| 1 | //! Licensed under the Apache License, Version 2.0 |
| 2 | //! <https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 3 | //! <https://opensource.org/licenses/MIT>, at your |
| 4 | //! option. This file may not be copied, modified, or distributed |
| 5 | //! except according to those terms. |
| 6 | |
| 7 | mod coalesce; |
| 8 | pub(crate) mod map; |
| 9 | mod multi_product; |
| 10 | pub use self::coalesce::*; |
| 11 | pub use self::map::{map_into, map_ok, MapInto, MapOk}; |
| 12 | #[cfg (feature = "use_alloc" )] |
| 13 | pub use self::multi_product::*; |
| 14 | |
| 15 | use crate::size_hint::{self, SizeHint}; |
| 16 | use std::fmt; |
| 17 | use std::iter::{Enumerate, FromIterator, Fuse, FusedIterator}; |
| 18 | use std::marker::PhantomData; |
| 19 | |
| 20 | /// An iterator adaptor that alternates elements from two iterators until both |
| 21 | /// run out. |
| 22 | /// |
| 23 | /// This iterator is *fused*. |
| 24 | /// |
| 25 | /// See [`.interleave()`](crate::Itertools::interleave) for more information. |
| 26 | #[derive (Clone, Debug)] |
| 27 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
| 28 | pub struct Interleave<I, J> { |
| 29 | i: Fuse<I>, |
| 30 | j: Fuse<J>, |
| 31 | next_coming_from_j: bool, |
| 32 | } |
| 33 | |
| 34 | /// Create an iterator that interleaves elements in `i` and `j`. |
| 35 | /// |
| 36 | /// [`IntoIterator`] enabled version of [`Itertools::interleave`](crate::Itertools::interleave). |
| 37 | pub fn interleave<I, J>( |
| 38 | i: I, |
| 39 | j: J, |
| 40 | ) -> Interleave<<I as IntoIterator>::IntoIter, <J as IntoIterator>::IntoIter> |
| 41 | where |
| 42 | I: IntoIterator, |
| 43 | J: IntoIterator<Item = I::Item>, |
| 44 | { |
| 45 | Interleave { |
| 46 | i: i.into_iter().fuse(), |
| 47 | j: j.into_iter().fuse(), |
| 48 | next_coming_from_j: false, |
| 49 | } |
| 50 | } |
| 51 | |
| 52 | impl<I, J> Iterator for Interleave<I, J> |
| 53 | where |
| 54 | I: Iterator, |
| 55 | J: Iterator<Item = I::Item>, |
| 56 | { |
| 57 | type Item = I::Item; |
| 58 | #[inline ] |
| 59 | fn next(&mut self) -> Option<Self::Item> { |
| 60 | self.next_coming_from_j = !self.next_coming_from_j; |
| 61 | if self.next_coming_from_j { |
| 62 | match self.i.next() { |
| 63 | None => self.j.next(), |
| 64 | r => r, |
| 65 | } |
| 66 | } else { |
| 67 | match self.j.next() { |
| 68 | None => self.i.next(), |
| 69 | r => r, |
| 70 | } |
| 71 | } |
| 72 | } |
| 73 | |
| 74 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 75 | size_hint::add(self.i.size_hint(), self.j.size_hint()) |
| 76 | } |
| 77 | |
| 78 | fn fold<B, F>(self, mut init: B, mut f: F) -> B |
| 79 | where |
| 80 | F: FnMut(B, Self::Item) -> B, |
| 81 | { |
| 82 | let Self { |
| 83 | mut i, |
| 84 | mut j, |
| 85 | next_coming_from_j, |
| 86 | } = self; |
| 87 | if next_coming_from_j { |
| 88 | match j.next() { |
| 89 | Some(y) => init = f(init, y), |
| 90 | None => return i.fold(init, f), |
| 91 | } |
| 92 | } |
| 93 | let res = i.try_fold(init, |mut acc, x| { |
| 94 | acc = f(acc, x); |
| 95 | match j.next() { |
| 96 | Some(y) => Ok(f(acc, y)), |
| 97 | None => Err(acc), |
| 98 | } |
| 99 | }); |
| 100 | match res { |
| 101 | Ok(acc) => j.fold(acc, f), |
| 102 | Err(acc) => i.fold(acc, f), |
| 103 | } |
| 104 | } |
| 105 | } |
| 106 | |
| 107 | impl<I, J> FusedIterator for Interleave<I, J> |
| 108 | where |
| 109 | I: Iterator, |
| 110 | J: Iterator<Item = I::Item>, |
| 111 | { |
| 112 | } |
| 113 | |
| 114 | /// An iterator adaptor that alternates elements from the two iterators until |
| 115 | /// one of them runs out. |
| 116 | /// |
| 117 | /// This iterator is *fused*. |
| 118 | /// |
| 119 | /// See [`.interleave_shortest()`](crate::Itertools::interleave_shortest) |
| 120 | /// for more information. |
| 121 | #[derive (Clone, Debug)] |
| 122 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
| 123 | pub struct InterleaveShortest<I, J> |
| 124 | where |
| 125 | I: Iterator, |
| 126 | J: Iterator<Item = I::Item>, |
| 127 | { |
| 128 | i: I, |
| 129 | j: J, |
| 130 | next_coming_from_j: bool, |
| 131 | } |
| 132 | |
| 133 | /// Create a new `InterleaveShortest` iterator. |
| 134 | pub fn interleave_shortest<I, J>(i: I, j: J) -> InterleaveShortest<I, J> |
| 135 | where |
| 136 | I: Iterator, |
| 137 | J: Iterator<Item = I::Item>, |
| 138 | { |
| 139 | InterleaveShortest { |
| 140 | i, |
| 141 | j, |
| 142 | next_coming_from_j: false, |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | impl<I, J> Iterator for InterleaveShortest<I, J> |
| 147 | where |
| 148 | I: Iterator, |
| 149 | J: Iterator<Item = I::Item>, |
| 150 | { |
| 151 | type Item = I::Item; |
| 152 | |
| 153 | #[inline ] |
| 154 | fn next(&mut self) -> Option<Self::Item> { |
| 155 | let e = if self.next_coming_from_j { |
| 156 | self.j.next() |
| 157 | } else { |
| 158 | self.i.next() |
| 159 | }; |
| 160 | if e.is_some() { |
| 161 | self.next_coming_from_j = !self.next_coming_from_j; |
| 162 | } |
| 163 | e |
| 164 | } |
| 165 | |
| 166 | #[inline ] |
| 167 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 168 | let (curr_hint, next_hint) = { |
| 169 | let i_hint = self.i.size_hint(); |
| 170 | let j_hint = self.j.size_hint(); |
| 171 | if self.next_coming_from_j { |
| 172 | (j_hint, i_hint) |
| 173 | } else { |
| 174 | (i_hint, j_hint) |
| 175 | } |
| 176 | }; |
| 177 | let (curr_lower, curr_upper) = curr_hint; |
| 178 | let (next_lower, next_upper) = next_hint; |
| 179 | let (combined_lower, combined_upper) = |
| 180 | size_hint::mul_scalar(size_hint::min(curr_hint, next_hint), 2); |
| 181 | let lower = if curr_lower > next_lower { |
| 182 | combined_lower + 1 |
| 183 | } else { |
| 184 | combined_lower |
| 185 | }; |
| 186 | let upper = { |
| 187 | let extra_elem = match (curr_upper, next_upper) { |
| 188 | (_, None) => false, |
| 189 | (None, Some(_)) => true, |
| 190 | (Some(curr_max), Some(next_max)) => curr_max > next_max, |
| 191 | }; |
| 192 | if extra_elem { |
| 193 | combined_upper.and_then(|x| x.checked_add(1)) |
| 194 | } else { |
| 195 | combined_upper |
| 196 | } |
| 197 | }; |
| 198 | (lower, upper) |
| 199 | } |
| 200 | |
| 201 | fn fold<B, F>(self, mut init: B, mut f: F) -> B |
| 202 | where |
| 203 | F: FnMut(B, Self::Item) -> B, |
| 204 | { |
| 205 | let Self { |
| 206 | mut i, |
| 207 | mut j, |
| 208 | next_coming_from_j, |
| 209 | } = self; |
| 210 | if next_coming_from_j { |
| 211 | match j.next() { |
| 212 | Some(y) => init = f(init, y), |
| 213 | None => return init, |
| 214 | } |
| 215 | } |
| 216 | let res = i.try_fold(init, |mut acc, x| { |
| 217 | acc = f(acc, x); |
| 218 | match j.next() { |
| 219 | Some(y) => Ok(f(acc, y)), |
| 220 | None => Err(acc), |
| 221 | } |
| 222 | }); |
| 223 | match res { |
| 224 | Ok(val) => val, |
| 225 | Err(val) => val, |
| 226 | } |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | impl<I, J> FusedIterator for InterleaveShortest<I, J> |
| 231 | where |
| 232 | I: FusedIterator, |
| 233 | J: FusedIterator<Item = I::Item>, |
| 234 | { |
| 235 | } |
| 236 | |
| 237 | #[derive (Clone, Debug)] |
| 238 | /// An iterator adaptor that allows putting back a single |
| 239 | /// item to the front of the iterator. |
| 240 | /// |
| 241 | /// Iterator element type is `I::Item`. |
| 242 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
| 243 | pub struct PutBack<I> |
| 244 | where |
| 245 | I: Iterator, |
| 246 | { |
| 247 | top: Option<I::Item>, |
| 248 | iter: I, |
| 249 | } |
| 250 | |
| 251 | /// Create an iterator where you can put back a single item |
| 252 | pub fn put_back<I>(iterable: I) -> PutBack<I::IntoIter> |
| 253 | where |
| 254 | I: IntoIterator, |
| 255 | { |
| 256 | PutBack { |
| 257 | top: None, |
| 258 | iter: iterable.into_iter(), |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | impl<I> PutBack<I> |
| 263 | where |
| 264 | I: Iterator, |
| 265 | { |
| 266 | /// put back value `value` (builder method) |
| 267 | pub fn with_value(mut self, value: I::Item) -> Self { |
| 268 | self.put_back(value); |
| 269 | self |
| 270 | } |
| 271 | |
| 272 | /// Split the `PutBack` into its parts. |
| 273 | #[inline ] |
| 274 | pub fn into_parts(self) -> (Option<I::Item>, I) { |
| 275 | let Self { top: Option<::Item>, iter: I } = self; |
| 276 | (top, iter) |
| 277 | } |
| 278 | |
| 279 | /// Put back a single value to the front of the iterator. |
| 280 | /// |
| 281 | /// If a value is already in the put back slot, it is returned. |
| 282 | #[inline ] |
| 283 | pub fn put_back(&mut self, x: I::Item) -> Option<I::Item> { |
| 284 | self.top.replace(x) |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | impl<I> Iterator for PutBack<I> |
| 289 | where |
| 290 | I: Iterator, |
| 291 | { |
| 292 | type Item = I::Item; |
| 293 | #[inline ] |
| 294 | fn next(&mut self) -> Option<Self::Item> { |
| 295 | match self.top { |
| 296 | None => self.iter.next(), |
| 297 | ref mut some => some.take(), |
| 298 | } |
| 299 | } |
| 300 | #[inline ] |
| 301 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 302 | // Not ExactSizeIterator because size may be larger than usize |
| 303 | size_hint::add_scalar(self.iter.size_hint(), self.top.is_some() as usize) |
| 304 | } |
| 305 | |
| 306 | fn count(self) -> usize { |
| 307 | self.iter.count() + (self.top.is_some() as usize) |
| 308 | } |
| 309 | |
| 310 | fn last(self) -> Option<Self::Item> { |
| 311 | self.iter.last().or(self.top) |
| 312 | } |
| 313 | |
| 314 | fn nth(&mut self, n: usize) -> Option<Self::Item> { |
| 315 | match self.top { |
| 316 | None => self.iter.nth(n), |
| 317 | ref mut some => { |
| 318 | if n == 0 { |
| 319 | some.take() |
| 320 | } else { |
| 321 | *some = None; |
| 322 | self.iter.nth(n - 1) |
| 323 | } |
| 324 | } |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | fn all<G>(&mut self, mut f: G) -> bool |
| 329 | where |
| 330 | G: FnMut(Self::Item) -> bool, |
| 331 | { |
| 332 | if let Some(elt) = self.top.take() { |
| 333 | if !f(elt) { |
| 334 | return false; |
| 335 | } |
| 336 | } |
| 337 | self.iter.all(f) |
| 338 | } |
| 339 | |
| 340 | fn fold<Acc, G>(mut self, init: Acc, mut f: G) -> Acc |
| 341 | where |
| 342 | G: FnMut(Acc, Self::Item) -> Acc, |
| 343 | { |
| 344 | let mut accum = init; |
| 345 | if let Some(elt) = self.top.take() { |
| 346 | accum = f(accum, elt); |
| 347 | } |
| 348 | self.iter.fold(accum, f) |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | #[derive (Debug, Clone)] |
| 353 | /// An iterator adaptor that iterates over the cartesian product of |
| 354 | /// the element sets of two iterators `I` and `J`. |
| 355 | /// |
| 356 | /// Iterator element type is `(I::Item, J::Item)`. |
| 357 | /// |
| 358 | /// See [`.cartesian_product()`](crate::Itertools::cartesian_product) for more information. |
| 359 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
| 360 | pub struct Product<I, J> |
| 361 | where |
| 362 | I: Iterator, |
| 363 | { |
| 364 | a: I, |
| 365 | /// `a_cur` is `None` while no item have been taken out of `a` (at definition). |
| 366 | /// Then `a_cur` will be `Some(Some(item))` until `a` is exhausted, |
| 367 | /// in which case `a_cur` will be `Some(None)`. |
| 368 | a_cur: Option<Option<I::Item>>, |
| 369 | b: J, |
| 370 | b_orig: J, |
| 371 | } |
| 372 | |
| 373 | /// Create a new cartesian product iterator |
| 374 | /// |
| 375 | /// Iterator element type is `(I::Item, J::Item)`. |
| 376 | pub fn cartesian_product<I, J>(i: I, j: J) -> Product<I, J> |
| 377 | where |
| 378 | I: Iterator, |
| 379 | J: Clone + Iterator, |
| 380 | I::Item: Clone, |
| 381 | { |
| 382 | Product { |
| 383 | a_cur: None, |
| 384 | a: i, |
| 385 | b: j.clone(), |
| 386 | b_orig: j, |
| 387 | } |
| 388 | } |
| 389 | |
| 390 | impl<I, J> Iterator for Product<I, J> |
| 391 | where |
| 392 | I: Iterator, |
| 393 | J: Clone + Iterator, |
| 394 | I::Item: Clone, |
| 395 | { |
| 396 | type Item = (I::Item, J::Item); |
| 397 | |
| 398 | fn next(&mut self) -> Option<Self::Item> { |
| 399 | let Self { |
| 400 | a, |
| 401 | a_cur, |
| 402 | b, |
| 403 | b_orig, |
| 404 | } = self; |
| 405 | let elt_b = match b.next() { |
| 406 | None => { |
| 407 | *b = b_orig.clone(); |
| 408 | match b.next() { |
| 409 | None => return None, |
| 410 | Some(x) => { |
| 411 | *a_cur = Some(a.next()); |
| 412 | x |
| 413 | } |
| 414 | } |
| 415 | } |
| 416 | Some(x) => x, |
| 417 | }; |
| 418 | a_cur |
| 419 | .get_or_insert_with(|| a.next()) |
| 420 | .as_ref() |
| 421 | .map(|a| (a.clone(), elt_b)) |
| 422 | } |
| 423 | |
| 424 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 425 | // Not ExactSizeIterator because size may be larger than usize |
| 426 | // Compute a * b_orig + b for both lower and upper bound |
| 427 | let mut sh = size_hint::mul(self.a.size_hint(), self.b_orig.size_hint()); |
| 428 | if matches!(self.a_cur, Some(Some(_))) { |
| 429 | sh = size_hint::add(sh, self.b.size_hint()); |
| 430 | } |
| 431 | sh |
| 432 | } |
| 433 | |
| 434 | fn fold<Acc, G>(self, mut accum: Acc, mut f: G) -> Acc |
| 435 | where |
| 436 | G: FnMut(Acc, Self::Item) -> Acc, |
| 437 | { |
| 438 | // use a split loop to handle the loose a_cur as well as avoiding to |
| 439 | // clone b_orig at the end. |
| 440 | let Self { |
| 441 | mut a, |
| 442 | a_cur, |
| 443 | mut b, |
| 444 | b_orig, |
| 445 | } = self; |
| 446 | if let Some(mut elt_a) = a_cur.unwrap_or_else(|| a.next()) { |
| 447 | loop { |
| 448 | accum = b.fold(accum, |acc, elt| f(acc, (elt_a.clone(), elt))); |
| 449 | |
| 450 | // we can only continue iterating a if we had a first element; |
| 451 | if let Some(next_elt_a) = a.next() { |
| 452 | b = b_orig.clone(); |
| 453 | elt_a = next_elt_a; |
| 454 | } else { |
| 455 | break; |
| 456 | } |
| 457 | } |
| 458 | } |
| 459 | accum |
| 460 | } |
| 461 | } |
| 462 | |
| 463 | impl<I, J> FusedIterator for Product<I, J> |
| 464 | where |
| 465 | I: FusedIterator, |
| 466 | J: Clone + FusedIterator, |
| 467 | I::Item: Clone, |
| 468 | { |
| 469 | } |
| 470 | |
| 471 | /// A “meta iterator adaptor”. Its closure receives a reference to the iterator |
| 472 | /// and may pick off as many elements as it likes, to produce the next iterator element. |
| 473 | /// |
| 474 | /// Iterator element type is `X` if the return type of `F` is `Option<X>`. |
| 475 | /// |
| 476 | /// See [`.batching()`](crate::Itertools::batching) for more information. |
| 477 | #[derive (Clone)] |
| 478 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
| 479 | pub struct Batching<I, F> { |
| 480 | f: F, |
| 481 | iter: I, |
| 482 | } |
| 483 | |
| 484 | impl<I, F> fmt::Debug for Batching<I, F> |
| 485 | where |
| 486 | I: fmt::Debug, |
| 487 | { |
| 488 | debug_fmt_fields!(Batching, iter); |
| 489 | } |
| 490 | |
| 491 | /// Create a new Batching iterator. |
| 492 | pub fn batching<I, F>(iter: I, f: F) -> Batching<I, F> { |
| 493 | Batching { f, iter } |
| 494 | } |
| 495 | |
| 496 | impl<B, F, I> Iterator for Batching<I, F> |
| 497 | where |
| 498 | I: Iterator, |
| 499 | F: FnMut(&mut I) -> Option<B>, |
| 500 | { |
| 501 | type Item = B; |
| 502 | #[inline ] |
| 503 | fn next(&mut self) -> Option<Self::Item> { |
| 504 | (self.f)(&mut self.iter) |
| 505 | } |
| 506 | } |
| 507 | |
| 508 | /// An iterator adaptor that borrows from a `Clone`-able iterator |
| 509 | /// to only pick off elements while the predicate returns `true`. |
| 510 | /// |
| 511 | /// See [`.take_while_ref()`](crate::Itertools::take_while_ref) for more information. |
| 512 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
| 513 | pub struct TakeWhileRef<'a, I: 'a, F> { |
| 514 | iter: &'a mut I, |
| 515 | f: F, |
| 516 | } |
| 517 | |
| 518 | impl<'a, I, F> fmt::Debug for TakeWhileRef<'a, I, F> |
| 519 | where |
| 520 | I: Iterator + fmt::Debug, |
| 521 | { |
| 522 | debug_fmt_fields!(TakeWhileRef, iter); |
| 523 | } |
| 524 | |
| 525 | /// Create a new `TakeWhileRef` from a reference to clonable iterator. |
| 526 | pub fn take_while_ref<I, F>(iter: &mut I, f: F) -> TakeWhileRef<I, F> |
| 527 | where |
| 528 | I: Iterator + Clone, |
| 529 | { |
| 530 | TakeWhileRef { iter, f } |
| 531 | } |
| 532 | |
| 533 | impl<'a, I, F> Iterator for TakeWhileRef<'a, I, F> |
| 534 | where |
| 535 | I: Iterator + Clone, |
| 536 | F: FnMut(&I::Item) -> bool, |
| 537 | { |
| 538 | type Item = I::Item; |
| 539 | |
| 540 | fn next(&mut self) -> Option<Self::Item> { |
| 541 | let old: I = self.iter.clone(); |
| 542 | match self.iter.next() { |
| 543 | None => None, |
| 544 | Some(elt: ::Item) => { |
| 545 | if (self.f)(&elt) { |
| 546 | Some(elt) |
| 547 | } else { |
| 548 | *self.iter = old; |
| 549 | None |
| 550 | } |
| 551 | } |
| 552 | } |
| 553 | } |
| 554 | |
| 555 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 556 | (0, self.iter.size_hint().1) |
| 557 | } |
| 558 | } |
| 559 | |
| 560 | /// An iterator adaptor that filters `Option<A>` iterator elements |
| 561 | /// and produces `A`. Stops on the first `None` encountered. |
| 562 | /// |
| 563 | /// See [`.while_some()`](crate::Itertools::while_some) for more information. |
| 564 | #[derive (Clone, Debug)] |
| 565 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
| 566 | pub struct WhileSome<I> { |
| 567 | iter: I, |
| 568 | } |
| 569 | |
| 570 | /// Create a new `WhileSome<I>`. |
| 571 | pub fn while_some<I>(iter: I) -> WhileSome<I> { |
| 572 | WhileSome { iter } |
| 573 | } |
| 574 | |
| 575 | impl<I, A> Iterator for WhileSome<I> |
| 576 | where |
| 577 | I: Iterator<Item = Option<A>>, |
| 578 | { |
| 579 | type Item = A; |
| 580 | |
| 581 | fn next(&mut self) -> Option<Self::Item> { |
| 582 | match self.iter.next() { |
| 583 | None | Some(None) => None, |
| 584 | Some(elt) => elt, |
| 585 | } |
| 586 | } |
| 587 | |
| 588 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 589 | (0, self.iter.size_hint().1) |
| 590 | } |
| 591 | |
| 592 | fn fold<B, F>(mut self, acc: B, mut f: F) -> B |
| 593 | where |
| 594 | Self: Sized, |
| 595 | F: FnMut(B, Self::Item) -> B, |
| 596 | { |
| 597 | let res = self.iter.try_fold(acc, |acc, item| match item { |
| 598 | Some(item) => Ok(f(acc, item)), |
| 599 | None => Err(acc), |
| 600 | }); |
| 601 | |
| 602 | match res { |
| 603 | Ok(val) => val, |
| 604 | Err(val) => val, |
| 605 | } |
| 606 | } |
| 607 | } |
| 608 | |
| 609 | /// An iterator to iterate through all combinations in a `Clone`-able iterator that produces tuples |
| 610 | /// of a specific size. |
| 611 | /// |
| 612 | /// See [`.tuple_combinations()`](crate::Itertools::tuple_combinations) for more |
| 613 | /// information. |
| 614 | #[derive (Clone, Debug)] |
| 615 | #[must_use = "this iterator adaptor is not lazy but does nearly nothing unless consumed" ] |
| 616 | pub struct TupleCombinations<I, T> |
| 617 | where |
| 618 | I: Iterator, |
| 619 | T: HasCombination<I>, |
| 620 | { |
| 621 | iter: T::Combination, |
| 622 | _mi: PhantomData<I>, |
| 623 | } |
| 624 | |
| 625 | pub trait HasCombination<I>: Sized { |
| 626 | type Combination: From<I> + Iterator<Item = Self>; |
| 627 | } |
| 628 | |
| 629 | /// Create a new `TupleCombinations` from a clonable iterator. |
| 630 | pub fn tuple_combinations<T, I>(iter: I) -> TupleCombinations<I, T> |
| 631 | where |
| 632 | I: Iterator + Clone, |
| 633 | I::Item: Clone, |
| 634 | T: HasCombination<I>, |
| 635 | { |
| 636 | TupleCombinations { |
| 637 | iter: T::Combination::from(iter), |
| 638 | _mi: PhantomData, |
| 639 | } |
| 640 | } |
| 641 | |
| 642 | impl<I, T> Iterator for TupleCombinations<I, T> |
| 643 | where |
| 644 | I: Iterator, |
| 645 | T: HasCombination<I>, |
| 646 | { |
| 647 | type Item = T; |
| 648 | |
| 649 | fn next(&mut self) -> Option<Self::Item> { |
| 650 | self.iter.next() |
| 651 | } |
| 652 | |
| 653 | fn size_hint(&self) -> SizeHint { |
| 654 | self.iter.size_hint() |
| 655 | } |
| 656 | |
| 657 | fn count(self) -> usize { |
| 658 | self.iter.count() |
| 659 | } |
| 660 | |
| 661 | fn fold<B, F>(self, init: B, f: F) -> B |
| 662 | where |
| 663 | F: FnMut(B, Self::Item) -> B, |
| 664 | { |
| 665 | self.iter.fold(init, f) |
| 666 | } |
| 667 | } |
| 668 | |
| 669 | impl<I, T> FusedIterator for TupleCombinations<I, T> |
| 670 | where |
| 671 | I: FusedIterator, |
| 672 | T: HasCombination<I>, |
| 673 | { |
| 674 | } |
| 675 | |
| 676 | #[derive (Clone, Debug)] |
| 677 | pub struct Tuple1Combination<I> { |
| 678 | iter: I, |
| 679 | } |
| 680 | |
| 681 | impl<I> From<I> for Tuple1Combination<I> { |
| 682 | fn from(iter: I) -> Self { |
| 683 | Self { iter } |
| 684 | } |
| 685 | } |
| 686 | |
| 687 | impl<I: Iterator> Iterator for Tuple1Combination<I> { |
| 688 | type Item = (I::Item,); |
| 689 | |
| 690 | fn next(&mut self) -> Option<Self::Item> { |
| 691 | self.iter.next().map(|x: ::Item| (x,)) |
| 692 | } |
| 693 | |
| 694 | fn size_hint(&self) -> SizeHint { |
| 695 | self.iter.size_hint() |
| 696 | } |
| 697 | |
| 698 | fn count(self) -> usize { |
| 699 | self.iter.count() |
| 700 | } |
| 701 | |
| 702 | fn fold<B, F>(self, init: B, f: F) -> B |
| 703 | where |
| 704 | F: FnMut(B, Self::Item) -> B, |
| 705 | { |
| 706 | self.iter.map(|x: ::Item| (x,)).fold(init, f) |
| 707 | } |
| 708 | } |
| 709 | |
| 710 | impl<I: Iterator> HasCombination<I> for (I::Item,) { |
| 711 | type Combination = Tuple1Combination<I>; |
| 712 | } |
| 713 | |
| 714 | macro_rules! impl_tuple_combination { |
| 715 | ($C:ident $P:ident ; $($X:ident)*) => ( |
| 716 | #[derive(Clone, Debug)] |
| 717 | pub struct $C<I: Iterator> { |
| 718 | item: Option<I::Item>, |
| 719 | iter: I, |
| 720 | c: $P<I>, |
| 721 | } |
| 722 | |
| 723 | impl<I: Iterator + Clone> From<I> for $C<I> { |
| 724 | fn from(mut iter: I) -> Self { |
| 725 | Self { |
| 726 | item: iter.next(), |
| 727 | iter: iter.clone(), |
| 728 | c: iter.into(), |
| 729 | } |
| 730 | } |
| 731 | } |
| 732 | |
| 733 | impl<I: Iterator + Clone> From<I> for $C<Fuse<I>> { |
| 734 | fn from(iter: I) -> Self { |
| 735 | Self::from(iter.fuse()) |
| 736 | } |
| 737 | } |
| 738 | |
| 739 | impl<I, A> Iterator for $C<I> |
| 740 | where I: Iterator<Item = A> + Clone, |
| 741 | A: Clone, |
| 742 | { |
| 743 | type Item = (A, $(ignore_ident!($X, A)),*); |
| 744 | |
| 745 | fn next(&mut self) -> Option<Self::Item> { |
| 746 | if let Some(($($X,)*)) = self.c.next() { |
| 747 | let z = self.item.clone().unwrap(); |
| 748 | Some((z, $($X),*)) |
| 749 | } else { |
| 750 | self.item = self.iter.next(); |
| 751 | self.item.clone().and_then(|z| { |
| 752 | self.c = self.iter.clone().into(); |
| 753 | self.c.next().map(|($($X,)*)| (z, $($X),*)) |
| 754 | }) |
| 755 | } |
| 756 | } |
| 757 | |
| 758 | fn size_hint(&self) -> SizeHint { |
| 759 | const K: usize = 1 + count_ident!($($X)*); |
| 760 | let (mut n_min, mut n_max) = self.iter.size_hint(); |
| 761 | n_min = checked_binomial(n_min, K).unwrap_or(usize::MAX); |
| 762 | n_max = n_max.and_then(|n| checked_binomial(n, K)); |
| 763 | size_hint::add(self.c.size_hint(), (n_min, n_max)) |
| 764 | } |
| 765 | |
| 766 | fn count(self) -> usize { |
| 767 | const K: usize = 1 + count_ident!($($X)*); |
| 768 | let n = self.iter.count(); |
| 769 | checked_binomial(n, K).unwrap() + self.c.count() |
| 770 | } |
| 771 | |
| 772 | fn fold<B, F>(self, mut init: B, mut f: F) -> B |
| 773 | where |
| 774 | F: FnMut(B, Self::Item) -> B, |
| 775 | { |
| 776 | let Self { c, item, mut iter } = self; |
| 777 | if let Some(z) = item.as_ref() { |
| 778 | init = c |
| 779 | .map(|($($X,)*)| (z.clone(), $($X),*)) |
| 780 | .fold(init, &mut f); |
| 781 | } |
| 782 | while let Some(z) = iter.next() { |
| 783 | let c: $P<I> = iter.clone().into(); |
| 784 | init = c |
| 785 | .map(|($($X,)*)| (z.clone(), $($X),*)) |
| 786 | .fold(init, &mut f); |
| 787 | } |
| 788 | init |
| 789 | } |
| 790 | } |
| 791 | |
| 792 | impl<I, A> HasCombination<I> for (A, $(ignore_ident!($X, A)),*) |
| 793 | where I: Iterator<Item = A> + Clone, |
| 794 | I::Item: Clone |
| 795 | { |
| 796 | type Combination = $C<Fuse<I>>; |
| 797 | } |
| 798 | ) |
| 799 | } |
| 800 | |
| 801 | // This snippet generates the twelve `impl_tuple_combination!` invocations: |
| 802 | // use core::iter; |
| 803 | // use itertools::Itertools; |
| 804 | // |
| 805 | // for i in 2..=12 { |
| 806 | // println!("impl_tuple_combination!(Tuple{arity}Combination Tuple{prev}Combination; {idents});", |
| 807 | // arity = i, |
| 808 | // prev = i - 1, |
| 809 | // idents = ('a'..'z').take(i - 1).join(" "), |
| 810 | // ); |
| 811 | // } |
| 812 | // It could probably be replaced by a bit more macro cleverness. |
| 813 | impl_tuple_combination!(Tuple2Combination Tuple1Combination; a); |
| 814 | impl_tuple_combination!(Tuple3Combination Tuple2Combination; a b); |
| 815 | impl_tuple_combination!(Tuple4Combination Tuple3Combination; a b c); |
| 816 | impl_tuple_combination!(Tuple5Combination Tuple4Combination; a b c d); |
| 817 | impl_tuple_combination!(Tuple6Combination Tuple5Combination; a b c d e); |
| 818 | impl_tuple_combination!(Tuple7Combination Tuple6Combination; a b c d e f); |
| 819 | impl_tuple_combination!(Tuple8Combination Tuple7Combination; a b c d e f g); |
| 820 | impl_tuple_combination!(Tuple9Combination Tuple8Combination; a b c d e f g h); |
| 821 | impl_tuple_combination!(Tuple10Combination Tuple9Combination; a b c d e f g h i); |
| 822 | impl_tuple_combination!(Tuple11Combination Tuple10Combination; a b c d e f g h i j); |
| 823 | impl_tuple_combination!(Tuple12Combination Tuple11Combination; a b c d e f g h i j k); |
| 824 | |
| 825 | // https://en.wikipedia.org/wiki/Binomial_coefficient#In_programming_languages |
| 826 | pub(crate) fn checked_binomial(mut n: usize, mut k: usize) -> Option<usize> { |
| 827 | if n < k { |
| 828 | return Some(0); |
| 829 | } |
| 830 | // `factorial(n) / factorial(n - k) / factorial(k)` but trying to avoid it overflows: |
| 831 | k = (n - k).min(k); // symmetry |
| 832 | let mut c: usize = 1; |
| 833 | for i: usize in 1..=k { |
| 834 | c = (c / i) |
| 835 | .checked_mul(n)? |
| 836 | .checked_add((c % i).checked_mul(n)? / i)?; |
| 837 | n -= 1; |
| 838 | } |
| 839 | Some(c) |
| 840 | } |
| 841 | |
| 842 | #[test ] |
| 843 | fn test_checked_binomial() { |
| 844 | // With the first row: [1, 0, 0, ...] and the first column full of 1s, we check |
| 845 | // row by row the recurrence relation of binomials (which is an equivalent definition). |
| 846 | // For n >= 1 and k >= 1 we have: |
| 847 | // binomial(n, k) == binomial(n - 1, k - 1) + binomial(n - 1, k) |
| 848 | const LIMIT: usize = 500; |
| 849 | let mut row = vec![Some(0); LIMIT + 1]; |
| 850 | row[0] = Some(1); |
| 851 | for n in 0..=LIMIT { |
| 852 | for k in 0..=LIMIT { |
| 853 | assert_eq!(row[k], checked_binomial(n, k)); |
| 854 | } |
| 855 | row = std::iter::once(Some(1)) |
| 856 | .chain((1..=LIMIT).map(|k| row[k - 1]?.checked_add(row[k]?))) |
| 857 | .collect(); |
| 858 | } |
| 859 | } |
| 860 | |
| 861 | /// An iterator adapter to filter values within a nested `Result::Ok`. |
| 862 | /// |
| 863 | /// See [`.filter_ok()`](crate::Itertools::filter_ok) for more information. |
| 864 | #[derive (Clone)] |
| 865 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
| 866 | pub struct FilterOk<I, F> { |
| 867 | iter: I, |
| 868 | f: F, |
| 869 | } |
| 870 | |
| 871 | impl<I, F> fmt::Debug for FilterOk<I, F> |
| 872 | where |
| 873 | I: fmt::Debug, |
| 874 | { |
| 875 | debug_fmt_fields!(FilterOk, iter); |
| 876 | } |
| 877 | |
| 878 | /// Create a new `FilterOk` iterator. |
| 879 | pub fn filter_ok<I, F, T, E>(iter: I, f: F) -> FilterOk<I, F> |
| 880 | where |
| 881 | I: Iterator<Item = Result<T, E>>, |
| 882 | F: FnMut(&T) -> bool, |
| 883 | { |
| 884 | FilterOk { iter, f } |
| 885 | } |
| 886 | |
| 887 | impl<I, F, T, E> Iterator for FilterOk<I, F> |
| 888 | where |
| 889 | I: Iterator<Item = Result<T, E>>, |
| 890 | F: FnMut(&T) -> bool, |
| 891 | { |
| 892 | type Item = Result<T, E>; |
| 893 | |
| 894 | fn next(&mut self) -> Option<Self::Item> { |
| 895 | let f = &mut self.f; |
| 896 | self.iter.find(|res| match res { |
| 897 | Ok(t) => f(t), |
| 898 | _ => true, |
| 899 | }) |
| 900 | } |
| 901 | |
| 902 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 903 | (0, self.iter.size_hint().1) |
| 904 | } |
| 905 | |
| 906 | fn fold<Acc, Fold>(self, init: Acc, fold_f: Fold) -> Acc |
| 907 | where |
| 908 | Fold: FnMut(Acc, Self::Item) -> Acc, |
| 909 | { |
| 910 | let mut f = self.f; |
| 911 | self.iter |
| 912 | .filter(|v| v.as_ref().map(&mut f).unwrap_or(true)) |
| 913 | .fold(init, fold_f) |
| 914 | } |
| 915 | |
| 916 | fn collect<C>(self) -> C |
| 917 | where |
| 918 | C: FromIterator<Self::Item>, |
| 919 | { |
| 920 | let mut f = self.f; |
| 921 | self.iter |
| 922 | .filter(|v| v.as_ref().map(&mut f).unwrap_or(true)) |
| 923 | .collect() |
| 924 | } |
| 925 | } |
| 926 | |
| 927 | impl<I, F, T, E> FusedIterator for FilterOk<I, F> |
| 928 | where |
| 929 | I: FusedIterator<Item = Result<T, E>>, |
| 930 | F: FnMut(&T) -> bool, |
| 931 | { |
| 932 | } |
| 933 | |
| 934 | /// An iterator adapter to filter and apply a transformation on values within a nested `Result::Ok`. |
| 935 | /// |
| 936 | /// See [`.filter_map_ok()`](crate::Itertools::filter_map_ok) for more information. |
| 937 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
| 938 | #[derive (Clone)] |
| 939 | pub struct FilterMapOk<I, F> { |
| 940 | iter: I, |
| 941 | f: F, |
| 942 | } |
| 943 | |
| 944 | impl<I, F> fmt::Debug for FilterMapOk<I, F> |
| 945 | where |
| 946 | I: fmt::Debug, |
| 947 | { |
| 948 | debug_fmt_fields!(FilterMapOk, iter); |
| 949 | } |
| 950 | |
| 951 | fn transpose_result<T, E>(result: Result<Option<T>, E>) -> Option<Result<T, E>> { |
| 952 | match result { |
| 953 | Ok(Some(v: T)) => Some(Ok(v)), |
| 954 | Ok(None) => None, |
| 955 | Err(e: E) => Some(Err(e)), |
| 956 | } |
| 957 | } |
| 958 | |
| 959 | /// Create a new `FilterOk` iterator. |
| 960 | pub fn filter_map_ok<I, F, T, U, E>(iter: I, f: F) -> FilterMapOk<I, F> |
| 961 | where |
| 962 | I: Iterator<Item = Result<T, E>>, |
| 963 | F: FnMut(T) -> Option<U>, |
| 964 | { |
| 965 | FilterMapOk { iter, f } |
| 966 | } |
| 967 | |
| 968 | impl<I, F, T, U, E> Iterator for FilterMapOk<I, F> |
| 969 | where |
| 970 | I: Iterator<Item = Result<T, E>>, |
| 971 | F: FnMut(T) -> Option<U>, |
| 972 | { |
| 973 | type Item = Result<U, E>; |
| 974 | |
| 975 | fn next(&mut self) -> Option<Self::Item> { |
| 976 | let f = &mut self.f; |
| 977 | self.iter.find_map(|res| match res { |
| 978 | Ok(t) => f(t).map(Ok), |
| 979 | Err(e) => Some(Err(e)), |
| 980 | }) |
| 981 | } |
| 982 | |
| 983 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 984 | (0, self.iter.size_hint().1) |
| 985 | } |
| 986 | |
| 987 | fn fold<Acc, Fold>(self, init: Acc, fold_f: Fold) -> Acc |
| 988 | where |
| 989 | Fold: FnMut(Acc, Self::Item) -> Acc, |
| 990 | { |
| 991 | let mut f = self.f; |
| 992 | self.iter |
| 993 | .filter_map(|v| transpose_result(v.map(&mut f))) |
| 994 | .fold(init, fold_f) |
| 995 | } |
| 996 | |
| 997 | fn collect<C>(self) -> C |
| 998 | where |
| 999 | C: FromIterator<Self::Item>, |
| 1000 | { |
| 1001 | let mut f = self.f; |
| 1002 | self.iter |
| 1003 | .filter_map(|v| transpose_result(v.map(&mut f))) |
| 1004 | .collect() |
| 1005 | } |
| 1006 | } |
| 1007 | |
| 1008 | impl<I, F, T, U, E> FusedIterator for FilterMapOk<I, F> |
| 1009 | where |
| 1010 | I: FusedIterator<Item = Result<T, E>>, |
| 1011 | F: FnMut(T) -> Option<U>, |
| 1012 | { |
| 1013 | } |
| 1014 | |
| 1015 | /// An iterator adapter to get the positions of each element that matches a predicate. |
| 1016 | /// |
| 1017 | /// See [`.positions()`](crate::Itertools::positions) for more information. |
| 1018 | #[derive (Clone)] |
| 1019 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
| 1020 | pub struct Positions<I, F> { |
| 1021 | iter: Enumerate<I>, |
| 1022 | f: F, |
| 1023 | } |
| 1024 | |
| 1025 | impl<I, F> fmt::Debug for Positions<I, F> |
| 1026 | where |
| 1027 | I: fmt::Debug, |
| 1028 | { |
| 1029 | debug_fmt_fields!(Positions, iter); |
| 1030 | } |
| 1031 | |
| 1032 | /// Create a new `Positions` iterator. |
| 1033 | pub fn positions<I, F>(iter: I, f: F) -> Positions<I, F> |
| 1034 | where |
| 1035 | I: Iterator, |
| 1036 | F: FnMut(I::Item) -> bool, |
| 1037 | { |
| 1038 | let iter: impl Iterator = iter.enumerate(); |
| 1039 | Positions { iter, f } |
| 1040 | } |
| 1041 | |
| 1042 | impl<I, F> Iterator for Positions<I, F> |
| 1043 | where |
| 1044 | I: Iterator, |
| 1045 | F: FnMut(I::Item) -> bool, |
| 1046 | { |
| 1047 | type Item = usize; |
| 1048 | |
| 1049 | fn next(&mut self) -> Option<Self::Item> { |
| 1050 | let f = &mut self.f; |
| 1051 | // TODO: once MSRV >= 1.62, use `then_some`. |
| 1052 | self.iter |
| 1053 | .find_map(|(count, val)| if f(val) { Some(count) } else { None }) |
| 1054 | } |
| 1055 | |
| 1056 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 1057 | (0, self.iter.size_hint().1) |
| 1058 | } |
| 1059 | |
| 1060 | fn fold<B, G>(self, init: B, mut func: G) -> B |
| 1061 | where |
| 1062 | G: FnMut(B, Self::Item) -> B, |
| 1063 | { |
| 1064 | let mut f = self.f; |
| 1065 | self.iter.fold(init, |mut acc, (count, val)| { |
| 1066 | if f(val) { |
| 1067 | acc = func(acc, count); |
| 1068 | } |
| 1069 | acc |
| 1070 | }) |
| 1071 | } |
| 1072 | } |
| 1073 | |
| 1074 | impl<I, F> DoubleEndedIterator for Positions<I, F> |
| 1075 | where |
| 1076 | I: DoubleEndedIterator + ExactSizeIterator, |
| 1077 | F: FnMut(I::Item) -> bool, |
| 1078 | { |
| 1079 | fn next_back(&mut self) -> Option<Self::Item> { |
| 1080 | let f: &mut F = &mut self.f; |
| 1081 | // TODO: once MSRV >= 1.62, use `then_some`. |
| 1082 | self.iter |
| 1083 | .by_ref() |
| 1084 | .rev() |
| 1085 | .find_map(|(count: usize, val: ::Item)| if f(val) { Some(count) } else { None }) |
| 1086 | } |
| 1087 | |
| 1088 | fn rfold<B, G>(self, init: B, mut func: G) -> B |
| 1089 | where |
| 1090 | G: FnMut(B, Self::Item) -> B, |
| 1091 | { |
| 1092 | let mut f: F = self.f; |
| 1093 | self.iter.rfold(init, |mut acc: B, (count: usize, val: ::Item)| { |
| 1094 | if f(val) { |
| 1095 | acc = func(acc, count); |
| 1096 | } |
| 1097 | acc |
| 1098 | }) |
| 1099 | } |
| 1100 | } |
| 1101 | |
| 1102 | impl<I, F> FusedIterator for Positions<I, F> |
| 1103 | where |
| 1104 | I: FusedIterator, |
| 1105 | F: FnMut(I::Item) -> bool, |
| 1106 | { |
| 1107 | } |
| 1108 | |
| 1109 | /// An iterator adapter to apply a mutating function to each element before yielding it. |
| 1110 | /// |
| 1111 | /// See [`.update()`](crate::Itertools::update) for more information. |
| 1112 | #[derive (Clone)] |
| 1113 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
| 1114 | pub struct Update<I, F> { |
| 1115 | iter: I, |
| 1116 | f: F, |
| 1117 | } |
| 1118 | |
| 1119 | impl<I, F> fmt::Debug for Update<I, F> |
| 1120 | where |
| 1121 | I: fmt::Debug, |
| 1122 | { |
| 1123 | debug_fmt_fields!(Update, iter); |
| 1124 | } |
| 1125 | |
| 1126 | /// Create a new `Update` iterator. |
| 1127 | pub fn update<I, F>(iter: I, f: F) -> Update<I, F> |
| 1128 | where |
| 1129 | I: Iterator, |
| 1130 | F: FnMut(&mut I::Item), |
| 1131 | { |
| 1132 | Update { iter, f } |
| 1133 | } |
| 1134 | |
| 1135 | impl<I, F> Iterator for Update<I, F> |
| 1136 | where |
| 1137 | I: Iterator, |
| 1138 | F: FnMut(&mut I::Item), |
| 1139 | { |
| 1140 | type Item = I::Item; |
| 1141 | |
| 1142 | fn next(&mut self) -> Option<Self::Item> { |
| 1143 | if let Some(mut v) = self.iter.next() { |
| 1144 | (self.f)(&mut v); |
| 1145 | Some(v) |
| 1146 | } else { |
| 1147 | None |
| 1148 | } |
| 1149 | } |
| 1150 | |
| 1151 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 1152 | self.iter.size_hint() |
| 1153 | } |
| 1154 | |
| 1155 | fn fold<Acc, G>(self, init: Acc, mut g: G) -> Acc |
| 1156 | where |
| 1157 | G: FnMut(Acc, Self::Item) -> Acc, |
| 1158 | { |
| 1159 | let mut f = self.f; |
| 1160 | self.iter.fold(init, move |acc, mut v| { |
| 1161 | f(&mut v); |
| 1162 | g(acc, v) |
| 1163 | }) |
| 1164 | } |
| 1165 | |
| 1166 | // if possible, re-use inner iterator specializations in collect |
| 1167 | fn collect<C>(self) -> C |
| 1168 | where |
| 1169 | C: FromIterator<Self::Item>, |
| 1170 | { |
| 1171 | let mut f = self.f; |
| 1172 | self.iter |
| 1173 | .map(move |mut v| { |
| 1174 | f(&mut v); |
| 1175 | v |
| 1176 | }) |
| 1177 | .collect() |
| 1178 | } |
| 1179 | } |
| 1180 | |
| 1181 | impl<I, F> ExactSizeIterator for Update<I, F> |
| 1182 | where |
| 1183 | I: ExactSizeIterator, |
| 1184 | F: FnMut(&mut I::Item), |
| 1185 | { |
| 1186 | } |
| 1187 | |
| 1188 | impl<I, F> DoubleEndedIterator for Update<I, F> |
| 1189 | where |
| 1190 | I: DoubleEndedIterator, |
| 1191 | F: FnMut(&mut I::Item), |
| 1192 | { |
| 1193 | fn next_back(&mut self) -> Option<Self::Item> { |
| 1194 | if let Some(mut v: ::Item) = self.iter.next_back() { |
| 1195 | (self.f)(&mut v); |
| 1196 | Some(v) |
| 1197 | } else { |
| 1198 | None |
| 1199 | } |
| 1200 | } |
| 1201 | } |
| 1202 | |
| 1203 | impl<I, F> FusedIterator for Update<I, F> |
| 1204 | where |
| 1205 | I: FusedIterator, |
| 1206 | F: FnMut(&mut I::Item), |
| 1207 | { |
| 1208 | } |
| 1209 | |