| 1 | use super::{log, log1p, sqrt}; |
| 2 | |
| 3 | const LN2: f64 = 0.693147180559945309417232121458176568; /* 0x3fe62e42, 0xfefa39ef*/ |
| 4 | |
| 5 | /// Inverse hyperbolic cosine (f64) |
| 6 | /// |
| 7 | /// Calculates the inverse hyperbolic cosine of `x`. |
| 8 | /// Is defined as `log(x + sqrt(x*x-1))`. |
| 9 | /// `x` must be a number greater than or equal to 1. |
| 10 | #[cfg_attr (all(test, assert_no_panic), no_panic::no_panic)] |
| 11 | pub fn acosh(x: f64) -> f64 { |
| 12 | let u: u64 = x.to_bits(); |
| 13 | let e: usize = ((u >> 52) as usize) & 0x7ff; |
| 14 | |
| 15 | /* x < 1 domain error is handled in the called functions */ |
| 16 | |
| 17 | if e < 0x3ff + 1 { |
| 18 | /* |x| < 2, up to 2ulp error in [1,1.125] */ |
| 19 | return log1p(x - 1.0 + sqrt((x - 1.0) * (x - 1.0) + 2.0 * (x - 1.0))); |
| 20 | } |
| 21 | if e < 0x3ff + 26 { |
| 22 | /* |x| < 0x1p26 */ |
| 23 | return log(2.0 * x - 1.0 / (x + sqrt(x * x - 1.0))); |
| 24 | } |
| 25 | /* |x| >= 0x1p26 or nan */ |
| 26 | return log(x) + LN2; |
| 27 | } |
| 28 | |