| 1 | use core::alloc::Layout; |
| 2 | use core::mem; |
| 3 | use core::mem::{align_of, size_of}; |
| 4 | use core::ptr::null_mut; |
| 5 | use core::ptr::NonNull; |
| 6 | |
| 7 | use crate::{align_down_size, align_up_size}; |
| 8 | |
| 9 | use super::align_up; |
| 10 | |
| 11 | /// A sorted list of holes. It uses the the holes itself to store its nodes. |
| 12 | pub struct HoleList { |
| 13 | pub(crate) first: Hole, // dummy |
| 14 | pub(crate) bottom: *mut u8, |
| 15 | pub(crate) top: *mut u8, |
| 16 | pub(crate) pending_extend: u8, |
| 17 | } |
| 18 | |
| 19 | pub(crate) struct Cursor { |
| 20 | prev: NonNull<Hole>, |
| 21 | hole: NonNull<Hole>, |
| 22 | top: *mut u8, |
| 23 | } |
| 24 | |
| 25 | /// A block containing free memory. It points to the next hole and thus forms a linked list. |
| 26 | pub(crate) struct Hole { |
| 27 | pub size: usize, |
| 28 | pub next: Option<NonNull<Hole>>, |
| 29 | } |
| 30 | |
| 31 | /// Basic information about a hole. |
| 32 | #[derive (Debug, Clone, Copy)] |
| 33 | struct HoleInfo { |
| 34 | addr: *mut u8, |
| 35 | size: usize, |
| 36 | } |
| 37 | |
| 38 | impl Cursor { |
| 39 | fn next(mut self) -> Option<Self> { |
| 40 | unsafe { |
| 41 | self.hole.as_mut().next.map(|nhole| Cursor { |
| 42 | prev: self.hole, |
| 43 | hole: nhole, |
| 44 | top: self.top, |
| 45 | }) |
| 46 | } |
| 47 | } |
| 48 | |
| 49 | fn current(&self) -> &Hole { |
| 50 | unsafe { self.hole.as_ref() } |
| 51 | } |
| 52 | |
| 53 | fn previous(&self) -> &Hole { |
| 54 | unsafe { self.prev.as_ref() } |
| 55 | } |
| 56 | |
| 57 | // On success, it returns the new allocation, and the linked list has been updated |
| 58 | // to accomodate any new holes and allocation. On error, it returns the cursor |
| 59 | // unmodified, and has made no changes to the linked list of holes. |
| 60 | fn split_current(self, required_layout: Layout) -> Result<(*mut u8, usize), Self> { |
| 61 | let front_padding; |
| 62 | let alloc_ptr; |
| 63 | let alloc_size; |
| 64 | let back_padding; |
| 65 | |
| 66 | // Here we create a scope, JUST to make sure that any created references do not |
| 67 | // live to the point where we start doing pointer surgery below. |
| 68 | { |
| 69 | let hole_size = self.current().size; |
| 70 | let hole_addr_u8 = self.hole.as_ptr().cast::<u8>(); |
| 71 | let required_size = required_layout.size(); |
| 72 | let required_align = required_layout.align(); |
| 73 | |
| 74 | // Quick check: If the new item is larger than the current hole, it's never gunna |
| 75 | // work. Go ahead and bail early to save ourselves some math. |
| 76 | if hole_size < required_size { |
| 77 | return Err(self); |
| 78 | } |
| 79 | |
| 80 | // Attempt to fracture the current hole into the following parts: |
| 81 | // ([front_padding], allocation, [back_padding]) |
| 82 | // |
| 83 | // The paddings are optional, and only placed if required. |
| 84 | // |
| 85 | // First, figure out if front padding is necessary. This would be necessary if the new |
| 86 | // allocation has a larger alignment requirement than the current hole, and we didn't get |
| 87 | // lucky that the current position was well-aligned enough for the new item. |
| 88 | let aligned_addr = if hole_addr_u8 == align_up(hole_addr_u8, required_align) { |
| 89 | // hole has already the required alignment, no front padding is needed. |
| 90 | front_padding = None; |
| 91 | hole_addr_u8 |
| 92 | } else { |
| 93 | // Unfortunately, we did not get lucky. Instead: Push the "starting location" FORWARD the size |
| 94 | // of a hole node, to guarantee there is at least enough room for the hole header, and |
| 95 | // potentially additional space. |
| 96 | let new_start = hole_addr_u8.wrapping_add(HoleList::min_size()); |
| 97 | |
| 98 | let aligned_addr = align_up(new_start, required_align); |
| 99 | front_padding = Some(HoleInfo { |
| 100 | // Our new front padding will exist at the same location as the previous hole, |
| 101 | // it will just have a smaller size after we have chopped off the "tail" for |
| 102 | // the allocation. |
| 103 | addr: hole_addr_u8, |
| 104 | size: (aligned_addr as usize) - (hole_addr_u8 as usize), |
| 105 | }); |
| 106 | aligned_addr |
| 107 | }; |
| 108 | |
| 109 | // Okay, now that we found space, we need to see if the decisions we just made |
| 110 | // ACTUALLY fit in the previous hole space |
| 111 | let allocation_end = aligned_addr.wrapping_add(required_size); |
| 112 | let hole_end = hole_addr_u8.wrapping_add(hole_size); |
| 113 | |
| 114 | if allocation_end > hole_end { |
| 115 | // hole is too small |
| 116 | return Err(self); |
| 117 | } |
| 118 | |
| 119 | // Yes! We have successfully placed our allocation as well. |
| 120 | alloc_ptr = aligned_addr; |
| 121 | alloc_size = required_size; |
| 122 | |
| 123 | // Okay, time to move onto the back padding. |
| 124 | let back_padding_size = hole_end as usize - allocation_end as usize; |
| 125 | back_padding = if back_padding_size == 0 { |
| 126 | None |
| 127 | } else { |
| 128 | // NOTE: Because we always use `HoleList::align_layout`, the size of |
| 129 | // the new allocation is always "rounded up" to cover any partial gaps that |
| 130 | // would have occurred. For this reason, we DON'T need to "round up" |
| 131 | // to account for an unaligned hole spot. |
| 132 | let hole_layout = Layout::new::<Hole>(); |
| 133 | let back_padding_start = align_up(allocation_end, hole_layout.align()); |
| 134 | let back_padding_end = back_padding_start.wrapping_add(hole_layout.size()); |
| 135 | |
| 136 | // Will the proposed new back padding actually fit in the old hole slot? |
| 137 | if back_padding_end <= hole_end { |
| 138 | // Yes, it does! Place a back padding node |
| 139 | Some(HoleInfo { |
| 140 | addr: back_padding_start, |
| 141 | size: back_padding_size, |
| 142 | }) |
| 143 | } else { |
| 144 | // No, it does not. We don't want to leak any heap bytes, so we |
| 145 | // consider this hole unsuitable for the requested allocation. |
| 146 | return Err(self); |
| 147 | } |
| 148 | }; |
| 149 | } |
| 150 | |
| 151 | //////////////////////////////////////////////////////////////////////////// |
| 152 | // This is where we actually perform surgery on the linked list. |
| 153 | //////////////////////////////////////////////////////////////////////////// |
| 154 | let Cursor { |
| 155 | mut prev, mut hole, .. |
| 156 | } = self; |
| 157 | // Remove the current location from the previous node |
| 158 | unsafe { |
| 159 | prev.as_mut().next = None; |
| 160 | } |
| 161 | // Take the next node out of our current node |
| 162 | let maybe_next_addr: Option<NonNull<Hole>> = unsafe { hole.as_mut().next.take() }; |
| 163 | |
| 164 | // As of now, the old `Hole` is no more. We are about to replace it with one or more of |
| 165 | // the front padding, the allocation, and the back padding. |
| 166 | |
| 167 | match (front_padding, back_padding) { |
| 168 | (None, None) => { |
| 169 | // No padding at all, how lucky! We still need to connect the PREVIOUS node |
| 170 | // to the NEXT node, if there was one |
| 171 | unsafe { |
| 172 | prev.as_mut().next = maybe_next_addr; |
| 173 | } |
| 174 | } |
| 175 | (None, Some(singlepad)) | (Some(singlepad), None) => unsafe { |
| 176 | // We have front padding OR back padding, but not both. |
| 177 | // |
| 178 | // Replace the old node with the new single node. We need to stitch the new node |
| 179 | // into the linked list. Start by writing the padding into the proper location |
| 180 | let singlepad_ptr = singlepad.addr.cast::<Hole>(); |
| 181 | singlepad_ptr.write(Hole { |
| 182 | size: singlepad.size, |
| 183 | // If the old hole had a next pointer, the single padding now takes |
| 184 | // "ownership" of that link |
| 185 | next: maybe_next_addr, |
| 186 | }); |
| 187 | |
| 188 | // Then connect the OLD previous to the NEW single padding |
| 189 | prev.as_mut().next = Some(NonNull::new_unchecked(singlepad_ptr)); |
| 190 | }, |
| 191 | (Some(frontpad), Some(backpad)) => unsafe { |
| 192 | // We have front padding AND back padding. |
| 193 | // |
| 194 | // We need to stich them together as two nodes where there used to |
| 195 | // only be one. Start with the back padding. |
| 196 | let backpad_ptr = backpad.addr.cast::<Hole>(); |
| 197 | backpad_ptr.write(Hole { |
| 198 | size: backpad.size, |
| 199 | // If the old hole had a next pointer, the BACK padding now takes |
| 200 | // "ownership" of that link |
| 201 | next: maybe_next_addr, |
| 202 | }); |
| 203 | |
| 204 | // Now we emplace the front padding, and link it to both the back padding, |
| 205 | // and the old previous |
| 206 | let frontpad_ptr = frontpad.addr.cast::<Hole>(); |
| 207 | frontpad_ptr.write(Hole { |
| 208 | size: frontpad.size, |
| 209 | // We now connect the FRONT padding to the BACK padding |
| 210 | next: Some(NonNull::new_unchecked(backpad_ptr)), |
| 211 | }); |
| 212 | |
| 213 | // Then connect the OLD previous to the NEW FRONT padding |
| 214 | prev.as_mut().next = Some(NonNull::new_unchecked(frontpad_ptr)); |
| 215 | }, |
| 216 | } |
| 217 | |
| 218 | // Well that went swimmingly! Hand off the allocation, with surgery performed successfully! |
| 219 | Ok((alloc_ptr, alloc_size)) |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | // See if we can extend this hole towards the end of the allocation region |
| 224 | // If so: increase the size of the node. If no: keep the node as-is |
| 225 | fn check_merge_top(mut node: NonNull<Hole>, top: *mut u8) { |
| 226 | let node_u8: *mut u8 = node.as_ptr().cast::<u8>(); |
| 227 | let node_sz: usize = unsafe { node.as_ref().size }; |
| 228 | |
| 229 | // If this is the last node, we need to see if we need to merge to the end |
| 230 | let end: *mut u8 = node_u8.wrapping_add(count:node_sz); |
| 231 | let hole_layout: Layout = Layout::new::<Hole>(); |
| 232 | if end < top { |
| 233 | let next_hole_end: *mut u8 = align_up(end, hole_layout.align()).wrapping_add(count:hole_layout.size()); |
| 234 | |
| 235 | if next_hole_end > top { |
| 236 | let offset: usize = (top as usize) - (end as usize); |
| 237 | unsafe { |
| 238 | node.as_mut().size += offset; |
| 239 | } |
| 240 | } |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | // See if we can scoot this hole back to the bottom of the allocation region |
| 245 | // If so: create and return the new hole. If not: return the existing hole |
| 246 | fn check_merge_bottom(node: NonNull<Hole>, bottom: *mut u8) -> NonNull<Hole> { |
| 247 | debug_assert_eq!(bottom as usize % align_of::<Hole>(), 0); |
| 248 | |
| 249 | if bottom.wrapping_add(count:core::mem::size_of::<Hole>()) > node.as_ptr().cast::<u8>() { |
| 250 | let offset: usize = (node.as_ptr() as usize) - (bottom as usize); |
| 251 | let size: usize = unsafe { node.as_ref() }.size + offset; |
| 252 | unsafe { make_hole(addr:bottom, size) } |
| 253 | } else { |
| 254 | node |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | impl HoleList { |
| 259 | /// Creates an empty `HoleList`. |
| 260 | pub const fn empty() -> HoleList { |
| 261 | HoleList { |
| 262 | first: Hole { |
| 263 | size: 0, |
| 264 | next: None, |
| 265 | }, |
| 266 | bottom: null_mut(), |
| 267 | top: null_mut(), |
| 268 | pending_extend: 0, |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | pub(crate) fn cursor(&mut self) -> Option<Cursor> { |
| 273 | if let Some(hole) = self.first.next { |
| 274 | Some(Cursor { |
| 275 | hole, |
| 276 | prev: NonNull::new(&mut self.first)?, |
| 277 | top: self.top, |
| 278 | }) |
| 279 | } else { |
| 280 | None |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | #[cfg (any(test, fuzzing))] |
| 285 | #[allow (dead_code)] |
| 286 | pub(crate) fn debug(&mut self) { |
| 287 | if let Some(cursor) = self.cursor() { |
| 288 | let mut cursor = cursor; |
| 289 | loop { |
| 290 | println!( |
| 291 | "prev: {:?}[{}], hole: {:?}[{}]" , |
| 292 | cursor.previous() as *const Hole, |
| 293 | cursor.previous().size, |
| 294 | cursor.current() as *const Hole, |
| 295 | cursor.current().size, |
| 296 | ); |
| 297 | if let Some(c) = cursor.next() { |
| 298 | cursor = c; |
| 299 | } else { |
| 300 | println!("Done!" ); |
| 301 | return; |
| 302 | } |
| 303 | } |
| 304 | } else { |
| 305 | println!("No holes" ); |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | /// Creates a `HoleList` that contains the given hole. |
| 310 | /// |
| 311 | /// The `hole_addr` pointer is automatically aligned, so the `bottom` |
| 312 | /// field might be larger than the given `hole_addr`. |
| 313 | /// |
| 314 | /// The given `hole_size` must be large enough to store the required |
| 315 | /// metadata, otherwise this function will panic. Depending on the |
| 316 | /// alignment of the `hole_addr` pointer, the minimum size is between |
| 317 | /// `2 * size_of::<usize>` and `3 * size_of::<usize>`. |
| 318 | /// |
| 319 | /// The usable size for allocations will be truncated to the nearest |
| 320 | /// alignment of `align_of::<usize>`. Any extra bytes left at the end |
| 321 | /// will be reclaimed once sufficient additional space is given to |
| 322 | /// [`extend`][crate::Heap::extend]. |
| 323 | /// |
| 324 | /// # Safety |
| 325 | /// |
| 326 | /// This function is unsafe because it creates a hole at the given `hole_addr`. |
| 327 | /// This can cause undefined behavior if this address is invalid or if memory from the |
| 328 | /// `[hole_addr, hole_addr+size)` range is used somewhere else. |
| 329 | pub unsafe fn new(hole_addr: *mut u8, hole_size: usize) -> HoleList { |
| 330 | assert_eq!(size_of::<Hole>(), Self::min_size()); |
| 331 | assert!(hole_size >= size_of::<Hole>()); |
| 332 | |
| 333 | let aligned_hole_addr = align_up(hole_addr, align_of::<Hole>()); |
| 334 | let requested_hole_size = hole_size - ((aligned_hole_addr as usize) - (hole_addr as usize)); |
| 335 | let aligned_hole_size = align_down_size(requested_hole_size, align_of::<Hole>()); |
| 336 | assert!(aligned_hole_size >= size_of::<Hole>()); |
| 337 | |
| 338 | let ptr = aligned_hole_addr as *mut Hole; |
| 339 | ptr.write(Hole { |
| 340 | size: aligned_hole_size, |
| 341 | next: None, |
| 342 | }); |
| 343 | |
| 344 | assert_eq!( |
| 345 | hole_addr.wrapping_add(hole_size), |
| 346 | aligned_hole_addr.wrapping_add(requested_hole_size) |
| 347 | ); |
| 348 | |
| 349 | HoleList { |
| 350 | first: Hole { |
| 351 | size: 0, |
| 352 | next: Some(NonNull::new_unchecked(ptr)), |
| 353 | }, |
| 354 | bottom: aligned_hole_addr, |
| 355 | top: aligned_hole_addr.wrapping_add(aligned_hole_size), |
| 356 | pending_extend: (requested_hole_size - aligned_hole_size) as u8, |
| 357 | } |
| 358 | } |
| 359 | |
| 360 | /// Aligns the given layout for use with `HoleList`. |
| 361 | /// |
| 362 | /// Returns a layout with size increased to fit at least `HoleList::min_size` and proper |
| 363 | /// alignment of a `Hole`. |
| 364 | /// |
| 365 | /// The [`allocate_first_fit`][HoleList::allocate_first_fit] and |
| 366 | /// [`deallocate`][HoleList::deallocate] methods perform the required alignment |
| 367 | /// themselves, so calling this function manually is not necessary. |
| 368 | pub fn align_layout(layout: Layout) -> Layout { |
| 369 | let mut size = layout.size(); |
| 370 | if size < Self::min_size() { |
| 371 | size = Self::min_size(); |
| 372 | } |
| 373 | let size = align_up_size(size, mem::align_of::<Hole>()); |
| 374 | Layout::from_size_align(size, layout.align()).unwrap() |
| 375 | } |
| 376 | |
| 377 | /// Searches the list for a big enough hole. |
| 378 | /// |
| 379 | /// A hole is big enough if it can hold an allocation of `layout.size()` bytes with |
| 380 | /// the given `layout.align()`. If such a hole is found in the list, a block of the |
| 381 | /// required size is allocated from it. Then the start address of that |
| 382 | /// block and the aligned layout are returned. The automatic layout alignment is required |
| 383 | /// because the `HoleList` has some additional layout requirements for each memory block. |
| 384 | /// |
| 385 | /// This function uses the “first fit” strategy, so it uses the first hole that is big |
| 386 | /// enough. Thus the runtime is in O(n) but it should be reasonably fast for small allocations. |
| 387 | // |
| 388 | // NOTE: We could probably replace this with an `Option` instead of a `Result` in a later |
| 389 | // release to remove this clippy warning |
| 390 | #[allow (clippy::result_unit_err)] |
| 391 | pub fn allocate_first_fit(&mut self, layout: Layout) -> Result<(NonNull<u8>, Layout), ()> { |
| 392 | let aligned_layout = Self::align_layout(layout); |
| 393 | let mut cursor = self.cursor().ok_or(())?; |
| 394 | |
| 395 | loop { |
| 396 | match cursor.split_current(aligned_layout) { |
| 397 | Ok((ptr, _len)) => { |
| 398 | return Ok((NonNull::new(ptr).ok_or(())?, aligned_layout)); |
| 399 | } |
| 400 | Err(curs) => { |
| 401 | cursor = curs.next().ok_or(())?; |
| 402 | } |
| 403 | } |
| 404 | } |
| 405 | } |
| 406 | |
| 407 | /// Frees the allocation given by `ptr` and `layout`. |
| 408 | /// |
| 409 | /// This function walks the list and inserts the given block at the correct place. If the freed |
| 410 | /// block is adjacent to another free block, the blocks are merged again. |
| 411 | /// This operation is in `O(n)` since the list needs to be sorted by address. |
| 412 | /// |
| 413 | /// [`allocate_first_fit`]: HoleList::allocate_first_fit |
| 414 | /// |
| 415 | /// # Safety |
| 416 | /// |
| 417 | /// `ptr` must be a pointer returned by a call to the [`allocate_first_fit`] function with |
| 418 | /// identical layout. Undefined behavior may occur for invalid arguments. |
| 419 | /// The function performs exactly the same layout adjustments as [`allocate_first_fit`] and |
| 420 | /// returns the aligned layout. |
| 421 | pub unsafe fn deallocate(&mut self, ptr: NonNull<u8>, layout: Layout) -> Layout { |
| 422 | let aligned_layout = Self::align_layout(layout); |
| 423 | deallocate(self, ptr.as_ptr(), aligned_layout.size()); |
| 424 | aligned_layout |
| 425 | } |
| 426 | |
| 427 | /// Returns the minimal allocation size. Smaller allocations or deallocations are not allowed. |
| 428 | pub fn min_size() -> usize { |
| 429 | size_of::<usize>() * 2 |
| 430 | } |
| 431 | |
| 432 | /// Returns information about the first hole for test purposes. |
| 433 | #[cfg (test)] |
| 434 | pub fn first_hole(&self) -> Option<(*const u8, usize)> { |
| 435 | self.first.next.as_ref().map(|hole| { |
| 436 | (hole.as_ptr() as *mut u8 as *const u8, unsafe { |
| 437 | hole.as_ref().size |
| 438 | }) |
| 439 | }) |
| 440 | } |
| 441 | |
| 442 | pub(crate) unsafe fn extend(&mut self, by: usize) { |
| 443 | assert!(!self.top.is_null(), "tried to extend an empty heap" ); |
| 444 | |
| 445 | let top = self.top; |
| 446 | |
| 447 | let dead_space = top.align_offset(align_of::<Hole>()); |
| 448 | debug_assert_eq!( |
| 449 | 0, dead_space, |
| 450 | "dead space detected during extend: {} bytes. This means top was unaligned" , |
| 451 | dead_space |
| 452 | ); |
| 453 | |
| 454 | debug_assert!( |
| 455 | (self.pending_extend as usize) < Self::min_size(), |
| 456 | "pending extend was larger than expected" |
| 457 | ); |
| 458 | |
| 459 | // join this extend request with any pending (but not yet acted on) extension |
| 460 | let extend_by = self.pending_extend as usize + by; |
| 461 | |
| 462 | let minimum_extend = Self::min_size(); |
| 463 | if extend_by < minimum_extend { |
| 464 | self.pending_extend = extend_by as u8; |
| 465 | return; |
| 466 | } |
| 467 | |
| 468 | // only extend up to another valid boundary |
| 469 | let new_hole_size = align_down_size(extend_by, align_of::<Hole>()); |
| 470 | let layout = Layout::from_size_align(new_hole_size, 1).unwrap(); |
| 471 | |
| 472 | // instantiate the hole by forcing a deallocation on the new memory |
| 473 | self.deallocate(NonNull::new_unchecked(top as *mut u8), layout); |
| 474 | self.top = top.add(new_hole_size); |
| 475 | |
| 476 | // save extra bytes given to extend that weren't aligned to the hole size |
| 477 | self.pending_extend = (extend_by - new_hole_size) as u8; |
| 478 | } |
| 479 | } |
| 480 | |
| 481 | unsafe fn make_hole(addr: *mut u8, size: usize) -> NonNull<Hole> { |
| 482 | let hole_addr: *mut Hole = addr.cast::<Hole>(); |
| 483 | debug_assert_eq!( |
| 484 | addr as usize % align_of::<Hole>(), |
| 485 | 0, |
| 486 | "Hole address not aligned!" , |
| 487 | ); |
| 488 | hole_addr.write(val:Hole { size, next: None }); |
| 489 | NonNull::new_unchecked(ptr:hole_addr) |
| 490 | } |
| 491 | |
| 492 | impl Cursor { |
| 493 | fn try_insert_back(self, node: NonNull<Hole>, bottom: *mut u8) -> Result<Self, Self> { |
| 494 | // Covers the case where the new hole exists BEFORE the current pointer, |
| 495 | // which only happens when previous is the stub pointer |
| 496 | if node < self.hole { |
| 497 | let node_u8 = node.as_ptr().cast::<u8>(); |
| 498 | let node_size = unsafe { node.as_ref().size }; |
| 499 | let hole_u8 = self.hole.as_ptr().cast::<u8>(); |
| 500 | |
| 501 | assert!( |
| 502 | node_u8.wrapping_add(node_size) <= hole_u8, |
| 503 | "Freed node aliases existing hole! Bad free?" , |
| 504 | ); |
| 505 | debug_assert_eq!(self.previous().size, 0); |
| 506 | |
| 507 | let Cursor { |
| 508 | mut prev, |
| 509 | hole, |
| 510 | top, |
| 511 | } = self; |
| 512 | unsafe { |
| 513 | let mut node = check_merge_bottom(node, bottom); |
| 514 | prev.as_mut().next = Some(node); |
| 515 | node.as_mut().next = Some(hole); |
| 516 | } |
| 517 | Ok(Cursor { |
| 518 | prev, |
| 519 | hole: node, |
| 520 | top, |
| 521 | }) |
| 522 | } else { |
| 523 | Err(self) |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | fn try_insert_after(&mut self, mut node: NonNull<Hole>) -> Result<(), ()> { |
| 528 | let node_u8 = node.as_ptr().cast::<u8>(); |
| 529 | let node_size = unsafe { node.as_ref().size }; |
| 530 | |
| 531 | // If we have a next, does the node overlap next? |
| 532 | if let Some(next) = self.current().next.as_ref() { |
| 533 | if node < *next { |
| 534 | let node_u8 = node_u8 as *const u8; |
| 535 | assert!( |
| 536 | node_u8.wrapping_add(node_size) <= next.as_ptr().cast::<u8>(), |
| 537 | "Freed node aliases existing hole! Bad free?" , |
| 538 | ); |
| 539 | } else { |
| 540 | // The new hole isn't between current and next. |
| 541 | return Err(()); |
| 542 | } |
| 543 | } |
| 544 | |
| 545 | // At this point, we either have no "next" pointer, or the hole is |
| 546 | // between current and "next". The following assert can only trigger |
| 547 | // if we've gotten our list out of order. |
| 548 | debug_assert!(self.hole < node, "Hole list out of order?" ); |
| 549 | |
| 550 | let hole_u8 = self.hole.as_ptr().cast::<u8>(); |
| 551 | let hole_size = self.current().size; |
| 552 | |
| 553 | // Does hole overlap node? |
| 554 | assert!( |
| 555 | hole_u8.wrapping_add(hole_size) <= node_u8, |
| 556 | "Freed node ( {:?}) aliases existing hole ( {:?}[ {}])! Bad free?" , |
| 557 | node_u8, |
| 558 | hole_u8, |
| 559 | hole_size, |
| 560 | ); |
| 561 | |
| 562 | // All good! Let's insert that after. |
| 563 | unsafe { |
| 564 | let maybe_next = self.hole.as_mut().next.replace(node); |
| 565 | node.as_mut().next = maybe_next; |
| 566 | } |
| 567 | |
| 568 | Ok(()) |
| 569 | } |
| 570 | |
| 571 | // Merge the current node with up to n following nodes |
| 572 | fn try_merge_next_n(self, max: usize) { |
| 573 | let Cursor { |
| 574 | prev: _, |
| 575 | mut hole, |
| 576 | top, |
| 577 | .. |
| 578 | } = self; |
| 579 | |
| 580 | for _ in 0..max { |
| 581 | // Is there a next node? |
| 582 | let mut next = if let Some(next) = unsafe { hole.as_mut() }.next.as_ref() { |
| 583 | *next |
| 584 | } else { |
| 585 | // Since there is no NEXT node, we need to check whether the current |
| 586 | // hole SHOULD extend to the end, but doesn't. This would happen when |
| 587 | // there isn't enough remaining space to place a hole after the current |
| 588 | // node's placement. |
| 589 | check_merge_top(hole, top); |
| 590 | return; |
| 591 | }; |
| 592 | |
| 593 | // Can we directly merge these? e.g. are they touching? |
| 594 | // |
| 595 | // NOTE: Because we always use `HoleList::align_layout`, the size of |
| 596 | // the new hole is always "rounded up" to cover any partial gaps that |
| 597 | // would have occurred. For this reason, we DON'T need to "round up" |
| 598 | // to account for an unaligned hole spot. |
| 599 | let hole_u8 = hole.as_ptr().cast::<u8>(); |
| 600 | let hole_sz = unsafe { hole.as_ref().size }; |
| 601 | let next_u8 = next.as_ptr().cast::<u8>(); |
| 602 | let end = hole_u8.wrapping_add(hole_sz); |
| 603 | |
| 604 | let touching = end == next_u8; |
| 605 | |
| 606 | if touching { |
| 607 | let next_sz; |
| 608 | let next_next; |
| 609 | unsafe { |
| 610 | let next_mut = next.as_mut(); |
| 611 | next_sz = next_mut.size; |
| 612 | next_next = next_mut.next.take(); |
| 613 | } |
| 614 | unsafe { |
| 615 | let hole_mut = hole.as_mut(); |
| 616 | hole_mut.next = next_next; |
| 617 | hole_mut.size += next_sz; |
| 618 | } |
| 619 | // Okay, we just merged the next item. DON'T move the cursor, as we can |
| 620 | // just try to merge the next_next, which is now our next. |
| 621 | } else { |
| 622 | // Welp, not touching, can't merge. Move to the next node. |
| 623 | hole = next; |
| 624 | } |
| 625 | } |
| 626 | } |
| 627 | } |
| 628 | |
| 629 | /// Frees the allocation given by `(addr, size)`. It starts at the given hole and walks the list to |
| 630 | /// find the correct place (the list is sorted by address). |
| 631 | fn deallocate(list: &mut HoleList, addr: *mut u8, size: usize) { |
| 632 | // Start off by just making this allocation a hole where it stands. |
| 633 | // We'll attempt to merge it with other nodes once we figure out where |
| 634 | // it should live |
| 635 | let hole = unsafe { make_hole(addr, size) }; |
| 636 | |
| 637 | // Now, try to get a cursor to the list - this only works if we have at least |
| 638 | // one non-"dummy" hole in the list |
| 639 | let cursor = if let Some(cursor) = list.cursor() { |
| 640 | cursor |
| 641 | } else { |
| 642 | // Oh hey, there are no "real" holes at all. That means this just |
| 643 | // becomes the only "real" hole! Check if this is touching the end |
| 644 | // or the beginning of the allocation range |
| 645 | let hole = check_merge_bottom(hole, list.bottom); |
| 646 | check_merge_top(hole, list.top); |
| 647 | list.first.next = Some(hole); |
| 648 | return; |
| 649 | }; |
| 650 | |
| 651 | // First, check if we can just insert this node at the top of the list. If the |
| 652 | // insertion succeeded, then our cursor now points to the NEW node, behind the |
| 653 | // previous location the cursor was pointing to. |
| 654 | // |
| 655 | // Otherwise, our cursor will point at the current non-"dummy" head of the list |
| 656 | let (cursor, n) = match cursor.try_insert_back(hole, list.bottom) { |
| 657 | Ok(cursor) => { |
| 658 | // Yup! It lives at the front of the list. Hooray! Attempt to merge |
| 659 | // it with just ONE next node, since it is at the front of the list |
| 660 | (cursor, 1) |
| 661 | } |
| 662 | Err(mut cursor) => { |
| 663 | // Nope. It lives somewhere else. Advance the list until we find its home |
| 664 | while let Err(()) = cursor.try_insert_after(hole) { |
| 665 | cursor = cursor |
| 666 | .next() |
| 667 | .expect("Reached end of holes without finding deallocation hole!" ); |
| 668 | } |
| 669 | // Great! We found a home for it, our cursor is now JUST BEFORE the new |
| 670 | // node we inserted, so we need to try to merge up to twice: One to combine |
| 671 | // the current node to the new node, then once more to combine the new node |
| 672 | // with the node after that. |
| 673 | (cursor, 2) |
| 674 | } |
| 675 | }; |
| 676 | |
| 677 | // We now need to merge up to two times to combine the current node with the next |
| 678 | // two nodes. |
| 679 | cursor.try_merge_next_n(n); |
| 680 | } |
| 681 | |
| 682 | #[cfg (test)] |
| 683 | pub mod test { |
| 684 | use super::HoleList; |
| 685 | use crate::{align_down_size, test::new_heap}; |
| 686 | use core::mem::size_of; |
| 687 | use std::{alloc::Layout, convert::TryInto, prelude::v1::*, ptr::NonNull}; |
| 688 | |
| 689 | #[test ] |
| 690 | fn cursor() { |
| 691 | let mut heap = new_heap(); |
| 692 | let curs = heap.holes.cursor().unwrap(); |
| 693 | // This is the "dummy" node |
| 694 | assert_eq!(curs.previous().size, 0); |
| 695 | // This is the "full" heap |
| 696 | assert_eq!( |
| 697 | curs.current().size, |
| 698 | align_down_size(1000, size_of::<usize>()) |
| 699 | ); |
| 700 | // There is no other hole |
| 701 | assert!(curs.next().is_none()); |
| 702 | } |
| 703 | |
| 704 | #[test ] |
| 705 | fn aff() { |
| 706 | let mut heap = new_heap(); |
| 707 | let reqd = Layout::from_size_align(256, 1).unwrap(); |
| 708 | let _ = heap.allocate_first_fit(reqd).unwrap(); |
| 709 | } |
| 710 | |
| 711 | /// Tests `HoleList::new` with the minimal allowed `hole_size`. |
| 712 | #[test ] |
| 713 | fn hole_list_new_min_size() { |
| 714 | // define an array of `u64` instead of `u8` for alignment |
| 715 | static mut HEAP: [u64; 2] = [0; 2]; |
| 716 | let heap_start = unsafe { HEAP.as_ptr() as usize }; |
| 717 | let heap = |
| 718 | unsafe { HoleList::new(HEAP.as_mut_ptr().cast(), 2 * core::mem::size_of::<usize>()) }; |
| 719 | assert_eq!(heap.bottom as usize, heap_start); |
| 720 | assert_eq!(heap.top as usize, heap_start + 2 * size_of::<usize>()); |
| 721 | assert_eq!(heap.first.size, 0); // dummy |
| 722 | assert_eq!( |
| 723 | heap.first.next, |
| 724 | Some(NonNull::new(heap.bottom.cast())).unwrap() |
| 725 | ); |
| 726 | assert_eq!( |
| 727 | unsafe { heap.first.next.as_ref().unwrap().as_ref() }.size, |
| 728 | 2 * core::mem::size_of::<usize>() |
| 729 | ); |
| 730 | assert_eq!(unsafe { &*(heap.first.next.unwrap().as_ptr()) }.next, None); |
| 731 | } |
| 732 | |
| 733 | /// Tests that `HoleList::new` aligns the `hole_addr` correctly and adjusts the size |
| 734 | /// accordingly. |
| 735 | #[test ] |
| 736 | fn hole_list_new_align() { |
| 737 | // define an array of `u64` instead of `u8` for alignment |
| 738 | static mut HEAP: [u64; 3] = [0; 3]; |
| 739 | |
| 740 | let heap_start: *mut u8 = unsafe { HEAP.as_mut_ptr().add(1) }.cast(); |
| 741 | // initialize the HoleList with a hole_addr one byte before `heap_start` |
| 742 | // -> the function should align it up to `heap_start` |
| 743 | let heap = |
| 744 | unsafe { HoleList::new(heap_start.sub(1), 2 * core::mem::size_of::<usize>() + 1) }; |
| 745 | assert_eq!(heap.bottom, heap_start); |
| 746 | assert_eq!(heap.top.cast(), unsafe { |
| 747 | // one byte less than the `hole_size` given to `new` because of alignment |
| 748 | heap_start.add(2 * core::mem::size_of::<usize>()) |
| 749 | }); |
| 750 | |
| 751 | assert_eq!(heap.first.size, 0); // dummy |
| 752 | assert_eq!( |
| 753 | heap.first.next, |
| 754 | Some(NonNull::new(heap.bottom.cast())).unwrap() |
| 755 | ); |
| 756 | assert_eq!( |
| 757 | unsafe { &*(heap.first.next.unwrap().as_ptr()) }.size, |
| 758 | unsafe { heap.top.offset_from(heap.bottom) } |
| 759 | .try_into() |
| 760 | .unwrap() |
| 761 | ); |
| 762 | assert_eq!(unsafe { &*(heap.first.next.unwrap().as_ptr()) }.next, None); |
| 763 | } |
| 764 | |
| 765 | #[test ] |
| 766 | #[should_panic ] |
| 767 | fn hole_list_new_too_small() { |
| 768 | // define an array of `u64` instead of `u8` for alignment |
| 769 | static mut HEAP: [u64; 3] = [0; 3]; |
| 770 | |
| 771 | let heap_start: *mut u8 = unsafe { HEAP.as_mut_ptr().add(1) }.cast(); |
| 772 | // initialize the HoleList with a hole_addr one byte before `heap_start` |
| 773 | // -> the function should align it up to `heap_start`, but then the |
| 774 | // available size is too small to store a hole -> it should panic |
| 775 | unsafe { HoleList::new(heap_start.sub(1), 2 * core::mem::size_of::<usize>()) }; |
| 776 | } |
| 777 | |
| 778 | #[test ] |
| 779 | #[should_panic ] |
| 780 | fn extend_empty() { |
| 781 | unsafe { HoleList::empty().extend(16) }; |
| 782 | } |
| 783 | } |
| 784 | |