| 1 | //! Utilities for working with hex float formats. |
| 2 | |
| 3 | use core::fmt; |
| 4 | |
| 5 | use super::{Float, Round, Status, f32_from_bits, f64_from_bits}; |
| 6 | |
| 7 | /// Construct a 16-bit float from hex float representation (C-style) |
| 8 | #[cfg (f16_enabled)] |
| 9 | pub const fn hf16(s: &str) -> f16 { |
| 10 | match parse_hex_exact(s, 16, 10) { |
| 11 | Ok(bits) => f16::from_bits(bits as u16), |
| 12 | Err(HexFloatParseError(s)) => panic!("{}" , s), |
| 13 | } |
| 14 | } |
| 15 | |
| 16 | /// Construct a 32-bit float from hex float representation (C-style) |
| 17 | #[allow (unused)] |
| 18 | pub const fn hf32(s: &str) -> f32 { |
| 19 | match parse_hex_exact(s, bits:32, sig_bits:23) { |
| 20 | Ok(bits: u128) => f32_from_bits(bits as u32), |
| 21 | Err(HexFloatParseError(s: &'static str)) => panic!("{}" , s), |
| 22 | } |
| 23 | } |
| 24 | |
| 25 | /// Construct a 64-bit float from hex float representation (C-style) |
| 26 | pub const fn hf64(s: &str) -> f64 { |
| 27 | match parse_hex_exact(s, bits:64, sig_bits:52) { |
| 28 | Ok(bits: u128) => f64_from_bits(bits as u64), |
| 29 | Err(HexFloatParseError(s: &'static str)) => panic!("{}" , s), |
| 30 | } |
| 31 | } |
| 32 | |
| 33 | /// Construct a 128-bit float from hex float representation (C-style) |
| 34 | #[cfg (f128_enabled)] |
| 35 | pub const fn hf128(s: &str) -> f128 { |
| 36 | match parse_hex_exact(s, 128, 112) { |
| 37 | Ok(bits) => f128::from_bits(bits), |
| 38 | Err(HexFloatParseError(s)) => panic!("{}" , s), |
| 39 | } |
| 40 | } |
| 41 | #[derive (Copy, Clone, Debug)] |
| 42 | pub struct HexFloatParseError(&'static str); |
| 43 | |
| 44 | /// Parses any float to its bitwise representation, returning an error if it cannot be represented exactly |
| 45 | pub const fn parse_hex_exact( |
| 46 | s: &str, |
| 47 | bits: u32, |
| 48 | sig_bits: u32, |
| 49 | ) -> Result<u128, HexFloatParseError> { |
| 50 | match parse_any(s, bits, sig_bits, Round::Nearest) { |
| 51 | Err(e: HexFloatParseError) => Err(e), |
| 52 | Ok((bits: u128, Status::OK)) => Ok(bits), |
| 53 | Ok((_, status: Status)) if status.overflow() => Err(HexFloatParseError("the value is too huge" )), |
| 54 | Ok((_, status: Status)) if status.underflow() => Err(HexFloatParseError("the value is too tiny" )), |
| 55 | Ok((_, status: Status)) if status.inexact() => Err(HexFloatParseError("the value is too precise" )), |
| 56 | Ok(_) => unreachable!(), |
| 57 | } |
| 58 | } |
| 59 | |
| 60 | /// Parse any float from hex to its bitwise representation. |
| 61 | pub const fn parse_any( |
| 62 | s: &str, |
| 63 | bits: u32, |
| 64 | sig_bits: u32, |
| 65 | round: Round, |
| 66 | ) -> Result<(u128, Status), HexFloatParseError> { |
| 67 | let mut b = s.as_bytes(); |
| 68 | |
| 69 | if sig_bits > 119 || bits > 128 || bits < sig_bits + 3 || bits > sig_bits + 30 { |
| 70 | return Err(HexFloatParseError("unsupported target float configuration" )); |
| 71 | } |
| 72 | |
| 73 | let neg = matches!(b, [b'-' , ..]); |
| 74 | if let &[b'-' | b'+' , ref rest @ ..] = b { |
| 75 | b = rest; |
| 76 | } |
| 77 | |
| 78 | let sign_bit = 1 << (bits - 1); |
| 79 | let quiet_bit = 1 << (sig_bits - 1); |
| 80 | let nan = sign_bit - quiet_bit; |
| 81 | let inf = nan - quiet_bit; |
| 82 | |
| 83 | let (mut x, status) = match *b { |
| 84 | [b'i' | b'I' , b'n' | b'N' , b'f' | b'F' ] => (inf, Status::OK), |
| 85 | [b'n' | b'N' , b'a' | b'A' , b'n' | b'N' ] => (nan, Status::OK), |
| 86 | [b'0' , b'x' | b'X' , ref rest @ ..] => { |
| 87 | let round = match (neg, round) { |
| 88 | // parse("-x", Round::Positive) == -parse("x", Round::Negative) |
| 89 | (true, Round::Positive) => Round::Negative, |
| 90 | (true, Round::Negative) => Round::Positive, |
| 91 | // rounding toward nearest or zero are symmetric |
| 92 | (true, Round::Nearest | Round::Zero) | (false, _) => round, |
| 93 | }; |
| 94 | match parse_finite(rest, bits, sig_bits, round) { |
| 95 | Err(e) => return Err(e), |
| 96 | Ok(res) => res, |
| 97 | } |
| 98 | } |
| 99 | _ => return Err(HexFloatParseError("no hex indicator" )), |
| 100 | }; |
| 101 | |
| 102 | if neg { |
| 103 | x ^= sign_bit; |
| 104 | } |
| 105 | |
| 106 | Ok((x, status)) |
| 107 | } |
| 108 | |
| 109 | const fn parse_finite( |
| 110 | b: &[u8], |
| 111 | bits: u32, |
| 112 | sig_bits: u32, |
| 113 | rounding_mode: Round, |
| 114 | ) -> Result<(u128, Status), HexFloatParseError> { |
| 115 | let exp_bits: u32 = bits - sig_bits - 1; |
| 116 | let max_msb: i32 = (1 << (exp_bits - 1)) - 1; |
| 117 | // The exponent of one ULP in the subnormals |
| 118 | let min_lsb: i32 = 1 - max_msb - sig_bits as i32; |
| 119 | |
| 120 | let (mut sig, mut exp) = match parse_hex(b) { |
| 121 | Err(e) => return Err(e), |
| 122 | Ok(Parsed { sig: 0, .. }) => return Ok((0, Status::OK)), |
| 123 | Ok(Parsed { sig, exp }) => (sig, exp), |
| 124 | }; |
| 125 | |
| 126 | let mut round_bits = u128_ilog2(sig) as i32 - sig_bits as i32; |
| 127 | |
| 128 | // Round at least up to min_lsb |
| 129 | if exp < min_lsb - round_bits { |
| 130 | round_bits = min_lsb - exp; |
| 131 | } |
| 132 | |
| 133 | let mut status = Status::OK; |
| 134 | |
| 135 | exp += round_bits; |
| 136 | |
| 137 | if round_bits > 0 { |
| 138 | // first, prepare for rounding exactly two bits |
| 139 | if round_bits == 1 { |
| 140 | sig <<= 1; |
| 141 | } else if round_bits > 2 { |
| 142 | sig = shr_odd_rounding(sig, (round_bits - 2) as u32); |
| 143 | } |
| 144 | |
| 145 | if sig & 0b11 != 0 { |
| 146 | status = Status::INEXACT; |
| 147 | } |
| 148 | |
| 149 | sig = shr2_round(sig, rounding_mode); |
| 150 | } else if round_bits < 0 { |
| 151 | sig <<= -round_bits; |
| 152 | } |
| 153 | |
| 154 | // The parsed value is X = sig * 2^exp |
| 155 | // Expressed as a multiple U of the smallest subnormal value: |
| 156 | // X = U * 2^min_lsb, so U = sig * 2^(exp-min_lsb) |
| 157 | let uexp = (exp - min_lsb) as u128; |
| 158 | let uexp = uexp << sig_bits; |
| 159 | |
| 160 | // Note that it is possible for the exponent bits to equal 2 here |
| 161 | // if the value rounded up, but that means the mantissa is all zeroes |
| 162 | // so the value is still correct |
| 163 | debug_assert!(sig <= 2 << sig_bits); |
| 164 | |
| 165 | let inf = ((1 << exp_bits) - 1) << sig_bits; |
| 166 | |
| 167 | let bits = match sig.checked_add(uexp) { |
| 168 | Some(bits) if bits < inf => { |
| 169 | // inexact subnormal or zero? |
| 170 | if status.inexact() && bits < (1 << sig_bits) { |
| 171 | status = status.with(Status::UNDERFLOW); |
| 172 | } |
| 173 | bits |
| 174 | } |
| 175 | _ => { |
| 176 | // overflow to infinity |
| 177 | status = status.with(Status::OVERFLOW).with(Status::INEXACT); |
| 178 | match rounding_mode { |
| 179 | Round::Positive | Round::Nearest => inf, |
| 180 | Round::Negative | Round::Zero => inf - 1, |
| 181 | } |
| 182 | } |
| 183 | }; |
| 184 | Ok((bits, status)) |
| 185 | } |
| 186 | |
| 187 | /// Shift right, rounding all inexact divisions to the nearest odd number |
| 188 | /// E.g. (0 >> 4) -> 0, (1..=31 >> 4) -> 1, (32 >> 4) -> 2, ... |
| 189 | /// |
| 190 | /// Useful for reducing a number before rounding the last two bits, since |
| 191 | /// the result of the final rounding is preserved for all rounding modes. |
| 192 | const fn shr_odd_rounding(x: u128, k: u32) -> u128 { |
| 193 | if k < 128 { |
| 194 | let inexact: bool = x.trailing_zeros() < k; |
| 195 | (x >> k) | (inexact as u128) |
| 196 | } else { |
| 197 | (x != 0) as u128 |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | /// Divide by 4, rounding with the given mode |
| 202 | const fn shr2_round(mut x: u128, round: Round) -> u128 { |
| 203 | let t: u32 = (x as u32) & 0b111; |
| 204 | x >>= 2; |
| 205 | match round { |
| 206 | // Look-up-table on the last three bits for when to round up |
| 207 | Round::Nearest => x + ((0b11001000_u8 >> t) & 1) as u128, |
| 208 | |
| 209 | Round::Negative => x, |
| 210 | Round::Zero => x, |
| 211 | Round::Positive => x + (t & 0b11 != 0) as u128, |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | /// A parsed finite and unsigned floating point number. |
| 216 | struct Parsed { |
| 217 | /// Absolute value sig * 2^exp |
| 218 | sig: u128, |
| 219 | exp: i32, |
| 220 | } |
| 221 | |
| 222 | /// Parse a hexadecimal float x |
| 223 | const fn parse_hex(mut b: &[u8]) -> Result<Parsed, HexFloatParseError> { |
| 224 | let mut sig: u128 = 0; |
| 225 | let mut exp: i32 = 0; |
| 226 | |
| 227 | let mut seen_point = false; |
| 228 | let mut some_digits = false; |
| 229 | let mut inexact = false; |
| 230 | |
| 231 | while let &[c, ref rest @ ..] = b { |
| 232 | b = rest; |
| 233 | |
| 234 | match c { |
| 235 | b'.' => { |
| 236 | if seen_point { |
| 237 | return Err(HexFloatParseError( |
| 238 | "unexpected '.' parsing fractional digits" , |
| 239 | )); |
| 240 | } |
| 241 | seen_point = true; |
| 242 | continue; |
| 243 | } |
| 244 | b'p' | b'P' => break, |
| 245 | c => { |
| 246 | let digit = match hex_digit(c) { |
| 247 | Some(d) => d, |
| 248 | None => return Err(HexFloatParseError("expected hexadecimal digit" )), |
| 249 | }; |
| 250 | some_digits = true; |
| 251 | |
| 252 | if (sig >> 124) == 0 { |
| 253 | sig <<= 4; |
| 254 | sig |= digit as u128; |
| 255 | } else { |
| 256 | // FIXME: it is technically possible for exp to overflow if parsing a string with >500M digits |
| 257 | exp += 4; |
| 258 | inexact |= digit != 0; |
| 259 | } |
| 260 | // Up until the fractional point, the value grows |
| 261 | // with more digits, but after it the exponent is |
| 262 | // compensated to match. |
| 263 | if seen_point { |
| 264 | exp -= 4; |
| 265 | } |
| 266 | } |
| 267 | } |
| 268 | } |
| 269 | // If we've set inexact, the exact value has more than 125 |
| 270 | // significant bits, and lies somewhere between sig and sig + 1. |
| 271 | // Because we'll round off at least two of the trailing bits, |
| 272 | // setting the last bit gives correct rounding for inexact values. |
| 273 | sig |= inexact as u128; |
| 274 | |
| 275 | if !some_digits { |
| 276 | return Err(HexFloatParseError("at least one digit is required" )); |
| 277 | }; |
| 278 | |
| 279 | some_digits = false; |
| 280 | |
| 281 | let negate_exp = matches!(b, [b'-' , ..]); |
| 282 | if let &[b'-' | b'+' , ref rest @ ..] = b { |
| 283 | b = rest; |
| 284 | } |
| 285 | |
| 286 | let mut pexp: u32 = 0; |
| 287 | while let &[c, ref rest @ ..] = b { |
| 288 | b = rest; |
| 289 | let digit = match dec_digit(c) { |
| 290 | Some(d) => d, |
| 291 | None => return Err(HexFloatParseError("expected decimal digit" )), |
| 292 | }; |
| 293 | some_digits = true; |
| 294 | pexp = pexp.saturating_mul(10); |
| 295 | pexp += digit as u32; |
| 296 | } |
| 297 | |
| 298 | if !some_digits { |
| 299 | return Err(HexFloatParseError( |
| 300 | "at least one exponent digit is required" , |
| 301 | )); |
| 302 | }; |
| 303 | |
| 304 | { |
| 305 | let e; |
| 306 | if negate_exp { |
| 307 | e = (exp as i64) - (pexp as i64); |
| 308 | } else { |
| 309 | e = (exp as i64) + (pexp as i64); |
| 310 | }; |
| 311 | |
| 312 | exp = if e < i32::MIN as i64 { |
| 313 | i32::MIN |
| 314 | } else if e > i32::MAX as i64 { |
| 315 | i32::MAX |
| 316 | } else { |
| 317 | e as i32 |
| 318 | }; |
| 319 | } |
| 320 | /* FIXME(msrv): once MSRV >= 1.66, replace the above workaround block with: |
| 321 | if negate_exp { |
| 322 | exp = exp.saturating_sub_unsigned(pexp); |
| 323 | } else { |
| 324 | exp = exp.saturating_add_unsigned(pexp); |
| 325 | }; |
| 326 | */ |
| 327 | |
| 328 | Ok(Parsed { sig, exp }) |
| 329 | } |
| 330 | |
| 331 | const fn dec_digit(c: u8) -> Option<u8> { |
| 332 | match c { |
| 333 | b'0' ..=b'9' => Some(c - b'0' ), |
| 334 | _ => None, |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | const fn hex_digit(c: u8) -> Option<u8> { |
| 339 | match c { |
| 340 | b'0' ..=b'9' => Some(c - b'0' ), |
| 341 | b'a' ..=b'f' => Some(c - b'a' + 10), |
| 342 | b'A' ..=b'F' => Some(c - b'A' + 10), |
| 343 | _ => None, |
| 344 | } |
| 345 | } |
| 346 | |
| 347 | /* FIXME(msrv): vendor some things that are not const stable at our MSRV */ |
| 348 | |
| 349 | /// `u128::ilog2` |
| 350 | const fn u128_ilog2(v: u128) -> u32 { |
| 351 | assert!(v != 0); |
| 352 | u128::BITS - 1 - v.leading_zeros() |
| 353 | } |
| 354 | |
| 355 | /// Format a floating point number as its IEEE hex (`%a`) representation. |
| 356 | pub struct Hexf<F>(pub F); |
| 357 | |
| 358 | // Adapted from https://github.com/ericseppanen/hexfloat2/blob/a5c27932f0ff/src/format.rs |
| 359 | #[cfg (not(feature = "compiler-builtins" ))] |
| 360 | fn fmt_any_hex<F: Float>(x: &F, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 361 | if x.is_sign_negative() { |
| 362 | write!(f, "-" )?; |
| 363 | } |
| 364 | |
| 365 | if x.is_nan() { |
| 366 | return write!(f, "NaN" ); |
| 367 | } else if x.is_infinite() { |
| 368 | return write!(f, "inf" ); |
| 369 | } else if *x == F::ZERO { |
| 370 | return write!(f, "0x0p+0" ); |
| 371 | } |
| 372 | |
| 373 | let mut exponent = x.exp_unbiased(); |
| 374 | let sig = x.to_bits() & F::SIG_MASK; |
| 375 | |
| 376 | let bias = F::EXP_BIAS as i32; |
| 377 | // The mantissa MSB needs to be shifted up to the nearest nibble. |
| 378 | let mshift = (4 - (F::SIG_BITS % 4)) % 4; |
| 379 | let sig = sig << mshift; |
| 380 | // The width is rounded up to the nearest char (4 bits) |
| 381 | let mwidth = (F::SIG_BITS as usize + 3) / 4; |
| 382 | let leading = if exponent == -bias { |
| 383 | // subnormal number means we shift our output by 1 bit. |
| 384 | exponent += 1; |
| 385 | "0." |
| 386 | } else { |
| 387 | "1." |
| 388 | }; |
| 389 | |
| 390 | write!(f, "0x {leading}{sig:0mwidth$x}p {exponent:+}" ) |
| 391 | } |
| 392 | |
| 393 | #[cfg (feature = "compiler-builtins" )] |
| 394 | fn fmt_any_hex<F: Float>(_x: &F, _f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 395 | unimplemented!() |
| 396 | } |
| 397 | |
| 398 | impl<F: Float> fmt::LowerHex for Hexf<F> { |
| 399 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 400 | cfg_if! { |
| 401 | if #[cfg(feature = "compiler-builtins" )] { |
| 402 | let _ = f; |
| 403 | unimplemented!() |
| 404 | } else { |
| 405 | fmt_any_hex(&self.0, f) |
| 406 | } |
| 407 | } |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | impl<F: Float> fmt::LowerHex for Hexf<(F, F)> { |
| 412 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 413 | cfg_if! { |
| 414 | if #[cfg(feature = "compiler-builtins" )] { |
| 415 | let _ = f; |
| 416 | unimplemented!() |
| 417 | } else { |
| 418 | write!(f, "( {:x}, {:x})" , Hexf(self.0.0), Hexf(self.0.1)) |
| 419 | } |
| 420 | } |
| 421 | } |
| 422 | } |
| 423 | |
| 424 | impl<F: Float> fmt::LowerHex for Hexf<(F, i32)> { |
| 425 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 426 | cfg_if! { |
| 427 | if #[cfg(feature = "compiler-builtins" )] { |
| 428 | let _ = f; |
| 429 | unimplemented!() |
| 430 | } else { |
| 431 | write!(f, "( {:x}, {:x})" , Hexf(self.0.0), Hexf(self.0.1)) |
| 432 | } |
| 433 | } |
| 434 | } |
| 435 | } |
| 436 | |
| 437 | impl fmt::LowerHex for Hexf<i32> { |
| 438 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 439 | cfg_if! { |
| 440 | if #[cfg(feature = "compiler-builtins" )] { |
| 441 | let _ = f; |
| 442 | unimplemented!() |
| 443 | } else { |
| 444 | fmt::LowerHex::fmt(&self.0, f) |
| 445 | } |
| 446 | } |
| 447 | } |
| 448 | } |
| 449 | |
| 450 | impl<T> fmt::Debug for Hexf<T> |
| 451 | where |
| 452 | Hexf<T>: fmt::LowerHex, |
| 453 | { |
| 454 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 455 | cfg_if! { |
| 456 | if #[cfg(feature = "compiler-builtins" )] { |
| 457 | let _ = f; |
| 458 | unimplemented!() |
| 459 | } else { |
| 460 | fmt::LowerHex::fmt(self, f) |
| 461 | } |
| 462 | } |
| 463 | } |
| 464 | } |
| 465 | |
| 466 | impl<T> fmt::Display for Hexf<T> |
| 467 | where |
| 468 | Hexf<T>: fmt::LowerHex, |
| 469 | { |
| 470 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 471 | cfg_if! { |
| 472 | if #[cfg(feature = "compiler-builtins" )] { |
| 473 | let _ = f; |
| 474 | unimplemented!() |
| 475 | } else { |
| 476 | fmt::LowerHex::fmt(self, f) |
| 477 | } |
| 478 | } |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | #[cfg (test)] |
| 483 | mod parse_tests { |
| 484 | extern crate std; |
| 485 | use std::{format, println}; |
| 486 | |
| 487 | use super::*; |
| 488 | |
| 489 | #[cfg (f16_enabled)] |
| 490 | fn rounding_properties(s: &str) -> Result<(), HexFloatParseError> { |
| 491 | let (xd, s0) = parse_any(s, 16, 10, Round::Negative)?; |
| 492 | let (xu, s1) = parse_any(s, 16, 10, Round::Positive)?; |
| 493 | let (xz, s2) = parse_any(s, 16, 10, Round::Zero)?; |
| 494 | let (xn, s3) = parse_any(s, 16, 10, Round::Nearest)?; |
| 495 | |
| 496 | // FIXME: A value between the least normal and largest subnormal |
| 497 | // could have underflow status depend on rounding mode. |
| 498 | |
| 499 | if let Status::OK = s0 { |
| 500 | // an exact result is the same for all rounding modes |
| 501 | assert_eq!(s0, s1); |
| 502 | assert_eq!(s0, s2); |
| 503 | assert_eq!(s0, s3); |
| 504 | |
| 505 | assert_eq!(xd, xu); |
| 506 | assert_eq!(xd, xz); |
| 507 | assert_eq!(xd, xn); |
| 508 | } else { |
| 509 | assert!([s0, s1, s2, s3].into_iter().all(Status::inexact)); |
| 510 | |
| 511 | let xd = f16::from_bits(xd as u16); |
| 512 | let xu = f16::from_bits(xu as u16); |
| 513 | let xz = f16::from_bits(xz as u16); |
| 514 | let xn = f16::from_bits(xn as u16); |
| 515 | |
| 516 | assert_biteq!(xd.next_up(), xu, "s={s}, xd={xd:?}, xu={xu:?}" ); |
| 517 | |
| 518 | let signs = [xd, xu, xz, xn].map(f16::is_sign_negative); |
| 519 | |
| 520 | if signs == [true; 4] { |
| 521 | assert_biteq!(xz, xu); |
| 522 | } else { |
| 523 | assert_eq!(signs, [false; 4]); |
| 524 | assert_biteq!(xz, xd); |
| 525 | } |
| 526 | |
| 527 | if xn.to_bits() != xd.to_bits() { |
| 528 | assert_biteq!(xn, xu); |
| 529 | } |
| 530 | } |
| 531 | Ok(()) |
| 532 | } |
| 533 | #[test ] |
| 534 | #[cfg (f16_enabled)] |
| 535 | fn test_rounding() { |
| 536 | let n = 1_i32 << 14; |
| 537 | for i in -n..n { |
| 538 | let u = i.rotate_right(11) as u32; |
| 539 | let s = format!("{}" , Hexf(f32::from_bits(u))); |
| 540 | assert!(rounding_properties(&s).is_ok()); |
| 541 | } |
| 542 | } |
| 543 | |
| 544 | #[test ] |
| 545 | fn test_parse_any() { |
| 546 | for k in -149..=127 { |
| 547 | let s = format!("0x1p{k}" ); |
| 548 | let x = hf32(&s); |
| 549 | let y = if k < 0 { |
| 550 | 0.5f32.powi(-k) |
| 551 | } else { |
| 552 | 2.0f32.powi(k) |
| 553 | }; |
| 554 | assert_eq!(x, y); |
| 555 | } |
| 556 | |
| 557 | let mut s = *b"0x.0000000p-121" ; |
| 558 | for e in 0..40 { |
| 559 | for k in 0..(1 << 15) { |
| 560 | let expected = f32::from_bits(k) * 2.0f32.powi(e); |
| 561 | let x = hf32(std::str::from_utf8(&s).unwrap()); |
| 562 | assert_eq!( |
| 563 | x.to_bits(), |
| 564 | expected.to_bits(), |
| 565 | "\ |
| 566 | e={e} \n\ |
| 567 | k={k} \n\ |
| 568 | x={x} \n\ |
| 569 | expected={expected} \n\ |
| 570 | s={} \n\ |
| 571 | f32::from_bits(k)={} \n\ |
| 572 | 2.0f32.powi(e)={}\ |
| 573 | " , |
| 574 | std::str::from_utf8(&s).unwrap(), |
| 575 | f32::from_bits(k), |
| 576 | 2.0f32.powi(e), |
| 577 | ); |
| 578 | for i in (3..10).rev() { |
| 579 | if s[i] == b'f' { |
| 580 | s[i] = b'0' ; |
| 581 | } else if s[i] == b'9' { |
| 582 | s[i] = b'a' ; |
| 583 | break; |
| 584 | } else { |
| 585 | s[i] += 1; |
| 586 | break; |
| 587 | } |
| 588 | } |
| 589 | } |
| 590 | for i in (12..15).rev() { |
| 591 | if s[i] == b'0' { |
| 592 | s[i] = b'9' ; |
| 593 | } else { |
| 594 | s[i] -= 1; |
| 595 | break; |
| 596 | } |
| 597 | } |
| 598 | for i in (3..10).rev() { |
| 599 | s[i] = b'0' ; |
| 600 | } |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | // FIXME: this test is causing failures that are likely UB on various platforms |
| 605 | #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] |
| 606 | #[test ] |
| 607 | #[cfg (f128_enabled)] |
| 608 | fn rounding() { |
| 609 | let pi = std::f128::consts::PI; |
| 610 | let s = format!("{}" , Hexf(pi)); |
| 611 | |
| 612 | for k in 0..=111 { |
| 613 | let (bits, status) = parse_any(&s, 128 - k, 112 - k, Round::Nearest).unwrap(); |
| 614 | let scale = (1u128 << (112 - k - 1)) as f128; |
| 615 | let expected = (pi * scale).round_ties_even() / scale; |
| 616 | assert_eq!(bits << k, expected.to_bits(), "k = {k}, s = {s}" ); |
| 617 | assert_eq!(expected != pi, status.inexact()); |
| 618 | } |
| 619 | } |
| 620 | #[test ] |
| 621 | fn rounding_extreme_underflow() { |
| 622 | for k in 1..1000 { |
| 623 | let s = format!("0x1p{}" , -149 - k); |
| 624 | let Ok((bits, status)) = parse_any(&s, 32, 23, Round::Nearest) else { |
| 625 | unreachable!() |
| 626 | }; |
| 627 | assert_eq!(bits, 0, "{s} should round to zero, got bits={bits}" ); |
| 628 | assert!( |
| 629 | status.underflow(), |
| 630 | "should indicate underflow when parsing {s}" |
| 631 | ); |
| 632 | assert!(status.inexact(), "should indicate inexact when parsing {s}" ); |
| 633 | } |
| 634 | } |
| 635 | #[test ] |
| 636 | fn long_tail() { |
| 637 | for k in 1..1000 { |
| 638 | let s = format!("0x1.{}p0" , "0" .repeat(k)); |
| 639 | let Ok(bits) = parse_hex_exact(&s, 32, 23) else { |
| 640 | panic!("parsing {s} failed" ) |
| 641 | }; |
| 642 | assert_eq!(f32::from_bits(bits as u32), 1.0); |
| 643 | |
| 644 | let s = format!("0x1.{}1p0" , "0" .repeat(k)); |
| 645 | let Ok((bits, status)) = parse_any(&s, 32, 23, Round::Nearest) else { |
| 646 | unreachable!() |
| 647 | }; |
| 648 | if status.inexact() { |
| 649 | assert!(1.0 == f32::from_bits(bits as u32)); |
| 650 | } else { |
| 651 | assert!(1.0 < f32::from_bits(bits as u32)); |
| 652 | } |
| 653 | } |
| 654 | } |
| 655 | // HACK(msrv): 1.63 rejects unknown width float literals at an AST level, so use a macro to |
| 656 | // hide them from the AST. |
| 657 | #[cfg (f16_enabled)] |
| 658 | macro_rules! f16_tests { |
| 659 | () => { |
| 660 | #[test] |
| 661 | fn test_f16() { |
| 662 | let checks = [ |
| 663 | ("0x.1234p+16" , (0x1234 as f16).to_bits()), |
| 664 | ("0x1.234p+12" , (0x1234 as f16).to_bits()), |
| 665 | ("0x12.34p+8" , (0x1234 as f16).to_bits()), |
| 666 | ("0x123.4p+4" , (0x1234 as f16).to_bits()), |
| 667 | ("0x1234p+0" , (0x1234 as f16).to_bits()), |
| 668 | ("0x1234.p+0" , (0x1234 as f16).to_bits()), |
| 669 | ("0x1234.0p+0" , (0x1234 as f16).to_bits()), |
| 670 | ("0x1.ffcp+15" , f16::MAX.to_bits()), |
| 671 | ("0x1.0p+1" , 2.0f16.to_bits()), |
| 672 | ("0x1.0p+0" , 1.0f16.to_bits()), |
| 673 | ("0x1.ffp+8" , 0x5ffc), |
| 674 | ("+0x1.ffp+8" , 0x5ffc), |
| 675 | ("0x1p+0" , 0x3c00), |
| 676 | ("0x1.998p-4" , 0x2e66), |
| 677 | ("0x1.9p+6" , 0x5640), |
| 678 | ("0x0.0p0" , 0.0f16.to_bits()), |
| 679 | ("-0x0.0p0" , (-0.0f16).to_bits()), |
| 680 | ("0x1.0p0" , 1.0f16.to_bits()), |
| 681 | ("0x1.998p-4" , (0.1f16).to_bits()), |
| 682 | ("-0x1.998p-4" , (-0.1f16).to_bits()), |
| 683 | ("0x0.123p-12" , 0x0123), |
| 684 | ("0x1p-24" , 0x0001), |
| 685 | ("nan" , f16::NAN.to_bits()), |
| 686 | ("-nan" , (-f16::NAN).to_bits()), |
| 687 | ("inf" , f16::INFINITY.to_bits()), |
| 688 | ("-inf" , f16::NEG_INFINITY.to_bits()), |
| 689 | ]; |
| 690 | for (s, exp) in checks { |
| 691 | println!("parsing {s}" ); |
| 692 | assert!(rounding_properties(s).is_ok()); |
| 693 | let act = hf16(s).to_bits(); |
| 694 | assert_eq!( |
| 695 | act, exp, |
| 696 | "parsing {s}: {act:#06x} != {exp:#06x} \nact: {act:#018b} \nexp: {exp:#018b}" |
| 697 | ); |
| 698 | } |
| 699 | } |
| 700 | |
| 701 | #[test] |
| 702 | fn test_macros_f16() { |
| 703 | assert_eq!(hf16!("0x1.ffp+8" ).to_bits(), 0x5ffc_u16); |
| 704 | } |
| 705 | }; |
| 706 | } |
| 707 | |
| 708 | #[cfg (f16_enabled)] |
| 709 | f16_tests!(); |
| 710 | |
| 711 | #[test ] |
| 712 | fn test_f32() { |
| 713 | let checks = [ |
| 714 | ("0x.1234p+16" , (0x1234 as f32).to_bits()), |
| 715 | ("0x1.234p+12" , (0x1234 as f32).to_bits()), |
| 716 | ("0x12.34p+8" , (0x1234 as f32).to_bits()), |
| 717 | ("0x123.4p+4" , (0x1234 as f32).to_bits()), |
| 718 | ("0x1234p+0" , (0x1234 as f32).to_bits()), |
| 719 | ("0x1234.p+0" , (0x1234 as f32).to_bits()), |
| 720 | ("0x1234.0p+0" , (0x1234 as f32).to_bits()), |
| 721 | ("0x1.fffffep+127" , f32::MAX.to_bits()), |
| 722 | ("0x1.0p+1" , 2.0f32.to_bits()), |
| 723 | ("0x1.0p+0" , 1.0f32.to_bits()), |
| 724 | ("0x1.ffep+8" , 0x43fff000), |
| 725 | ("+0x1.ffep+8" , 0x43fff000), |
| 726 | ("0x1p+0" , 0x3f800000), |
| 727 | ("0x1.99999ap-4" , 0x3dcccccd), |
| 728 | ("0x1.9p+6" , 0x42c80000), |
| 729 | ("0x1.2d5ed2p+20" , 0x4996af69), |
| 730 | ("-0x1.348eb8p+10" , 0xc49a475c), |
| 731 | ("-0x1.33dcfep-33" , 0xaf19ee7f), |
| 732 | ("0x0.0p0" , 0.0f32.to_bits()), |
| 733 | ("-0x0.0p0" , (-0.0f32).to_bits()), |
| 734 | ("0x1.0p0" , 1.0f32.to_bits()), |
| 735 | ("0x1.99999ap-4" , (0.1f32).to_bits()), |
| 736 | ("-0x1.99999ap-4" , (-0.1f32).to_bits()), |
| 737 | ("0x1.111114p-127" , 0x00444445), |
| 738 | ("0x1.23456p-130" , 0x00091a2b), |
| 739 | ("0x1p-149" , 0x00000001), |
| 740 | ("nan" , f32::NAN.to_bits()), |
| 741 | ("-nan" , (-f32::NAN).to_bits()), |
| 742 | ("inf" , f32::INFINITY.to_bits()), |
| 743 | ("-inf" , f32::NEG_INFINITY.to_bits()), |
| 744 | ]; |
| 745 | for (s, exp) in checks { |
| 746 | println!("parsing {s}" ); |
| 747 | let act = hf32(s).to_bits(); |
| 748 | assert_eq!( |
| 749 | act, exp, |
| 750 | "parsing {s}: {act:#010x} != {exp:#010x} \nact: {act:#034b} \nexp: {exp:#034b}" |
| 751 | ); |
| 752 | } |
| 753 | } |
| 754 | |
| 755 | #[test ] |
| 756 | fn test_f64() { |
| 757 | let checks = [ |
| 758 | ("0x.1234p+16" , (0x1234 as f64).to_bits()), |
| 759 | ("0x1.234p+12" , (0x1234 as f64).to_bits()), |
| 760 | ("0x12.34p+8" , (0x1234 as f64).to_bits()), |
| 761 | ("0x123.4p+4" , (0x1234 as f64).to_bits()), |
| 762 | ("0x1234p+0" , (0x1234 as f64).to_bits()), |
| 763 | ("0x1234.p+0" , (0x1234 as f64).to_bits()), |
| 764 | ("0x1234.0p+0" , (0x1234 as f64).to_bits()), |
| 765 | ("0x1.ffep+8" , 0x407ffe0000000000), |
| 766 | ("0x1p+0" , 0x3ff0000000000000), |
| 767 | ("0x1.999999999999ap-4" , 0x3fb999999999999a), |
| 768 | ("0x1.9p+6" , 0x4059000000000000), |
| 769 | ("0x1.2d5ed1fe1da7bp+20" , 0x4132d5ed1fe1da7b), |
| 770 | ("-0x1.348eb851eb852p+10" , 0xc09348eb851eb852), |
| 771 | ("-0x1.33dcfe54a3803p-33" , 0xbde33dcfe54a3803), |
| 772 | ("0x1.0p0" , 1.0f64.to_bits()), |
| 773 | ("0x0.0p0" , 0.0f64.to_bits()), |
| 774 | ("-0x0.0p0" , (-0.0f64).to_bits()), |
| 775 | ("0x1.999999999999ap-4" , 0.1f64.to_bits()), |
| 776 | ("0x1.999999999998ap-4" , (0.1f64 - f64::EPSILON).to_bits()), |
| 777 | ("-0x1.999999999999ap-4" , (-0.1f64).to_bits()), |
| 778 | ("-0x1.999999999998ap-4" , (-0.1f64 + f64::EPSILON).to_bits()), |
| 779 | ("0x0.8000000000001p-1022" , 0x0008000000000001), |
| 780 | ("0x0.123456789abcdp-1022" , 0x000123456789abcd), |
| 781 | ("0x0.0000000000002p-1022" , 0x0000000000000002), |
| 782 | ("nan" , f64::NAN.to_bits()), |
| 783 | ("-nan" , (-f64::NAN).to_bits()), |
| 784 | ("inf" , f64::INFINITY.to_bits()), |
| 785 | ("-inf" , f64::NEG_INFINITY.to_bits()), |
| 786 | ]; |
| 787 | for (s, exp) in checks { |
| 788 | println!("parsing {s}" ); |
| 789 | let act = hf64(s).to_bits(); |
| 790 | assert_eq!( |
| 791 | act, exp, |
| 792 | "parsing {s}: {act:#018x} != {exp:#018x} \nact: {act:#066b} \nexp: {exp:#066b}" |
| 793 | ); |
| 794 | } |
| 795 | } |
| 796 | |
| 797 | // HACK(msrv): 1.63 rejects unknown width float literals at an AST level, so use a macro to |
| 798 | // hide them from the AST. |
| 799 | #[cfg (f128_enabled)] |
| 800 | macro_rules! f128_tests { |
| 801 | () => { |
| 802 | #[test] |
| 803 | fn test_f128() { |
| 804 | let checks = [ |
| 805 | ("0x.1234p+16" , (0x1234 as f128).to_bits()), |
| 806 | ("0x1.234p+12" , (0x1234 as f128).to_bits()), |
| 807 | ("0x12.34p+8" , (0x1234 as f128).to_bits()), |
| 808 | ("0x123.4p+4" , (0x1234 as f128).to_bits()), |
| 809 | ("0x1234p+0" , (0x1234 as f128).to_bits()), |
| 810 | ("0x1234.p+0" , (0x1234 as f128).to_bits()), |
| 811 | ("0x1234.0p+0" , (0x1234 as f128).to_bits()), |
| 812 | ("0x1.ffffffffffffffffffffffffffffp+16383" , f128::MAX.to_bits()), |
| 813 | ("0x1.0p+1" , 2.0f128.to_bits()), |
| 814 | ("0x1.0p+0" , 1.0f128.to_bits()), |
| 815 | ("0x1.ffep+8" , 0x4007ffe0000000000000000000000000), |
| 816 | ("+0x1.ffep+8" , 0x4007ffe0000000000000000000000000), |
| 817 | ("0x1p+0" , 0x3fff0000000000000000000000000000), |
| 818 | ("0x1.999999999999999999999999999ap-4" , 0x3ffb999999999999999999999999999a), |
| 819 | ("0x1.9p+6" , 0x40059000000000000000000000000000), |
| 820 | ("0x0.0p0" , 0.0f128.to_bits()), |
| 821 | ("-0x0.0p0" , (-0.0f128).to_bits()), |
| 822 | ("0x1.0p0" , 1.0f128.to_bits()), |
| 823 | ("0x1.999999999999999999999999999ap-4" , (0.1f128).to_bits()), |
| 824 | ("-0x1.999999999999999999999999999ap-4" , (-0.1f128).to_bits()), |
| 825 | ("0x0.abcdef0123456789abcdef012345p-16382" , 0x0000abcdef0123456789abcdef012345), |
| 826 | ("0x1p-16494" , 0x00000000000000000000000000000001), |
| 827 | ("nan" , f128::NAN.to_bits()), |
| 828 | ("-nan" , (-f128::NAN).to_bits()), |
| 829 | ("inf" , f128::INFINITY.to_bits()), |
| 830 | ("-inf" , f128::NEG_INFINITY.to_bits()), |
| 831 | ]; |
| 832 | for (s, exp) in checks { |
| 833 | println!("parsing {s}" ); |
| 834 | let act = hf128(s).to_bits(); |
| 835 | assert_eq!( |
| 836 | act, exp, |
| 837 | "parsing {s}: {act:#034x} != {exp:#034x} \nact: {act:#0130b} \nexp: {exp:#0130b}" |
| 838 | ); |
| 839 | } |
| 840 | } |
| 841 | |
| 842 | #[test] |
| 843 | fn test_macros_f128() { |
| 844 | assert_eq!(hf128!("0x1.ffep+8" ).to_bits(), 0x4007ffe0000000000000000000000000_u128); |
| 845 | } |
| 846 | } |
| 847 | } |
| 848 | |
| 849 | #[cfg (f128_enabled)] |
| 850 | f128_tests!(); |
| 851 | |
| 852 | #[test ] |
| 853 | fn test_macros() { |
| 854 | #[cfg (f16_enabled)] |
| 855 | assert_eq!(hf16!("0x1.ffp+8" ).to_bits(), 0x5ffc_u16); |
| 856 | assert_eq!(hf32!("0x1.ffep+8" ).to_bits(), 0x43fff000_u32); |
| 857 | assert_eq!(hf64!("0x1.ffep+8" ).to_bits(), 0x407ffe0000000000_u64); |
| 858 | #[cfg (f128_enabled)] |
| 859 | assert_eq!( |
| 860 | hf128!("0x1.ffep+8" ).to_bits(), |
| 861 | 0x4007ffe0000000000000000000000000_u128 |
| 862 | ); |
| 863 | } |
| 864 | } |
| 865 | |
| 866 | #[cfg (test)] |
| 867 | // FIXME(ppc): something with `should_panic` tests cause a SIGILL with ppc64le |
| 868 | #[cfg (not(all(target_arch = "powerpc64" , target_endian = "little" )))] |
| 869 | mod tests_panicking { |
| 870 | extern crate std; |
| 871 | use super::*; |
| 872 | |
| 873 | // HACK(msrv): 1.63 rejects unknown width float literals at an AST level, so use a macro to |
| 874 | // hide them from the AST. |
| 875 | #[cfg (f16_enabled)] |
| 876 | macro_rules! f16_tests { |
| 877 | () => { |
| 878 | #[test] |
| 879 | fn test_f16_almost_extra_precision() { |
| 880 | // Exact maximum precision allowed |
| 881 | hf16("0x1.ffcp+0" ); |
| 882 | } |
| 883 | |
| 884 | #[test] |
| 885 | #[should_panic(expected = "the value is too precise" )] |
| 886 | fn test_f16_extra_precision() { |
| 887 | // One bit more than the above. |
| 888 | hf16("0x1.ffdp+0" ); |
| 889 | } |
| 890 | |
| 891 | #[test] |
| 892 | #[should_panic(expected = "the value is too huge" )] |
| 893 | fn test_f16_overflow() { |
| 894 | // One bit more than the above. |
| 895 | hf16("0x1p+16" ); |
| 896 | } |
| 897 | |
| 898 | #[test] |
| 899 | fn test_f16_tiniest() { |
| 900 | let x = hf16("0x1.p-24" ); |
| 901 | let y = hf16("0x0.001p-12" ); |
| 902 | let z = hf16("0x0.8p-23" ); |
| 903 | assert_eq!(x, y); |
| 904 | assert_eq!(x, z); |
| 905 | } |
| 906 | |
| 907 | #[test] |
| 908 | #[should_panic(expected = "the value is too tiny" )] |
| 909 | fn test_f16_too_tiny() { |
| 910 | hf16("0x1.p-25" ); |
| 911 | } |
| 912 | |
| 913 | #[test] |
| 914 | #[should_panic(expected = "the value is too tiny" )] |
| 915 | fn test_f16_also_too_tiny() { |
| 916 | hf16("0x0.8p-24" ); |
| 917 | } |
| 918 | |
| 919 | #[test] |
| 920 | #[should_panic(expected = "the value is too tiny" )] |
| 921 | fn test_f16_again_too_tiny() { |
| 922 | hf16("0x0.001p-13" ); |
| 923 | } |
| 924 | }; |
| 925 | } |
| 926 | |
| 927 | #[cfg (f16_enabled)] |
| 928 | f16_tests!(); |
| 929 | |
| 930 | #[test ] |
| 931 | fn test_f32_almost_extra_precision() { |
| 932 | // Exact maximum precision allowed |
| 933 | hf32("0x1.abcdeep+0" ); |
| 934 | } |
| 935 | |
| 936 | #[test ] |
| 937 | #[should_panic ] |
| 938 | fn test_f32_extra_precision2() { |
| 939 | // One bit more than the above. |
| 940 | hf32("0x1.ffffffp+127" ); |
| 941 | } |
| 942 | |
| 943 | #[test ] |
| 944 | #[should_panic (expected = "the value is too huge" )] |
| 945 | fn test_f32_overflow() { |
| 946 | // One bit more than the above. |
| 947 | hf32("0x1p+128" ); |
| 948 | } |
| 949 | |
| 950 | #[test ] |
| 951 | #[should_panic (expected = "the value is too precise" )] |
| 952 | fn test_f32_extra_precision() { |
| 953 | // One bit more than the above. |
| 954 | hf32("0x1.abcdefp+0" ); |
| 955 | } |
| 956 | |
| 957 | #[test ] |
| 958 | fn test_f32_tiniest() { |
| 959 | let x = hf32("0x1.p-149" ); |
| 960 | let y = hf32("0x0.0000000000000001p-85" ); |
| 961 | let z = hf32("0x0.8p-148" ); |
| 962 | assert_eq!(x, y); |
| 963 | assert_eq!(x, z); |
| 964 | } |
| 965 | |
| 966 | #[test ] |
| 967 | #[should_panic (expected = "the value is too tiny" )] |
| 968 | fn test_f32_too_tiny() { |
| 969 | hf32("0x1.p-150" ); |
| 970 | } |
| 971 | |
| 972 | #[test ] |
| 973 | #[should_panic (expected = "the value is too tiny" )] |
| 974 | fn test_f32_also_too_tiny() { |
| 975 | hf32("0x0.8p-149" ); |
| 976 | } |
| 977 | |
| 978 | #[test ] |
| 979 | #[should_panic (expected = "the value is too tiny" )] |
| 980 | fn test_f32_again_too_tiny() { |
| 981 | hf32("0x0.0000000000000001p-86" ); |
| 982 | } |
| 983 | |
| 984 | #[test ] |
| 985 | fn test_f64_almost_extra_precision() { |
| 986 | // Exact maximum precision allowed |
| 987 | hf64("0x1.abcdabcdabcdfp+0" ); |
| 988 | } |
| 989 | |
| 990 | #[test ] |
| 991 | #[should_panic (expected = "the value is too precise" )] |
| 992 | fn test_f64_extra_precision() { |
| 993 | // One bit more than the above. |
| 994 | hf64("0x1.abcdabcdabcdf8p+0" ); |
| 995 | } |
| 996 | |
| 997 | // HACK(msrv): 1.63 rejects unknown width float literals at an AST level, so use a macro to |
| 998 | // hide them from the AST. |
| 999 | #[cfg (f128_enabled)] |
| 1000 | macro_rules! f128_tests { |
| 1001 | () => { |
| 1002 | #[test] |
| 1003 | fn test_f128_almost_extra_precision() { |
| 1004 | // Exact maximum precision allowed |
| 1005 | hf128("0x1.ffffffffffffffffffffffffffffp+16383" ); |
| 1006 | } |
| 1007 | |
| 1008 | #[test] |
| 1009 | #[should_panic(expected = "the value is too precise" )] |
| 1010 | fn test_f128_extra_precision() { |
| 1011 | // Just below the maximum finite. |
| 1012 | hf128("0x1.fffffffffffffffffffffffffffe8p+16383" ); |
| 1013 | } |
| 1014 | #[test] |
| 1015 | #[should_panic(expected = "the value is too huge" )] |
| 1016 | fn test_f128_extra_precision_overflow() { |
| 1017 | // One bit more than the above. Should overflow. |
| 1018 | hf128("0x1.ffffffffffffffffffffffffffff8p+16383" ); |
| 1019 | } |
| 1020 | |
| 1021 | #[test] |
| 1022 | #[should_panic(expected = "the value is too huge" )] |
| 1023 | fn test_f128_overflow() { |
| 1024 | // One bit more than the above. |
| 1025 | hf128("0x1p+16384" ); |
| 1026 | } |
| 1027 | |
| 1028 | #[test] |
| 1029 | fn test_f128_tiniest() { |
| 1030 | let x = hf128("0x1.p-16494" ); |
| 1031 | let y = hf128("0x0.0000000000000001p-16430" ); |
| 1032 | let z = hf128("0x0.8p-16493" ); |
| 1033 | assert_eq!(x, y); |
| 1034 | assert_eq!(x, z); |
| 1035 | } |
| 1036 | |
| 1037 | #[test] |
| 1038 | #[should_panic(expected = "the value is too tiny" )] |
| 1039 | fn test_f128_too_tiny() { |
| 1040 | hf128("0x1.p-16495" ); |
| 1041 | } |
| 1042 | |
| 1043 | #[test] |
| 1044 | #[should_panic(expected = "the value is too tiny" )] |
| 1045 | fn test_f128_again_too_tiny() { |
| 1046 | hf128("0x0.0000000000000001p-16431" ); |
| 1047 | } |
| 1048 | |
| 1049 | #[test] |
| 1050 | #[should_panic(expected = "the value is too tiny" )] |
| 1051 | fn test_f128_also_too_tiny() { |
| 1052 | hf128("0x0.8p-16494" ); |
| 1053 | } |
| 1054 | }; |
| 1055 | } |
| 1056 | |
| 1057 | #[cfg (f128_enabled)] |
| 1058 | f128_tests!(); |
| 1059 | } |
| 1060 | |
| 1061 | #[cfg (test)] |
| 1062 | mod print_tests { |
| 1063 | extern crate std; |
| 1064 | use std::string::ToString; |
| 1065 | |
| 1066 | use super::*; |
| 1067 | |
| 1068 | #[test ] |
| 1069 | #[cfg (f16_enabled)] |
| 1070 | fn test_f16() { |
| 1071 | use std::format; |
| 1072 | // Exhaustively check that `f16` roundtrips. |
| 1073 | for x in 0..=u16::MAX { |
| 1074 | let f = f16::from_bits(x); |
| 1075 | let s = format!("{}" , Hexf(f)); |
| 1076 | let from_s = hf16(&s); |
| 1077 | |
| 1078 | if f.is_nan() && from_s.is_nan() { |
| 1079 | continue; |
| 1080 | } |
| 1081 | |
| 1082 | assert_eq!( |
| 1083 | f.to_bits(), |
| 1084 | from_s.to_bits(), |
| 1085 | "{f:?} formatted as {s} but parsed as {from_s:?}" |
| 1086 | ); |
| 1087 | } |
| 1088 | } |
| 1089 | |
| 1090 | #[test ] |
| 1091 | #[cfg (f16_enabled)] |
| 1092 | fn test_f16_to_f32() { |
| 1093 | use std::format; |
| 1094 | // Exhaustively check that these are equivalent for all `f16`: |
| 1095 | // - `f16 -> f32` |
| 1096 | // - `f16 -> str -> f32` |
| 1097 | // - `f16 -> f32 -> str -> f32` |
| 1098 | // - `f16 -> f32 -> str -> f16 -> f32` |
| 1099 | for x in 0..=u16::MAX { |
| 1100 | let f16 = f16::from_bits(x); |
| 1101 | let s16 = format!("{}" , Hexf(f16)); |
| 1102 | let f32 = f16 as f32; |
| 1103 | let s32 = format!("{}" , Hexf(f32)); |
| 1104 | |
| 1105 | let a = hf32(&s16); |
| 1106 | let b = hf32(&s32); |
| 1107 | let c = hf16(&s32); |
| 1108 | |
| 1109 | if f32.is_nan() && a.is_nan() && b.is_nan() && c.is_nan() { |
| 1110 | continue; |
| 1111 | } |
| 1112 | |
| 1113 | assert_eq!( |
| 1114 | f32.to_bits(), |
| 1115 | a.to_bits(), |
| 1116 | "{f16:?} : f16 formatted as {s16} which parsed as {a:?} : f16" |
| 1117 | ); |
| 1118 | assert_eq!( |
| 1119 | f32.to_bits(), |
| 1120 | b.to_bits(), |
| 1121 | "{f32:?} : f32 formatted as {s32} which parsed as {b:?} : f32" |
| 1122 | ); |
| 1123 | assert_eq!( |
| 1124 | f32.to_bits(), |
| 1125 | (c as f32).to_bits(), |
| 1126 | "{f32:?} : f32 formatted as {s32} which parsed as {c:?} : f16" |
| 1127 | ); |
| 1128 | } |
| 1129 | } |
| 1130 | #[test ] |
| 1131 | fn spot_checks() { |
| 1132 | assert_eq!(Hexf(f32::MAX).to_string(), "0x1.fffffep+127" ); |
| 1133 | assert_eq!(Hexf(f64::MAX).to_string(), "0x1.fffffffffffffp+1023" ); |
| 1134 | |
| 1135 | assert_eq!(Hexf(f32::MIN).to_string(), "-0x1.fffffep+127" ); |
| 1136 | assert_eq!(Hexf(f64::MIN).to_string(), "-0x1.fffffffffffffp+1023" ); |
| 1137 | |
| 1138 | assert_eq!(Hexf(f32::ZERO).to_string(), "0x0p+0" ); |
| 1139 | assert_eq!(Hexf(f64::ZERO).to_string(), "0x0p+0" ); |
| 1140 | |
| 1141 | assert_eq!(Hexf(f32::NEG_ZERO).to_string(), "-0x0p+0" ); |
| 1142 | assert_eq!(Hexf(f64::NEG_ZERO).to_string(), "-0x0p+0" ); |
| 1143 | |
| 1144 | assert_eq!(Hexf(f32::NAN).to_string(), "NaN" ); |
| 1145 | assert_eq!(Hexf(f64::NAN).to_string(), "NaN" ); |
| 1146 | |
| 1147 | assert_eq!(Hexf(f32::INFINITY).to_string(), "inf" ); |
| 1148 | assert_eq!(Hexf(f64::INFINITY).to_string(), "inf" ); |
| 1149 | |
| 1150 | assert_eq!(Hexf(f32::NEG_INFINITY).to_string(), "-inf" ); |
| 1151 | assert_eq!(Hexf(f64::NEG_INFINITY).to_string(), "-inf" ); |
| 1152 | |
| 1153 | #[cfg (f16_enabled)] |
| 1154 | { |
| 1155 | assert_eq!(Hexf(f16::MAX).to_string(), "0x1.ffcp+15" ); |
| 1156 | assert_eq!(Hexf(f16::MIN).to_string(), "-0x1.ffcp+15" ); |
| 1157 | assert_eq!(Hexf(f16::ZERO).to_string(), "0x0p+0" ); |
| 1158 | assert_eq!(Hexf(f16::NEG_ZERO).to_string(), "-0x0p+0" ); |
| 1159 | assert_eq!(Hexf(f16::NAN).to_string(), "NaN" ); |
| 1160 | assert_eq!(Hexf(f16::INFINITY).to_string(), "inf" ); |
| 1161 | assert_eq!(Hexf(f16::NEG_INFINITY).to_string(), "-inf" ); |
| 1162 | } |
| 1163 | |
| 1164 | #[cfg (f128_enabled)] |
| 1165 | { |
| 1166 | assert_eq!( |
| 1167 | Hexf(f128::MAX).to_string(), |
| 1168 | "0x1.ffffffffffffffffffffffffffffp+16383" |
| 1169 | ); |
| 1170 | assert_eq!( |
| 1171 | Hexf(f128::MIN).to_string(), |
| 1172 | "-0x1.ffffffffffffffffffffffffffffp+16383" |
| 1173 | ); |
| 1174 | assert_eq!(Hexf(f128::ZERO).to_string(), "0x0p+0" ); |
| 1175 | assert_eq!(Hexf(f128::NEG_ZERO).to_string(), "-0x0p+0" ); |
| 1176 | assert_eq!(Hexf(f128::NAN).to_string(), "NaN" ); |
| 1177 | assert_eq!(Hexf(f128::INFINITY).to_string(), "inf" ); |
| 1178 | assert_eq!(Hexf(f128::NEG_INFINITY).to_string(), "-inf" ); |
| 1179 | } |
| 1180 | } |
| 1181 | } |
| 1182 | |