| 1 | use core::mem::{self, MaybeUninit}; |
| 2 | |
| 3 | /// An array of at most `N` elements. |
| 4 | struct ArrayBuilder<T, const N: usize> { |
| 5 | /// The (possibly uninitialized) elements of the `ArrayBuilder`. |
| 6 | /// |
| 7 | /// # Safety |
| 8 | /// |
| 9 | /// The elements of `arr[..len]` are valid `T`s. |
| 10 | arr: [MaybeUninit<T>; N], |
| 11 | |
| 12 | /// The number of leading elements of `arr` that are valid `T`s, len <= N. |
| 13 | len: usize, |
| 14 | } |
| 15 | |
| 16 | impl<T, const N: usize> ArrayBuilder<T, N> { |
| 17 | /// Initializes a new, empty `ArrayBuilder`. |
| 18 | pub fn new() -> Self { |
| 19 | // SAFETY: The safety invariant of `arr` trivially holds for `len = 0`. |
| 20 | Self { |
| 21 | arr: [(); N].map(|_| MaybeUninit::uninit()), |
| 22 | len: 0, |
| 23 | } |
| 24 | } |
| 25 | |
| 26 | /// Pushes `value` onto the end of the array. |
| 27 | /// |
| 28 | /// # Panics |
| 29 | /// |
| 30 | /// This panics if `self.len >= N`. |
| 31 | #[inline (always)] |
| 32 | pub fn push(&mut self, value: T) { |
| 33 | // PANICS: This will panic if `self.len >= N`. |
| 34 | let place = &mut self.arr[self.len]; |
| 35 | // SAFETY: The safety invariant of `self.arr` applies to elements at |
| 36 | // indices `0..self.len` — not to the element at `self.len`. Writing to |
| 37 | // the element at index `self.len` therefore does not violate the safety |
| 38 | // invariant of `self.arr`. Even if this line panics, we have not |
| 39 | // created any intermediate invalid state. |
| 40 | *place = MaybeUninit::new(value); |
| 41 | // Lemma: `self.len < N`. By invariant, `self.len <= N`. Above, we index |
| 42 | // into `self.arr`, which has size `N`, at index `self.len`. If `self.len == N` |
| 43 | // at that point, that index would be out-of-bounds, and the index |
| 44 | // operation would panic. Thus, `self.len != N`, and since `self.len <= N`, |
| 45 | // that means that `self.len < N`. |
| 46 | // |
| 47 | // PANICS: Since `self.len < N`, and since `N <= usize::MAX`, |
| 48 | // `self.len + 1 <= usize::MAX`, and so `self.len += 1` will not |
| 49 | // overflow. Overflow is the only panic condition of `+=`. |
| 50 | // |
| 51 | // SAFETY: |
| 52 | // - We are required to uphold the invariant that `self.len <= N`. |
| 53 | // Since, by the preceding lemma, `self.len < N` at this point in the |
| 54 | // code, `self.len += 1` results in `self.len <= N`. |
| 55 | // - We are required to uphold the invariant that `self.arr[..self.len]` |
| 56 | // are valid instances of `T`. Since this invariant already held when |
| 57 | // this method was called, and since we only increment `self.len` |
| 58 | // by 1 here, we only need to prove that the element at |
| 59 | // `self.arr[self.len]` (using the value of `self.len` before incrementing) |
| 60 | // is valid. Above, we construct `place` to point to `self.arr[self.len]`, |
| 61 | // and then initialize `*place` to `MaybeUninit::new(value)`, which is |
| 62 | // a valid `T` by construction. |
| 63 | self.len += 1; |
| 64 | } |
| 65 | |
| 66 | /// Consumes the elements in the `ArrayBuilder` and returns them as an array |
| 67 | /// `[T; N]`. |
| 68 | /// |
| 69 | /// If `self.len() < N`, this returns `None`. |
| 70 | pub fn take(&mut self) -> Option<[T; N]> { |
| 71 | if self.len == N { |
| 72 | // SAFETY: Decreasing the value of `self.len` cannot violate the |
| 73 | // safety invariant on `self.arr`. |
| 74 | self.len = 0; |
| 75 | |
| 76 | // SAFETY: Since `self.len` is 0, `self.arr` may safely contain |
| 77 | // uninitialized elements. |
| 78 | let arr = mem::replace(&mut self.arr, [(); N].map(|_| MaybeUninit::uninit())); |
| 79 | |
| 80 | Some(arr.map(|v| { |
| 81 | // SAFETY: We know that all elements of `arr` are valid because |
| 82 | // we checked that `len == N`. |
| 83 | unsafe { v.assume_init() } |
| 84 | })) |
| 85 | } else { |
| 86 | None |
| 87 | } |
| 88 | } |
| 89 | } |
| 90 | |
| 91 | impl<T, const N: usize> AsMut<[T]> for ArrayBuilder<T, N> { |
| 92 | fn as_mut(&mut self) -> &mut [T] { |
| 93 | let valid: &mut [MaybeUninit] = &mut self.arr[..self.len]; |
| 94 | // SAFETY: By invariant on `self.arr`, the elements of `self.arr` at |
| 95 | // indices `0..self.len` are in a valid state. Since `valid` references |
| 96 | // only these elements, the safety precondition of |
| 97 | // `slice_assume_init_mut` is satisfied. |
| 98 | unsafe { slice_assume_init_mut(slice:valid) } |
| 99 | } |
| 100 | } |
| 101 | |
| 102 | impl<T, const N: usize> Drop for ArrayBuilder<T, N> { |
| 103 | // We provide a non-trivial `Drop` impl, because the trivial impl would be a |
| 104 | // no-op; `MaybeUninit<T>` has no innate awareness of its own validity, and |
| 105 | // so it can only forget its contents. By leveraging the safety invariant of |
| 106 | // `self.arr`, we do know which elements of `self.arr` are valid, and can |
| 107 | // selectively run their destructors. |
| 108 | fn drop(&mut self) { |
| 109 | // SAFETY: |
| 110 | // - by invariant on `&mut [T]`, `self.as_mut()` is: |
| 111 | // - valid for reads and writes |
| 112 | // - properly aligned |
| 113 | // - non-null |
| 114 | // - the dropped `T` are valid for dropping; they do not have any |
| 115 | // additional library invariants that we've violated |
| 116 | // - no other pointers to `valid` exist (since we're in the context of |
| 117 | // `drop`) |
| 118 | unsafe { core::ptr::drop_in_place(self.as_mut()) } |
| 119 | } |
| 120 | } |
| 121 | |
| 122 | /// Assuming all the elements are initialized, get a mutable slice to them. |
| 123 | /// |
| 124 | /// # Safety |
| 125 | /// |
| 126 | /// The caller guarantees that the elements `T` referenced by `slice` are in a |
| 127 | /// valid state. |
| 128 | unsafe fn slice_assume_init_mut<T>(slice: &mut [MaybeUninit<T>]) -> &mut [T] { |
| 129 | // SAFETY: Casting `&mut [MaybeUninit<T>]` to `&mut [T]` is sound, because |
| 130 | // `MaybeUninit<T>` is guaranteed to have the same size, alignment and ABI |
| 131 | // as `T`, and because the caller has guaranteed that `slice` is in the |
| 132 | // valid state. |
| 133 | unsafe { &mut *(slice as *mut [MaybeUninit<T>] as *mut [T]) } |
| 134 | } |
| 135 | |
| 136 | /// Equivalent to `it.next_array()`. |
| 137 | pub(crate) fn next_array<I, const N: usize>(it: &mut I) -> Option<[I::Item; N]> |
| 138 | where |
| 139 | I: Iterator, |
| 140 | { |
| 141 | let mut builder: ArrayBuilder<::Item, N> = ArrayBuilder::new(); |
| 142 | for _ in 0..N { |
| 143 | builder.push(it.next()?); |
| 144 | } |
| 145 | builder.take() |
| 146 | } |
| 147 | |
| 148 | #[cfg (test)] |
| 149 | mod test { |
| 150 | use super::ArrayBuilder; |
| 151 | |
| 152 | #[test ] |
| 153 | fn zero_len_take() { |
| 154 | let mut builder = ArrayBuilder::<(), 0>::new(); |
| 155 | let taken = builder.take(); |
| 156 | assert_eq!(taken, Some([(); 0])); |
| 157 | } |
| 158 | |
| 159 | #[test ] |
| 160 | #[should_panic ] |
| 161 | fn zero_len_push() { |
| 162 | let mut builder = ArrayBuilder::<(), 0>::new(); |
| 163 | builder.push(()); |
| 164 | } |
| 165 | |
| 166 | #[test ] |
| 167 | fn push_4() { |
| 168 | let mut builder = ArrayBuilder::<(), 4>::new(); |
| 169 | assert_eq!(builder.take(), None); |
| 170 | |
| 171 | builder.push(()); |
| 172 | assert_eq!(builder.take(), None); |
| 173 | |
| 174 | builder.push(()); |
| 175 | assert_eq!(builder.take(), None); |
| 176 | |
| 177 | builder.push(()); |
| 178 | assert_eq!(builder.take(), None); |
| 179 | |
| 180 | builder.push(()); |
| 181 | assert_eq!(builder.take(), Some([(); 4])); |
| 182 | } |
| 183 | |
| 184 | #[test ] |
| 185 | fn tracked_drop() { |
| 186 | use std::panic::{catch_unwind, AssertUnwindSafe}; |
| 187 | use std::sync::atomic::{AtomicU16, Ordering}; |
| 188 | |
| 189 | static DROPPED: AtomicU16 = AtomicU16::new(0); |
| 190 | |
| 191 | #[derive (Debug, PartialEq)] |
| 192 | struct TrackedDrop; |
| 193 | |
| 194 | impl Drop for TrackedDrop { |
| 195 | fn drop(&mut self) { |
| 196 | DROPPED.fetch_add(1, Ordering::Relaxed); |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | { |
| 201 | let builder = ArrayBuilder::<TrackedDrop, 0>::new(); |
| 202 | assert_eq!(DROPPED.load(Ordering::Relaxed), 0); |
| 203 | drop(builder); |
| 204 | assert_eq!(DROPPED.load(Ordering::Relaxed), 0); |
| 205 | } |
| 206 | |
| 207 | { |
| 208 | let mut builder = ArrayBuilder::<TrackedDrop, 2>::new(); |
| 209 | builder.push(TrackedDrop); |
| 210 | assert_eq!(builder.take(), None); |
| 211 | assert_eq!(DROPPED.load(Ordering::Relaxed), 0); |
| 212 | drop(builder); |
| 213 | assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 1); |
| 214 | } |
| 215 | |
| 216 | { |
| 217 | let mut builder = ArrayBuilder::<TrackedDrop, 2>::new(); |
| 218 | builder.push(TrackedDrop); |
| 219 | builder.push(TrackedDrop); |
| 220 | assert!(matches!(builder.take(), Some(_))); |
| 221 | assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 2); |
| 222 | drop(builder); |
| 223 | assert_eq!(DROPPED.load(Ordering::Relaxed), 0); |
| 224 | } |
| 225 | |
| 226 | { |
| 227 | let mut builder = ArrayBuilder::<TrackedDrop, 2>::new(); |
| 228 | |
| 229 | builder.push(TrackedDrop); |
| 230 | builder.push(TrackedDrop); |
| 231 | |
| 232 | assert!(catch_unwind(AssertUnwindSafe(|| { |
| 233 | builder.push(TrackedDrop); |
| 234 | })) |
| 235 | .is_err()); |
| 236 | |
| 237 | assert_eq!(DROPPED.load(Ordering::Relaxed), 1); |
| 238 | |
| 239 | drop(builder); |
| 240 | |
| 241 | assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 3); |
| 242 | } |
| 243 | |
| 244 | { |
| 245 | let mut builder = ArrayBuilder::<TrackedDrop, 2>::new(); |
| 246 | |
| 247 | builder.push(TrackedDrop); |
| 248 | builder.push(TrackedDrop); |
| 249 | |
| 250 | assert!(catch_unwind(AssertUnwindSafe(|| { |
| 251 | builder.push(TrackedDrop); |
| 252 | })) |
| 253 | .is_err()); |
| 254 | |
| 255 | assert_eq!(DROPPED.load(Ordering::Relaxed), 1); |
| 256 | |
| 257 | assert!(matches!(builder.take(), Some(_))); |
| 258 | |
| 259 | assert_eq!(DROPPED.load(Ordering::Relaxed), 3); |
| 260 | |
| 261 | builder.push(TrackedDrop); |
| 262 | builder.push(TrackedDrop); |
| 263 | |
| 264 | assert!(matches!(builder.take(), Some(_))); |
| 265 | |
| 266 | assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 5); |
| 267 | } |
| 268 | } |
| 269 | } |
| 270 | |