1 | use alloc::boxed::Box; |
2 | use alloc::vec::Vec; |
3 | use std::fmt; |
4 | use std::iter::FusedIterator; |
5 | |
6 | use super::lazy_buffer::LazyBuffer; |
7 | use crate::adaptors::checked_binomial; |
8 | |
9 | /// An iterator to iterate through all the `n`-length combinations in an iterator, with replacement. |
10 | /// |
11 | /// See [`.combinations_with_replacement()`](crate::Itertools::combinations_with_replacement) |
12 | /// for more information. |
13 | #[derive (Clone)] |
14 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
15 | pub struct CombinationsWithReplacement<I> |
16 | where |
17 | I: Iterator, |
18 | I::Item: Clone, |
19 | { |
20 | indices: Box<[usize]>, |
21 | pool: LazyBuffer<I>, |
22 | first: bool, |
23 | } |
24 | |
25 | impl<I> fmt::Debug for CombinationsWithReplacement<I> |
26 | where |
27 | I: Iterator + fmt::Debug, |
28 | I::Item: fmt::Debug + Clone, |
29 | { |
30 | debug_fmt_fields!(CombinationsWithReplacement, indices, pool, first); |
31 | } |
32 | |
33 | impl<I> CombinationsWithReplacement<I> |
34 | where |
35 | I: Iterator, |
36 | I::Item: Clone, |
37 | { |
38 | /// Map the current mask over the pool to get an output combination |
39 | fn current(&self) -> Vec<I::Item> { |
40 | self.indices.iter().map(|i: &usize| self.pool[*i].clone()).collect() |
41 | } |
42 | } |
43 | |
44 | /// Create a new `CombinationsWithReplacement` from a clonable iterator. |
45 | pub fn combinations_with_replacement<I>(iter: I, k: usize) -> CombinationsWithReplacement<I> |
46 | where |
47 | I: Iterator, |
48 | I::Item: Clone, |
49 | { |
50 | let indices: Box<[usize]> = alloc::vec![0; k].into_boxed_slice(); |
51 | let pool: LazyBuffer<I> = LazyBuffer::new(it:iter); |
52 | |
53 | CombinationsWithReplacement { |
54 | indices, |
55 | pool, |
56 | first: true, |
57 | } |
58 | } |
59 | |
60 | impl<I> Iterator for CombinationsWithReplacement<I> |
61 | where |
62 | I: Iterator, |
63 | I::Item: Clone, |
64 | { |
65 | type Item = Vec<I::Item>; |
66 | fn next(&mut self) -> Option<Self::Item> { |
67 | // If this is the first iteration, return early |
68 | if self.first { |
69 | // In empty edge cases, stop iterating immediately |
70 | return if !(self.indices.is_empty() || self.pool.get_next()) { |
71 | None |
72 | // Otherwise, yield the initial state |
73 | } else { |
74 | self.first = false; |
75 | Some(self.current()) |
76 | }; |
77 | } |
78 | |
79 | // Check if we need to consume more from the iterator |
80 | // This will run while we increment our first index digit |
81 | self.pool.get_next(); |
82 | |
83 | // Work out where we need to update our indices |
84 | let mut increment: Option<(usize, usize)> = None; |
85 | for (i, indices_int) in self.indices.iter().enumerate().rev() { |
86 | if *indices_int < self.pool.len() - 1 { |
87 | increment = Some((i, indices_int + 1)); |
88 | break; |
89 | } |
90 | } |
91 | |
92 | match increment { |
93 | // If we can update the indices further |
94 | Some((increment_from, increment_value)) => { |
95 | // We need to update the rightmost non-max value |
96 | // and all those to the right |
97 | for indices_index in increment_from..self.indices.len() { |
98 | self.indices[indices_index] = increment_value; |
99 | } |
100 | Some(self.current()) |
101 | } |
102 | // Otherwise, we're done |
103 | None => None, |
104 | } |
105 | } |
106 | |
107 | fn size_hint(&self) -> (usize, Option<usize>) { |
108 | let (mut low, mut upp) = self.pool.size_hint(); |
109 | low = remaining_for(low, self.first, &self.indices).unwrap_or(usize::MAX); |
110 | upp = upp.and_then(|upp| remaining_for(upp, self.first, &self.indices)); |
111 | (low, upp) |
112 | } |
113 | |
114 | fn count(self) -> usize { |
115 | let Self { |
116 | indices, |
117 | pool, |
118 | first, |
119 | } = self; |
120 | let n = pool.count(); |
121 | remaining_for(n, first, &indices).unwrap() |
122 | } |
123 | } |
124 | |
125 | impl<I> FusedIterator for CombinationsWithReplacement<I> |
126 | where |
127 | I: Iterator, |
128 | I::Item: Clone, |
129 | { |
130 | } |
131 | |
132 | /// For a given size `n`, return the count of remaining combinations with replacement or None if it would overflow. |
133 | fn remaining_for(n: usize, first: bool, indices: &[usize]) -> Option<usize> { |
134 | // With a "stars and bars" representation, choose k values with replacement from n values is |
135 | // like choosing k out of k + n − 1 positions (hence binomial(k + n - 1, k) possibilities) |
136 | // to place k stars and therefore n - 1 bars. |
137 | // Example (n=4, k=6): ***|*||** represents [0,0,0,1,3,3]. |
138 | let count = |n: usize, k: usize| { |
139 | let positions = if n == 0 { |
140 | k.saturating_sub(1) |
141 | } else { |
142 | (n - 1).checked_add(k)? |
143 | }; |
144 | checked_binomial(positions, k) |
145 | }; |
146 | let k = indices.len(); |
147 | if first { |
148 | count(n, k) |
149 | } else { |
150 | // The algorithm is similar to the one for combinations *without replacement*, |
151 | // except we choose values *with replacement* and indices are *non-strictly* monotonically sorted. |
152 | |
153 | // The combinations generated after the current one can be counted by counting as follows: |
154 | // - The subsequent combinations that differ in indices[0]: |
155 | // If subsequent combinations differ in indices[0], then their value for indices[0] |
156 | // must be at least 1 greater than the current indices[0]. |
157 | // As indices is monotonically sorted, this means we can effectively choose k values with |
158 | // replacement from (n - 1 - indices[0]), leading to count(n - 1 - indices[0], k) possibilities. |
159 | // - The subsequent combinations with same indices[0], but differing indices[1]: |
160 | // Here we can choose k - 1 values with replacement from (n - 1 - indices[1]) values, |
161 | // leading to count(n - 1 - indices[1], k - 1) possibilities. |
162 | // - (...) |
163 | // - The subsequent combinations with same indices[0..=i], but differing indices[i]: |
164 | // Here we can choose k - i values with replacement from (n - 1 - indices[i]) values: count(n - 1 - indices[i], k - i). |
165 | // Since subsequent combinations can in any index, we must sum up the aforementioned binomial coefficients. |
166 | |
167 | // Below, `n0` resembles indices[i]. |
168 | indices.iter().enumerate().try_fold(0usize, |sum, (i, n0)| { |
169 | sum.checked_add(count(n - 1 - *n0, k - i)?) |
170 | }) |
171 | } |
172 | } |
173 | |