | /// let a = [-3_i32, 0, 1, 5, -10]; |
3703 | /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), MinMax(1, 4)); |
3704 | /// |
3705 | /// let a = [1_i32, 1, -1, -1]; |
3706 | /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), MinMax(0, 3)); |
3707 | /// ``` |
3708 | /// |
3709 | /// [`position_minmax`]: Self::position_minmax |
3710 | fn position_minmax_by_key<K, F>(self, mut key: F) -> MinMaxResult<usize> |
3711 | where |
3712 | Self: Sized, |
3713 | K: PartialOrd, |
3714 | F: FnMut(&Self::Item) -> K, |
3715 | { |
3716 | use crate::MinMaxResult::{MinMax, NoElements, OneElement}; |
3717 | match self.enumerate().minmax_by_key(|e| key(&e.1)) { |
3718 | NoElements => NoElements, |
3719 | OneElement(x) => OneElement(x.0), |
3720 | MinMax(x, y) => MinMax(x.0, y.0), |
3721 | } |
3722 | } |
3723 | |
3724 | /// Return the postions of the minimum and maximum elements of an |
3725 | /// iterator, as determined by the specified comparison function. |
3726 | /// |
3727 | /// The return value is a variant of [`MinMaxResult`] like for |
3728 | /// [`position_minmax`]. |
3729 | /// |
3730 | /// For the minimum, if several elements are equally minimum, the |
3731 | /// position of the first of them is returned. For the maximum, if |
3732 | /// several elements are equally maximum, the position of the last |
3733 | /// of them is returned. |
3734 | /// |
3735 | /// # Examples |
3736 | /// |
3737 | /// ``` |
3738 | /// use itertools::Itertools; |
3739 | /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax}; |
3740 | /// |
3741 | /// let a: [i32; 0] = []; |
3742 | /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), NoElements); |
3743 | /// |
3744 | /// let a = [10_i32]; |
3745 | /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), OneElement(0)); |
3746 | /// |
3747 | /// let a = [-3_i32, 0, 1, 5, -10]; |
3748 | /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), MinMax(4, 3)); |
3749 | /// |
3750 | /// let a = [1_i32, 1, -1, -1]; |
3751 | /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), MinMax(2, 1)); |
3752 | /// ``` |
3753 | /// |
3754 | /// [`position_minmax`]: Self::position_minmax |
3755 | fn position_minmax_by<F>(self, mut compare: F) -> MinMaxResult<usize> |
3756 | where |
3757 | Self: Sized, |
3758 | F: FnMut(&Self::Item, &Self::Item) -> Ordering, |
3759 | { |
3760 | use crate::MinMaxResult::{MinMax, NoElements, OneElement}; |
3761 | match self.enumerate().minmax_by(|x, y| compare(&x.1, &y.1)) { |
3762 | NoElements => NoElements, |
3763 | OneElement(x) => OneElement(x.0), |
3764 | MinMax(x, y) => MinMax(x.0, y.0), |
3765 | } |
3766 | } |
3767 | |
3768 | /// If the iterator yields exactly one element, that element will be returned, otherwise |
3769 | /// an error will be returned containing an iterator that has the same output as the input |
3770 | /// iterator. |
3771 | /// |
3772 | /// This provides an additional layer of validation over just calling `Iterator::next()`. |
3773 | /// If your assumption that there should only be one element yielded is false this provides |
3774 | /// the opportunity to detect and handle that, preventing errors at a distance. |
3775 | /// |
3776 | /// # Examples |
3777 | /// ``` |
3778 | /// use itertools::Itertools; |
3779 | /// |
3780 | /// assert_eq!((0..10).filter(|&x| x == 2).exactly_one().unwrap(), 2); |
3781 | /// assert!((0..10).filter(|&x| x > 1 && x < 4).exactly_one().unwrap_err().eq(2..4)); |
3782 | /// assert!((0..10).filter(|&x| x > 1 && x < 5).exactly_one().unwrap_err().eq(2..5)); |
3783 | /// assert!((0..10).filter(|&_| false).exactly_one().unwrap_err().eq(0..0)); |
3784 | /// ``` |
3785 | fn exactly_one(mut self) -> Result<Self::Item, ExactlyOneError<Self>> |
3786 | where |
3787 | Self: Sized, |
3788 | { |
3789 | match self.next() { |
3790 | Some(first) => match self.next() { |
3791 | Some(second) => Err(ExactlyOneError::new( |
3792 | Some(Either::Left([first, second])), |
3793 | self, |
3794 | )), |
3795 | None => Ok(first), |
3796 | }, |
3797 | None => Err(ExactlyOneError::new(None, self)), |
3798 | } |
3799 | } |
3800 | |
3801 | /// If the iterator yields no elements, Ok(None) will be returned. If the iterator yields |
3802 | /// exactly one element, that element will be returned, otherwise an error will be returned |
3803 | /// containing an iterator that has the same output as the input iterator. |
3804 | /// |
3805 | /// This provides an additional layer of validation over just calling `Iterator::next()`. |
3806 | /// If your assumption that there should be at most one element yielded is false this provides |
3807 | /// the opportunity to detect and handle that, preventing errors at a distance. |
3808 | /// |
3809 | /// # Examples |
3810 | /// ``` |
3811 | /// use itertools::Itertools; |
3812 | /// |
3813 | /// assert_eq!((0..10).filter(|&x| x == 2).at_most_one().unwrap(), Some(2)); |
3814 | /// assert!((0..10).filter(|&x| x > 1 && x < 4).at_most_one().unwrap_err().eq(2..4)); |
3815 | /// assert!((0..10).filter(|&x| x > 1 && x < 5).at_most_one().unwrap_err().eq(2..5)); |
3816 | /// assert_eq!((0..10).filter(|&_| false).at_most_one().unwrap(), None); |
3817 | /// ``` |
3818 | fn at_most_one(mut self) -> Result<Option<Self::Item>, ExactlyOneError<Self>> |
3819 | where |
3820 | Self: Sized, |
3821 | { |
3822 | match self.next() { |
3823 | Some(first) => match self.next() { |
3824 | Some(second) => Err(ExactlyOneError::new( |
3825 | Some(Either::Left([first, second])), |
3826 | self, |
3827 | )), |
3828 | None => Ok(Some(first)), |
3829 | }, |
3830 | None => Ok(None), |
3831 | } |
3832 | } |
3833 | |
3834 | /// An iterator adaptor that allows the user to peek at multiple `.next()` |
3835 | /// values without advancing the base iterator. |
3836 | /// |
3837 | /// # Examples |
3838 | /// ``` |
3839 | /// use itertools::Itertools; |
3840 | /// |
3841 | /// let mut iter = (0..10).multipeek(); |
3842 | /// assert_eq!(iter.peek(), Some(&0)); |
3843 | /// assert_eq!(iter.peek(), Some(&1)); |
3844 | /// assert_eq!(iter.peek(), Some(&2)); |
3845 | /// assert_eq!(iter.next(), Some(0)); |
3846 | /// assert_eq!(iter.peek(), Some(&1)); |
3847 | /// ``` |
3848 | #[cfg (feature = "use_alloc" )] |
3849 | fn multipeek(self) -> MultiPeek<Self> |
3850 | where |
3851 | Self: Sized, |
3852 | { |
3853 | multipeek_impl::multipeek(self) |
3854 | } |
3855 | |
3856 | /// Collect the items in this iterator and return a `HashMap` which |
3857 | /// contains each item that appears in the iterator and the number |
3858 | /// of times it appears. |
3859 | /// |
3860 | /// # Examples |
3861 | /// ``` |
3862 | /// # use itertools::Itertools; |
3863 | /// let counts = [1, 1, 1, 3, 3, 5].into_iter().counts(); |
3864 | /// assert_eq!(counts[&1], 3); |
3865 | /// assert_eq!(counts[&3], 2); |
3866 | /// assert_eq!(counts[&5], 1); |
3867 | /// assert_eq!(counts.get(&0), None); |
3868 | /// ``` |
3869 | #[cfg (feature = "use_std" )] |
3870 | fn counts(self) -> HashMap<Self::Item, usize> |
3871 | where |
3872 | Self: Sized, |
3873 | Self::Item: Eq + Hash, |
3874 | { |
3875 | let mut counts = HashMap::new(); |
3876 | self.for_each(|item| *counts.entry(item).or_default() += 1); |
3877 | counts |
3878 | } |
3879 | |
3880 | /// Collect the items in this iterator and return a `HashMap` which |
3881 | /// contains each item that appears in the iterator and the number |
3882 | /// of times it appears, |
3883 | /// determining identity using a keying function. |
3884 | /// |
3885 | /// ``` |
3886 | /// # use itertools::Itertools; |
3887 | /// struct Character { |
3888 | /// first_name: &'static str, |
3889 | /// last_name: &'static str, |
3890 | /// } |
3891 | /// |
3892 | /// let characters = |
3893 | /// vec![ |
3894 | /// Character { first_name: "Amy" , last_name: "Pond" }, |
3895 | /// Character { first_name: "Amy" , last_name: "Wong" }, |
3896 | /// Character { first_name: "Amy" , last_name: "Santiago" }, |
3897 | /// Character { first_name: "James" , last_name: "Bond" }, |
3898 | /// Character { first_name: "James" , last_name: "Sullivan" }, |
3899 | /// Character { first_name: "James" , last_name: "Norington" }, |
3900 | /// Character { first_name: "James" , last_name: "Kirk" }, |
3901 | /// ]; |
3902 | /// |
3903 | /// let first_name_frequency = |
3904 | /// characters |
3905 | /// .into_iter() |
3906 | /// .counts_by(|c| c.first_name); |
3907 | /// |
3908 | /// assert_eq!(first_name_frequency["Amy" ], 3); |
3909 | /// assert_eq!(first_name_frequency["James" ], 4); |
3910 | /// assert_eq!(first_name_frequency.contains_key("Asha" ), false); |
3911 | /// ``` |
3912 | #[cfg (feature = "use_std" )] |
3913 | fn counts_by<K, F>(self, f: F) -> HashMap<K, usize> |
3914 | where |
3915 | Self: Sized, |
3916 | K: Eq + Hash, |
3917 | F: FnMut(Self::Item) -> K, |
3918 | { |
3919 | self.map(f).counts() |
3920 | } |
3921 | |
3922 | /// Converts an iterator of tuples into a tuple of containers. |
3923 | /// |
3924 | /// `unzip()` consumes an entire iterator of n-ary tuples, producing `n` collections, one for each |
3925 | /// column. |
3926 | /// |
3927 | /// This function is, in some sense, the opposite of [`multizip`]. |
3928 | /// |
3929 | /// ``` |
3930 | /// use itertools::Itertools; |
3931 | /// |
3932 | /// let inputs = vec![(1, 2, 3), (4, 5, 6), (7, 8, 9)]; |
3933 | /// |
3934 | /// let (a, b, c): (Vec<_>, Vec<_>, Vec<_>) = inputs |
3935 | /// .into_iter() |
3936 | /// .multiunzip(); |
3937 | /// |
3938 | /// assert_eq!(a, vec![1, 4, 7]); |
3939 | /// assert_eq!(b, vec![2, 5, 8]); |
3940 | /// assert_eq!(c, vec![3, 6, 9]); |
3941 | /// ``` |
3942 | fn multiunzip<FromI>(self) -> FromI |
3943 | where |
3944 | Self: Sized + MultiUnzip<FromI>, |
3945 | { |
3946 | MultiUnzip::multiunzip(self) |
3947 | } |
3948 | |
3949 | /// Returns the length of the iterator if one exists. |
3950 | /// Otherwise return `self.size_hint()`. |
3951 | /// |
3952 | /// Fallible [`ExactSizeIterator::len`]. |
3953 | /// |
3954 | /// Inherits guarantees and restrictions from [`Iterator::size_hint`]. |
3955 | /// |
3956 | /// ``` |
3957 | /// use itertools::Itertools; |
3958 | /// |
3959 | /// assert_eq!([0; 10].iter().try_len(), Ok(10)); |
3960 | /// assert_eq!((10..15).try_len(), Ok(5)); |
3961 | /// assert_eq!((15..10).try_len(), Ok(0)); |
3962 | /// assert_eq!((10..).try_len(), Err((usize::MAX, None))); |
3963 | /// assert_eq!((10..15).filter(|x| x % 2 == 0).try_len(), Err((0, Some(5)))); |
3964 | /// ``` |
3965 | fn try_len(&self) -> Result<usize, size_hint::SizeHint> { |
3966 | let sh = self.size_hint(); |
3967 | match sh { |
3968 | (lo, Some(hi)) if lo == hi => Ok(lo), |
3969 | _ => Err(sh), |
3970 | } |
3971 | } |
3972 | } |
3973 | |
3974 | impl<T> Itertools for T where T: Iterator + ?Sized {} |
3975 | |
3976 | /// Return `true` if both iterables produce equal sequences |
3977 | /// (elements pairwise equal and sequences of the same length), |
3978 | /// `false` otherwise. |
3979 | /// |
3980 | /// [`IntoIterator`] enabled version of [`Iterator::eq`]. |
3981 | /// |
3982 | /// ``` |
3983 | /// assert!(itertools::equal(vec![1, 2, 3], 1..4)); |
3984 | /// assert!(!itertools::equal(&[0, 0], &[0, 0, 0])); |
3985 | /// ``` |
3986 | pub fn equal<I, J>(a: I, b: J) -> bool |
3987 | where |
3988 | I: IntoIterator, |
3989 | J: IntoIterator, |
3990 | I::Item: PartialEq<J::Item>, |
3991 | { |
3992 | a.into_iter().eq(b) |
3993 | } |
3994 | |
3995 | /// Assert that two iterables produce equal sequences, with the same |
3996 | /// semantics as [`equal(a, b)`](equal). |
3997 | /// |
3998 | /// **Panics** on assertion failure with a message that shows the |
3999 | /// two iteration elements. |
4000 | /// |
4001 | /// ```should_panic |
4002 | /// # use itertools::assert_equal; |
4003 | /// assert_equal("exceed" .split('c' ), "excess" .split('c' )); |
4004 | /// // ^PANIC: panicked at 'Failed assertion Some("eed") == Some("ess") for iteration 1'. |
4005 | /// ``` |
4006 | pub fn assert_equal<I, J>(a: I, b: J) |
4007 | where |
4008 | I: IntoIterator, |
4009 | J: IntoIterator, |
4010 | I::Item: fmt::Debug + PartialEq<J::Item>, |
4011 | J::Item: fmt::Debug, |
4012 | { |
4013 | let mut ia: I = a.into_iter(); |
4014 | let mut ib: J = b.into_iter(); |
4015 | let mut i: i32 = 0; |
4016 | loop { |
4017 | match (ia.next(), ib.next()) { |
4018 | (None, None) => return, |
4019 | (a: Option<{unknown}>, b: Option<{unknown}>) => { |
4020 | let equal: bool = match (&a, &b) { |
4021 | (Some(a: &{unknown}), Some(b: &{unknown})) => a == b, |
4022 | _ => false, |
4023 | }; |
4024 | assert!( |
4025 | equal, |
4026 | "Failed assertion {a:?} == {b:?} for iteration {i}" , |
4027 | i = i, |
4028 | a = a, |
4029 | b = b |
4030 | ); |
4031 | i += 1; |
4032 | } |
4033 | } |
4034 | } |
4035 | } |
4036 | |
4037 | /// Partition a sequence using predicate `pred` so that elements |
4038 | /// that map to `true` are placed before elements which map to `false`. |
4039 | /// |
4040 | /// The order within the partitions is arbitrary. |
4041 | /// |
4042 | /// Return the index of the split point. |
4043 | /// |
4044 | /// ``` |
4045 | /// use itertools::partition; |
4046 | /// |
4047 | /// # // use repeated numbers to not promise any ordering |
4048 | /// let mut data = [7, 1, 1, 7, 1, 1, 7]; |
4049 | /// let split_index = partition(&mut data, |elt| *elt >= 3); |
4050 | /// |
4051 | /// assert_eq!(data, [7, 7, 7, 1, 1, 1, 1]); |
4052 | /// assert_eq!(split_index, 3); |
4053 | /// ``` |
4054 | pub fn partition<'a, A: 'a, I, F>(iter: I, mut pred: F) -> usize |
4055 | where |
4056 | I: IntoIterator<Item = &'a mut A>, |
4057 | I::IntoIter: DoubleEndedIterator, |
4058 | F: FnMut(&A) -> bool, |
4059 | { |
4060 | let mut split_index: usize = 0; |
4061 | let mut iter: ::IntoIter = iter.into_iter(); |
4062 | while let Some(front: &mut A) = iter.next() { |
4063 | if !pred(front) { |
4064 | match iter.rfind(|back: &&mut A| pred(back)) { |
4065 | Some(back: &mut A) => std::mem::swap(x:front, y:back), |
4066 | None => break, |
4067 | } |
4068 | } |
4069 | split_index += 1; |
4070 | } |
4071 | split_index |
4072 | } |
4073 | |
4074 | /// An enum used for controlling the execution of `fold_while`. |
4075 | /// |
4076 | /// See [`.fold_while()`](Itertools::fold_while) for more information. |
4077 | #[derive (Copy, Clone, Debug, Eq, PartialEq)] |
4078 | pub enum FoldWhile<T> { |
4079 | /// Continue folding with this value |
4080 | Continue(T), |
4081 | /// Fold is complete and will return this value |
4082 | Done(T), |
4083 | } |
4084 | |
4085 | impl<T> FoldWhile<T> { |
4086 | /// Return the value in the continue or done. |
4087 | pub fn into_inner(self) -> T { |
4088 | match self { |
4089 | Self::Continue(x: T) | Self::Done(x: T) => x, |
4090 | } |
4091 | } |
4092 | |
4093 | /// Return true if `self` is `Done`, false if it is `Continue`. |
4094 | pub fn is_done(&self) -> bool { |
4095 | match *self { |
4096 | Self::Continue(_) => false, |
4097 | Self::Done(_) => true, |
4098 | } |
4099 | } |
4100 | } |
4101 | |