1 | //! Some iterator that produces tuples |
2 | |
3 | use std::iter::Cycle; |
4 | use std::iter::Fuse; |
5 | use std::iter::FusedIterator; |
6 | |
7 | use crate::size_hint; |
8 | |
9 | // `HomogeneousTuple` is a public facade for `TupleCollect`, allowing |
10 | // tuple-related methods to be used by clients in generic contexts, while |
11 | // hiding the implementation details of `TupleCollect`. |
12 | // See https://github.com/rust-itertools/itertools/issues/387 |
13 | |
14 | /// Implemented for homogeneous tuples of size up to 12. |
15 | pub trait HomogeneousTuple: TupleCollect {} |
16 | |
17 | impl<T: TupleCollect> HomogeneousTuple for T {} |
18 | |
19 | /// An iterator over a incomplete tuple. |
20 | /// |
21 | /// See [`.tuples()`](crate::Itertools::tuples) and |
22 | /// [`Tuples::into_buffer()`]. |
23 | #[derive (Clone, Debug)] |
24 | pub struct TupleBuffer<T> |
25 | where |
26 | T: HomogeneousTuple, |
27 | { |
28 | cur: usize, |
29 | buf: T::Buffer, |
30 | } |
31 | |
32 | impl<T> TupleBuffer<T> |
33 | where |
34 | T: HomogeneousTuple, |
35 | { |
36 | fn new(buf: T::Buffer) -> Self { |
37 | Self { cur: 0, buf } |
38 | } |
39 | } |
40 | |
41 | impl<T> Iterator for TupleBuffer<T> |
42 | where |
43 | T: HomogeneousTuple, |
44 | { |
45 | type Item = T::Item; |
46 | |
47 | fn next(&mut self) -> Option<Self::Item> { |
48 | let s = self.buf.as_mut(); |
49 | if let Some(ref mut item) = s.get_mut(self.cur) { |
50 | self.cur += 1; |
51 | item.take() |
52 | } else { |
53 | None |
54 | } |
55 | } |
56 | |
57 | fn size_hint(&self) -> (usize, Option<usize>) { |
58 | let buffer = &self.buf.as_ref()[self.cur..]; |
59 | let len = if buffer.is_empty() { |
60 | 0 |
61 | } else { |
62 | buffer |
63 | .iter() |
64 | .position(|x| x.is_none()) |
65 | .unwrap_or(buffer.len()) |
66 | }; |
67 | (len, Some(len)) |
68 | } |
69 | } |
70 | |
71 | impl<T> ExactSizeIterator for TupleBuffer<T> where T: HomogeneousTuple {} |
72 | |
73 | /// An iterator that groups the items in tuples of a specific size. |
74 | /// |
75 | /// See [`.tuples()`](crate::Itertools::tuples) for more information. |
76 | #[derive (Clone, Debug)] |
77 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
78 | pub struct Tuples<I, T> |
79 | where |
80 | I: Iterator<Item = T::Item>, |
81 | T: HomogeneousTuple, |
82 | { |
83 | iter: Fuse<I>, |
84 | buf: T::Buffer, |
85 | } |
86 | |
87 | /// Create a new tuples iterator. |
88 | pub fn tuples<I, T>(iter: I) -> Tuples<I, T> |
89 | where |
90 | I: Iterator<Item = T::Item>, |
91 | T: HomogeneousTuple, |
92 | { |
93 | Tuples { |
94 | iter: iter.fuse(), |
95 | buf: Default::default(), |
96 | } |
97 | } |
98 | |
99 | impl<I, T> Iterator for Tuples<I, T> |
100 | where |
101 | I: Iterator<Item = T::Item>, |
102 | T: HomogeneousTuple, |
103 | { |
104 | type Item = T; |
105 | |
106 | fn next(&mut self) -> Option<Self::Item> { |
107 | T::collect_from_iter(&mut self.iter, &mut self.buf) |
108 | } |
109 | |
110 | fn size_hint(&self) -> (usize, Option<usize>) { |
111 | // The number of elts we've drawn from the underlying iterator, but have |
112 | // not yet produced as a tuple. |
113 | let buffered: usize = T::buffer_len(&self.buf); |
114 | // To that, we must add the size estimates of the underlying iterator. |
115 | let (unbuffered_lo: usize, unbuffered_hi: Option) = self.iter.size_hint(); |
116 | // The total low estimate is the sum of the already-buffered elements, |
117 | // plus the low estimate of remaining unbuffered elements, divided by |
118 | // the tuple size. |
119 | let total_lo: usize = add_then_div(unbuffered_lo, buffered, T::num_items()).unwrap_or(default:usize::MAX); |
120 | // And likewise for the total high estimate, but using the high estimate |
121 | // of the remaining unbuffered elements. |
122 | let total_hi: Option = unbuffered_hi.and_then(|hi: usize| add_then_div(n:hi, a:buffered, T::num_items())); |
123 | (total_lo, total_hi) |
124 | } |
125 | } |
126 | |
127 | /// `(n + a) / d` avoiding overflow when possible, returns `None` if it overflows. |
128 | fn add_then_div(n: usize, a: usize, d: usize) -> Option<usize> { |
129 | debug_assert_ne!(d, 0); |
130 | (n / d).checked_add(a / d)?.checked_add((n % d + a % d) / d) |
131 | } |
132 | |
133 | impl<I, T> ExactSizeIterator for Tuples<I, T> |
134 | where |
135 | I: ExactSizeIterator<Item = T::Item>, |
136 | T: HomogeneousTuple, |
137 | { |
138 | } |
139 | |
140 | impl<I, T> Tuples<I, T> |
141 | where |
142 | I: Iterator<Item = T::Item>, |
143 | T: HomogeneousTuple, |
144 | { |
145 | /// Return a buffer with the produced items that was not enough to be grouped in a tuple. |
146 | /// |
147 | /// ``` |
148 | /// use itertools::Itertools; |
149 | /// |
150 | /// let mut iter = (0..5).tuples(); |
151 | /// assert_eq!(Some((0, 1, 2)), iter.next()); |
152 | /// assert_eq!(None, iter.next()); |
153 | /// itertools::assert_equal(vec![3, 4], iter.into_buffer()); |
154 | /// ``` |
155 | pub fn into_buffer(self) -> TupleBuffer<T> { |
156 | TupleBuffer::new(self.buf) |
157 | } |
158 | } |
159 | |
160 | /// An iterator over all contiguous windows that produces tuples of a specific size. |
161 | /// |
162 | /// See [`.tuple_windows()`](crate::Itertools::tuple_windows) for more |
163 | /// information. |
164 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
165 | #[derive (Clone, Debug)] |
166 | pub struct TupleWindows<I, T> |
167 | where |
168 | I: Iterator<Item = T::Item>, |
169 | T: HomogeneousTuple, |
170 | { |
171 | iter: I, |
172 | last: Option<T>, |
173 | } |
174 | |
175 | /// Create a new tuple windows iterator. |
176 | pub fn tuple_windows<I, T>(iter: I) -> TupleWindows<I, T> |
177 | where |
178 | I: Iterator<Item = T::Item>, |
179 | T: HomogeneousTuple, |
180 | T::Item: Clone, |
181 | { |
182 | TupleWindows { last: None, iter } |
183 | } |
184 | |
185 | impl<I, T> Iterator for TupleWindows<I, T> |
186 | where |
187 | I: Iterator<Item = T::Item>, |
188 | T: HomogeneousTuple + Clone, |
189 | T::Item: Clone, |
190 | { |
191 | type Item = T; |
192 | |
193 | fn next(&mut self) -> Option<Self::Item> { |
194 | if T::num_items() == 1 { |
195 | return T::collect_from_iter_no_buf(&mut self.iter); |
196 | } |
197 | if let Some(new) = self.iter.next() { |
198 | if let Some(ref mut last) = self.last { |
199 | last.left_shift_push(new); |
200 | Some(last.clone()) |
201 | } else { |
202 | use std::iter::once; |
203 | let iter = once(new).chain(&mut self.iter); |
204 | self.last = T::collect_from_iter_no_buf(iter); |
205 | self.last.clone() |
206 | } |
207 | } else { |
208 | None |
209 | } |
210 | } |
211 | |
212 | fn size_hint(&self) -> (usize, Option<usize>) { |
213 | let mut sh = self.iter.size_hint(); |
214 | // Adjust the size hint at the beginning |
215 | // OR when `num_items == 1` (but it does not change the size hint). |
216 | if self.last.is_none() { |
217 | sh = size_hint::sub_scalar(sh, T::num_items() - 1); |
218 | } |
219 | sh |
220 | } |
221 | } |
222 | |
223 | impl<I, T> ExactSizeIterator for TupleWindows<I, T> |
224 | where |
225 | I: ExactSizeIterator<Item = T::Item>, |
226 | T: HomogeneousTuple + Clone, |
227 | T::Item: Clone, |
228 | { |
229 | } |
230 | |
231 | impl<I, T> FusedIterator for TupleWindows<I, T> |
232 | where |
233 | I: FusedIterator<Item = T::Item>, |
234 | T: HomogeneousTuple + Clone, |
235 | T::Item: Clone, |
236 | { |
237 | } |
238 | |
239 | /// An iterator over all windows, wrapping back to the first elements when the |
240 | /// window would otherwise exceed the length of the iterator, producing tuples |
241 | /// of a specific size. |
242 | /// |
243 | /// See [`.circular_tuple_windows()`](crate::Itertools::circular_tuple_windows) for more |
244 | /// information. |
245 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
246 | #[derive (Debug, Clone)] |
247 | pub struct CircularTupleWindows<I, T> |
248 | where |
249 | I: Iterator<Item = T::Item> + Clone, |
250 | T: TupleCollect + Clone, |
251 | { |
252 | iter: TupleWindows<Cycle<I>, T>, |
253 | len: usize, |
254 | } |
255 | |
256 | pub fn circular_tuple_windows<I, T>(iter: I) -> CircularTupleWindows<I, T> |
257 | where |
258 | I: Iterator<Item = T::Item> + Clone + ExactSizeIterator, |
259 | T: TupleCollect + Clone, |
260 | T::Item: Clone, |
261 | { |
262 | let len: usize = iter.len(); |
263 | let iter: TupleWindows, T> = tuple_windows(iter:iter.cycle()); |
264 | |
265 | CircularTupleWindows { iter, len } |
266 | } |
267 | |
268 | impl<I, T> Iterator for CircularTupleWindows<I, T> |
269 | where |
270 | I: Iterator<Item = T::Item> + Clone, |
271 | T: TupleCollect + Clone, |
272 | T::Item: Clone, |
273 | { |
274 | type Item = T; |
275 | |
276 | fn next(&mut self) -> Option<Self::Item> { |
277 | if self.len != 0 { |
278 | self.len -= 1; |
279 | self.iter.next() |
280 | } else { |
281 | None |
282 | } |
283 | } |
284 | |
285 | fn size_hint(&self) -> (usize, Option<usize>) { |
286 | (self.len, Some(self.len)) |
287 | } |
288 | } |
289 | |
290 | impl<I, T> ExactSizeIterator for CircularTupleWindows<I, T> |
291 | where |
292 | I: Iterator<Item = T::Item> + Clone, |
293 | T: TupleCollect + Clone, |
294 | T::Item: Clone, |
295 | { |
296 | } |
297 | |
298 | impl<I, T> FusedIterator for CircularTupleWindows<I, T> |
299 | where |
300 | I: Iterator<Item = T::Item> + Clone, |
301 | T: TupleCollect + Clone, |
302 | T::Item: Clone, |
303 | { |
304 | } |
305 | |
306 | pub trait TupleCollect: Sized { |
307 | type Item; |
308 | type Buffer: Default + AsRef<[Option<Self::Item>]> + AsMut<[Option<Self::Item>]>; |
309 | |
310 | fn buffer_len(buf: &Self::Buffer) -> usize { |
311 | let s: &[Option<::Item>] = buf.as_ref(); |
312 | s.iter().position(Option::is_none).unwrap_or(default:s.len()) |
313 | } |
314 | |
315 | fn collect_from_iter<I>(iter: I, buf: &mut Self::Buffer) -> Option<Self> |
316 | where |
317 | I: IntoIterator<Item = Self::Item>; |
318 | |
319 | fn collect_from_iter_no_buf<I>(iter: I) -> Option<Self> |
320 | where |
321 | I: IntoIterator<Item = Self::Item>; |
322 | |
323 | fn num_items() -> usize; |
324 | |
325 | fn left_shift_push(&mut self, item: Self::Item); |
326 | } |
327 | |
328 | macro_rules! rev_for_each_ident{ |
329 | ($m:ident, ) => {}; |
330 | ($m:ident, $i0:ident, $($i:ident,)*) => { |
331 | rev_for_each_ident!($m, $($i,)*); |
332 | $m!($i0); |
333 | }; |
334 | } |
335 | |
336 | macro_rules! impl_tuple_collect { |
337 | ($dummy:ident,) => {}; // stop |
338 | ($dummy:ident, $($Y:ident,)*) => ( |
339 | impl_tuple_collect!($($Y,)*); |
340 | impl<A> TupleCollect for ($(ignore_ident!($Y, A),)*) { |
341 | type Item = A; |
342 | type Buffer = [Option<A>; count_ident!($($Y)*) - 1]; |
343 | |
344 | #[allow(unused_assignments, unused_mut)] |
345 | fn collect_from_iter<I>(iter: I, buf: &mut Self::Buffer) -> Option<Self> |
346 | where I: IntoIterator<Item = A> |
347 | { |
348 | let mut iter = iter.into_iter(); |
349 | $( |
350 | let mut $Y = None; |
351 | )* |
352 | |
353 | loop { |
354 | $( |
355 | $Y = iter.next(); |
356 | if $Y.is_none() { |
357 | break |
358 | } |
359 | )* |
360 | return Some(($($Y.unwrap()),*,)) |
361 | } |
362 | |
363 | let mut i = 0; |
364 | let mut s = buf.as_mut(); |
365 | $( |
366 | if i < s.len() { |
367 | s[i] = $Y; |
368 | i += 1; |
369 | } |
370 | )* |
371 | return None; |
372 | } |
373 | |
374 | fn collect_from_iter_no_buf<I>(iter: I) -> Option<Self> |
375 | where I: IntoIterator<Item = A> |
376 | { |
377 | let mut iter = iter.into_iter(); |
378 | |
379 | Some(($( |
380 | { let $Y = iter.next()?; $Y }, |
381 | )*)) |
382 | } |
383 | |
384 | fn num_items() -> usize { |
385 | count_ident!($($Y)*) |
386 | } |
387 | |
388 | fn left_shift_push(&mut self, mut item: A) { |
389 | use std::mem::replace; |
390 | |
391 | let &mut ($(ref mut $Y),*,) = self; |
392 | macro_rules! replace_item{($i:ident) => { |
393 | item = replace($i, item); |
394 | }} |
395 | rev_for_each_ident!(replace_item, $($Y,)*); |
396 | drop(item); |
397 | } |
398 | } |
399 | ) |
400 | } |
401 | impl_tuple_collect!(dummy, a, b, c, d, e, f, g, h, i, j, k, l,); |
402 | |