| 1 | use crate::scalar::Scalar; |
| 2 | use crate::segment::{BoundingBox, Segment}; |
| 3 | use crate::traits::Transformation; |
| 4 | use crate::utils::min_max; |
| 5 | use crate::{point, vector, Box2D, Point, Vector}; |
| 6 | use core::mem::swap; |
| 7 | |
| 8 | use core::ops::Range; |
| 9 | |
| 10 | /// A linear segment. |
| 11 | #[derive (Copy, Clone, Debug, PartialEq)] |
| 12 | #[cfg_attr (feature = "serialization" , derive(Serialize, Deserialize))] |
| 13 | pub struct LineSegment<S> { |
| 14 | pub from: Point<S>, |
| 15 | pub to: Point<S>, |
| 16 | } |
| 17 | |
| 18 | impl<S: Scalar> LineSegment<S> { |
| 19 | /// Sample the segment at t (expecting t between 0 and 1). |
| 20 | #[inline ] |
| 21 | pub fn sample(&self, t: S) -> Point<S> { |
| 22 | self.from.lerp(self.to, t) |
| 23 | } |
| 24 | |
| 25 | /// Sample the x coordinate of the segment at t (expecting t between 0 and 1). |
| 26 | #[inline ] |
| 27 | pub fn x(&self, t: S) -> S { |
| 28 | self.from.x * (S::ONE - t) + self.to.x * t |
| 29 | } |
| 30 | |
| 31 | /// Sample the y coordinate of the segment at t (expecting t between 0 and 1). |
| 32 | #[inline ] |
| 33 | pub fn y(&self, t: S) -> S { |
| 34 | self.from.y * (S::ONE - t) + self.to.y * t |
| 35 | } |
| 36 | |
| 37 | #[inline ] |
| 38 | pub fn from(&self) -> Point<S> { |
| 39 | self.from |
| 40 | } |
| 41 | |
| 42 | #[inline ] |
| 43 | pub fn to(&self) -> Point<S> { |
| 44 | self.to |
| 45 | } |
| 46 | |
| 47 | pub fn solve_t_for_x(&self, x: S) -> S { |
| 48 | let dx = self.to.x - self.from.x; |
| 49 | if dx == S::ZERO { |
| 50 | return S::ZERO; |
| 51 | } |
| 52 | |
| 53 | (x - self.from.x) / dx |
| 54 | } |
| 55 | |
| 56 | pub fn solve_t_for_y(&self, y: S) -> S { |
| 57 | let dy = self.to.y - self.from.y; |
| 58 | if dy == S::ZERO { |
| 59 | return S::ZERO; |
| 60 | } |
| 61 | |
| 62 | (y - self.from.y) / dy |
| 63 | } |
| 64 | |
| 65 | pub fn solve_y_for_x(&self, x: S) -> S { |
| 66 | self.y(self.solve_t_for_x(x)) |
| 67 | } |
| 68 | |
| 69 | pub fn solve_x_for_y(&self, y: S) -> S { |
| 70 | self.x(self.solve_t_for_y(y)) |
| 71 | } |
| 72 | |
| 73 | /// Returns an inverted version of this segment where the beginning and the end |
| 74 | /// points are swapped. |
| 75 | #[inline ] |
| 76 | pub fn flip(&self) -> Self { |
| 77 | LineSegment { |
| 78 | from: self.to, |
| 79 | to: self.from, |
| 80 | } |
| 81 | } |
| 82 | |
| 83 | /// Return the sub-segment inside a given range of t. |
| 84 | /// |
| 85 | /// This is equivalent splitting at the range's end points. |
| 86 | pub fn split_range(&self, t_range: Range<S>) -> Self { |
| 87 | LineSegment { |
| 88 | from: self.from.lerp(self.to, t_range.start), |
| 89 | to: self.from.lerp(self.to, t_range.end), |
| 90 | } |
| 91 | } |
| 92 | |
| 93 | /// Split this curve into two sub-segments. |
| 94 | #[inline ] |
| 95 | pub fn split(&self, t: S) -> (Self, Self) { |
| 96 | let split_point = self.sample(t); |
| 97 | |
| 98 | ( |
| 99 | LineSegment { |
| 100 | from: self.from, |
| 101 | to: split_point, |
| 102 | }, |
| 103 | LineSegment { |
| 104 | from: split_point, |
| 105 | to: self.to, |
| 106 | }, |
| 107 | ) |
| 108 | } |
| 109 | |
| 110 | /// Return the segment before the split point. |
| 111 | #[inline ] |
| 112 | pub fn before_split(&self, t: S) -> Self { |
| 113 | LineSegment { |
| 114 | from: self.from, |
| 115 | to: self.sample(t), |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | /// Return the segment after the split point. |
| 120 | #[inline ] |
| 121 | pub fn after_split(&self, t: S) -> Self { |
| 122 | LineSegment { |
| 123 | from: self.sample(t), |
| 124 | to: self.to, |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | pub fn split_at_x(&self, x: S) -> (Self, Self) { |
| 129 | self.split(self.solve_t_for_x(x)) |
| 130 | } |
| 131 | |
| 132 | /// Return the smallest rectangle containing this segment. |
| 133 | #[inline ] |
| 134 | pub fn bounding_box(&self) -> Box2D<S> { |
| 135 | let (min_x, max_x) = self.bounding_range_x(); |
| 136 | let (min_y, max_y) = self.bounding_range_y(); |
| 137 | |
| 138 | Box2D { |
| 139 | min: point(min_x, min_y), |
| 140 | max: point(max_x, max_y), |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | #[inline ] |
| 145 | fn bounding_range_x(&self) -> (S, S) { |
| 146 | min_max(self.from.x, self.to.x) |
| 147 | } |
| 148 | |
| 149 | #[inline ] |
| 150 | fn bounding_range_y(&self) -> (S, S) { |
| 151 | min_max(self.from.y, self.to.y) |
| 152 | } |
| 153 | |
| 154 | /// Returns the vector between this segment's `from` and `to` points. |
| 155 | #[inline ] |
| 156 | pub fn to_vector(&self) -> Vector<S> { |
| 157 | self.to - self.from |
| 158 | } |
| 159 | |
| 160 | /// Returns the line containing this segment. |
| 161 | #[inline ] |
| 162 | pub fn to_line(&self) -> Line<S> { |
| 163 | Line { |
| 164 | point: self.from, |
| 165 | vector: self.to - self.from, |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | /// Computes the length of this segment. |
| 170 | #[inline ] |
| 171 | pub fn length(&self) -> S { |
| 172 | self.to_vector().length() |
| 173 | } |
| 174 | |
| 175 | /// Computes the squared length of this segment. |
| 176 | #[inline ] |
| 177 | pub fn square_length(&self) -> S { |
| 178 | self.to_vector().square_length() |
| 179 | } |
| 180 | |
| 181 | /// Changes the segment's length, moving destination point. |
| 182 | pub fn set_length(&mut self, new_length: S) { |
| 183 | let v = self.to_vector(); |
| 184 | let old_length = v.length(); |
| 185 | self.to = self.from + v * (new_length / old_length); |
| 186 | } |
| 187 | |
| 188 | /// Computes third mid-point of this segment. |
| 189 | pub fn mid_point(&mut self) -> Point<S> { |
| 190 | (self.from + self.to.to_vector()) / S::TWO |
| 191 | } |
| 192 | |
| 193 | #[inline ] |
| 194 | pub fn translate(&mut self, by: Vector<S>) -> Self { |
| 195 | LineSegment { |
| 196 | from: self.from + by, |
| 197 | to: self.to + by, |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | /// Applies the transform to this segment and returns the results. |
| 202 | #[inline ] |
| 203 | pub fn transformed<T: Transformation<S>>(&self, transform: &T) -> Self { |
| 204 | LineSegment { |
| 205 | from: transform.transform_point(self.from), |
| 206 | to: transform.transform_point(self.to), |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | /// Computes the intersection (if any) between this segment and another one. |
| 211 | /// |
| 212 | /// The result is provided in the form of the `t` parameter of each |
| 213 | /// segment. To get the intersection point, sample one of the segments |
| 214 | /// at the corresponding value. |
| 215 | #[allow (clippy::suspicious_operation_groupings)] |
| 216 | pub fn intersection_t(&self, other: &Self) -> Option<(S, S)> { |
| 217 | if self.to == other.to |
| 218 | || self.from == other.from |
| 219 | || self.from == other.to |
| 220 | || self.to == other.from |
| 221 | { |
| 222 | return None; |
| 223 | } |
| 224 | |
| 225 | let v1 = self.to_vector(); |
| 226 | let v2 = other.to_vector(); |
| 227 | |
| 228 | let v1_cross_v2 = v1.cross(v2); |
| 229 | |
| 230 | if v1_cross_v2 == S::ZERO { |
| 231 | // The segments are parallel |
| 232 | return None; |
| 233 | } |
| 234 | |
| 235 | let sign_v1_cross_v2 = S::signum(v1_cross_v2); |
| 236 | let abs_v1_cross_v2 = S::abs(v1_cross_v2); |
| 237 | |
| 238 | let v3 = other.from - self.from; |
| 239 | |
| 240 | // t and u should be divided by v1_cross_v2, but we postpone that to not lose precision. |
| 241 | // We have to respect the sign of v1_cross_v2 (and therefore t and u) so we apply it now and |
| 242 | // will use the absolute value of v1_cross_v2 afterwards. |
| 243 | let t = v3.cross(v2) * sign_v1_cross_v2; |
| 244 | let u = v3.cross(v1) * sign_v1_cross_v2; |
| 245 | |
| 246 | if t < S::ZERO || t > abs_v1_cross_v2 || u < S::ZERO || u > abs_v1_cross_v2 { |
| 247 | return None; |
| 248 | } |
| 249 | |
| 250 | Some((t / abs_v1_cross_v2, u / abs_v1_cross_v2)) |
| 251 | } |
| 252 | |
| 253 | #[inline ] |
| 254 | pub fn intersection(&self, other: &Self) -> Option<Point<S>> { |
| 255 | self.intersection_t(other).map(|(t, _)| self.sample(t)) |
| 256 | } |
| 257 | |
| 258 | pub fn line_intersection_t(&self, line: &Line<S>) -> Option<S> { |
| 259 | let v1 = self.to_vector(); |
| 260 | let v2 = line.vector; |
| 261 | |
| 262 | let v1_cross_v2 = v1.cross(v2); |
| 263 | |
| 264 | if v1_cross_v2 == S::ZERO { |
| 265 | // The segments are parallel |
| 266 | return None; |
| 267 | } |
| 268 | |
| 269 | let sign_v1_cross_v2 = S::signum(v1_cross_v2); |
| 270 | let abs_v1_cross_v2 = S::abs(v1_cross_v2); |
| 271 | |
| 272 | let v3 = line.point - self.from; |
| 273 | let t = v3.cross(v2) * sign_v1_cross_v2; |
| 274 | |
| 275 | if t < S::ZERO || t > abs_v1_cross_v2 { |
| 276 | return None; |
| 277 | } |
| 278 | |
| 279 | Some(t / abs_v1_cross_v2) |
| 280 | } |
| 281 | |
| 282 | #[inline ] |
| 283 | pub fn line_intersection(&self, line: &Line<S>) -> Option<Point<S>> { |
| 284 | self.line_intersection_t(line).map(|t| self.sample(t)) |
| 285 | } |
| 286 | |
| 287 | // TODO: Consider only intersecting in the [0, 1[ range instead of [0, 1] |
| 288 | pub fn horizontal_line_intersection_t(&self, y: S) -> Option<S> { |
| 289 | Self::axis_aligned_intersection_1d(self.from.y, self.to.y, y) |
| 290 | } |
| 291 | |
| 292 | pub fn vertical_line_intersection_t(&self, x: S) -> Option<S> { |
| 293 | Self::axis_aligned_intersection_1d(self.from.x, self.to.x, x) |
| 294 | } |
| 295 | |
| 296 | #[inline ] |
| 297 | pub fn horizontal_line_intersection(&self, y: S) -> Option<Point<S>> { |
| 298 | self.horizontal_line_intersection_t(y) |
| 299 | .map(|t| self.sample(t)) |
| 300 | } |
| 301 | |
| 302 | #[inline ] |
| 303 | pub fn vertical_line_intersection(&self, x: S) -> Option<Point<S>> { |
| 304 | self.vertical_line_intersection_t(x).map(|t| self.sample(t)) |
| 305 | } |
| 306 | |
| 307 | fn axis_aligned_intersection_1d(mut a: S, mut b: S, v: S) -> Option<S> { |
| 308 | // TODO: is it really useful to swap? |
| 309 | let swap = a > b; |
| 310 | if swap { |
| 311 | core::mem::swap(&mut a, &mut b); |
| 312 | } |
| 313 | |
| 314 | let d = b - a; |
| 315 | if d == S::ZERO { |
| 316 | return None; |
| 317 | } |
| 318 | |
| 319 | let t = (v - a) / d; |
| 320 | |
| 321 | if t < S::ZERO || t > S::ONE { |
| 322 | return None; |
| 323 | } |
| 324 | |
| 325 | Some(if swap { S::ONE - t } else { t }) |
| 326 | } |
| 327 | |
| 328 | #[inline ] |
| 329 | pub fn intersects(&self, other: &Self) -> bool { |
| 330 | self.intersection_t(other).is_some() |
| 331 | } |
| 332 | |
| 333 | #[inline ] |
| 334 | pub fn intersects_line(&self, line: &Line<S>) -> bool { |
| 335 | self.line_intersection_t(line).is_some() |
| 336 | } |
| 337 | |
| 338 | pub fn overlaps_line(&self, line: &Line<S>) -> bool { |
| 339 | let v1 = self.to_vector(); |
| 340 | let v2 = line.vector; |
| 341 | let v3 = line.point - self.from; |
| 342 | |
| 343 | v1.cross(v2) == S::ZERO && v1.cross(v3) == S::ZERO |
| 344 | } |
| 345 | |
| 346 | pub fn overlaps_segment(&self, other: &LineSegment<S>) -> bool { |
| 347 | if !self.overlaps_line(&other.to_line()) { |
| 348 | return false; |
| 349 | } |
| 350 | |
| 351 | let v1 = self.to - self.from; |
| 352 | let v2 = other.from - self.from; |
| 353 | let v3 = other.to - self.from; |
| 354 | let mut a = S::ZERO; |
| 355 | let mut b = v1.dot(v1); |
| 356 | let mut c = v1.dot(v2); |
| 357 | let mut d = v1.dot(v3); |
| 358 | |
| 359 | if a > b { |
| 360 | swap(&mut a, &mut b); |
| 361 | } |
| 362 | if c > d { |
| 363 | swap(&mut d, &mut c); |
| 364 | } |
| 365 | |
| 366 | (c > a && c < b) |
| 367 | || (d > a && d < b) |
| 368 | || (a > c && a < d) |
| 369 | || (b > c && b < d) |
| 370 | || (a == c && b == d) |
| 371 | } |
| 372 | |
| 373 | pub fn contains_segment(&self, other: &LineSegment<S>) -> bool { |
| 374 | if !self.overlaps_line(&other.to_line()) { |
| 375 | return false; |
| 376 | } |
| 377 | |
| 378 | let v1 = self.to - self.from; |
| 379 | let v2 = other.from - self.from; |
| 380 | let v3 = other.to - self.from; |
| 381 | let mut a = S::ZERO; |
| 382 | let mut b = v1.dot(v1); |
| 383 | let mut c = v1.dot(v2); |
| 384 | let mut d = v1.dot(v3); |
| 385 | |
| 386 | if a > b { |
| 387 | swap(&mut a, &mut b); |
| 388 | } |
| 389 | if c > d { |
| 390 | swap(&mut d, &mut c); |
| 391 | } |
| 392 | |
| 393 | c >= a && c <= b && d >= a && d <= b |
| 394 | } |
| 395 | |
| 396 | /// Horizontally clip this segment against a range of the x axis. |
| 397 | pub fn clipped_x(&self, clip: Range<S>) -> Option<Self> { |
| 398 | if (self.from.x < clip.start && self.to.x < clip.start) |
| 399 | || (self.from.x > clip.end && self.to.x > clip.end) |
| 400 | { |
| 401 | return None; |
| 402 | } |
| 403 | |
| 404 | let mut flipped = false; |
| 405 | let mut result = *self; |
| 406 | |
| 407 | if result.from.x > result.to.x { |
| 408 | flipped = true; |
| 409 | result = result.flip(); |
| 410 | } |
| 411 | |
| 412 | if result.from.x >= clip.start && result.to.x <= clip.end { |
| 413 | return Some(*self); |
| 414 | } |
| 415 | |
| 416 | if result.from.x < clip.start { |
| 417 | let t = result |
| 418 | .vertical_line_intersection_t(clip.start) |
| 419 | .unwrap_or(S::ZERO); |
| 420 | result.from.x = clip.start; |
| 421 | result.from.y = result.y(t); |
| 422 | } |
| 423 | |
| 424 | if result.to.x > clip.end { |
| 425 | let t = result |
| 426 | .vertical_line_intersection_t(clip.end) |
| 427 | .unwrap_or(S::ZERO); |
| 428 | result.to.x = clip.end; |
| 429 | result.to.y = result.y(t); |
| 430 | } |
| 431 | |
| 432 | if flipped { |
| 433 | result = result.flip(); |
| 434 | } |
| 435 | |
| 436 | Some(result) |
| 437 | } |
| 438 | |
| 439 | /// Vertically clip this segment against a range of the y axis. |
| 440 | pub fn clipped_y(&self, clip: Range<S>) -> Option<Self> { |
| 441 | fn transpose<S: Copy>(r: &LineSegment<S>) -> LineSegment<S> { |
| 442 | LineSegment { |
| 443 | from: r.from.yx(), |
| 444 | to: r.to.yx(), |
| 445 | } |
| 446 | } |
| 447 | |
| 448 | Some(transpose(&transpose(self).clipped_x(clip)?)) |
| 449 | } |
| 450 | |
| 451 | /// Clip this segment against a rectangle. |
| 452 | pub fn clipped(&self, clip: &Box2D<S>) -> Option<Self> { |
| 453 | self.clipped_x(clip.x_range())?.clipped_y(clip.y_range()) |
| 454 | } |
| 455 | |
| 456 | /// Computes the distance between this segment and a point. |
| 457 | #[inline ] |
| 458 | pub fn distance_to_point(&self, p: Point<S>) -> S { |
| 459 | self.square_distance_to_point(p).sqrt() |
| 460 | } |
| 461 | |
| 462 | /// Computes the squared distance between this segment and a point. |
| 463 | /// |
| 464 | /// Can be useful to save a square root and a division when comparing against |
| 465 | /// a distance that can be squared. |
| 466 | #[inline ] |
| 467 | pub fn square_distance_to_point(&self, p: Point<S>) -> S { |
| 468 | (self.closest_point(p) - p).square_length() |
| 469 | } |
| 470 | |
| 471 | /// Computes the closest point on this segment to `p`. |
| 472 | #[inline ] |
| 473 | pub fn closest_point(&self, p: Point<S>) -> Point<S> { |
| 474 | let v1 = self.to - self.from; |
| 475 | let v2 = p - self.from; |
| 476 | let t = S::min(S::max(v2.dot(v1) / v1.dot(v1), S::ZERO), S::ONE); |
| 477 | |
| 478 | self.from + v1 * t |
| 479 | } |
| 480 | |
| 481 | #[inline ] |
| 482 | pub fn to_f32(&self) -> LineSegment<f32> { |
| 483 | LineSegment { |
| 484 | from: self.from.to_f32(), |
| 485 | to: self.to.to_f32(), |
| 486 | } |
| 487 | } |
| 488 | |
| 489 | #[inline ] |
| 490 | pub fn to_f64(&self) -> LineSegment<f64> { |
| 491 | LineSegment { |
| 492 | from: self.from.to_f64(), |
| 493 | to: self.to.to_f64(), |
| 494 | } |
| 495 | } |
| 496 | } |
| 497 | |
| 498 | impl<S: Scalar> Segment for LineSegment<S> { |
| 499 | type Scalar = S; |
| 500 | fn from(&self) -> Point<S> { |
| 501 | self.from |
| 502 | } |
| 503 | fn to(&self) -> Point<S> { |
| 504 | self.to |
| 505 | } |
| 506 | fn sample(&self, t: S) -> Point<S> { |
| 507 | self.sample(t) |
| 508 | } |
| 509 | fn x(&self, t: S) -> S { |
| 510 | self.x(t) |
| 511 | } |
| 512 | fn y(&self, t: S) -> S { |
| 513 | self.y(t) |
| 514 | } |
| 515 | fn derivative(&self, _t: S) -> Vector<S> { |
| 516 | self.to_vector() |
| 517 | } |
| 518 | fn dx(&self, _t: S) -> S { |
| 519 | self.to.x - self.from.x |
| 520 | } |
| 521 | fn dy(&self, _t: S) -> S { |
| 522 | self.to.y - self.from.y |
| 523 | } |
| 524 | fn split(&self, t: S) -> (Self, Self) { |
| 525 | self.split(t) |
| 526 | } |
| 527 | fn before_split(&self, t: S) -> Self { |
| 528 | self.before_split(t) |
| 529 | } |
| 530 | fn after_split(&self, t: S) -> Self { |
| 531 | self.after_split(t) |
| 532 | } |
| 533 | fn split_range(&self, t_range: Range<S>) -> Self { |
| 534 | self.split_range(t_range) |
| 535 | } |
| 536 | fn flip(&self) -> Self { |
| 537 | self.flip() |
| 538 | } |
| 539 | fn approximate_length(&self, _tolerance: S) -> S { |
| 540 | self.length() |
| 541 | } |
| 542 | |
| 543 | fn for_each_flattened_with_t( |
| 544 | &self, |
| 545 | _tolerance: Self::Scalar, |
| 546 | callback: &mut dyn FnMut(&LineSegment<S>, Range<S>), |
| 547 | ) { |
| 548 | callback(self, S::ZERO..S::ONE); |
| 549 | } |
| 550 | } |
| 551 | |
| 552 | impl<S: Scalar> BoundingBox for LineSegment<S> { |
| 553 | type Scalar = S; |
| 554 | fn bounding_range_x(&self) -> (S, S) { |
| 555 | self.bounding_range_x() |
| 556 | } |
| 557 | fn bounding_range_y(&self) -> (S, S) { |
| 558 | self.bounding_range_y() |
| 559 | } |
| 560 | fn fast_bounding_range_x(&self) -> (S, S) { |
| 561 | self.bounding_range_x() |
| 562 | } |
| 563 | fn fast_bounding_range_y(&self) -> (S, S) { |
| 564 | self.bounding_range_y() |
| 565 | } |
| 566 | } |
| 567 | |
| 568 | /// An infinite line defined by a point and a vector. |
| 569 | #[derive (Copy, Clone, Debug)] |
| 570 | #[cfg_attr (feature = "serialization" , derive(Serialize, Deserialize))] |
| 571 | pub struct Line<S> { |
| 572 | pub point: Point<S>, |
| 573 | pub vector: Vector<S>, |
| 574 | } |
| 575 | |
| 576 | impl<S: Scalar> Line<S> { |
| 577 | pub fn intersection(&self, other: &Self) -> Option<Point<S>> { |
| 578 | let det = self.vector.cross(other.vector); |
| 579 | if S::abs(det) <= S::EPSILON { |
| 580 | // The lines are very close to parallel |
| 581 | return None; |
| 582 | } |
| 583 | let inv_det = S::ONE / det; |
| 584 | let self_p2 = self.point + self.vector; |
| 585 | let other_p2 = other.point + other.vector; |
| 586 | let a = self.point.to_vector().cross(self_p2.to_vector()); |
| 587 | let b = other.point.to_vector().cross(other_p2.to_vector()); |
| 588 | |
| 589 | Some(point( |
| 590 | (b * self.vector.x - a * other.vector.x) * inv_det, |
| 591 | (b * self.vector.y - a * other.vector.y) * inv_det, |
| 592 | )) |
| 593 | } |
| 594 | |
| 595 | pub fn distance_to_point(&self, p: &Point<S>) -> S { |
| 596 | S::abs(self.signed_distance_to_point(p)) |
| 597 | } |
| 598 | |
| 599 | pub fn signed_distance_to_point(&self, p: &Point<S>) -> S { |
| 600 | let v = *p - self.point; |
| 601 | self.vector.cross(v) / self.vector.length() |
| 602 | } |
| 603 | |
| 604 | /// Returned the squared distance to a point. |
| 605 | /// |
| 606 | /// Can be useful to avoid a square root when comparing against a |
| 607 | /// distance that can be squared instead. |
| 608 | pub fn square_distance_to_point(&self, p: Point<S>) -> S { |
| 609 | let v = p - self.point; |
| 610 | let c = self.vector.cross(v); |
| 611 | (c * c) / self.vector.square_length() |
| 612 | } |
| 613 | |
| 614 | pub fn equation(&self) -> LineEquation<S> { |
| 615 | let a = -self.vector.y; |
| 616 | let b = self.vector.x; |
| 617 | let c = -(a * self.point.x + b * self.point.y); |
| 618 | |
| 619 | LineEquation::new(a, b, c) |
| 620 | } |
| 621 | |
| 622 | pub fn intersects_box(&self, rect: &Box2D<S>) -> bool { |
| 623 | let v = self.vector; |
| 624 | |
| 625 | let diagonal = if (v.y >= S::ZERO) ^ (v.x >= S::ZERO) { |
| 626 | LineSegment { |
| 627 | from: rect.min, |
| 628 | to: rect.max, |
| 629 | } |
| 630 | } else { |
| 631 | LineSegment { |
| 632 | from: point(rect.max.x, rect.min.y), |
| 633 | to: point(rect.min.x, rect.max.y), |
| 634 | } |
| 635 | }; |
| 636 | |
| 637 | diagonal.intersects_line(self) |
| 638 | } |
| 639 | |
| 640 | #[inline ] |
| 641 | pub fn to_f32(&self) -> Line<f32> { |
| 642 | Line { |
| 643 | point: self.point.to_f32(), |
| 644 | vector: self.vector.to_f32(), |
| 645 | } |
| 646 | } |
| 647 | |
| 648 | #[inline ] |
| 649 | pub fn to_f64(&self) -> Line<f64> { |
| 650 | Line { |
| 651 | point: self.point.to_f64(), |
| 652 | vector: self.vector.to_f64(), |
| 653 | } |
| 654 | } |
| 655 | } |
| 656 | |
| 657 | /// A line defined by the equation |
| 658 | /// `a * x + b * y + c = 0; a * a + b * b = 1`. |
| 659 | #[derive (Copy, Clone, Debug, PartialEq, Eq)] |
| 660 | #[cfg_attr (feature = "serialization" , derive(Serialize, Deserialize))] |
| 661 | pub struct LineEquation<S> { |
| 662 | a: S, |
| 663 | b: S, |
| 664 | c: S, |
| 665 | } |
| 666 | |
| 667 | impl<S: Scalar> LineEquation<S> { |
| 668 | pub fn new(a: S, b: S, c: S) -> Self { |
| 669 | debug_assert!(a != S::ZERO || b != S::ZERO); |
| 670 | let div = S::ONE / S::sqrt(a * a + b * b); |
| 671 | LineEquation { |
| 672 | a: a * div, |
| 673 | b: b * div, |
| 674 | c: c * div, |
| 675 | } |
| 676 | } |
| 677 | |
| 678 | #[inline ] |
| 679 | pub fn a(&self) -> S { |
| 680 | self.a |
| 681 | } |
| 682 | |
| 683 | #[inline ] |
| 684 | pub fn b(&self) -> S { |
| 685 | self.b |
| 686 | } |
| 687 | |
| 688 | #[inline ] |
| 689 | pub fn c(&self) -> S { |
| 690 | self.c |
| 691 | } |
| 692 | |
| 693 | pub fn project_point(&self, p: &Point<S>) -> Point<S> { |
| 694 | point( |
| 695 | self.b * (self.b * p.x - self.a * p.y) - self.a * self.c, |
| 696 | self.a * (self.a * p.y - self.b * p.x) - self.b * self.c, |
| 697 | ) |
| 698 | } |
| 699 | |
| 700 | #[inline ] |
| 701 | pub fn signed_distance_to_point(&self, p: &Point<S>) -> S { |
| 702 | self.a * p.x + self.b * p.y + self.c |
| 703 | } |
| 704 | |
| 705 | #[inline ] |
| 706 | pub fn distance_to_point(&self, p: &Point<S>) -> S { |
| 707 | S::abs(self.signed_distance_to_point(p)) |
| 708 | } |
| 709 | |
| 710 | #[inline ] |
| 711 | pub fn invert(&self) -> Self { |
| 712 | LineEquation { |
| 713 | a: -self.a, |
| 714 | b: -self.b, |
| 715 | c: -self.c, |
| 716 | } |
| 717 | } |
| 718 | |
| 719 | #[inline ] |
| 720 | pub fn parallel_line(&self, p: &Point<S>) -> Self { |
| 721 | let c = -(self.a * p.x + self.b * p.y); |
| 722 | LineEquation { |
| 723 | a: self.a, |
| 724 | b: self.b, |
| 725 | c, |
| 726 | } |
| 727 | } |
| 728 | |
| 729 | #[inline ] |
| 730 | pub fn offset(&self, d: S) -> Self { |
| 731 | LineEquation { |
| 732 | a: self.a, |
| 733 | b: self.b, |
| 734 | c: self.c - d, |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | #[inline ] |
| 739 | pub fn tangent(&self) -> Vector<S> { |
| 740 | vector(self.b, -self.a) |
| 741 | } |
| 742 | |
| 743 | #[inline ] |
| 744 | pub fn normal(&self) -> Vector<S> { |
| 745 | vector(self.a, self.b) |
| 746 | } |
| 747 | |
| 748 | #[inline ] |
| 749 | pub fn solve_y_for_x(&self, x: S) -> Option<S> { |
| 750 | if self.b == S::ZERO { |
| 751 | return None; |
| 752 | } |
| 753 | |
| 754 | Some((self.a * x + self.c) / -self.b) |
| 755 | } |
| 756 | |
| 757 | #[inline ] |
| 758 | pub fn solve_x_for_y(&self, y: S) -> Option<S> { |
| 759 | if self.a == S::ZERO { |
| 760 | return None; |
| 761 | } |
| 762 | |
| 763 | Some((self.b * y + self.c) / -self.a) |
| 764 | } |
| 765 | |
| 766 | #[inline ] |
| 767 | pub fn is_horizontal(&self) -> bool { |
| 768 | self.a == S::ZERO |
| 769 | } |
| 770 | |
| 771 | #[inline ] |
| 772 | pub fn is_vertical(&self) -> bool { |
| 773 | self.b == S::ZERO |
| 774 | } |
| 775 | } |
| 776 | |
| 777 | #[cfg (test)] |
| 778 | fn fuzzy_eq_f32(a: f32, b: f32, epsilon: f32) -> bool { |
| 779 | f32::abs(a - b) <= epsilon |
| 780 | } |
| 781 | |
| 782 | #[cfg (test)] |
| 783 | fn fuzzy_eq_vector(a: Vector<f32>, b: Vector<f32>, epsilon: f32) -> bool { |
| 784 | fuzzy_eq_f32(a.x, b.x, epsilon) && fuzzy_eq_f32(a.y, b.y, epsilon) |
| 785 | } |
| 786 | |
| 787 | #[cfg (test)] |
| 788 | fn fuzzy_eq_point(a: Point<f32>, b: Point<f32>, epsilon: f32) -> bool { |
| 789 | fuzzy_eq_vector(a.to_vector(), b.to_vector(), epsilon) |
| 790 | } |
| 791 | |
| 792 | #[test ] |
| 793 | fn intersection_rotated() { |
| 794 | use core::f32::consts::PI; |
| 795 | let epsilon = 0.0001; |
| 796 | let count: u32 = 100; |
| 797 | |
| 798 | for i in 0..count { |
| 799 | for j in 0..count { |
| 800 | if i % (count / 2) == j % (count / 2) { |
| 801 | // avoid the colinear case. |
| 802 | continue; |
| 803 | } |
| 804 | |
| 805 | let angle1 = i as f32 / (count as f32) * 2.0 * PI; |
| 806 | let angle2 = j as f32 / (count as f32) * 2.0 * PI; |
| 807 | |
| 808 | let l1 = LineSegment { |
| 809 | from: point(10.0 * angle1.cos(), 10.0 * angle1.sin()), |
| 810 | to: point(-10.0 * angle1.cos(), -10.0 * angle1.sin()), |
| 811 | }; |
| 812 | |
| 813 | let l2 = LineSegment { |
| 814 | from: point(10.0 * angle2.cos(), 10.0 * angle2.sin()), |
| 815 | to: point(-10.0 * angle2.cos(), -10.0 * angle2.sin()), |
| 816 | }; |
| 817 | |
| 818 | assert!(l1.intersects(&l2)); |
| 819 | |
| 820 | assert!(fuzzy_eq_point( |
| 821 | l1.sample(l1.intersection_t(&l2).unwrap().0), |
| 822 | point(0.0, 0.0), |
| 823 | epsilon |
| 824 | )); |
| 825 | |
| 826 | assert!(fuzzy_eq_point( |
| 827 | l2.sample(l1.intersection_t(&l2).unwrap().1), |
| 828 | point(0.0, 0.0), |
| 829 | epsilon |
| 830 | )); |
| 831 | } |
| 832 | } |
| 833 | } |
| 834 | |
| 835 | #[test ] |
| 836 | fn intersection_touching() { |
| 837 | let l1 = LineSegment { |
| 838 | from: point(0.0, 0.0), |
| 839 | to: point(10.0, 10.0), |
| 840 | }; |
| 841 | |
| 842 | let l2 = LineSegment { |
| 843 | from: point(10.0, 10.0), |
| 844 | to: point(10.0, 0.0), |
| 845 | }; |
| 846 | |
| 847 | assert!(!l1.intersects(&l2)); |
| 848 | assert!(l1.intersection(&l2).is_none()); |
| 849 | } |
| 850 | |
| 851 | #[test ] |
| 852 | fn intersection_overlap() { |
| 853 | // It's hard to define the intersection points of two segments that overlap, |
| 854 | // (would be a region rather than a point) and more importantly, in practice |
| 855 | // the algorithms in lyon don't need to consider this special case as an intersection, |
| 856 | // so we choose to treat overlapping segments as not intersecting. |
| 857 | |
| 858 | let l1 = LineSegment { |
| 859 | from: point(0.0, 0.0), |
| 860 | to: point(10.0, 0.0), |
| 861 | }; |
| 862 | |
| 863 | let l2 = LineSegment { |
| 864 | from: point(5.0, 00.0), |
| 865 | to: point(15.0, 0.0), |
| 866 | }; |
| 867 | |
| 868 | assert!(!l1.intersects(&l2)); |
| 869 | assert!(l1.intersection(&l2).is_none()); |
| 870 | } |
| 871 | |
| 872 | #[cfg (test)] |
| 873 | use euclid::approxeq::ApproxEq; |
| 874 | |
| 875 | #[test ] |
| 876 | fn bounding_box() { |
| 877 | let l1 = LineSegment { |
| 878 | from: point(1.0, 5.0), |
| 879 | to: point(5.0, 7.0), |
| 880 | }; |
| 881 | let r1 = Box2D { |
| 882 | min: point(1.0, 5.0), |
| 883 | max: point(5.0, 7.0), |
| 884 | }; |
| 885 | |
| 886 | let l2 = LineSegment { |
| 887 | from: point(5.0, 5.0), |
| 888 | to: point(1.0, 1.0), |
| 889 | }; |
| 890 | let r2 = Box2D { |
| 891 | min: point(1.0, 1.0), |
| 892 | max: point(5.0, 5.0), |
| 893 | }; |
| 894 | |
| 895 | let l3 = LineSegment { |
| 896 | from: point(3.0, 3.0), |
| 897 | to: point(1.0, 5.0), |
| 898 | }; |
| 899 | let r3 = Box2D { |
| 900 | min: point(1.0, 3.0), |
| 901 | max: point(3.0, 5.0), |
| 902 | }; |
| 903 | |
| 904 | let cases = std::vec![(l1, r1), (l2, r2), (l3, r3)]; |
| 905 | for &(ls, r) in &cases { |
| 906 | assert_eq!(ls.bounding_box(), r); |
| 907 | } |
| 908 | } |
| 909 | |
| 910 | #[test ] |
| 911 | fn distance_to_point() { |
| 912 | use crate::vector; |
| 913 | |
| 914 | let l1 = Line { |
| 915 | point: point(2.0f32, 3.0), |
| 916 | vector: vector(-1.5, 0.0), |
| 917 | }; |
| 918 | |
| 919 | let l2 = Line { |
| 920 | point: point(3.0f32, 3.0), |
| 921 | vector: vector(1.5, 1.5), |
| 922 | }; |
| 923 | |
| 924 | assert!(l1 |
| 925 | .signed_distance_to_point(&point(1.1, 4.0)) |
| 926 | .approx_eq(&-1.0)); |
| 927 | assert!(l1 |
| 928 | .signed_distance_to_point(&point(2.3, 2.0)) |
| 929 | .approx_eq(&1.0)); |
| 930 | |
| 931 | assert!(l2 |
| 932 | .signed_distance_to_point(&point(1.0, 0.0)) |
| 933 | .approx_eq(&(-f32::sqrt(2.0) / 2.0))); |
| 934 | assert!(l2 |
| 935 | .signed_distance_to_point(&point(0.0, 1.0)) |
| 936 | .approx_eq(&(f32::sqrt(2.0) / 2.0))); |
| 937 | |
| 938 | assert!(l1 |
| 939 | .equation() |
| 940 | .distance_to_point(&point(1.1, 4.0)) |
| 941 | .approx_eq(&1.0)); |
| 942 | assert!(l1 |
| 943 | .equation() |
| 944 | .distance_to_point(&point(2.3, 2.0)) |
| 945 | .approx_eq(&1.0)); |
| 946 | assert!(l2 |
| 947 | .equation() |
| 948 | .distance_to_point(&point(1.0, 0.0)) |
| 949 | .approx_eq(&(f32::sqrt(2.0) / 2.0))); |
| 950 | assert!(l2 |
| 951 | .equation() |
| 952 | .distance_to_point(&point(0.0, 1.0)) |
| 953 | .approx_eq(&(f32::sqrt(2.0) / 2.0))); |
| 954 | |
| 955 | assert!(l1 |
| 956 | .equation() |
| 957 | .signed_distance_to_point(&point(1.1, 4.0)) |
| 958 | .approx_eq(&l1.signed_distance_to_point(&point(1.1, 4.0)))); |
| 959 | assert!(l1 |
| 960 | .equation() |
| 961 | .signed_distance_to_point(&point(2.3, 2.0)) |
| 962 | .approx_eq(&l1.signed_distance_to_point(&point(2.3, 2.0)))); |
| 963 | |
| 964 | assert!(l2 |
| 965 | .equation() |
| 966 | .signed_distance_to_point(&point(1.0, 0.0)) |
| 967 | .approx_eq(&l2.signed_distance_to_point(&point(1.0, 0.0)))); |
| 968 | assert!(l2 |
| 969 | .equation() |
| 970 | .signed_distance_to_point(&point(0.0, 1.0)) |
| 971 | .approx_eq(&l2.signed_distance_to_point(&point(0.0, 1.0)))); |
| 972 | } |
| 973 | |
| 974 | #[test ] |
| 975 | fn solve_y_for_x() { |
| 976 | let line = Line { |
| 977 | point: Point::new(1.0, 1.0), |
| 978 | vector: Vector::new(2.0, 4.0), |
| 979 | }; |
| 980 | let eqn = line.equation(); |
| 981 | |
| 982 | if let Some(y) = eqn.solve_y_for_x(line.point.x) { |
| 983 | std::println!("{y:?} != {:?}" , line.point.y); |
| 984 | assert!(f64::abs(y - line.point.y) < 0.000001) |
| 985 | } |
| 986 | |
| 987 | if let Some(x) = eqn.solve_x_for_y(line.point.y) { |
| 988 | assert!(f64::abs(x - line.point.x) < 0.000001) |
| 989 | } |
| 990 | |
| 991 | let mut angle = 0.1; |
| 992 | for _ in 0..100 { |
| 993 | let (sin, cos) = f64::sin_cos(angle); |
| 994 | let line = Line { |
| 995 | point: Point::new(-1000.0, 600.0), |
| 996 | vector: Vector::new(cos * 100.0, sin * 100.0), |
| 997 | }; |
| 998 | let eqn = line.equation(); |
| 999 | |
| 1000 | if let Some(y) = eqn.solve_y_for_x(line.point.x) { |
| 1001 | std::println!("{y:?} != {:?}" , line.point.y); |
| 1002 | assert!(f64::abs(y - line.point.y) < 0.000001) |
| 1003 | } |
| 1004 | |
| 1005 | if let Some(x) = eqn.solve_x_for_y(line.point.y) { |
| 1006 | assert!(f64::abs(x - line.point.x) < 0.000001) |
| 1007 | } |
| 1008 | |
| 1009 | angle += 0.001; |
| 1010 | } |
| 1011 | } |
| 1012 | |
| 1013 | #[test ] |
| 1014 | fn offset() { |
| 1015 | let l1 = LineEquation::new(2.0, 3.0, 1.0); |
| 1016 | let p = Point::new(10.0, 3.0); |
| 1017 | let d = l1.signed_distance_to_point(&p); |
| 1018 | let l2 = l1.offset(d); |
| 1019 | assert!(l2.distance_to_point(&p) < 0.0000001f64); |
| 1020 | } |
| 1021 | |
| 1022 | #[test ] |
| 1023 | fn set_length() { |
| 1024 | let mut a = LineSegment { |
| 1025 | from: point(10.0, 1.0), |
| 1026 | to: point(100.0, -15.0), |
| 1027 | }; |
| 1028 | a.set_length(1.0); |
| 1029 | assert!(a.length().approx_eq(&1.0)); |
| 1030 | a.set_length(1.5); |
| 1031 | assert!(a.length().approx_eq(&1.5)); |
| 1032 | a.set_length(100.0); |
| 1033 | assert!(a.length().approx_eq(&100.0)); |
| 1034 | a.set_length(-1.0); |
| 1035 | assert!(a.length().approx_eq(&1.0)); |
| 1036 | } |
| 1037 | |
| 1038 | #[test ] |
| 1039 | fn overlap() { |
| 1040 | assert!(LineSegment { |
| 1041 | from: point(0.0, 0.0), |
| 1042 | to: point(-1.0, 0.0), |
| 1043 | } |
| 1044 | .overlaps_line(&Line { |
| 1045 | point: point(100.0, 0.0), |
| 1046 | vector: vector(10.0, 0.0), |
| 1047 | })); |
| 1048 | |
| 1049 | assert!(LineSegment { |
| 1050 | from: point(0.0, 0.0), |
| 1051 | to: point(1.0, 0.0), |
| 1052 | } |
| 1053 | .overlaps_line(&Line { |
| 1054 | point: point(0.0, 0.0), |
| 1055 | vector: vector(1.0, 0.0), |
| 1056 | })); |
| 1057 | |
| 1058 | assert!(LineSegment { |
| 1059 | from: point(0.0, 0.0), |
| 1060 | to: point(1.0, 0.0), |
| 1061 | } |
| 1062 | .overlaps_segment(&LineSegment { |
| 1063 | from: point(0.0, 0.0), |
| 1064 | to: point(1.0, 0.0), |
| 1065 | })); |
| 1066 | |
| 1067 | assert!(!LineSegment { |
| 1068 | from: point(0.0, 0.0), |
| 1069 | to: point(1.0, 0.0), |
| 1070 | } |
| 1071 | .overlaps_line(&Line { |
| 1072 | point: point(0.0, 1.0), |
| 1073 | vector: vector(1.0, 1.0), |
| 1074 | })); |
| 1075 | } |
| 1076 | |
| 1077 | #[test ] |
| 1078 | fn contains_segment() { |
| 1079 | assert!(LineSegment { |
| 1080 | from: point(-1.0, 1.0), |
| 1081 | to: point(4.0, 1.0), |
| 1082 | } |
| 1083 | .contains_segment(&LineSegment { |
| 1084 | from: point(2.0, 1.0), |
| 1085 | to: point(1.0, 1.0), |
| 1086 | })); |
| 1087 | } |
| 1088 | |
| 1089 | #[test ] |
| 1090 | fn horizontal_line_intersection() { |
| 1091 | let segment = LineSegment { |
| 1092 | from: point(1.0, 2.0), |
| 1093 | to: point(2.0, 3.0), |
| 1094 | }; |
| 1095 | |
| 1096 | assert_eq!(segment.horizontal_line_intersection_t(2.0), Some(0.0)); |
| 1097 | assert_eq!(segment.horizontal_line_intersection_t(2.25), Some(0.25)); |
| 1098 | assert_eq!(segment.horizontal_line_intersection_t(2.5), Some(0.5)); |
| 1099 | assert_eq!(segment.horizontal_line_intersection_t(2.75), Some(0.75)); |
| 1100 | assert_eq!(segment.horizontal_line_intersection_t(3.0), Some(1.0)); |
| 1101 | |
| 1102 | assert_eq!(segment.horizontal_line_intersection_t(1.5), None); |
| 1103 | assert_eq!(segment.horizontal_line_intersection_t(3.5), None); |
| 1104 | |
| 1105 | let segment = LineSegment { |
| 1106 | from: point(2.0, 3.0), |
| 1107 | to: point(1.0, 2.0), |
| 1108 | }; |
| 1109 | |
| 1110 | assert_eq!(segment.horizontal_line_intersection_t(2.0), Some(1.0)); |
| 1111 | assert_eq!(segment.horizontal_line_intersection_t(2.25), Some(0.75)); |
| 1112 | assert_eq!(segment.horizontal_line_intersection_t(2.5), Some(0.5)); |
| 1113 | assert_eq!(segment.horizontal_line_intersection_t(2.75), Some(0.25)); |
| 1114 | assert_eq!(segment.horizontal_line_intersection_t(3.0), Some(0.0)); |
| 1115 | |
| 1116 | assert_eq!(segment.horizontal_line_intersection_t(1.5), None); |
| 1117 | assert_eq!(segment.horizontal_line_intersection_t(3.5), None); |
| 1118 | } |
| 1119 | |
| 1120 | #[test ] |
| 1121 | fn intersection_on_endpoint() { |
| 1122 | let l1 = LineSegment { |
| 1123 | from: point(0.0, 0.0), |
| 1124 | to: point(0.0, 10.0), |
| 1125 | }; |
| 1126 | |
| 1127 | let l2 = LineSegment { |
| 1128 | from: point(0.0, 5.0), |
| 1129 | to: point(10.0, 5.0), |
| 1130 | }; |
| 1131 | |
| 1132 | assert_eq!(l1.intersection_t(&l2), Some((0.5, 0.0))); |
| 1133 | assert_eq!(l2.intersection_t(&l1), Some((0.0, 0.5))); |
| 1134 | |
| 1135 | let l3 = LineSegment { |
| 1136 | from: point(10.0, 5.0), |
| 1137 | to: point(0.0, 5.0), |
| 1138 | }; |
| 1139 | |
| 1140 | assert_eq!(l1.intersection_t(&l3), Some((0.5, 1.0))); |
| 1141 | assert_eq!(l3.intersection_t(&l1), Some((1.0, 0.5))); |
| 1142 | } |
| 1143 | |
| 1144 | #[test ] |
| 1145 | fn intersects_box() { |
| 1146 | let b = Box2D { |
| 1147 | min: point(1.0, 2.0), |
| 1148 | max: point(4.0, 4.0), |
| 1149 | }; |
| 1150 | |
| 1151 | assert!(!Line { |
| 1152 | point: point(0.0, 0.0), |
| 1153 | vector: vector(1.0, 0.0) |
| 1154 | } |
| 1155 | .intersects_box(&b)); |
| 1156 | assert!(!Line { |
| 1157 | point: point(0.0, 0.0), |
| 1158 | vector: vector(0.0, 1.0) |
| 1159 | } |
| 1160 | .intersects_box(&b)); |
| 1161 | assert!(!Line { |
| 1162 | point: point(10.0, 0.0), |
| 1163 | vector: vector(10.0, 10.0) |
| 1164 | } |
| 1165 | .intersects_box(&b)); |
| 1166 | assert!(!Line { |
| 1167 | point: point(0.0, 10.0), |
| 1168 | vector: vector(10.0, 10.0) |
| 1169 | } |
| 1170 | .intersects_box(&b)); |
| 1171 | |
| 1172 | assert!(Line { |
| 1173 | point: point(1.5, 0.0), |
| 1174 | vector: vector(1.0, 6.0) |
| 1175 | } |
| 1176 | .intersects_box(&b)); |
| 1177 | assert!(Line { |
| 1178 | point: point(1.5, 0.0), |
| 1179 | vector: vector(-1.0, 6.0) |
| 1180 | } |
| 1181 | .intersects_box(&b)); |
| 1182 | assert!(Line { |
| 1183 | point: point(1.5, 2.5), |
| 1184 | vector: vector(1.0, 0.5) |
| 1185 | } |
| 1186 | .intersects_box(&b)); |
| 1187 | assert!(Line { |
| 1188 | point: point(1.5, 2.5), |
| 1189 | vector: vector(-1.0, -2.0) |
| 1190 | } |
| 1191 | .intersects_box(&b)); |
| 1192 | } |
| 1193 | |
| 1194 | #[test ] |
| 1195 | fn clipped() { |
| 1196 | let b = Box2D { |
| 1197 | min: point(1.0, 2.0), |
| 1198 | max: point(3.0, 4.0), |
| 1199 | }; |
| 1200 | |
| 1201 | fn approx_eq(a: LineSegment<f32>, b: LineSegment<f32>) -> bool { |
| 1202 | let ok = a.from.approx_eq(&b.from) && a.to.approx_eq(&b.to); |
| 1203 | if !ok { |
| 1204 | std::println!("{a:?} != {b:?}" ); |
| 1205 | } |
| 1206 | |
| 1207 | ok |
| 1208 | } |
| 1209 | |
| 1210 | assert_eq!( |
| 1211 | LineSegment { |
| 1212 | from: point(0.0, 1.0), |
| 1213 | to: point(4.0, 1.0) |
| 1214 | } |
| 1215 | .clipped(&b), |
| 1216 | None |
| 1217 | ); |
| 1218 | assert_eq!( |
| 1219 | LineSegment { |
| 1220 | from: point(0.0, 2.0), |
| 1221 | to: point(4.0, 2.0) |
| 1222 | } |
| 1223 | .clipped(&b), |
| 1224 | Some(LineSegment { |
| 1225 | from: point(1.0, 2.0), |
| 1226 | to: point(3.0, 2.0) |
| 1227 | }) |
| 1228 | ); |
| 1229 | assert_eq!( |
| 1230 | LineSegment { |
| 1231 | from: point(0.0, 3.0), |
| 1232 | to: point(4.0, 3.0) |
| 1233 | } |
| 1234 | .clipped(&b), |
| 1235 | Some(LineSegment { |
| 1236 | from: point(1.0, 3.0), |
| 1237 | to: point(3.0, 3.0) |
| 1238 | }) |
| 1239 | ); |
| 1240 | assert_eq!( |
| 1241 | LineSegment { |
| 1242 | from: point(0.0, 4.0), |
| 1243 | to: point(4.0, 4.0) |
| 1244 | } |
| 1245 | .clipped(&b), |
| 1246 | Some(LineSegment { |
| 1247 | from: point(1.0, 4.0), |
| 1248 | to: point(3.0, 4.0) |
| 1249 | }) |
| 1250 | ); |
| 1251 | assert_eq!( |
| 1252 | LineSegment { |
| 1253 | from: point(0.0, 5.0), |
| 1254 | to: point(4.0, 5.0) |
| 1255 | } |
| 1256 | .clipped(&b), |
| 1257 | None |
| 1258 | ); |
| 1259 | |
| 1260 | assert_eq!( |
| 1261 | LineSegment { |
| 1262 | from: point(4.0, 1.0), |
| 1263 | to: point(0.0, 1.0) |
| 1264 | } |
| 1265 | .clipped(&b), |
| 1266 | None |
| 1267 | ); |
| 1268 | assert_eq!( |
| 1269 | LineSegment { |
| 1270 | from: point(4.0, 2.0), |
| 1271 | to: point(0.0, 2.0) |
| 1272 | } |
| 1273 | .clipped(&b), |
| 1274 | Some(LineSegment { |
| 1275 | from: point(3.0, 2.0), |
| 1276 | to: point(1.0, 2.0) |
| 1277 | }) |
| 1278 | ); |
| 1279 | assert_eq!( |
| 1280 | LineSegment { |
| 1281 | from: point(4.0, 3.0), |
| 1282 | to: point(0.0, 3.0) |
| 1283 | } |
| 1284 | .clipped(&b), |
| 1285 | Some(LineSegment { |
| 1286 | from: point(3.0, 3.0), |
| 1287 | to: point(1.0, 3.0) |
| 1288 | }) |
| 1289 | ); |
| 1290 | assert_eq!( |
| 1291 | LineSegment { |
| 1292 | from: point(4.0, 4.0), |
| 1293 | to: point(0.0, 4.0) |
| 1294 | } |
| 1295 | .clipped(&b), |
| 1296 | Some(LineSegment { |
| 1297 | from: point(3.0, 4.0), |
| 1298 | to: point(1.0, 4.0) |
| 1299 | }) |
| 1300 | ); |
| 1301 | assert_eq!( |
| 1302 | LineSegment { |
| 1303 | from: point(4.0, 5.0), |
| 1304 | to: point(0.0, 5.0) |
| 1305 | } |
| 1306 | .clipped(&b), |
| 1307 | None |
| 1308 | ); |
| 1309 | |
| 1310 | assert_eq!( |
| 1311 | LineSegment { |
| 1312 | from: point(0.0, 0.0), |
| 1313 | to: point(0.0, 5.0) |
| 1314 | } |
| 1315 | .clipped(&b), |
| 1316 | None |
| 1317 | ); |
| 1318 | assert_eq!( |
| 1319 | LineSegment { |
| 1320 | from: point(1.0, 0.0), |
| 1321 | to: point(1.0, 5.0) |
| 1322 | } |
| 1323 | .clipped(&b), |
| 1324 | Some(LineSegment { |
| 1325 | from: point(1.0, 2.0), |
| 1326 | to: point(1.0, 4.0) |
| 1327 | }) |
| 1328 | ); |
| 1329 | assert_eq!( |
| 1330 | LineSegment { |
| 1331 | from: point(2.0, 0.0), |
| 1332 | to: point(2.0, 5.0) |
| 1333 | } |
| 1334 | .clipped(&b), |
| 1335 | Some(LineSegment { |
| 1336 | from: point(2.0, 2.0), |
| 1337 | to: point(2.0, 4.0) |
| 1338 | }) |
| 1339 | ); |
| 1340 | assert_eq!( |
| 1341 | LineSegment { |
| 1342 | from: point(3.0, 0.0), |
| 1343 | to: point(3.0, 5.0) |
| 1344 | } |
| 1345 | .clipped(&b), |
| 1346 | Some(LineSegment { |
| 1347 | from: point(3.0, 2.0), |
| 1348 | to: point(3.0, 4.0) |
| 1349 | }) |
| 1350 | ); |
| 1351 | assert_eq!( |
| 1352 | LineSegment { |
| 1353 | from: point(4.0, 0.0), |
| 1354 | to: point(4.0, 5.0) |
| 1355 | } |
| 1356 | .clipped(&b), |
| 1357 | None |
| 1358 | ); |
| 1359 | |
| 1360 | assert_eq!( |
| 1361 | LineSegment { |
| 1362 | from: point(0.0, 5.0), |
| 1363 | to: point(0.0, 0.0) |
| 1364 | } |
| 1365 | .clipped(&b), |
| 1366 | None |
| 1367 | ); |
| 1368 | assert_eq!( |
| 1369 | LineSegment { |
| 1370 | from: point(1.0, 5.0), |
| 1371 | to: point(1.0, 0.0) |
| 1372 | } |
| 1373 | .clipped(&b), |
| 1374 | Some(LineSegment { |
| 1375 | from: point(1.0, 4.0), |
| 1376 | to: point(1.0, 2.0) |
| 1377 | }) |
| 1378 | ); |
| 1379 | assert_eq!( |
| 1380 | LineSegment { |
| 1381 | from: point(2.0, 5.0), |
| 1382 | to: point(2.0, 0.0) |
| 1383 | } |
| 1384 | .clipped(&b), |
| 1385 | Some(LineSegment { |
| 1386 | from: point(2.0, 4.0), |
| 1387 | to: point(2.0, 2.0) |
| 1388 | }) |
| 1389 | ); |
| 1390 | assert_eq!( |
| 1391 | LineSegment { |
| 1392 | from: point(3.0, 5.0), |
| 1393 | to: point(3.0, 0.0) |
| 1394 | } |
| 1395 | .clipped(&b), |
| 1396 | Some(LineSegment { |
| 1397 | from: point(3.0, 4.0), |
| 1398 | to: point(3.0, 2.0) |
| 1399 | }) |
| 1400 | ); |
| 1401 | assert_eq!( |
| 1402 | LineSegment { |
| 1403 | from: point(4.0, 5.0), |
| 1404 | to: point(4.0, 0.0) |
| 1405 | } |
| 1406 | .clipped(&b), |
| 1407 | None |
| 1408 | ); |
| 1409 | |
| 1410 | assert!(approx_eq( |
| 1411 | LineSegment { |
| 1412 | from: point(0.0, 2.0), |
| 1413 | to: point(4.0, 4.0) |
| 1414 | } |
| 1415 | .clipped(&b) |
| 1416 | .unwrap(), |
| 1417 | LineSegment { |
| 1418 | from: point(1.0, 2.5), |
| 1419 | to: point(3.0, 3.5) |
| 1420 | } |
| 1421 | )); |
| 1422 | assert!(approx_eq( |
| 1423 | LineSegment { |
| 1424 | from: point(4.0, 4.0), |
| 1425 | to: point(0.0, 2.0) |
| 1426 | } |
| 1427 | .clipped(&b) |
| 1428 | .unwrap(), |
| 1429 | LineSegment { |
| 1430 | from: point(3.0, 3.5), |
| 1431 | to: point(1.0, 2.5) |
| 1432 | } |
| 1433 | )); |
| 1434 | |
| 1435 | let inside = [ |
| 1436 | LineSegment { |
| 1437 | from: point(1.0, 2.0), |
| 1438 | to: point(3.0, 4.0), |
| 1439 | }, |
| 1440 | LineSegment { |
| 1441 | from: point(1.5, 2.0), |
| 1442 | to: point(1.0, 4.0), |
| 1443 | }, |
| 1444 | LineSegment { |
| 1445 | from: point(1.0, 3.0), |
| 1446 | to: point(2.0, 3.0), |
| 1447 | }, |
| 1448 | ]; |
| 1449 | |
| 1450 | for segment in &inside { |
| 1451 | assert_eq!(segment.clipped(&b), Some(*segment)); |
| 1452 | assert_eq!(segment.flip().clipped(&b), Some(segment.flip())); |
| 1453 | } |
| 1454 | |
| 1455 | let outside = [ |
| 1456 | LineSegment { |
| 1457 | from: point(2.0, 0.0), |
| 1458 | to: point(5.0, 3.0), |
| 1459 | }, |
| 1460 | LineSegment { |
| 1461 | from: point(-20.0, 0.0), |
| 1462 | to: point(4.0, 8.0), |
| 1463 | }, |
| 1464 | ]; |
| 1465 | |
| 1466 | for segment in &outside { |
| 1467 | assert_eq!(segment.clipped(&b), None); |
| 1468 | assert_eq!(segment.flip().clipped(&b), None); |
| 1469 | } |
| 1470 | } |
| 1471 | |
| 1472 | #[test ] |
| 1473 | fn equation() { |
| 1474 | let lines = [ |
| 1475 | Line { |
| 1476 | point: point(100.0f64, 20.0), |
| 1477 | vector: vector(-1.0, 3.0), |
| 1478 | }, |
| 1479 | Line { |
| 1480 | point: point(-30.0, 150.0), |
| 1481 | vector: vector(10.0, 2.0), |
| 1482 | }, |
| 1483 | Line { |
| 1484 | point: point(50.0, -10.0), |
| 1485 | vector: vector(5.0, -1.0), |
| 1486 | }, |
| 1487 | ]; |
| 1488 | |
| 1489 | for line in &lines { |
| 1490 | let eqn = line.equation(); |
| 1491 | use euclid::approxeq::ApproxEq; |
| 1492 | for t in [-100.0, -50.0, 0.0, 25.0, 325.0] { |
| 1493 | let p = line.point + line.vector * t; |
| 1494 | assert!(eqn.solve_y_for_x(p.x).unwrap().approx_eq(&p.y)); |
| 1495 | assert!(eqn.solve_x_for_y(p.y).unwrap().approx_eq(&p.x)); |
| 1496 | } |
| 1497 | } |
| 1498 | } |
| 1499 | |