| 1 | #[cfg (target_arch = "x86" )] |
| 2 | use std::arch::x86::*; |
| 3 | #[cfg (target_arch = "x86_64" )] |
| 4 | use std::arch::x86_64::*; |
| 5 | |
| 6 | #[cfg (any(target_arch = "x86" , target_arch = "x86_64" ))] |
| 7 | #[target_feature (enable = "ssse3" )] |
| 8 | unsafe fn idct8(data: &mut [__m128i; 8]) { |
| 9 | // The fixed-point constants here are obtained by taking the fractional part of the constants |
| 10 | // from the non-SIMD implementation and scaling them up by 1<<15. This is because |
| 11 | // _mm_mulhrs_epi16(a, b) is effectively equivalent to (a*b)>>15 (except for possibly some |
| 12 | // slight differences in rounding). |
| 13 | |
| 14 | // The code here is effectively equivalent to the calls to "kernel" in idct.rs, except that it |
| 15 | // doesn't apply any further scaling and fixed point constants have a different precision. |
| 16 | |
| 17 | let p2 = data[2]; |
| 18 | let p3 = data[6]; |
| 19 | let p1 = _mm_mulhrs_epi16(_mm_adds_epi16(p2, p3), _mm_set1_epi16(17734)); // 0.5411961 |
| 20 | let t2 = _mm_subs_epi16( |
| 21 | _mm_subs_epi16(p1, p3), |
| 22 | _mm_mulhrs_epi16(p3, _mm_set1_epi16(27779)), // 0.847759065 |
| 23 | ); |
| 24 | let t3 = _mm_adds_epi16(p1, _mm_mulhrs_epi16(p2, _mm_set1_epi16(25079))); // 0.765366865 |
| 25 | |
| 26 | let p2 = data[0]; |
| 27 | let p3 = data[4]; |
| 28 | let t0 = _mm_adds_epi16(p2, p3); |
| 29 | let t1 = _mm_subs_epi16(p2, p3); |
| 30 | |
| 31 | let x0 = _mm_adds_epi16(t0, t3); |
| 32 | let x3 = _mm_subs_epi16(t0, t3); |
| 33 | let x1 = _mm_adds_epi16(t1, t2); |
| 34 | let x2 = _mm_subs_epi16(t1, t2); |
| 35 | |
| 36 | let t0 = data[7]; |
| 37 | let t1 = data[5]; |
| 38 | let t2 = data[3]; |
| 39 | let t3 = data[1]; |
| 40 | |
| 41 | let p3 = _mm_adds_epi16(t0, t2); |
| 42 | let p4 = _mm_adds_epi16(t1, t3); |
| 43 | let p1 = _mm_adds_epi16(t0, t3); |
| 44 | let p2 = _mm_adds_epi16(t1, t2); |
| 45 | let p5 = _mm_adds_epi16(p3, p4); |
| 46 | let p5 = _mm_adds_epi16(p5, _mm_mulhrs_epi16(p5, _mm_set1_epi16(5763))); // 0.175875602 |
| 47 | |
| 48 | let t0 = _mm_mulhrs_epi16(t0, _mm_set1_epi16(9786)); // 0.298631336 |
| 49 | let t1 = _mm_adds_epi16( |
| 50 | _mm_adds_epi16(t1, t1), |
| 51 | _mm_mulhrs_epi16(t1, _mm_set1_epi16(1741)), // 0.053119869 |
| 52 | ); |
| 53 | let t2 = _mm_adds_epi16( |
| 54 | _mm_adds_epi16(t2, _mm_adds_epi16(t2, t2)), |
| 55 | _mm_mulhrs_epi16(t2, _mm_set1_epi16(2383)), // 0.072711026 |
| 56 | ); |
| 57 | let t3 = _mm_adds_epi16(t3, _mm_mulhrs_epi16(t3, _mm_set1_epi16(16427))); // 0.501321110 |
| 58 | |
| 59 | let p1 = _mm_subs_epi16(p5, _mm_mulhrs_epi16(p1, _mm_set1_epi16(29490))); // 0.899976223 |
| 60 | let p2 = _mm_subs_epi16( |
| 61 | _mm_subs_epi16(_mm_subs_epi16(p5, p2), p2), |
| 62 | _mm_mulhrs_epi16(p2, _mm_set1_epi16(18446)), // 0.562915447 |
| 63 | ); |
| 64 | |
| 65 | let p3 = _mm_subs_epi16( |
| 66 | _mm_mulhrs_epi16(p3, _mm_set1_epi16(-31509)), // -0.961570560 |
| 67 | p3, |
| 68 | ); |
| 69 | let p4 = _mm_mulhrs_epi16(p4, _mm_set1_epi16(-12785)); // -0.390180644 |
| 70 | |
| 71 | let t3 = _mm_adds_epi16(_mm_adds_epi16(p1, p4), t3); |
| 72 | let t2 = _mm_adds_epi16(_mm_adds_epi16(p2, p3), t2); |
| 73 | let t1 = _mm_adds_epi16(_mm_adds_epi16(p2, p4), t1); |
| 74 | let t0 = _mm_adds_epi16(_mm_adds_epi16(p1, p3), t0); |
| 75 | |
| 76 | data[0] = _mm_adds_epi16(x0, t3); |
| 77 | data[7] = _mm_subs_epi16(x0, t3); |
| 78 | data[1] = _mm_adds_epi16(x1, t2); |
| 79 | data[6] = _mm_subs_epi16(x1, t2); |
| 80 | data[2] = _mm_adds_epi16(x2, t1); |
| 81 | data[5] = _mm_subs_epi16(x2, t1); |
| 82 | data[3] = _mm_adds_epi16(x3, t0); |
| 83 | data[4] = _mm_subs_epi16(x3, t0); |
| 84 | } |
| 85 | |
| 86 | #[cfg (any(target_arch = "x86" , target_arch = "x86_64" ))] |
| 87 | #[target_feature (enable = "ssse3" )] |
| 88 | unsafe fn transpose8(data: &mut [__m128i; 8]) { |
| 89 | // Transpose a 8x8 matrix with a sequence of interleaving operations. |
| 90 | // Naming: dABl contains elements from the *l*ower halves of vectors A and B, interleaved, i.e. |
| 91 | // A0 B0 A1 B1 ... |
| 92 | // dABCDll contains elements from the lower quarter (ll) of vectors A, B, C, D, interleaved - |
| 93 | // A0 B0 C0 D0 A1 B1 C1 D1 ... |
| 94 | let d01l = _mm_unpacklo_epi16(data[0], data[1]); |
| 95 | let d23l = _mm_unpacklo_epi16(data[2], data[3]); |
| 96 | let d45l = _mm_unpacklo_epi16(data[4], data[5]); |
| 97 | let d67l = _mm_unpacklo_epi16(data[6], data[7]); |
| 98 | let d01h = _mm_unpackhi_epi16(data[0], data[1]); |
| 99 | let d23h = _mm_unpackhi_epi16(data[2], data[3]); |
| 100 | let d45h = _mm_unpackhi_epi16(data[4], data[5]); |
| 101 | let d67h = _mm_unpackhi_epi16(data[6], data[7]); |
| 102 | // Operating on 32-bits will interleave *consecutive pairs* of 16-bit integers. |
| 103 | let d0123ll = _mm_unpacklo_epi32(d01l, d23l); |
| 104 | let d0123lh = _mm_unpackhi_epi32(d01l, d23l); |
| 105 | let d4567ll = _mm_unpacklo_epi32(d45l, d67l); |
| 106 | let d4567lh = _mm_unpackhi_epi32(d45l, d67l); |
| 107 | let d0123hl = _mm_unpacklo_epi32(d01h, d23h); |
| 108 | let d0123hh = _mm_unpackhi_epi32(d01h, d23h); |
| 109 | let d4567hl = _mm_unpacklo_epi32(d45h, d67h); |
| 110 | let d4567hh = _mm_unpackhi_epi32(d45h, d67h); |
| 111 | // Operating on 64-bits will interleave *consecutive quadruples* of 16-bit integers. |
| 112 | data[0] = _mm_unpacklo_epi64(d0123ll, d4567ll); |
| 113 | data[1] = _mm_unpackhi_epi64(d0123ll, d4567ll); |
| 114 | data[2] = _mm_unpacklo_epi64(d0123lh, d4567lh); |
| 115 | data[3] = _mm_unpackhi_epi64(d0123lh, d4567lh); |
| 116 | data[4] = _mm_unpacklo_epi64(d0123hl, d4567hl); |
| 117 | data[5] = _mm_unpackhi_epi64(d0123hl, d4567hl); |
| 118 | data[6] = _mm_unpacklo_epi64(d0123hh, d4567hh); |
| 119 | data[7] = _mm_unpackhi_epi64(d0123hh, d4567hh); |
| 120 | } |
| 121 | |
| 122 | #[cfg (any(target_arch = "x86" , target_arch = "x86_64" ))] |
| 123 | #[target_feature (enable = "ssse3" )] |
| 124 | pub unsafe fn dequantize_and_idct_block_8x8( |
| 125 | coefficients: &[i16; 64], |
| 126 | quantization_table: &[u16; 64], |
| 127 | output_linestride: usize, |
| 128 | output: &mut [u8], |
| 129 | ) { |
| 130 | // The loop below will write to positions [output_linestride * i, output_linestride * i + 8) |
| 131 | // for 0<=i<8. Thus, the last accessed position is at an offset of output_linestrade * 7 + 7, |
| 132 | // and if that position is in-bounds, so are all other accesses. |
| 133 | assert!( |
| 134 | output.len() |
| 135 | > output_linestride |
| 136 | .checked_mul(7) |
| 137 | .unwrap() |
| 138 | .checked_add(7) |
| 139 | .unwrap() |
| 140 | ); |
| 141 | |
| 142 | #[cfg (target_arch = "x86" )] |
| 143 | use std::arch::x86::*; |
| 144 | #[cfg (target_arch = "x86_64" )] |
| 145 | use std::arch::x86_64::*; |
| 146 | |
| 147 | const SHIFT: i32 = 3; |
| 148 | |
| 149 | // Read the DCT coefficients, scale them up and dequantize them. |
| 150 | let mut data = [_mm_setzero_si128(); 8]; |
| 151 | for (i, item) in data.iter_mut().enumerate() { |
| 152 | *item = _mm_slli_epi16( |
| 153 | _mm_mullo_epi16( |
| 154 | _mm_loadu_si128(coefficients.as_ptr().wrapping_add(i * 8) as *const _), |
| 155 | _mm_loadu_si128(quantization_table.as_ptr().wrapping_add(i * 8) as *const _), |
| 156 | ), |
| 157 | SHIFT, |
| 158 | ); |
| 159 | } |
| 160 | |
| 161 | // Usual column IDCT - transpose - column IDCT - transpose approach. |
| 162 | idct8(&mut data); |
| 163 | transpose8(&mut data); |
| 164 | idct8(&mut data); |
| 165 | transpose8(&mut data); |
| 166 | |
| 167 | for (i, item) in data.iter_mut().enumerate() { |
| 168 | let mut buf = [0u8; 16]; |
| 169 | // The two passes of the IDCT algorithm give us a factor of 8, so the shift here is |
| 170 | // increased by 3. |
| 171 | // As values will be stored in a u8, they need to be 128-centered and not 0-centered. |
| 172 | // We add 128 with the appropriate shift for that purpose. |
| 173 | const OFFSET: i16 = 128 << (SHIFT + 3); |
| 174 | // We want rounding right shift, so we should add (1/2) << (SHIFT+3) before shifting. |
| 175 | const ROUNDING_BIAS: i16 = (1 << (SHIFT + 3)) >> 1; |
| 176 | |
| 177 | let data_with_offset = _mm_adds_epi16(*item, _mm_set1_epi16(OFFSET + ROUNDING_BIAS)); |
| 178 | |
| 179 | _mm_storeu_si128( |
| 180 | buf.as_mut_ptr() as *mut _, |
| 181 | _mm_packus_epi16( |
| 182 | _mm_srai_epi16(data_with_offset, SHIFT + 3), |
| 183 | _mm_setzero_si128(), |
| 184 | ), |
| 185 | ); |
| 186 | std::ptr::copy_nonoverlapping::<u8>( |
| 187 | buf.as_ptr(), |
| 188 | output.as_mut_ptr().wrapping_add(output_linestride * i) as *mut _, |
| 189 | 8, |
| 190 | ); |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | #[cfg (any(target_arch = "x86" , target_arch = "x86_64" ))] |
| 195 | #[target_feature (enable = "ssse3" )] |
| 196 | pub unsafe fn color_convert_line_ycbcr(y: &[u8], cb: &[u8], cr: &[u8], output: &mut [u8]) -> usize { |
| 197 | assert!(output.len() % 3 == 0); |
| 198 | let num = output.len() / 3; |
| 199 | assert!(num <= y.len()); |
| 200 | assert!(num <= cb.len()); |
| 201 | assert!(num <= cr.len()); |
| 202 | // _mm_loadu_si64 generates incorrect code for Rust <1.58. To circumvent this, we use a full |
| 203 | // 128-bit load, but that requires leaving an extra vector of border to the scalar code. |
| 204 | // From Rust 1.58 on, the _mm_loadu_si128 can be replaced with _mm_loadu_si64 and this |
| 205 | // .saturating_sub() can be removed. |
| 206 | let num_vecs = (num / 8).saturating_sub(1); |
| 207 | |
| 208 | for i in 0..num_vecs { |
| 209 | const SHIFT: i32 = 6; |
| 210 | // Load. |
| 211 | let y = _mm_loadu_si128(y.as_ptr().wrapping_add(i * 8) as *const _); |
| 212 | let cb = _mm_loadu_si128(cb.as_ptr().wrapping_add(i * 8) as *const _); |
| 213 | let cr = _mm_loadu_si128(cr.as_ptr().wrapping_add(i * 8) as *const _); |
| 214 | |
| 215 | // Convert to 16 bit. |
| 216 | let shuf16 = _mm_setr_epi8( |
| 217 | 0, -0x7F, 1, -0x7F, 2, -0x7F, 3, -0x7F, 4, -0x7F, 5, -0x7F, 6, -0x7F, 7, -0x7F, |
| 218 | ); |
| 219 | let y = _mm_slli_epi16(_mm_shuffle_epi8(y, shuf16), SHIFT); |
| 220 | let cb = _mm_slli_epi16(_mm_shuffle_epi8(cb, shuf16), SHIFT); |
| 221 | let cr = _mm_slli_epi16(_mm_shuffle_epi8(cr, shuf16), SHIFT); |
| 222 | |
| 223 | // Add offsets |
| 224 | let c128 = _mm_set1_epi16(128 << SHIFT); |
| 225 | let y = _mm_adds_epi16(y, _mm_set1_epi16((1 << SHIFT) >> 1)); |
| 226 | let cb = _mm_subs_epi16(cb, c128); |
| 227 | let cr = _mm_subs_epi16(cr, c128); |
| 228 | |
| 229 | // Compute cr * 1.402, cb * 0.34414, cr * 0.71414, cb * 1.772 |
| 230 | let cr_140200 = _mm_adds_epi16(_mm_mulhrs_epi16(cr, _mm_set1_epi16(13173)), cr); |
| 231 | let cb_034414 = _mm_mulhrs_epi16(cb, _mm_set1_epi16(11276)); |
| 232 | let cr_071414 = _mm_mulhrs_epi16(cr, _mm_set1_epi16(23401)); |
| 233 | let cb_177200 = _mm_adds_epi16(_mm_mulhrs_epi16(cb, _mm_set1_epi16(25297)), cb); |
| 234 | |
| 235 | // Last conversion step. |
| 236 | let r = _mm_adds_epi16(y, cr_140200); |
| 237 | let g = _mm_subs_epi16(y, _mm_adds_epi16(cb_034414, cr_071414)); |
| 238 | let b = _mm_adds_epi16(y, cb_177200); |
| 239 | |
| 240 | // Shift back and convert to u8. |
| 241 | let zero = _mm_setzero_si128(); |
| 242 | let r = _mm_packus_epi16(_mm_srai_epi16(r, SHIFT), zero); |
| 243 | let g = _mm_packus_epi16(_mm_srai_epi16(g, SHIFT), zero); |
| 244 | let b = _mm_packus_epi16(_mm_srai_epi16(b, SHIFT), zero); |
| 245 | |
| 246 | // Shuffle rrrrrrrrggggggggbbbbbbbb to rgbrgbrgb... |
| 247 | |
| 248 | // Control vectors for _mm_shuffle_epi8. -0x7F is selected so that the resulting position |
| 249 | // after _mm_shuffle_epi8 will be filled with 0, so that the r, g, and b vectors can then |
| 250 | // be OR-ed together. |
| 251 | let shufr = _mm_setr_epi8( |
| 252 | 0, -0x7F, -0x7F, 1, -0x7F, -0x7F, 2, -0x7F, -0x7F, 3, -0x7F, -0x7F, 4, -0x7F, -0x7F, 5, |
| 253 | ); |
| 254 | let shufg = _mm_setr_epi8( |
| 255 | -0x7F, 0, -0x7F, -0x7F, 1, -0x7F, -0x7F, 2, -0x7F, -0x7F, 3, -0x7F, -0x7F, 4, -0x7F, |
| 256 | -0x7F, |
| 257 | ); |
| 258 | let shufb = _mm_alignr_epi8(shufg, shufg, 15); |
| 259 | |
| 260 | let rgb_low = _mm_or_si128( |
| 261 | _mm_shuffle_epi8(r, shufr), |
| 262 | _mm_or_si128(_mm_shuffle_epi8(g, shufg), _mm_shuffle_epi8(b, shufb)), |
| 263 | ); |
| 264 | |
| 265 | // For the next part of the rgb vectors, we need to select R values from 6 up, G and B from |
| 266 | // 5 up. The highest bit of -0x7F + 6 is still set, so the corresponding location will |
| 267 | // still be 0. |
| 268 | let shufr1 = _mm_add_epi8(shufb, _mm_set1_epi8(6)); |
| 269 | let shufg1 = _mm_add_epi8(shufr, _mm_set1_epi8(5)); |
| 270 | let shufb1 = _mm_add_epi8(shufg, _mm_set1_epi8(5)); |
| 271 | |
| 272 | let rgb_hi = _mm_or_si128( |
| 273 | _mm_shuffle_epi8(r, shufr1), |
| 274 | _mm_or_si128(_mm_shuffle_epi8(g, shufg1), _mm_shuffle_epi8(b, shufb1)), |
| 275 | ); |
| 276 | |
| 277 | let mut data = [0u8; 32]; |
| 278 | _mm_storeu_si128(data.as_mut_ptr() as *mut _, rgb_low); |
| 279 | _mm_storeu_si128(data.as_mut_ptr().wrapping_add(16) as *mut _, rgb_hi); |
| 280 | std::ptr::copy_nonoverlapping::<u8>( |
| 281 | data.as_ptr(), |
| 282 | output.as_mut_ptr().wrapping_add(24 * i), |
| 283 | 24, |
| 284 | ); |
| 285 | } |
| 286 | |
| 287 | num_vecs * 8 |
| 288 | } |
| 289 | |