1 | //! Utilities for working with hex float formats. |
2 | |
3 | use core::fmt; |
4 | |
5 | use super::{Float, Round, Status, f32_from_bits, f64_from_bits}; |
6 | |
7 | /// Construct a 16-bit float from hex float representation (C-style) |
8 | #[cfg (f16_enabled)] |
9 | pub const fn hf16(s: &str) -> f16 { |
10 | match parse_hex_exact(s, 16, 10) { |
11 | Ok(bits) => f16::from_bits(bits as u16), |
12 | Err(HexFloatParseError(s)) => panic!("{}" , s), |
13 | } |
14 | } |
15 | |
16 | /// Construct a 32-bit float from hex float representation (C-style) |
17 | #[allow (unused)] |
18 | pub const fn hf32(s: &str) -> f32 { |
19 | match parse_hex_exact(s, bits:32, sig_bits:23) { |
20 | Ok(bits: u128) => f32_from_bits(bits as u32), |
21 | Err(HexFloatParseError(s: &'static str)) => panic!("{}" , s), |
22 | } |
23 | } |
24 | |
25 | /// Construct a 64-bit float from hex float representation (C-style) |
26 | pub const fn hf64(s: &str) -> f64 { |
27 | match parse_hex_exact(s, bits:64, sig_bits:52) { |
28 | Ok(bits: u128) => f64_from_bits(bits as u64), |
29 | Err(HexFloatParseError(s: &'static str)) => panic!("{}" , s), |
30 | } |
31 | } |
32 | |
33 | /// Construct a 128-bit float from hex float representation (C-style) |
34 | #[cfg (f128_enabled)] |
35 | pub const fn hf128(s: &str) -> f128 { |
36 | match parse_hex_exact(s, 128, 112) { |
37 | Ok(bits) => f128::from_bits(bits), |
38 | Err(HexFloatParseError(s)) => panic!("{}" , s), |
39 | } |
40 | } |
41 | #[derive (Copy, Clone, Debug)] |
42 | pub struct HexFloatParseError(&'static str); |
43 | |
44 | /// Parses any float to its bitwise representation, returning an error if it cannot be represented exactly |
45 | pub const fn parse_hex_exact( |
46 | s: &str, |
47 | bits: u32, |
48 | sig_bits: u32, |
49 | ) -> Result<u128, HexFloatParseError> { |
50 | match parse_any(s, bits, sig_bits, Round::Nearest) { |
51 | Err(e: HexFloatParseError) => Err(e), |
52 | Ok((bits: u128, Status::OK)) => Ok(bits), |
53 | Ok((_, status: Status)) if status.overflow() => Err(HexFloatParseError("the value is too huge" )), |
54 | Ok((_, status: Status)) if status.underflow() => Err(HexFloatParseError("the value is too tiny" )), |
55 | Ok((_, status: Status)) if status.inexact() => Err(HexFloatParseError("the value is too precise" )), |
56 | Ok(_) => unreachable!(), |
57 | } |
58 | } |
59 | |
60 | /// Parse any float from hex to its bitwise representation. |
61 | pub const fn parse_any( |
62 | s: &str, |
63 | bits: u32, |
64 | sig_bits: u32, |
65 | round: Round, |
66 | ) -> Result<(u128, Status), HexFloatParseError> { |
67 | let mut b = s.as_bytes(); |
68 | |
69 | if sig_bits > 119 || bits > 128 || bits < sig_bits + 3 || bits > sig_bits + 30 { |
70 | return Err(HexFloatParseError("unsupported target float configuration" )); |
71 | } |
72 | |
73 | let neg = matches!(b, [b'-' , ..]); |
74 | if let &[b'-' | b'+' , ref rest @ ..] = b { |
75 | b = rest; |
76 | } |
77 | |
78 | let sign_bit = 1 << (bits - 1); |
79 | let quiet_bit = 1 << (sig_bits - 1); |
80 | let nan = sign_bit - quiet_bit; |
81 | let inf = nan - quiet_bit; |
82 | |
83 | let (mut x, status) = match *b { |
84 | [b'i' | b'I' , b'n' | b'N' , b'f' | b'F' ] => (inf, Status::OK), |
85 | [b'n' | b'N' , b'a' | b'A' , b'n' | b'N' ] => (nan, Status::OK), |
86 | [b'0' , b'x' | b'X' , ref rest @ ..] => { |
87 | let round = match (neg, round) { |
88 | // parse("-x", Round::Positive) == -parse("x", Round::Negative) |
89 | (true, Round::Positive) => Round::Negative, |
90 | (true, Round::Negative) => Round::Positive, |
91 | // rounding toward nearest or zero are symmetric |
92 | (true, Round::Nearest | Round::Zero) | (false, _) => round, |
93 | }; |
94 | match parse_finite(rest, bits, sig_bits, round) { |
95 | Err(e) => return Err(e), |
96 | Ok(res) => res, |
97 | } |
98 | } |
99 | _ => return Err(HexFloatParseError("no hex indicator" )), |
100 | }; |
101 | |
102 | if neg { |
103 | x ^= sign_bit; |
104 | } |
105 | |
106 | Ok((x, status)) |
107 | } |
108 | |
109 | const fn parse_finite( |
110 | b: &[u8], |
111 | bits: u32, |
112 | sig_bits: u32, |
113 | rounding_mode: Round, |
114 | ) -> Result<(u128, Status), HexFloatParseError> { |
115 | let exp_bits: u32 = bits - sig_bits - 1; |
116 | let max_msb: i32 = (1 << (exp_bits - 1)) - 1; |
117 | // The exponent of one ULP in the subnormals |
118 | let min_lsb: i32 = 1 - max_msb - sig_bits as i32; |
119 | |
120 | let (mut sig, mut exp) = match parse_hex(b) { |
121 | Err(e) => return Err(e), |
122 | Ok(Parsed { sig: 0, .. }) => return Ok((0, Status::OK)), |
123 | Ok(Parsed { sig, exp }) => (sig, exp), |
124 | }; |
125 | |
126 | let mut round_bits = u128_ilog2(sig) as i32 - sig_bits as i32; |
127 | |
128 | // Round at least up to min_lsb |
129 | if exp < min_lsb - round_bits { |
130 | round_bits = min_lsb - exp; |
131 | } |
132 | |
133 | let mut status = Status::OK; |
134 | |
135 | exp += round_bits; |
136 | |
137 | if round_bits > 0 { |
138 | // first, prepare for rounding exactly two bits |
139 | if round_bits == 1 { |
140 | sig <<= 1; |
141 | } else if round_bits > 2 { |
142 | sig = shr_odd_rounding(sig, (round_bits - 2) as u32); |
143 | } |
144 | |
145 | if sig & 0b11 != 0 { |
146 | status = Status::INEXACT; |
147 | } |
148 | |
149 | sig = shr2_round(sig, rounding_mode); |
150 | } else if round_bits < 0 { |
151 | sig <<= -round_bits; |
152 | } |
153 | |
154 | // The parsed value is X = sig * 2^exp |
155 | // Expressed as a multiple U of the smallest subnormal value: |
156 | // X = U * 2^min_lsb, so U = sig * 2^(exp-min_lsb) |
157 | let uexp = (exp - min_lsb) as u128; |
158 | let uexp = uexp << sig_bits; |
159 | |
160 | // Note that it is possible for the exponent bits to equal 2 here |
161 | // if the value rounded up, but that means the mantissa is all zeroes |
162 | // so the value is still correct |
163 | debug_assert!(sig <= 2 << sig_bits); |
164 | |
165 | let inf = ((1 << exp_bits) - 1) << sig_bits; |
166 | |
167 | let bits = match sig.checked_add(uexp) { |
168 | Some(bits) if bits < inf => { |
169 | // inexact subnormal or zero? |
170 | if status.inexact() && bits < (1 << sig_bits) { |
171 | status = status.with(Status::UNDERFLOW); |
172 | } |
173 | bits |
174 | } |
175 | _ => { |
176 | // overflow to infinity |
177 | status = status.with(Status::OVERFLOW).with(Status::INEXACT); |
178 | match rounding_mode { |
179 | Round::Positive | Round::Nearest => inf, |
180 | Round::Negative | Round::Zero => inf - 1, |
181 | } |
182 | } |
183 | }; |
184 | Ok((bits, status)) |
185 | } |
186 | |
187 | /// Shift right, rounding all inexact divisions to the nearest odd number |
188 | /// E.g. (0 >> 4) -> 0, (1..=31 >> 4) -> 1, (32 >> 4) -> 2, ... |
189 | /// |
190 | /// Useful for reducing a number before rounding the last two bits, since |
191 | /// the result of the final rounding is preserved for all rounding modes. |
192 | const fn shr_odd_rounding(x: u128, k: u32) -> u128 { |
193 | if k < 128 { |
194 | let inexact: bool = x.trailing_zeros() < k; |
195 | (x >> k) | (inexact as u128) |
196 | } else { |
197 | (x != 0) as u128 |
198 | } |
199 | } |
200 | |
201 | /// Divide by 4, rounding with the given mode |
202 | const fn shr2_round(mut x: u128, round: Round) -> u128 { |
203 | let t: u32 = (x as u32) & 0b111; |
204 | x >>= 2; |
205 | match round { |
206 | // Look-up-table on the last three bits for when to round up |
207 | Round::Nearest => x + ((0b11001000_u8 >> t) & 1) as u128, |
208 | |
209 | Round::Negative => x, |
210 | Round::Zero => x, |
211 | Round::Positive => x + (t & 0b11 != 0) as u128, |
212 | } |
213 | } |
214 | |
215 | /// A parsed finite and unsigned floating point number. |
216 | struct Parsed { |
217 | /// Absolute value sig * 2^exp |
218 | sig: u128, |
219 | exp: i32, |
220 | } |
221 | |
222 | /// Parse a hexadecimal float x |
223 | const fn parse_hex(mut b: &[u8]) -> Result<Parsed, HexFloatParseError> { |
224 | let mut sig: u128 = 0; |
225 | let mut exp: i32 = 0; |
226 | |
227 | let mut seen_point = false; |
228 | let mut some_digits = false; |
229 | let mut inexact = false; |
230 | |
231 | while let &[c, ref rest @ ..] = b { |
232 | b = rest; |
233 | |
234 | match c { |
235 | b'.' => { |
236 | if seen_point { |
237 | return Err(HexFloatParseError( |
238 | "unexpected '.' parsing fractional digits" , |
239 | )); |
240 | } |
241 | seen_point = true; |
242 | continue; |
243 | } |
244 | b'p' | b'P' => break, |
245 | c => { |
246 | let digit = match hex_digit(c) { |
247 | Some(d) => d, |
248 | None => return Err(HexFloatParseError("expected hexadecimal digit" )), |
249 | }; |
250 | some_digits = true; |
251 | |
252 | if (sig >> 124) == 0 { |
253 | sig <<= 4; |
254 | sig |= digit as u128; |
255 | } else { |
256 | // FIXME: it is technically possible for exp to overflow if parsing a string with >500M digits |
257 | exp += 4; |
258 | inexact |= digit != 0; |
259 | } |
260 | // Up until the fractional point, the value grows |
261 | // with more digits, but after it the exponent is |
262 | // compensated to match. |
263 | if seen_point { |
264 | exp -= 4; |
265 | } |
266 | } |
267 | } |
268 | } |
269 | // If we've set inexact, the exact value has more than 125 |
270 | // significant bits, and lies somewhere between sig and sig + 1. |
271 | // Because we'll round off at least two of the trailing bits, |
272 | // setting the last bit gives correct rounding for inexact values. |
273 | sig |= inexact as u128; |
274 | |
275 | if !some_digits { |
276 | return Err(HexFloatParseError("at least one digit is required" )); |
277 | }; |
278 | |
279 | some_digits = false; |
280 | |
281 | let negate_exp = matches!(b, [b'-' , ..]); |
282 | if let &[b'-' | b'+' , ref rest @ ..] = b { |
283 | b = rest; |
284 | } |
285 | |
286 | let mut pexp: u32 = 0; |
287 | while let &[c, ref rest @ ..] = b { |
288 | b = rest; |
289 | let digit = match dec_digit(c) { |
290 | Some(d) => d, |
291 | None => return Err(HexFloatParseError("expected decimal digit" )), |
292 | }; |
293 | some_digits = true; |
294 | pexp = pexp.saturating_mul(10); |
295 | pexp += digit as u32; |
296 | } |
297 | |
298 | if !some_digits { |
299 | return Err(HexFloatParseError( |
300 | "at least one exponent digit is required" , |
301 | )); |
302 | }; |
303 | |
304 | { |
305 | let e; |
306 | if negate_exp { |
307 | e = (exp as i64) - (pexp as i64); |
308 | } else { |
309 | e = (exp as i64) + (pexp as i64); |
310 | }; |
311 | |
312 | exp = if e < i32::MIN as i64 { |
313 | i32::MIN |
314 | } else if e > i32::MAX as i64 { |
315 | i32::MAX |
316 | } else { |
317 | e as i32 |
318 | }; |
319 | } |
320 | /* FIXME(msrv): once MSRV >= 1.66, replace the above workaround block with: |
321 | if negate_exp { |
322 | exp = exp.saturating_sub_unsigned(pexp); |
323 | } else { |
324 | exp = exp.saturating_add_unsigned(pexp); |
325 | }; |
326 | */ |
327 | |
328 | Ok(Parsed { sig, exp }) |
329 | } |
330 | |
331 | const fn dec_digit(c: u8) -> Option<u8> { |
332 | match c { |
333 | b'0' ..=b'9' => Some(c - b'0' ), |
334 | _ => None, |
335 | } |
336 | } |
337 | |
338 | const fn hex_digit(c: u8) -> Option<u8> { |
339 | match c { |
340 | b'0' ..=b'9' => Some(c - b'0' ), |
341 | b'a' ..=b'f' => Some(c - b'a' + 10), |
342 | b'A' ..=b'F' => Some(c - b'A' + 10), |
343 | _ => None, |
344 | } |
345 | } |
346 | |
347 | /* FIXME(msrv): vendor some things that are not const stable at our MSRV */ |
348 | |
349 | /// `u128::ilog2` |
350 | const fn u128_ilog2(v: u128) -> u32 { |
351 | assert!(v != 0); |
352 | u128::BITS - 1 - v.leading_zeros() |
353 | } |
354 | |
355 | /// Format a floating point number as its IEEE hex (`%a`) representation. |
356 | pub struct Hexf<F>(pub F); |
357 | |
358 | // Adapted from https://github.com/ericseppanen/hexfloat2/blob/a5c27932f0ff/src/format.rs |
359 | #[cfg (not(feature = "compiler-builtins" ))] |
360 | fn fmt_any_hex<F: Float>(x: &F, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
361 | if x.is_sign_negative() { |
362 | write!(f, "-" )?; |
363 | } |
364 | |
365 | if x.is_nan() { |
366 | return write!(f, "NaN" ); |
367 | } else if x.is_infinite() { |
368 | return write!(f, "inf" ); |
369 | } else if *x == F::ZERO { |
370 | return write!(f, "0x0p+0" ); |
371 | } |
372 | |
373 | let mut exponent = x.exp_unbiased(); |
374 | let sig = x.to_bits() & F::SIG_MASK; |
375 | |
376 | let bias = F::EXP_BIAS as i32; |
377 | // The mantissa MSB needs to be shifted up to the nearest nibble. |
378 | let mshift = (4 - (F::SIG_BITS % 4)) % 4; |
379 | let sig = sig << mshift; |
380 | // The width is rounded up to the nearest char (4 bits) |
381 | let mwidth = (F::SIG_BITS as usize + 3) / 4; |
382 | let leading = if exponent == -bias { |
383 | // subnormal number means we shift our output by 1 bit. |
384 | exponent += 1; |
385 | "0." |
386 | } else { |
387 | "1." |
388 | }; |
389 | |
390 | write!(f, "0x {leading}{sig:0mwidth$x}p {exponent:+}" ) |
391 | } |
392 | |
393 | #[cfg (feature = "compiler-builtins" )] |
394 | fn fmt_any_hex<F: Float>(_x: &F, _f: &mut fmt::Formatter<'_>) -> fmt::Result { |
395 | unimplemented!() |
396 | } |
397 | |
398 | impl<F: Float> fmt::LowerHex for Hexf<F> { |
399 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
400 | cfg_if! { |
401 | if #[cfg(feature = "compiler-builtins" )] { |
402 | let _ = f; |
403 | unimplemented!() |
404 | } else { |
405 | fmt_any_hex(&self.0, f) |
406 | } |
407 | } |
408 | } |
409 | } |
410 | |
411 | impl<F: Float> fmt::LowerHex for Hexf<(F, F)> { |
412 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
413 | cfg_if! { |
414 | if #[cfg(feature = "compiler-builtins" )] { |
415 | let _ = f; |
416 | unimplemented!() |
417 | } else { |
418 | write!(f, "( {:x}, {:x})" , Hexf(self.0.0), Hexf(self.0.1)) |
419 | } |
420 | } |
421 | } |
422 | } |
423 | |
424 | impl<F: Float> fmt::LowerHex for Hexf<(F, i32)> { |
425 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
426 | cfg_if! { |
427 | if #[cfg(feature = "compiler-builtins" )] { |
428 | let _ = f; |
429 | unimplemented!() |
430 | } else { |
431 | write!(f, "( {:x}, {:x})" , Hexf(self.0.0), Hexf(self.0.1)) |
432 | } |
433 | } |
434 | } |
435 | } |
436 | |
437 | impl fmt::LowerHex for Hexf<i32> { |
438 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
439 | cfg_if! { |
440 | if #[cfg(feature = "compiler-builtins" )] { |
441 | let _ = f; |
442 | unimplemented!() |
443 | } else { |
444 | fmt::LowerHex::fmt(&self.0, f) |
445 | } |
446 | } |
447 | } |
448 | } |
449 | |
450 | impl<T> fmt::Debug for Hexf<T> |
451 | where |
452 | Hexf<T>: fmt::LowerHex, |
453 | { |
454 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
455 | cfg_if! { |
456 | if #[cfg(feature = "compiler-builtins" )] { |
457 | let _ = f; |
458 | unimplemented!() |
459 | } else { |
460 | fmt::LowerHex::fmt(self, f) |
461 | } |
462 | } |
463 | } |
464 | } |
465 | |
466 | impl<T> fmt::Display for Hexf<T> |
467 | where |
468 | Hexf<T>: fmt::LowerHex, |
469 | { |
470 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
471 | cfg_if! { |
472 | if #[cfg(feature = "compiler-builtins" )] { |
473 | let _ = f; |
474 | unimplemented!() |
475 | } else { |
476 | fmt::LowerHex::fmt(self, f) |
477 | } |
478 | } |
479 | } |
480 | } |
481 | |
482 | #[cfg (test)] |
483 | mod parse_tests { |
484 | extern crate std; |
485 | use std::{format, println}; |
486 | |
487 | use super::*; |
488 | |
489 | #[cfg (f16_enabled)] |
490 | fn rounding_properties(s: &str) -> Result<(), HexFloatParseError> { |
491 | let (xd, s0) = parse_any(s, 16, 10, Round::Negative)?; |
492 | let (xu, s1) = parse_any(s, 16, 10, Round::Positive)?; |
493 | let (xz, s2) = parse_any(s, 16, 10, Round::Zero)?; |
494 | let (xn, s3) = parse_any(s, 16, 10, Round::Nearest)?; |
495 | |
496 | // FIXME: A value between the least normal and largest subnormal |
497 | // could have underflow status depend on rounding mode. |
498 | |
499 | if let Status::OK = s0 { |
500 | // an exact result is the same for all rounding modes |
501 | assert_eq!(s0, s1); |
502 | assert_eq!(s0, s2); |
503 | assert_eq!(s0, s3); |
504 | |
505 | assert_eq!(xd, xu); |
506 | assert_eq!(xd, xz); |
507 | assert_eq!(xd, xn); |
508 | } else { |
509 | assert!([s0, s1, s2, s3].into_iter().all(Status::inexact)); |
510 | |
511 | let xd = f16::from_bits(xd as u16); |
512 | let xu = f16::from_bits(xu as u16); |
513 | let xz = f16::from_bits(xz as u16); |
514 | let xn = f16::from_bits(xn as u16); |
515 | |
516 | assert_biteq!(xd.next_up(), xu, "s={s}, xd={xd:?}, xu={xu:?}" ); |
517 | |
518 | let signs = [xd, xu, xz, xn].map(f16::is_sign_negative); |
519 | |
520 | if signs == [true; 4] { |
521 | assert_biteq!(xz, xu); |
522 | } else { |
523 | assert_eq!(signs, [false; 4]); |
524 | assert_biteq!(xz, xd); |
525 | } |
526 | |
527 | if xn.to_bits() != xd.to_bits() { |
528 | assert_biteq!(xn, xu); |
529 | } |
530 | } |
531 | Ok(()) |
532 | } |
533 | #[test ] |
534 | #[cfg (f16_enabled)] |
535 | fn test_rounding() { |
536 | let n = 1_i32 << 14; |
537 | for i in -n..n { |
538 | let u = i.rotate_right(11) as u32; |
539 | let s = format!("{}" , Hexf(f32::from_bits(u))); |
540 | assert!(rounding_properties(&s).is_ok()); |
541 | } |
542 | } |
543 | |
544 | #[test ] |
545 | fn test_parse_any() { |
546 | for k in -149..=127 { |
547 | let s = format!("0x1p{k}" ); |
548 | let x = hf32(&s); |
549 | let y = if k < 0 { |
550 | 0.5f32.powi(-k) |
551 | } else { |
552 | 2.0f32.powi(k) |
553 | }; |
554 | assert_eq!(x, y); |
555 | } |
556 | |
557 | let mut s = *b"0x.0000000p-121" ; |
558 | for e in 0..40 { |
559 | for k in 0..(1 << 15) { |
560 | let expected = f32::from_bits(k) * 2.0f32.powi(e); |
561 | let x = hf32(std::str::from_utf8(&s).unwrap()); |
562 | assert_eq!( |
563 | x.to_bits(), |
564 | expected.to_bits(), |
565 | "\ |
566 | e={e} \n\ |
567 | k={k} \n\ |
568 | x={x} \n\ |
569 | expected={expected} \n\ |
570 | s={} \n\ |
571 | f32::from_bits(k)={} \n\ |
572 | 2.0f32.powi(e)={}\ |
573 | " , |
574 | std::str::from_utf8(&s).unwrap(), |
575 | f32::from_bits(k), |
576 | 2.0f32.powi(e), |
577 | ); |
578 | for i in (3..10).rev() { |
579 | if s[i] == b'f' { |
580 | s[i] = b'0' ; |
581 | } else if s[i] == b'9' { |
582 | s[i] = b'a' ; |
583 | break; |
584 | } else { |
585 | s[i] += 1; |
586 | break; |
587 | } |
588 | } |
589 | } |
590 | for i in (12..15).rev() { |
591 | if s[i] == b'0' { |
592 | s[i] = b'9' ; |
593 | } else { |
594 | s[i] -= 1; |
595 | break; |
596 | } |
597 | } |
598 | for i in (3..10).rev() { |
599 | s[i] = b'0' ; |
600 | } |
601 | } |
602 | } |
603 | |
604 | // FIXME: this test is causing failures that are likely UB on various platforms |
605 | #[cfg (all(target_arch = "x86_64" , target_os = "linux" ))] |
606 | #[test ] |
607 | #[cfg (f128_enabled)] |
608 | fn rounding() { |
609 | let pi = std::f128::consts::PI; |
610 | let s = format!("{}" , Hexf(pi)); |
611 | |
612 | for k in 0..=111 { |
613 | let (bits, status) = parse_any(&s, 128 - k, 112 - k, Round::Nearest).unwrap(); |
614 | let scale = (1u128 << (112 - k - 1)) as f128; |
615 | let expected = (pi * scale).round_ties_even() / scale; |
616 | assert_eq!(bits << k, expected.to_bits(), "k = {k}, s = {s}" ); |
617 | assert_eq!(expected != pi, status.inexact()); |
618 | } |
619 | } |
620 | #[test ] |
621 | fn rounding_extreme_underflow() { |
622 | for k in 1..1000 { |
623 | let s = format!("0x1p{}" , -149 - k); |
624 | let Ok((bits, status)) = parse_any(&s, 32, 23, Round::Nearest) else { |
625 | unreachable!() |
626 | }; |
627 | assert_eq!(bits, 0, "{s} should round to zero, got bits={bits}" ); |
628 | assert!( |
629 | status.underflow(), |
630 | "should indicate underflow when parsing {s}" |
631 | ); |
632 | assert!(status.inexact(), "should indicate inexact when parsing {s}" ); |
633 | } |
634 | } |
635 | #[test ] |
636 | fn long_tail() { |
637 | for k in 1..1000 { |
638 | let s = format!("0x1.{}p0" , "0" .repeat(k)); |
639 | let Ok(bits) = parse_hex_exact(&s, 32, 23) else { |
640 | panic!("parsing {s} failed" ) |
641 | }; |
642 | assert_eq!(f32::from_bits(bits as u32), 1.0); |
643 | |
644 | let s = format!("0x1.{}1p0" , "0" .repeat(k)); |
645 | let Ok((bits, status)) = parse_any(&s, 32, 23, Round::Nearest) else { |
646 | unreachable!() |
647 | }; |
648 | if status.inexact() { |
649 | assert!(1.0 == f32::from_bits(bits as u32)); |
650 | } else { |
651 | assert!(1.0 < f32::from_bits(bits as u32)); |
652 | } |
653 | } |
654 | } |
655 | // HACK(msrv): 1.63 rejects unknown width float literals at an AST level, so use a macro to |
656 | // hide them from the AST. |
657 | #[cfg (f16_enabled)] |
658 | macro_rules! f16_tests { |
659 | () => { |
660 | #[test] |
661 | fn test_f16() { |
662 | let checks = [ |
663 | ("0x.1234p+16" , (0x1234 as f16).to_bits()), |
664 | ("0x1.234p+12" , (0x1234 as f16).to_bits()), |
665 | ("0x12.34p+8" , (0x1234 as f16).to_bits()), |
666 | ("0x123.4p+4" , (0x1234 as f16).to_bits()), |
667 | ("0x1234p+0" , (0x1234 as f16).to_bits()), |
668 | ("0x1234.p+0" , (0x1234 as f16).to_bits()), |
669 | ("0x1234.0p+0" , (0x1234 as f16).to_bits()), |
670 | ("0x1.ffcp+15" , f16::MAX.to_bits()), |
671 | ("0x1.0p+1" , 2.0f16.to_bits()), |
672 | ("0x1.0p+0" , 1.0f16.to_bits()), |
673 | ("0x1.ffp+8" , 0x5ffc), |
674 | ("+0x1.ffp+8" , 0x5ffc), |
675 | ("0x1p+0" , 0x3c00), |
676 | ("0x1.998p-4" , 0x2e66), |
677 | ("0x1.9p+6" , 0x5640), |
678 | ("0x0.0p0" , 0.0f16.to_bits()), |
679 | ("-0x0.0p0" , (-0.0f16).to_bits()), |
680 | ("0x1.0p0" , 1.0f16.to_bits()), |
681 | ("0x1.998p-4" , (0.1f16).to_bits()), |
682 | ("-0x1.998p-4" , (-0.1f16).to_bits()), |
683 | ("0x0.123p-12" , 0x0123), |
684 | ("0x1p-24" , 0x0001), |
685 | ("nan" , f16::NAN.to_bits()), |
686 | ("-nan" , (-f16::NAN).to_bits()), |
687 | ("inf" , f16::INFINITY.to_bits()), |
688 | ("-inf" , f16::NEG_INFINITY.to_bits()), |
689 | ]; |
690 | for (s, exp) in checks { |
691 | println!("parsing {s}" ); |
692 | assert!(rounding_properties(s).is_ok()); |
693 | let act = hf16(s).to_bits(); |
694 | assert_eq!( |
695 | act, exp, |
696 | "parsing {s}: {act:#06x} != {exp:#06x} \nact: {act:#018b} \nexp: {exp:#018b}" |
697 | ); |
698 | } |
699 | } |
700 | |
701 | #[test] |
702 | fn test_macros_f16() { |
703 | assert_eq!(hf16!("0x1.ffp+8" ).to_bits(), 0x5ffc_u16); |
704 | } |
705 | }; |
706 | } |
707 | |
708 | #[cfg (f16_enabled)] |
709 | f16_tests!(); |
710 | |
711 | #[test ] |
712 | fn test_f32() { |
713 | let checks = [ |
714 | ("0x.1234p+16" , (0x1234 as f32).to_bits()), |
715 | ("0x1.234p+12" , (0x1234 as f32).to_bits()), |
716 | ("0x12.34p+8" , (0x1234 as f32).to_bits()), |
717 | ("0x123.4p+4" , (0x1234 as f32).to_bits()), |
718 | ("0x1234p+0" , (0x1234 as f32).to_bits()), |
719 | ("0x1234.p+0" , (0x1234 as f32).to_bits()), |
720 | ("0x1234.0p+0" , (0x1234 as f32).to_bits()), |
721 | ("0x1.fffffep+127" , f32::MAX.to_bits()), |
722 | ("0x1.0p+1" , 2.0f32.to_bits()), |
723 | ("0x1.0p+0" , 1.0f32.to_bits()), |
724 | ("0x1.ffep+8" , 0x43fff000), |
725 | ("+0x1.ffep+8" , 0x43fff000), |
726 | ("0x1p+0" , 0x3f800000), |
727 | ("0x1.99999ap-4" , 0x3dcccccd), |
728 | ("0x1.9p+6" , 0x42c80000), |
729 | ("0x1.2d5ed2p+20" , 0x4996af69), |
730 | ("-0x1.348eb8p+10" , 0xc49a475c), |
731 | ("-0x1.33dcfep-33" , 0xaf19ee7f), |
732 | ("0x0.0p0" , 0.0f32.to_bits()), |
733 | ("-0x0.0p0" , (-0.0f32).to_bits()), |
734 | ("0x1.0p0" , 1.0f32.to_bits()), |
735 | ("0x1.99999ap-4" , (0.1f32).to_bits()), |
736 | ("-0x1.99999ap-4" , (-0.1f32).to_bits()), |
737 | ("0x1.111114p-127" , 0x00444445), |
738 | ("0x1.23456p-130" , 0x00091a2b), |
739 | ("0x1p-149" , 0x00000001), |
740 | ("nan" , f32::NAN.to_bits()), |
741 | ("-nan" , (-f32::NAN).to_bits()), |
742 | ("inf" , f32::INFINITY.to_bits()), |
743 | ("-inf" , f32::NEG_INFINITY.to_bits()), |
744 | ]; |
745 | for (s, exp) in checks { |
746 | println!("parsing {s}" ); |
747 | let act = hf32(s).to_bits(); |
748 | assert_eq!( |
749 | act, exp, |
750 | "parsing {s}: {act:#010x} != {exp:#010x} \nact: {act:#034b} \nexp: {exp:#034b}" |
751 | ); |
752 | } |
753 | } |
754 | |
755 | #[test ] |
756 | fn test_f64() { |
757 | let checks = [ |
758 | ("0x.1234p+16" , (0x1234 as f64).to_bits()), |
759 | ("0x1.234p+12" , (0x1234 as f64).to_bits()), |
760 | ("0x12.34p+8" , (0x1234 as f64).to_bits()), |
761 | ("0x123.4p+4" , (0x1234 as f64).to_bits()), |
762 | ("0x1234p+0" , (0x1234 as f64).to_bits()), |
763 | ("0x1234.p+0" , (0x1234 as f64).to_bits()), |
764 | ("0x1234.0p+0" , (0x1234 as f64).to_bits()), |
765 | ("0x1.ffep+8" , 0x407ffe0000000000), |
766 | ("0x1p+0" , 0x3ff0000000000000), |
767 | ("0x1.999999999999ap-4" , 0x3fb999999999999a), |
768 | ("0x1.9p+6" , 0x4059000000000000), |
769 | ("0x1.2d5ed1fe1da7bp+20" , 0x4132d5ed1fe1da7b), |
770 | ("-0x1.348eb851eb852p+10" , 0xc09348eb851eb852), |
771 | ("-0x1.33dcfe54a3803p-33" , 0xbde33dcfe54a3803), |
772 | ("0x1.0p0" , 1.0f64.to_bits()), |
773 | ("0x0.0p0" , 0.0f64.to_bits()), |
774 | ("-0x0.0p0" , (-0.0f64).to_bits()), |
775 | ("0x1.999999999999ap-4" , 0.1f64.to_bits()), |
776 | ("0x1.999999999998ap-4" , (0.1f64 - f64::EPSILON).to_bits()), |
777 | ("-0x1.999999999999ap-4" , (-0.1f64).to_bits()), |
778 | ("-0x1.999999999998ap-4" , (-0.1f64 + f64::EPSILON).to_bits()), |
779 | ("0x0.8000000000001p-1022" , 0x0008000000000001), |
780 | ("0x0.123456789abcdp-1022" , 0x000123456789abcd), |
781 | ("0x0.0000000000002p-1022" , 0x0000000000000002), |
782 | ("nan" , f64::NAN.to_bits()), |
783 | ("-nan" , (-f64::NAN).to_bits()), |
784 | ("inf" , f64::INFINITY.to_bits()), |
785 | ("-inf" , f64::NEG_INFINITY.to_bits()), |
786 | ]; |
787 | for (s, exp) in checks { |
788 | println!("parsing {s}" ); |
789 | let act = hf64(s).to_bits(); |
790 | assert_eq!( |
791 | act, exp, |
792 | "parsing {s}: {act:#018x} != {exp:#018x} \nact: {act:#066b} \nexp: {exp:#066b}" |
793 | ); |
794 | } |
795 | } |
796 | |
797 | // HACK(msrv): 1.63 rejects unknown width float literals at an AST level, so use a macro to |
798 | // hide them from the AST. |
799 | #[cfg (f128_enabled)] |
800 | macro_rules! f128_tests { |
801 | () => { |
802 | #[test] |
803 | fn test_f128() { |
804 | let checks = [ |
805 | ("0x.1234p+16" , (0x1234 as f128).to_bits()), |
806 | ("0x1.234p+12" , (0x1234 as f128).to_bits()), |
807 | ("0x12.34p+8" , (0x1234 as f128).to_bits()), |
808 | ("0x123.4p+4" , (0x1234 as f128).to_bits()), |
809 | ("0x1234p+0" , (0x1234 as f128).to_bits()), |
810 | ("0x1234.p+0" , (0x1234 as f128).to_bits()), |
811 | ("0x1234.0p+0" , (0x1234 as f128).to_bits()), |
812 | ("0x1.ffffffffffffffffffffffffffffp+16383" , f128::MAX.to_bits()), |
813 | ("0x1.0p+1" , 2.0f128.to_bits()), |
814 | ("0x1.0p+0" , 1.0f128.to_bits()), |
815 | ("0x1.ffep+8" , 0x4007ffe0000000000000000000000000), |
816 | ("+0x1.ffep+8" , 0x4007ffe0000000000000000000000000), |
817 | ("0x1p+0" , 0x3fff0000000000000000000000000000), |
818 | ("0x1.999999999999999999999999999ap-4" , 0x3ffb999999999999999999999999999a), |
819 | ("0x1.9p+6" , 0x40059000000000000000000000000000), |
820 | ("0x0.0p0" , 0.0f128.to_bits()), |
821 | ("-0x0.0p0" , (-0.0f128).to_bits()), |
822 | ("0x1.0p0" , 1.0f128.to_bits()), |
823 | ("0x1.999999999999999999999999999ap-4" , (0.1f128).to_bits()), |
824 | ("-0x1.999999999999999999999999999ap-4" , (-0.1f128).to_bits()), |
825 | ("0x0.abcdef0123456789abcdef012345p-16382" , 0x0000abcdef0123456789abcdef012345), |
826 | ("0x1p-16494" , 0x00000000000000000000000000000001), |
827 | ("nan" , f128::NAN.to_bits()), |
828 | ("-nan" , (-f128::NAN).to_bits()), |
829 | ("inf" , f128::INFINITY.to_bits()), |
830 | ("-inf" , f128::NEG_INFINITY.to_bits()), |
831 | ]; |
832 | for (s, exp) in checks { |
833 | println!("parsing {s}" ); |
834 | let act = hf128(s).to_bits(); |
835 | assert_eq!( |
836 | act, exp, |
837 | "parsing {s}: {act:#034x} != {exp:#034x} \nact: {act:#0130b} \nexp: {exp:#0130b}" |
838 | ); |
839 | } |
840 | } |
841 | |
842 | #[test] |
843 | fn test_macros_f128() { |
844 | assert_eq!(hf128!("0x1.ffep+8" ).to_bits(), 0x4007ffe0000000000000000000000000_u128); |
845 | } |
846 | } |
847 | } |
848 | |
849 | #[cfg (f128_enabled)] |
850 | f128_tests!(); |
851 | |
852 | #[test ] |
853 | fn test_macros() { |
854 | #[cfg (f16_enabled)] |
855 | assert_eq!(hf16!("0x1.ffp+8" ).to_bits(), 0x5ffc_u16); |
856 | assert_eq!(hf32!("0x1.ffep+8" ).to_bits(), 0x43fff000_u32); |
857 | assert_eq!(hf64!("0x1.ffep+8" ).to_bits(), 0x407ffe0000000000_u64); |
858 | #[cfg (f128_enabled)] |
859 | assert_eq!( |
860 | hf128!("0x1.ffep+8" ).to_bits(), |
861 | 0x4007ffe0000000000000000000000000_u128 |
862 | ); |
863 | } |
864 | } |
865 | |
866 | #[cfg (test)] |
867 | // FIXME(ppc): something with `should_panic` tests cause a SIGILL with ppc64le |
868 | #[cfg (not(all(target_arch = "powerpc64" , target_endian = "little" )))] |
869 | mod tests_panicking { |
870 | extern crate std; |
871 | use super::*; |
872 | |
873 | // HACK(msrv): 1.63 rejects unknown width float literals at an AST level, so use a macro to |
874 | // hide them from the AST. |
875 | #[cfg (f16_enabled)] |
876 | macro_rules! f16_tests { |
877 | () => { |
878 | #[test] |
879 | fn test_f16_almost_extra_precision() { |
880 | // Exact maximum precision allowed |
881 | hf16("0x1.ffcp+0" ); |
882 | } |
883 | |
884 | #[test] |
885 | #[should_panic(expected = "the value is too precise" )] |
886 | fn test_f16_extra_precision() { |
887 | // One bit more than the above. |
888 | hf16("0x1.ffdp+0" ); |
889 | } |
890 | |
891 | #[test] |
892 | #[should_panic(expected = "the value is too huge" )] |
893 | fn test_f16_overflow() { |
894 | // One bit more than the above. |
895 | hf16("0x1p+16" ); |
896 | } |
897 | |
898 | #[test] |
899 | fn test_f16_tiniest() { |
900 | let x = hf16("0x1.p-24" ); |
901 | let y = hf16("0x0.001p-12" ); |
902 | let z = hf16("0x0.8p-23" ); |
903 | assert_eq!(x, y); |
904 | assert_eq!(x, z); |
905 | } |
906 | |
907 | #[test] |
908 | #[should_panic(expected = "the value is too tiny" )] |
909 | fn test_f16_too_tiny() { |
910 | hf16("0x1.p-25" ); |
911 | } |
912 | |
913 | #[test] |
914 | #[should_panic(expected = "the value is too tiny" )] |
915 | fn test_f16_also_too_tiny() { |
916 | hf16("0x0.8p-24" ); |
917 | } |
918 | |
919 | #[test] |
920 | #[should_panic(expected = "the value is too tiny" )] |
921 | fn test_f16_again_too_tiny() { |
922 | hf16("0x0.001p-13" ); |
923 | } |
924 | }; |
925 | } |
926 | |
927 | #[cfg (f16_enabled)] |
928 | f16_tests!(); |
929 | |
930 | #[test ] |
931 | fn test_f32_almost_extra_precision() { |
932 | // Exact maximum precision allowed |
933 | hf32("0x1.abcdeep+0" ); |
934 | } |
935 | |
936 | #[test ] |
937 | #[should_panic ] |
938 | fn test_f32_extra_precision2() { |
939 | // One bit more than the above. |
940 | hf32("0x1.ffffffp+127" ); |
941 | } |
942 | |
943 | #[test ] |
944 | #[should_panic (expected = "the value is too huge" )] |
945 | fn test_f32_overflow() { |
946 | // One bit more than the above. |
947 | hf32("0x1p+128" ); |
948 | } |
949 | |
950 | #[test ] |
951 | #[should_panic (expected = "the value is too precise" )] |
952 | fn test_f32_extra_precision() { |
953 | // One bit more than the above. |
954 | hf32("0x1.abcdefp+0" ); |
955 | } |
956 | |
957 | #[test ] |
958 | fn test_f32_tiniest() { |
959 | let x = hf32("0x1.p-149" ); |
960 | let y = hf32("0x0.0000000000000001p-85" ); |
961 | let z = hf32("0x0.8p-148" ); |
962 | assert_eq!(x, y); |
963 | assert_eq!(x, z); |
964 | } |
965 | |
966 | #[test ] |
967 | #[should_panic (expected = "the value is too tiny" )] |
968 | fn test_f32_too_tiny() { |
969 | hf32("0x1.p-150" ); |
970 | } |
971 | |
972 | #[test ] |
973 | #[should_panic (expected = "the value is too tiny" )] |
974 | fn test_f32_also_too_tiny() { |
975 | hf32("0x0.8p-149" ); |
976 | } |
977 | |
978 | #[test ] |
979 | #[should_panic (expected = "the value is too tiny" )] |
980 | fn test_f32_again_too_tiny() { |
981 | hf32("0x0.0000000000000001p-86" ); |
982 | } |
983 | |
984 | #[test ] |
985 | fn test_f64_almost_extra_precision() { |
986 | // Exact maximum precision allowed |
987 | hf64("0x1.abcdabcdabcdfp+0" ); |
988 | } |
989 | |
990 | #[test ] |
991 | #[should_panic (expected = "the value is too precise" )] |
992 | fn test_f64_extra_precision() { |
993 | // One bit more than the above. |
994 | hf64("0x1.abcdabcdabcdf8p+0" ); |
995 | } |
996 | |
997 | // HACK(msrv): 1.63 rejects unknown width float literals at an AST level, so use a macro to |
998 | // hide them from the AST. |
999 | #[cfg (f128_enabled)] |
1000 | macro_rules! f128_tests { |
1001 | () => { |
1002 | #[test] |
1003 | fn test_f128_almost_extra_precision() { |
1004 | // Exact maximum precision allowed |
1005 | hf128("0x1.ffffffffffffffffffffffffffffp+16383" ); |
1006 | } |
1007 | |
1008 | #[test] |
1009 | #[should_panic(expected = "the value is too precise" )] |
1010 | fn test_f128_extra_precision() { |
1011 | // Just below the maximum finite. |
1012 | hf128("0x1.fffffffffffffffffffffffffffe8p+16383" ); |
1013 | } |
1014 | #[test] |
1015 | #[should_panic(expected = "the value is too huge" )] |
1016 | fn test_f128_extra_precision_overflow() { |
1017 | // One bit more than the above. Should overflow. |
1018 | hf128("0x1.ffffffffffffffffffffffffffff8p+16383" ); |
1019 | } |
1020 | |
1021 | #[test] |
1022 | #[should_panic(expected = "the value is too huge" )] |
1023 | fn test_f128_overflow() { |
1024 | // One bit more than the above. |
1025 | hf128("0x1p+16384" ); |
1026 | } |
1027 | |
1028 | #[test] |
1029 | fn test_f128_tiniest() { |
1030 | let x = hf128("0x1.p-16494" ); |
1031 | let y = hf128("0x0.0000000000000001p-16430" ); |
1032 | let z = hf128("0x0.8p-16493" ); |
1033 | assert_eq!(x, y); |
1034 | assert_eq!(x, z); |
1035 | } |
1036 | |
1037 | #[test] |
1038 | #[should_panic(expected = "the value is too tiny" )] |
1039 | fn test_f128_too_tiny() { |
1040 | hf128("0x1.p-16495" ); |
1041 | } |
1042 | |
1043 | #[test] |
1044 | #[should_panic(expected = "the value is too tiny" )] |
1045 | fn test_f128_again_too_tiny() { |
1046 | hf128("0x0.0000000000000001p-16431" ); |
1047 | } |
1048 | |
1049 | #[test] |
1050 | #[should_panic(expected = "the value is too tiny" )] |
1051 | fn test_f128_also_too_tiny() { |
1052 | hf128("0x0.8p-16494" ); |
1053 | } |
1054 | }; |
1055 | } |
1056 | |
1057 | #[cfg (f128_enabled)] |
1058 | f128_tests!(); |
1059 | } |
1060 | |
1061 | #[cfg (test)] |
1062 | mod print_tests { |
1063 | extern crate std; |
1064 | use std::string::ToString; |
1065 | |
1066 | use super::*; |
1067 | |
1068 | #[test ] |
1069 | #[cfg (f16_enabled)] |
1070 | fn test_f16() { |
1071 | use std::format; |
1072 | // Exhaustively check that `f16` roundtrips. |
1073 | for x in 0..=u16::MAX { |
1074 | let f = f16::from_bits(x); |
1075 | let s = format!("{}" , Hexf(f)); |
1076 | let from_s = hf16(&s); |
1077 | |
1078 | if f.is_nan() && from_s.is_nan() { |
1079 | continue; |
1080 | } |
1081 | |
1082 | assert_eq!( |
1083 | f.to_bits(), |
1084 | from_s.to_bits(), |
1085 | "{f:?} formatted as {s} but parsed as {from_s:?}" |
1086 | ); |
1087 | } |
1088 | } |
1089 | |
1090 | #[test ] |
1091 | #[cfg (f16_enabled)] |
1092 | fn test_f16_to_f32() { |
1093 | use std::format; |
1094 | // Exhaustively check that these are equivalent for all `f16`: |
1095 | // - `f16 -> f32` |
1096 | // - `f16 -> str -> f32` |
1097 | // - `f16 -> f32 -> str -> f32` |
1098 | // - `f16 -> f32 -> str -> f16 -> f32` |
1099 | for x in 0..=u16::MAX { |
1100 | let f16 = f16::from_bits(x); |
1101 | let s16 = format!("{}" , Hexf(f16)); |
1102 | let f32 = f16 as f32; |
1103 | let s32 = format!("{}" , Hexf(f32)); |
1104 | |
1105 | let a = hf32(&s16); |
1106 | let b = hf32(&s32); |
1107 | let c = hf16(&s32); |
1108 | |
1109 | if f32.is_nan() && a.is_nan() && b.is_nan() && c.is_nan() { |
1110 | continue; |
1111 | } |
1112 | |
1113 | assert_eq!( |
1114 | f32.to_bits(), |
1115 | a.to_bits(), |
1116 | "{f16:?} : f16 formatted as {s16} which parsed as {a:?} : f16" |
1117 | ); |
1118 | assert_eq!( |
1119 | f32.to_bits(), |
1120 | b.to_bits(), |
1121 | "{f32:?} : f32 formatted as {s32} which parsed as {b:?} : f32" |
1122 | ); |
1123 | assert_eq!( |
1124 | f32.to_bits(), |
1125 | (c as f32).to_bits(), |
1126 | "{f32:?} : f32 formatted as {s32} which parsed as {c:?} : f16" |
1127 | ); |
1128 | } |
1129 | } |
1130 | #[test ] |
1131 | fn spot_checks() { |
1132 | assert_eq!(Hexf(f32::MAX).to_string(), "0x1.fffffep+127" ); |
1133 | assert_eq!(Hexf(f64::MAX).to_string(), "0x1.fffffffffffffp+1023" ); |
1134 | |
1135 | assert_eq!(Hexf(f32::MIN).to_string(), "-0x1.fffffep+127" ); |
1136 | assert_eq!(Hexf(f64::MIN).to_string(), "-0x1.fffffffffffffp+1023" ); |
1137 | |
1138 | assert_eq!(Hexf(f32::ZERO).to_string(), "0x0p+0" ); |
1139 | assert_eq!(Hexf(f64::ZERO).to_string(), "0x0p+0" ); |
1140 | |
1141 | assert_eq!(Hexf(f32::NEG_ZERO).to_string(), "-0x0p+0" ); |
1142 | assert_eq!(Hexf(f64::NEG_ZERO).to_string(), "-0x0p+0" ); |
1143 | |
1144 | assert_eq!(Hexf(f32::NAN).to_string(), "NaN" ); |
1145 | assert_eq!(Hexf(f64::NAN).to_string(), "NaN" ); |
1146 | |
1147 | assert_eq!(Hexf(f32::INFINITY).to_string(), "inf" ); |
1148 | assert_eq!(Hexf(f64::INFINITY).to_string(), "inf" ); |
1149 | |
1150 | assert_eq!(Hexf(f32::NEG_INFINITY).to_string(), "-inf" ); |
1151 | assert_eq!(Hexf(f64::NEG_INFINITY).to_string(), "-inf" ); |
1152 | |
1153 | #[cfg (f16_enabled)] |
1154 | { |
1155 | assert_eq!(Hexf(f16::MAX).to_string(), "0x1.ffcp+15" ); |
1156 | assert_eq!(Hexf(f16::MIN).to_string(), "-0x1.ffcp+15" ); |
1157 | assert_eq!(Hexf(f16::ZERO).to_string(), "0x0p+0" ); |
1158 | assert_eq!(Hexf(f16::NEG_ZERO).to_string(), "-0x0p+0" ); |
1159 | assert_eq!(Hexf(f16::NAN).to_string(), "NaN" ); |
1160 | assert_eq!(Hexf(f16::INFINITY).to_string(), "inf" ); |
1161 | assert_eq!(Hexf(f16::NEG_INFINITY).to_string(), "-inf" ); |
1162 | } |
1163 | |
1164 | #[cfg (f128_enabled)] |
1165 | { |
1166 | assert_eq!( |
1167 | Hexf(f128::MAX).to_string(), |
1168 | "0x1.ffffffffffffffffffffffffffffp+16383" |
1169 | ); |
1170 | assert_eq!( |
1171 | Hexf(f128::MIN).to_string(), |
1172 | "-0x1.ffffffffffffffffffffffffffffp+16383" |
1173 | ); |
1174 | assert_eq!(Hexf(f128::ZERO).to_string(), "0x0p+0" ); |
1175 | assert_eq!(Hexf(f128::NEG_ZERO).to_string(), "-0x0p+0" ); |
1176 | assert_eq!(Hexf(f128::NAN).to_string(), "NaN" ); |
1177 | assert_eq!(Hexf(f128::INFINITY).to_string(), "inf" ); |
1178 | assert_eq!(Hexf(f128::NEG_INFINITY).to_string(), "-inf" ); |
1179 | } |
1180 | } |
1181 | } |
1182 | |