1 | /* SPDX-License-Identifier: MIT */ |
2 | /* origin: musl src/math/rint.c */ |
3 | |
4 | use super::super::Float; |
5 | use super::super::support::{FpResult, Round}; |
6 | |
7 | /// IEEE 754-2019 `roundToIntegralExact`, which respects rounding mode and raises inexact if |
8 | /// applicable. |
9 | #[inline ] |
10 | pub fn rint_round<F: Float>(x: F, _round: Round) -> FpResult<F> { |
11 | let toint = F::ONE / F::EPSILON; |
12 | let e = x.ex(); |
13 | let positive = x.is_sign_positive(); |
14 | |
15 | // On i386 `force_eval!` must be used to force rounding via storage to memory. Otherwise, |
16 | // the excess precission from x87 would cause an incorrect final result. |
17 | let force = |x| { |
18 | if cfg!(x86_no_sse) && (F::BITS == 32 || F::BITS == 64) { |
19 | force_eval!(x) |
20 | } else { |
21 | x |
22 | } |
23 | }; |
24 | |
25 | let res = if e >= F::EXP_BIAS + F::SIG_BITS { |
26 | // No fractional part; exact result can be returned. |
27 | x |
28 | } else { |
29 | // Apply a net-zero adjustment that nudges `y` in the direction of the rounding mode. For |
30 | // Rust this is always nearest, but ideally it would take `round` into account. |
31 | let y = if positive { |
32 | force(force(x) + toint) - toint |
33 | } else { |
34 | force(force(x) - toint) + toint |
35 | }; |
36 | |
37 | if y == F::ZERO { |
38 | // A zero result takes the sign of the input. |
39 | if positive { F::ZERO } else { F::NEG_ZERO } |
40 | } else { |
41 | y |
42 | } |
43 | }; |
44 | |
45 | FpResult::ok(res) |
46 | } |
47 | |
48 | #[cfg (test)] |
49 | mod tests { |
50 | use super::*; |
51 | use crate::support::{Hexf, Status}; |
52 | |
53 | fn spec_test<F: Float>(cases: &[(F, F, Status)]) { |
54 | let roundtrip = [ |
55 | F::ZERO, |
56 | F::ONE, |
57 | F::NEG_ONE, |
58 | F::NEG_ZERO, |
59 | F::INFINITY, |
60 | F::NEG_INFINITY, |
61 | ]; |
62 | |
63 | for x in roundtrip { |
64 | let FpResult { val, status } = rint_round(x, Round::Nearest); |
65 | assert_biteq!(val, x, "rint_round({})" , Hexf(x)); |
66 | assert_eq!(status, Status::OK, "{}" , Hexf(x)); |
67 | } |
68 | |
69 | for &(x, res, res_stat) in cases { |
70 | let FpResult { val, status } = rint_round(x, Round::Nearest); |
71 | assert_biteq!(val, res, "rint_round({})" , Hexf(x)); |
72 | assert_eq!(status, res_stat, "{}" , Hexf(x)); |
73 | } |
74 | } |
75 | |
76 | #[test ] |
77 | #[cfg (f16_enabled)] |
78 | fn spec_tests_f16() { |
79 | let cases = []; |
80 | spec_test::<f16>(&cases); |
81 | } |
82 | |
83 | #[test ] |
84 | fn spec_tests_f32() { |
85 | let cases = [ |
86 | (0.1, 0.0, Status::OK), |
87 | (-0.1, -0.0, Status::OK), |
88 | (0.5, 0.0, Status::OK), |
89 | (-0.5, -0.0, Status::OK), |
90 | (0.9, 1.0, Status::OK), |
91 | (-0.9, -1.0, Status::OK), |
92 | (1.1, 1.0, Status::OK), |
93 | (-1.1, -1.0, Status::OK), |
94 | (1.5, 2.0, Status::OK), |
95 | (-1.5, -2.0, Status::OK), |
96 | (1.9, 2.0, Status::OK), |
97 | (-1.9, -2.0, Status::OK), |
98 | (2.8, 3.0, Status::OK), |
99 | (-2.8, -3.0, Status::OK), |
100 | ]; |
101 | spec_test::<f32>(&cases); |
102 | } |
103 | |
104 | #[test ] |
105 | fn spec_tests_f64() { |
106 | let cases = [ |
107 | (0.1, 0.0, Status::OK), |
108 | (-0.1, -0.0, Status::OK), |
109 | (0.5, 0.0, Status::OK), |
110 | (-0.5, -0.0, Status::OK), |
111 | (0.9, 1.0, Status::OK), |
112 | (-0.9, -1.0, Status::OK), |
113 | (1.1, 1.0, Status::OK), |
114 | (-1.1, -1.0, Status::OK), |
115 | (1.5, 2.0, Status::OK), |
116 | (-1.5, -2.0, Status::OK), |
117 | (1.9, 2.0, Status::OK), |
118 | (-1.9, -2.0, Status::OK), |
119 | (2.8, 3.0, Status::OK), |
120 | (-2.8, -3.0, Status::OK), |
121 | ]; |
122 | spec_test::<f64>(&cases); |
123 | } |
124 | |
125 | #[test ] |
126 | #[cfg (f128_enabled)] |
127 | fn spec_tests_f128() { |
128 | let cases = []; |
129 | spec_test::<f128>(&cases); |
130 | } |
131 | } |
132 | |