1 | // Copyright 2019 the Kurbo Authors |
2 | // SPDX-License-Identifier: Apache-2.0 OR MIT |
3 | |
4 | //! A 2D size. |
5 | |
6 | use core::fmt; |
7 | use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign}; |
8 | |
9 | use crate::common::FloatExt; |
10 | use crate::{Rect, RoundedRect, RoundedRectRadii, Vec2}; |
11 | |
12 | #[cfg (not(feature = "std" ))] |
13 | use crate::common::FloatFuncs; |
14 | |
15 | /// A 2D size. |
16 | #[derive (Clone, Copy, Default, PartialEq)] |
17 | #[cfg_attr (feature = "schemars" , derive(schemars::JsonSchema))] |
18 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
19 | pub struct Size { |
20 | /// The width. |
21 | pub width: f64, |
22 | /// The height. |
23 | pub height: f64, |
24 | } |
25 | |
26 | impl Size { |
27 | /// A size with zero width or height. |
28 | pub const ZERO: Size = Size::new(0., 0.); |
29 | |
30 | /// Create a new `Size` with the provided `width` and `height`. |
31 | #[inline ] |
32 | pub const fn new(width: f64, height: f64) -> Self { |
33 | Size { width, height } |
34 | } |
35 | |
36 | /// Returns the max of `width` and `height`. |
37 | /// |
38 | /// # Examples |
39 | /// |
40 | /// ``` |
41 | /// use kurbo::Size; |
42 | /// let size = Size::new(-10.5, 42.0); |
43 | /// assert_eq!(size.max_side(), 42.0); |
44 | /// ``` |
45 | pub fn max_side(self) -> f64 { |
46 | self.width.max(self.height) |
47 | } |
48 | |
49 | /// Returns the min of `width` and `height`. |
50 | /// |
51 | /// # Examples |
52 | /// |
53 | /// ``` |
54 | /// use kurbo::Size; |
55 | /// let size = Size::new(-10.5, 42.0); |
56 | /// assert_eq!(size.min_side(), -10.5); |
57 | /// ``` |
58 | pub fn min_side(self) -> f64 { |
59 | self.width.min(self.height) |
60 | } |
61 | |
62 | /// The area covered by this size. |
63 | #[inline ] |
64 | pub fn area(self) -> f64 { |
65 | self.width * self.height |
66 | } |
67 | |
68 | /// Whether this size has zero area. |
69 | /// |
70 | /// Note: a size with negative area is not considered empty. |
71 | #[inline ] |
72 | pub fn is_empty(self) -> bool { |
73 | self.area() == 0.0 |
74 | } |
75 | |
76 | /// Returns a new size bounded by `min` and `max.` |
77 | /// |
78 | /// # Examples |
79 | /// |
80 | /// ``` |
81 | /// use kurbo::Size; |
82 | /// |
83 | /// let this = Size::new(0., 100.); |
84 | /// let min = Size::new(10., 10.,); |
85 | /// let max = Size::new(50., 50.); |
86 | /// assert_eq!(this.clamp(min, max), Size::new(10., 50.)) |
87 | /// ``` |
88 | pub fn clamp(self, min: Size, max: Size) -> Self { |
89 | let width = self.width.max(min.width).min(max.width); |
90 | let height = self.height.max(min.height).min(max.height); |
91 | Size { width, height } |
92 | } |
93 | |
94 | /// Convert this size into a [`Vec2`], with `width` mapped to `x` and `height` |
95 | /// mapped to `y`. |
96 | #[inline ] |
97 | pub const fn to_vec2(self) -> Vec2 { |
98 | Vec2::new(self.width, self.height) |
99 | } |
100 | |
101 | /// Returns a new `Size`, |
102 | /// with `width` and `height` rounded to the nearest integer. |
103 | /// |
104 | /// # Examples |
105 | /// |
106 | /// ``` |
107 | /// use kurbo::Size; |
108 | /// let size_pos = Size::new(3.3, 3.6).round(); |
109 | /// assert_eq!(size_pos.width, 3.0); |
110 | /// assert_eq!(size_pos.height, 4.0); |
111 | /// let size_neg = Size::new(-3.3, -3.6).round(); |
112 | /// assert_eq!(size_neg.width, -3.0); |
113 | /// assert_eq!(size_neg.height, -4.0); |
114 | /// ``` |
115 | #[inline ] |
116 | pub fn round(self) -> Size { |
117 | Size::new(self.width.round(), self.height.round()) |
118 | } |
119 | |
120 | /// Returns a new `Size`, |
121 | /// with `width` and `height` rounded up to the nearest integer, |
122 | /// unless they are already an integer. |
123 | /// |
124 | /// # Examples |
125 | /// |
126 | /// ``` |
127 | /// use kurbo::Size; |
128 | /// let size_pos = Size::new(3.3, 3.6).ceil(); |
129 | /// assert_eq!(size_pos.width, 4.0); |
130 | /// assert_eq!(size_pos.height, 4.0); |
131 | /// let size_neg = Size::new(-3.3, -3.6).ceil(); |
132 | /// assert_eq!(size_neg.width, -3.0); |
133 | /// assert_eq!(size_neg.height, -3.0); |
134 | /// ``` |
135 | #[inline ] |
136 | pub fn ceil(self) -> Size { |
137 | Size::new(self.width.ceil(), self.height.ceil()) |
138 | } |
139 | |
140 | /// Returns a new `Size`, |
141 | /// with `width` and `height` rounded down to the nearest integer, |
142 | /// unless they are already an integer. |
143 | /// |
144 | /// # Examples |
145 | /// |
146 | /// ``` |
147 | /// use kurbo::Size; |
148 | /// let size_pos = Size::new(3.3, 3.6).floor(); |
149 | /// assert_eq!(size_pos.width, 3.0); |
150 | /// assert_eq!(size_pos.height, 3.0); |
151 | /// let size_neg = Size::new(-3.3, -3.6).floor(); |
152 | /// assert_eq!(size_neg.width, -4.0); |
153 | /// assert_eq!(size_neg.height, -4.0); |
154 | /// ``` |
155 | #[inline ] |
156 | pub fn floor(self) -> Size { |
157 | Size::new(self.width.floor(), self.height.floor()) |
158 | } |
159 | |
160 | /// Returns a new `Size`, |
161 | /// with `width` and `height` rounded away from zero to the nearest integer, |
162 | /// unless they are already an integer. |
163 | /// |
164 | /// # Examples |
165 | /// |
166 | /// ``` |
167 | /// use kurbo::Size; |
168 | /// let size_pos = Size::new(3.3, 3.6).expand(); |
169 | /// assert_eq!(size_pos.width, 4.0); |
170 | /// assert_eq!(size_pos.height, 4.0); |
171 | /// let size_neg = Size::new(-3.3, -3.6).expand(); |
172 | /// assert_eq!(size_neg.width, -4.0); |
173 | /// assert_eq!(size_neg.height, -4.0); |
174 | /// ``` |
175 | #[inline ] |
176 | pub fn expand(self) -> Size { |
177 | Size::new(self.width.expand(), self.height.expand()) |
178 | } |
179 | |
180 | /// Returns a new `Size`, |
181 | /// with `width` and `height` rounded down towards zero the nearest integer, |
182 | /// unless they are already an integer. |
183 | /// |
184 | /// # Examples |
185 | /// |
186 | /// ``` |
187 | /// use kurbo::Size; |
188 | /// let size_pos = Size::new(3.3, 3.6).trunc(); |
189 | /// assert_eq!(size_pos.width, 3.0); |
190 | /// assert_eq!(size_pos.height, 3.0); |
191 | /// let size_neg = Size::new(-3.3, -3.6).trunc(); |
192 | /// assert_eq!(size_neg.width, -3.0); |
193 | /// assert_eq!(size_neg.height, -3.0); |
194 | /// ``` |
195 | #[inline ] |
196 | pub fn trunc(self) -> Size { |
197 | Size::new(self.width.trunc(), self.height.trunc()) |
198 | } |
199 | |
200 | /// Returns the aspect ratio of a rectangle with the given size. |
201 | /// |
202 | /// If the width is `0`, the output will be `sign(self.height) * infinity`. If The width and |
203 | /// height are `0`, then the output will be `NaN`. |
204 | pub fn aspect_ratio(self) -> f64 { |
205 | self.height / self.width |
206 | } |
207 | |
208 | /// Convert this `Size` into a [`Rect`] with origin `(0.0, 0.0)`. |
209 | #[inline ] |
210 | pub const fn to_rect(self) -> Rect { |
211 | Rect::new(0., 0., self.width, self.height) |
212 | } |
213 | |
214 | /// Convert this `Size` into a [`RoundedRect`] with origin `(0.0, 0.0)` and |
215 | /// the provided corner radius. |
216 | #[inline ] |
217 | pub fn to_rounded_rect(self, radii: impl Into<RoundedRectRadii>) -> RoundedRect { |
218 | self.to_rect().to_rounded_rect(radii) |
219 | } |
220 | |
221 | /// Is this size finite? |
222 | #[inline ] |
223 | pub fn is_finite(self) -> bool { |
224 | self.width.is_finite() && self.height.is_finite() |
225 | } |
226 | |
227 | /// Is this size NaN? |
228 | #[inline ] |
229 | pub fn is_nan(self) -> bool { |
230 | self.width.is_nan() || self.height.is_nan() |
231 | } |
232 | } |
233 | |
234 | impl fmt::Debug for Size { |
235 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
236 | write!(f, " {:?}W× {:?}H" , self.width, self.height) |
237 | } |
238 | } |
239 | |
240 | impl fmt::Display for Size { |
241 | fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { |
242 | write!(formatter, "(" )?; |
243 | fmt::Display::fmt(&self.width, f:formatter)?; |
244 | write!(formatter, "×" )?; |
245 | fmt::Display::fmt(&self.height, f:formatter)?; |
246 | write!(formatter, ")" ) |
247 | } |
248 | } |
249 | |
250 | impl MulAssign<f64> for Size { |
251 | #[inline ] |
252 | fn mul_assign(&mut self, other: f64) { |
253 | *self = Size { |
254 | width: self.width * other, |
255 | height: self.height * other, |
256 | }; |
257 | } |
258 | } |
259 | |
260 | impl Mul<Size> for f64 { |
261 | type Output = Size; |
262 | |
263 | #[inline ] |
264 | fn mul(self, other: Size) -> Size { |
265 | other * self |
266 | } |
267 | } |
268 | |
269 | impl Mul<f64> for Size { |
270 | type Output = Size; |
271 | |
272 | #[inline ] |
273 | fn mul(self, other: f64) -> Size { |
274 | Size { |
275 | width: self.width * other, |
276 | height: self.height * other, |
277 | } |
278 | } |
279 | } |
280 | |
281 | impl DivAssign<f64> for Size { |
282 | #[inline ] |
283 | fn div_assign(&mut self, other: f64) { |
284 | *self = Size { |
285 | width: self.width / other, |
286 | height: self.height / other, |
287 | }; |
288 | } |
289 | } |
290 | |
291 | impl Div<f64> for Size { |
292 | type Output = Size; |
293 | |
294 | #[inline ] |
295 | fn div(self, other: f64) -> Size { |
296 | Size { |
297 | width: self.width / other, |
298 | height: self.height / other, |
299 | } |
300 | } |
301 | } |
302 | |
303 | impl Add<Size> for Size { |
304 | type Output = Size; |
305 | #[inline ] |
306 | fn add(self, other: Size) -> Size { |
307 | Size { |
308 | width: self.width + other.width, |
309 | height: self.height + other.height, |
310 | } |
311 | } |
312 | } |
313 | |
314 | impl AddAssign<Size> for Size { |
315 | #[inline ] |
316 | fn add_assign(&mut self, other: Size) { |
317 | *self = *self + other; |
318 | } |
319 | } |
320 | |
321 | impl Sub<Size> for Size { |
322 | type Output = Size; |
323 | #[inline ] |
324 | fn sub(self, other: Size) -> Size { |
325 | Size { |
326 | width: self.width - other.width, |
327 | height: self.height - other.height, |
328 | } |
329 | } |
330 | } |
331 | |
332 | impl SubAssign<Size> for Size { |
333 | #[inline ] |
334 | fn sub_assign(&mut self, other: Size) { |
335 | *self = *self - other; |
336 | } |
337 | } |
338 | |
339 | impl From<(f64, f64)> for Size { |
340 | #[inline ] |
341 | fn from(v: (f64, f64)) -> Size { |
342 | Size { |
343 | width: v.0, |
344 | height: v.1, |
345 | } |
346 | } |
347 | } |
348 | |
349 | impl From<Size> for (f64, f64) { |
350 | #[inline ] |
351 | fn from(v: Size) -> (f64, f64) { |
352 | (v.width, v.height) |
353 | } |
354 | } |
355 | |
356 | #[cfg (test)] |
357 | mod tests { |
358 | use super::*; |
359 | |
360 | #[test ] |
361 | fn display() { |
362 | let s = Size::new(-0.12345, 9.87654); |
363 | assert_eq!(format!(" {s}" ), "(-0.12345×9.87654)" ); |
364 | |
365 | let s = Size::new(-0.12345, 9.87654); |
366 | assert_eq!(format!(" {s:+6.2}" ), "( -0.12× +9.88)" ); |
367 | } |
368 | |
369 | #[test ] |
370 | fn aspect_ratio() { |
371 | let s = Size::new(1.0, 1.0); |
372 | assert!((s.aspect_ratio() - 1.0).abs() < 1e-6); |
373 | } |
374 | } |
375 | |