1 | //! Tools to iterate over paths. |
2 | //! |
3 | //! # Lyon path iterators |
4 | //! |
5 | //! ## Overview |
6 | //! |
7 | //! This module provides a collection of traits to extend the `Iterator` trait when |
8 | //! iterating over paths. |
9 | //! |
10 | //! ## Examples |
11 | //! |
12 | //! ``` |
13 | //! use lyon_path::iterator::*; |
14 | //! use lyon_path::math::{point, vector}; |
15 | //! use lyon_path::{Path, PathEvent}; |
16 | //! |
17 | //! // Start with a path. |
18 | //! let mut builder = Path::builder(); |
19 | //! builder.begin(point(0.0, 0.0)); |
20 | //! builder.line_to(point(10.0, 0.0)); |
21 | //! builder.cubic_bezier_to(point(10.0, 10.0), point(0.0, 10.0), point(0.0, 5.0)); |
22 | //! builder.end(true); |
23 | //! let path = builder.build(); |
24 | //! |
25 | //! // A simple std::iter::Iterator<PathEvent>, |
26 | //! let simple_iter = path.iter(); |
27 | //! |
28 | //! // Make it an iterator over simpler primitives flattened events, |
29 | //! // which do not contain any curve. To do so we approximate each curve |
30 | //! // linear segments according to a tolerance threshold which controls |
31 | //! // the tradeoff between fidelity of the approximation and amount of |
32 | //! // generated events. Let's use a tolerance threshold of 0.01. |
33 | //! // The beauty of this approach is that the flattening happens lazily |
34 | //! // while iterating without allocating memory for the path. |
35 | //! let flattened_iter = path.iter().flattened(0.01); |
36 | //! |
37 | //! for evt in flattened_iter { |
38 | //! match evt { |
39 | //! PathEvent::Begin { at } => { println!(" - move to {:?}" , at); } |
40 | //! PathEvent::Line { from, to } => { println!(" - line {:?} -> {:?}" , from, to); } |
41 | //! PathEvent::End { last, first, close } => { |
42 | //! if close { |
43 | //! println!(" - close {:?} -> {:?}" , last, first); |
44 | //! } else { |
45 | //! println!(" - end" ); |
46 | //! } |
47 | //! } |
48 | //! _ => { panic!() } |
49 | //! } |
50 | //! } |
51 | //! ``` |
52 | //! |
53 | //! Chaining the provided iterators allow performing some path manipulations lazily |
54 | //! without allocating actual path objects to hold the result of the transformations. |
55 | //! |
56 | //! ``` |
57 | //! extern crate lyon_path; |
58 | //! use lyon_path::iterator::*; |
59 | //! use lyon_path::math::{point, Angle, Rotation}; |
60 | //! use lyon_path::Path; |
61 | //! |
62 | //! fn main() { |
63 | //! // In practice it is more common to iterate over Path objects than vectors |
64 | //! // of SVG commands (the former can be constructed from the latter). |
65 | //! let mut builder = Path::builder(); |
66 | //! builder.begin(point(1.0, 1.0)); |
67 | //! builder.line_to(point(2.0, 1.0)); |
68 | //! builder.quadratic_bezier_to(point(2.0, 2.0), point(1.0, 2.0)); |
69 | //! builder.cubic_bezier_to(point(0.0, 2.0), point(0.0, 0.0), point(1.0, 0.0)); |
70 | //! builder.end(true); |
71 | //! let path = builder.build(); |
72 | //! |
73 | //! let transform = Rotation::new(Angle::radians(1.0)); |
74 | //! |
75 | //! for evt in path.iter().transformed(&transform).flattened(0.1) { |
76 | //! // ... |
77 | //! } |
78 | //! } |
79 | //! ``` |
80 | |
81 | use crate::geom::traits::Transformation; |
82 | use crate::geom::{cubic_bezier, quadratic_bezier, CubicBezierSegment, QuadraticBezierSegment}; |
83 | use crate::math::*; |
84 | use crate::{Attributes, Event, PathEvent}; |
85 | |
86 | // TODO: It would be great to add support for attributes in PathIterator. |
87 | |
88 | /// An extension trait for `PathEvent` iterators. |
89 | pub trait PathIterator: Iterator<Item = PathEvent> + Sized { |
90 | /// Returns an iterator that turns curves into line segments. |
91 | fn flattened(self, tolerance: f32) -> Flattened<Self> { |
92 | Flattened::new(tolerance, self) |
93 | } |
94 | |
95 | /// Returns an iterator applying a 2D transform to all of its events. |
96 | fn transformed<T: Transformation<f32>>(self, mat: &T) -> Transformed<Self, T> { |
97 | Transformed::new(transform:mat, self) |
98 | } |
99 | } |
100 | |
101 | impl<Iter> PathIterator for Iter where Iter: Iterator<Item = PathEvent> {} |
102 | |
103 | pub struct NoAttributes<Iter>(pub(crate) Iter); |
104 | |
105 | impl<'l, Iter> NoAttributes<Iter> |
106 | where |
107 | Iter: Iterator<Item = Event<(Point, Attributes<'l>), Point>>, |
108 | { |
109 | pub fn with_attributes(self) -> Iter { |
110 | self.0 |
111 | } |
112 | } |
113 | |
114 | impl<'l, Iter> Iterator for NoAttributes<Iter> |
115 | where |
116 | Iter: Iterator<Item = Event<(Point, Attributes<'l>), Point>>, |
117 | { |
118 | type Item = PathEvent; |
119 | fn next(&mut self) -> Option<PathEvent> { |
120 | self.0.next().map(|event: Event<(Point2D, …), …>| event.with_points()) |
121 | } |
122 | } |
123 | |
124 | /// An iterator that consumes `Event` iterator and yields flattened path events (with no curves). |
125 | pub struct Flattened<Iter> { |
126 | it: Iter, |
127 | current_position: Point, |
128 | current_curve: TmpFlatteningIter, |
129 | tolerance: f32, |
130 | } |
131 | |
132 | enum TmpFlatteningIter { |
133 | Quadratic(quadratic_bezier::Flattened<f32>), |
134 | Cubic(cubic_bezier::Flattened<f32>), |
135 | None, |
136 | } |
137 | |
138 | impl<Iter: Iterator<Item = PathEvent>> Flattened<Iter> { |
139 | /// Create the iterator. |
140 | pub fn new(tolerance: f32, it: Iter) -> Self { |
141 | Flattened { |
142 | it, |
143 | current_position: point(x:0.0, y:0.0), |
144 | current_curve: TmpFlatteningIter::None, |
145 | tolerance, |
146 | } |
147 | } |
148 | } |
149 | |
150 | impl<Iter> Iterator for Flattened<Iter> |
151 | where |
152 | Iter: Iterator<Item = PathEvent>, |
153 | { |
154 | type Item = PathEvent; |
155 | fn next(&mut self) -> Option<PathEvent> { |
156 | match self.current_curve { |
157 | TmpFlatteningIter::Quadratic(ref mut it) => { |
158 | if let Some(to) = it.next() { |
159 | let from = self.current_position; |
160 | self.current_position = to; |
161 | return Some(PathEvent::Line { from, to }); |
162 | } |
163 | } |
164 | TmpFlatteningIter::Cubic(ref mut it) => { |
165 | if let Some(to) = it.next() { |
166 | let from = self.current_position; |
167 | self.current_position = to; |
168 | return Some(PathEvent::Line { from, to }); |
169 | } |
170 | } |
171 | _ => {} |
172 | } |
173 | self.current_curve = TmpFlatteningIter::None; |
174 | match self.it.next() { |
175 | Some(PathEvent::Begin { at }) => Some(PathEvent::Begin { at }), |
176 | Some(PathEvent::Line { from, to }) => Some(PathEvent::Line { from, to }), |
177 | Some(PathEvent::End { last, first, close }) => { |
178 | Some(PathEvent::End { last, first, close }) |
179 | } |
180 | Some(PathEvent::Quadratic { from, ctrl, to }) => { |
181 | self.current_position = from; |
182 | self.current_curve = TmpFlatteningIter::Quadratic( |
183 | QuadraticBezierSegment { from, ctrl, to }.flattened(self.tolerance), |
184 | ); |
185 | self.next() |
186 | } |
187 | Some(PathEvent::Cubic { |
188 | from, |
189 | ctrl1, |
190 | ctrl2, |
191 | to, |
192 | }) => { |
193 | self.current_position = from; |
194 | self.current_curve = TmpFlatteningIter::Cubic( |
195 | CubicBezierSegment { |
196 | from, |
197 | ctrl1, |
198 | ctrl2, |
199 | to, |
200 | } |
201 | .flattened(self.tolerance), |
202 | ); |
203 | self.next() |
204 | } |
205 | None => None, |
206 | } |
207 | } |
208 | |
209 | fn size_hint(&self) -> (usize, Option<usize>) { |
210 | // At minimum, the inner iterator size hint plus the flattening iterator size hint can form the lower |
211 | // bracket. |
212 | // We can't determine a maximum limit. |
213 | let mut lo = self.it.size_hint().0; |
214 | match &self.current_curve { |
215 | TmpFlatteningIter::Quadratic(t) => { |
216 | lo += t.size_hint().0; |
217 | } |
218 | TmpFlatteningIter::Cubic(t) => { |
219 | lo += t.size_hint().0; |
220 | } |
221 | _ => {} |
222 | } |
223 | (lo, None) |
224 | } |
225 | } |
226 | |
227 | /// Applies a 2D transform to a path iterator and yields the resulting path iterator. |
228 | pub struct Transformed<'l, I, T> { |
229 | it: I, |
230 | transform: &'l T, |
231 | } |
232 | |
233 | impl<'l, I, T: Transformation<f32>> Transformed<'l, I, T> |
234 | where |
235 | I: Iterator<Item = PathEvent>, |
236 | { |
237 | /// Creates a new transformed path iterator from a path iterator. |
238 | #[inline ] |
239 | pub fn new(transform: &'l T, it: I) -> Transformed<'l, I, T> { |
240 | Transformed { it, transform } |
241 | } |
242 | } |
243 | |
244 | impl<'l, I, T> Iterator for Transformed<'l, I, T> |
245 | where |
246 | I: Iterator<Item = PathEvent>, |
247 | T: Transformation<f32>, |
248 | { |
249 | type Item = PathEvent; |
250 | fn next(&mut self) -> Option<PathEvent> { |
251 | match self.it.next() { |
252 | None => None, |
253 | Some(ref evt: &Event, …>) => Some(evt.transformed(self.transform)), |
254 | } |
255 | } |
256 | } |
257 | |
258 | /// An iterator that consumes an iterator of `Point`s and produces `Event`s. |
259 | /// |
260 | /// # Example |
261 | /// |
262 | /// ``` |
263 | /// # extern crate lyon_path; |
264 | /// # use lyon_path::iterator::FromPolyline; |
265 | /// # use lyon_path::math::point; |
266 | /// # fn main() { |
267 | /// let points = [ |
268 | /// point(1.0, 1.0), |
269 | /// point(2.0, 1.0), |
270 | /// point(1.0, 2.0) |
271 | /// ]; |
272 | /// let iter = FromPolyline::closed(points.iter().cloned()); |
273 | /// # } |
274 | /// ``` |
275 | pub struct FromPolyline<Iter> { |
276 | iter: Iter, |
277 | current: Point, |
278 | first: Point, |
279 | is_first: bool, |
280 | done: bool, |
281 | close: bool, |
282 | } |
283 | |
284 | impl<Iter: Iterator<Item = Point>> FromPolyline<Iter> { |
285 | pub fn new(close: bool, iter: Iter) -> Self { |
286 | FromPolyline { |
287 | iter, |
288 | current: point(x:0.0, y:0.0), |
289 | first: point(x:0.0, y:0.0), |
290 | is_first: true, |
291 | done: false, |
292 | close, |
293 | } |
294 | } |
295 | |
296 | pub fn closed(iter: Iter) -> Self { |
297 | FromPolyline::new(close:true, iter) |
298 | } |
299 | |
300 | pub fn open(iter: Iter) -> Self { |
301 | FromPolyline::new(close:false, iter) |
302 | } |
303 | } |
304 | |
305 | impl<Iter> Iterator for FromPolyline<Iter> |
306 | where |
307 | Iter: Iterator<Item = Point>, |
308 | { |
309 | type Item = PathEvent; |
310 | |
311 | fn next(&mut self) -> Option<PathEvent> { |
312 | if self.done { |
313 | return None; |
314 | } |
315 | |
316 | if let Some(next) = self.iter.next() { |
317 | debug_assert!(next.x.is_finite()); |
318 | debug_assert!(next.y.is_finite()); |
319 | let from = self.current; |
320 | self.current = next; |
321 | return if self.is_first { |
322 | self.is_first = false; |
323 | self.first = next; |
324 | Some(PathEvent::Begin { at: next }) |
325 | } else { |
326 | Some(PathEvent::Line { from, to: next }) |
327 | }; |
328 | } |
329 | |
330 | self.done = true; |
331 | |
332 | Some(PathEvent::End { |
333 | last: self.current, |
334 | first: self.first, |
335 | close: self.close, |
336 | }) |
337 | } |
338 | } |
339 | |
340 | #[test ] |
341 | fn test_from_polyline_open() { |
342 | let points = &[ |
343 | point(1.0, 1.0), |
344 | point(3.0, 1.0), |
345 | point(4.0, 5.0), |
346 | point(5.0, 2.0), |
347 | ]; |
348 | |
349 | let mut evts = FromPolyline::open(points.iter().cloned()); |
350 | |
351 | assert_eq!( |
352 | evts.next(), |
353 | Some(PathEvent::Begin { |
354 | at: point(1.0, 1.0) |
355 | }) |
356 | ); |
357 | assert_eq!( |
358 | evts.next(), |
359 | Some(PathEvent::Line { |
360 | from: point(1.0, 1.0), |
361 | to: point(3.0, 1.0) |
362 | }) |
363 | ); |
364 | assert_eq!( |
365 | evts.next(), |
366 | Some(PathEvent::Line { |
367 | from: point(3.0, 1.0), |
368 | to: point(4.0, 5.0) |
369 | }) |
370 | ); |
371 | assert_eq!( |
372 | evts.next(), |
373 | Some(PathEvent::Line { |
374 | from: point(4.0, 5.0), |
375 | to: point(5.0, 2.0) |
376 | }) |
377 | ); |
378 | assert_eq!( |
379 | evts.next(), |
380 | Some(PathEvent::End { |
381 | last: point(5.0, 2.0), |
382 | first: point(1.0, 1.0), |
383 | close: false |
384 | }) |
385 | ); |
386 | assert_eq!(evts.next(), None); |
387 | } |
388 | |
389 | #[test ] |
390 | fn test_from_polyline_closed() { |
391 | let points = &[ |
392 | point(1.0, 1.0), |
393 | point(3.0, 1.0), |
394 | point(4.0, 5.0), |
395 | point(5.0, 2.0), |
396 | ]; |
397 | |
398 | let mut evts = FromPolyline::closed(points.iter().cloned()); |
399 | |
400 | assert_eq!( |
401 | evts.next(), |
402 | Some(PathEvent::Begin { |
403 | at: point(1.0, 1.0) |
404 | }) |
405 | ); |
406 | assert_eq!( |
407 | evts.next(), |
408 | Some(PathEvent::Line { |
409 | from: point(1.0, 1.0), |
410 | to: point(3.0, 1.0) |
411 | }) |
412 | ); |
413 | assert_eq!( |
414 | evts.next(), |
415 | Some(PathEvent::Line { |
416 | from: point(3.0, 1.0), |
417 | to: point(4.0, 5.0) |
418 | }) |
419 | ); |
420 | assert_eq!( |
421 | evts.next(), |
422 | Some(PathEvent::Line { |
423 | from: point(4.0, 5.0), |
424 | to: point(5.0, 2.0) |
425 | }) |
426 | ); |
427 | assert_eq!( |
428 | evts.next(), |
429 | Some(PathEvent::End { |
430 | last: point(5.0, 2.0), |
431 | first: point(1.0, 1.0), |
432 | close: true |
433 | }) |
434 | ); |
435 | assert_eq!(evts.next(), None); |
436 | } |
437 | |