1 | //! Streaming compression functionality. |
2 | |
3 | use alloc::boxed::Box; |
4 | use core::convert::TryInto; |
5 | use core::{cmp, mem}; |
6 | |
7 | use super::super::*; |
8 | use super::deflate_flags::*; |
9 | use super::CompressionLevel; |
10 | use crate::deflate::buffer::{ |
11 | update_hash, HashBuffers, LocalBuf, LZ_CODE_BUF_MASK, LZ_CODE_BUF_SIZE, LZ_DICT_FULL_SIZE, |
12 | LZ_HASH_BITS, LZ_HASH_SHIFT, LZ_HASH_SIZE, OUT_BUF_SIZE, |
13 | }; |
14 | use crate::deflate::stored::compress_stored; |
15 | use crate::deflate::zlib; |
16 | use crate::shared::{update_adler32, HUFFMAN_LENGTH_ORDER, MZ_ADLER32_INIT}; |
17 | use crate::DataFormat; |
18 | |
19 | // Currently not bubbled up outside this module, so can fill in with more |
20 | // context eventually if needed. |
21 | type Result<T, E = Error> = core::result::Result<T, E>; |
22 | pub(crate) struct Error {} |
23 | |
24 | pub(crate) const MAX_PROBES_MASK: u32 = 0xFFF; |
25 | |
26 | const MAX_SUPPORTED_HUFF_CODESIZE: usize = 15; |
27 | |
28 | // Length code for length values - 256. |
29 | // We use an offset to help with bound check avoidance as we can mask values to 32 |
30 | // and it also saves some memory as we can use a u8 instead of a u16. |
31 | // Conventiently our table is large enough that we can get away with using an |
32 | // offset of 256 which results in very efficient code. |
33 | const LEN_SYM: [u8; 256] = [ |
34 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, |
35 | 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, |
36 | 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, |
37 | 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, |
38 | 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, |
39 | 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, |
40 | 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, |
41 | 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, |
42 | 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, |
43 | 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, |
44 | 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, |
45 | ]; |
46 | |
47 | const LEN_SYM_OFFSET: usize = 256; |
48 | |
49 | /// Number of extra bits for length values. |
50 | #[rustfmt::skip] |
51 | const LEN_EXTRA: [u8; 256] = [ |
52 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, |
53 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
54 | 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
55 | 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
56 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
57 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
58 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
59 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
60 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
61 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
62 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
63 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
64 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
65 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
66 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
67 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 0 |
68 | ]; |
69 | |
70 | /// Distance codes for distances smaller than 512. |
71 | #[rustfmt::skip] |
72 | const SMALL_DIST_SYM: [u8; 512] = [ |
73 | 0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, |
74 | 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, |
75 | 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, |
76 | 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, |
77 | 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, |
78 | 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, |
79 | 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, |
80 | 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, |
81 | 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, |
82 | 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, |
83 | 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, |
84 | 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, |
85 | 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, |
86 | 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, |
87 | 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, |
88 | 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, |
89 | 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, |
90 | 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, |
91 | 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, |
92 | 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, |
93 | 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, |
94 | 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, |
95 | 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, |
96 | 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, |
97 | 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, |
98 | 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, |
99 | 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, |
100 | 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, |
101 | 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, |
102 | 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, |
103 | 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, |
104 | 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17 |
105 | ]; |
106 | |
107 | /// Number of extra bits for distances smaller than 512. |
108 | #[rustfmt::skip] |
109 | const SMALL_DIST_EXTRA: [u8; 512] = [ |
110 | 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
111 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
112 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
113 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
114 | 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, |
115 | 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, |
116 | 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, |
117 | 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, |
118 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
119 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
120 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
121 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
122 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
123 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
124 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
125 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 |
126 | ]; |
127 | |
128 | /// Base values to calculate distances above 512. |
129 | #[rustfmt::skip] |
130 | const LARGE_DIST_SYM: [u8; 128] = [ |
131 | 0, 0, 18, 19, 20, 20, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, |
132 | 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, |
133 | 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, |
134 | 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, |
135 | 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, |
136 | 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, |
137 | 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, |
138 | 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29 |
139 | ]; |
140 | |
141 | /// Number of extra bits distances above 512. |
142 | #[rustfmt::skip] |
143 | const LARGE_DIST_EXTRA: [u8; 128] = [ |
144 | 0, 0, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, |
145 | 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, |
146 | 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, |
147 | 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, |
148 | 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, |
149 | 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, |
150 | 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, |
151 | 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13 |
152 | ]; |
153 | |
154 | #[rustfmt::skip] |
155 | const BITMASKS: [u32; 17] = [ |
156 | 0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, |
157 | 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF |
158 | ]; |
159 | |
160 | /// The maximum number of checks for matches in the hash table the compressor will make for each |
161 | /// compression level. |
162 | pub(crate) const NUM_PROBES: [u16; 11] = [0, 1, 6, 32, 16, 32, 128, 256, 512, 768, 1500]; |
163 | |
164 | #[derive (Copy, Clone)] |
165 | struct SymFreq { |
166 | key: u16, |
167 | sym_index: u16, |
168 | } |
169 | |
170 | pub mod deflate_flags { |
171 | /// Whether to use a zlib wrapper. |
172 | pub const TDEFL_WRITE_ZLIB_HEADER: u32 = 0x0000_1000; |
173 | /// Should we compute the adler32 checksum. |
174 | pub const TDEFL_COMPUTE_ADLER32: u32 = 0x0000_2000; |
175 | /// Should we use greedy parsing (as opposed to lazy parsing where look ahead one or more |
176 | /// bytes to check for better matches.) |
177 | pub const TDEFL_GREEDY_PARSING_FLAG: u32 = 0x0000_4000; |
178 | /// Used in miniz to skip zero-initializing hash and dict. We don't do this here, so |
179 | /// this flag is ignored. |
180 | pub const TDEFL_NONDETERMINISTIC_PARSING_FLAG: u32 = 0x0000_8000; |
181 | /// Only look for matches with a distance of 0. |
182 | pub const TDEFL_RLE_MATCHES: u32 = 0x0001_0000; |
183 | /// Only use matches that are at least 6 bytes long. |
184 | pub const TDEFL_FILTER_MATCHES: u32 = 0x0002_0000; |
185 | /// Force the compressor to only output static blocks. (Blocks using the default huffman codes |
186 | /// specified in the deflate specification.) |
187 | pub const TDEFL_FORCE_ALL_STATIC_BLOCKS: u32 = 0x0004_0000; |
188 | /// Force the compressor to only output raw/uncompressed blocks. |
189 | pub const TDEFL_FORCE_ALL_RAW_BLOCKS: u32 = 0x0008_0000; |
190 | } |
191 | |
192 | /// Strategy setting for compression. |
193 | /// |
194 | /// The non-default settings offer some special-case compression variants. |
195 | #[repr (i32)] |
196 | #[derive (Debug, Copy, Clone, PartialEq, Eq, Hash)] |
197 | pub enum CompressionStrategy { |
198 | /// Don't use any of the special strategies. |
199 | Default = 0, |
200 | /// Only use matches that are at least 5 bytes long. |
201 | Filtered = 1, |
202 | /// Don't look for matches, only huffman encode the literals. |
203 | HuffmanOnly = 2, |
204 | /// Only look for matches with a distance of 1, i.e do run-length encoding only. |
205 | RLE = 3, |
206 | /// Only use static/fixed blocks. (Blocks using the default huffman codes |
207 | /// specified in the deflate specification.) |
208 | Fixed = 4, |
209 | } |
210 | |
211 | impl From<CompressionStrategy> for i32 { |
212 | #[inline (always)] |
213 | fn from(value: CompressionStrategy) -> Self { |
214 | value as i32 |
215 | } |
216 | } |
217 | |
218 | /// A list of deflate flush types. |
219 | #[derive (Debug, Copy, Clone, PartialEq, Eq, Hash)] |
220 | pub enum TDEFLFlush { |
221 | /// Normal operation. |
222 | /// |
223 | /// Compress as much as there is space for, and then return waiting for more input. |
224 | None = 0, |
225 | |
226 | /// Try to flush all the current data and output an empty raw block. |
227 | Sync = 2, |
228 | |
229 | /// Same as [`Sync`][Self::Sync], but reset the dictionary so that the following data does not |
230 | /// depend on previous data. |
231 | Full = 3, |
232 | |
233 | /// Try to flush everything and end the deflate stream. |
234 | /// |
235 | /// On success this will yield a [`TDEFLStatus::Done`] return status. |
236 | Finish = 4, |
237 | } |
238 | |
239 | impl From<MZFlush> for TDEFLFlush { |
240 | fn from(flush: MZFlush) -> Self { |
241 | match flush { |
242 | MZFlush::None => TDEFLFlush::None, |
243 | MZFlush::Sync => TDEFLFlush::Sync, |
244 | MZFlush::Full => TDEFLFlush::Full, |
245 | MZFlush::Finish => TDEFLFlush::Finish, |
246 | _ => TDEFLFlush::None, // TODO: ??? What to do ??? |
247 | } |
248 | } |
249 | } |
250 | |
251 | impl TDEFLFlush { |
252 | pub const fn new(flush: i32) -> Result<Self, MZError> { |
253 | match flush { |
254 | 0 => Ok(TDEFLFlush::None), |
255 | 2 => Ok(TDEFLFlush::Sync), |
256 | 3 => Ok(TDEFLFlush::Full), |
257 | 4 => Ok(TDEFLFlush::Finish), |
258 | _ => Err(MZError::Param), |
259 | } |
260 | } |
261 | } |
262 | |
263 | /// Return status of compression. |
264 | #[repr (i32)] |
265 | #[derive (Debug, Copy, Clone, PartialEq, Eq, Hash)] |
266 | pub enum TDEFLStatus { |
267 | /// Usage error. |
268 | /// |
269 | /// This indicates that either the [`CompressorOxide`] experienced a previous error, or the |
270 | /// stream has already been [`TDEFLFlush::Finish`]'d. |
271 | BadParam = -2, |
272 | |
273 | /// Error putting data into output buffer. |
274 | /// |
275 | /// This usually indicates a too-small buffer. |
276 | PutBufFailed = -1, |
277 | |
278 | /// Compression succeeded normally. |
279 | Okay = 0, |
280 | |
281 | /// Compression succeeded and the deflate stream was ended. |
282 | /// |
283 | /// This is the result of calling compression with [`TDEFLFlush::Finish`]. |
284 | Done = 1, |
285 | } |
286 | |
287 | const MAX_HUFF_SYMBOLS: usize = 288; |
288 | /// Size of hash chain for fast compression mode. |
289 | const LEVEL1_HASH_SIZE_MASK: u32 = 4095; |
290 | /// The number of huffman tables used by the compressor. |
291 | /// Literal/length, Distances and Length of the huffman codes for the other two tables. |
292 | const MAX_HUFF_TABLES: usize = 3; |
293 | /// Literal/length codes |
294 | const MAX_HUFF_SYMBOLS_0: usize = 288; |
295 | /// Distance codes. |
296 | const MAX_HUFF_SYMBOLS_1: usize = 32; |
297 | /// Huffman length values. |
298 | const MAX_HUFF_SYMBOLS_2: usize = 19; |
299 | /// Size of the chained hash table. |
300 | pub(crate) const LZ_DICT_SIZE: usize = 32_768; |
301 | /// Mask used when stepping through the hash chains. |
302 | pub(crate) const LZ_DICT_SIZE_MASK: usize = (LZ_DICT_SIZE as u32 - 1) as usize; |
303 | /// The minimum length of a match. |
304 | pub(crate) const MIN_MATCH_LEN: u8 = 3; |
305 | /// The maximum length of a match. |
306 | pub(crate) const MAX_MATCH_LEN: usize = 258; |
307 | |
308 | pub(crate) const DEFAULT_FLAGS: u32 = NUM_PROBES[4] as u32 | TDEFL_WRITE_ZLIB_HEADER; |
309 | |
310 | #[cfg (test)] |
311 | #[inline ] |
312 | fn write_u16_le(val: u16, slice: &mut [u8], pos: usize) { |
313 | slice[pos] = val as u8; |
314 | slice[pos + 1] = (val >> 8) as u8; |
315 | } |
316 | |
317 | // Read the two bytes starting at pos and interpret them as an u16. |
318 | #[inline (always)] |
319 | const fn read_u16_le<const N: usize>(slice: &[u8; N], pos: usize) -> u16 { |
320 | // The compiler is smart enough to optimize this into an unaligned load. |
321 | slice[pos] as u16 | ((slice[pos + 1] as u16) << 8) |
322 | } |
323 | |
324 | /// Main compression struct. |
325 | pub struct CompressorOxide { |
326 | pub(crate) lz: LZOxide, |
327 | pub(crate) params: ParamsOxide, |
328 | /// Put HuffmanOxide on the heap with default trick to avoid |
329 | /// excessive stack copies. |
330 | pub(crate) huff: Box<HuffmanOxide>, |
331 | pub(crate) dict: DictOxide, |
332 | } |
333 | |
334 | impl CompressorOxide { |
335 | /// Create a new `CompressorOxide` with the given flags. |
336 | /// |
337 | /// # Notes |
338 | /// This function may be changed to take different parameters in the future. |
339 | pub fn new(flags: u32) -> Self { |
340 | CompressorOxide { |
341 | lz: LZOxide::new(), |
342 | params: ParamsOxide::new(flags), |
343 | huff: Box::default(), |
344 | dict: DictOxide::new(flags), |
345 | } |
346 | } |
347 | |
348 | /// Get the adler32 checksum of the currently encoded data. |
349 | pub const fn adler32(&self) -> u32 { |
350 | self.params.adler32 |
351 | } |
352 | |
353 | /// Get the return status of the previous [`compress`](fn.compress.html) |
354 | /// call with this compressor. |
355 | pub const fn prev_return_status(&self) -> TDEFLStatus { |
356 | self.params.prev_return_status |
357 | } |
358 | |
359 | /// Get the raw compressor flags. |
360 | /// |
361 | /// # Notes |
362 | /// This function may be deprecated or changed in the future to use more rust-style flags. |
363 | pub const fn flags(&self) -> i32 { |
364 | self.params.flags as i32 |
365 | } |
366 | |
367 | /// Returns whether the compressor is wrapping the data in a zlib format or not. |
368 | pub const fn data_format(&self) -> DataFormat { |
369 | if (self.params.flags & TDEFL_WRITE_ZLIB_HEADER) != 0 { |
370 | DataFormat::Zlib |
371 | } else { |
372 | DataFormat::Raw |
373 | } |
374 | } |
375 | |
376 | /// Reset the state of the compressor, keeping the same parameters. |
377 | /// |
378 | /// This avoids re-allocating data. |
379 | pub fn reset(&mut self) { |
380 | // LZ buf and huffman has no settings or dynamic memory |
381 | // that needs to be saved, so we simply replace them. |
382 | self.lz = LZOxide::new(); |
383 | self.params.reset(); |
384 | *self.huff = HuffmanOxide::default(); |
385 | self.dict.reset(); |
386 | } |
387 | |
388 | /// Set the compression level of the compressor. |
389 | /// |
390 | /// Using this to change level after compression has started is supported. |
391 | /// # Notes |
392 | /// The compression strategy will be reset to the default one when this is called. |
393 | pub fn set_compression_level(&mut self, level: CompressionLevel) { |
394 | let format = self.data_format(); |
395 | self.set_format_and_level(format, level as u8); |
396 | } |
397 | |
398 | /// Set the compression level of the compressor using an integer value. |
399 | /// |
400 | /// Using this to change level after compression has started is supported. |
401 | /// # Notes |
402 | /// The compression strategy will be reset to the default one when this is called. |
403 | pub fn set_compression_level_raw(&mut self, level: u8) { |
404 | let format = self.data_format(); |
405 | self.set_format_and_level(format, level); |
406 | } |
407 | |
408 | /// Update the compression settings of the compressor. |
409 | /// |
410 | /// Changing the `DataFormat` after compression has started will result in |
411 | /// a corrupted stream. |
412 | /// |
413 | /// # Notes |
414 | /// This function mainly intended for setting the initial settings after e.g creating with |
415 | /// `default` or after calling `CompressorOxide::reset()`, and behaviour may be changed |
416 | /// to disallow calling it after starting compression in the future. |
417 | pub fn set_format_and_level(&mut self, data_format: DataFormat, level: u8) { |
418 | let flags = create_comp_flags_from_zip_params( |
419 | level.into(), |
420 | data_format.to_window_bits(), |
421 | CompressionStrategy::Default as i32, |
422 | ); |
423 | self.params.update_flags(flags); |
424 | self.dict.update_flags(flags); |
425 | } |
426 | } |
427 | |
428 | impl Default for CompressorOxide { |
429 | /// Initialize the compressor with a level of 4, zlib wrapper and |
430 | /// the default strategy. |
431 | fn default() -> Self { |
432 | CompressorOxide { |
433 | lz: LZOxide::new(), |
434 | params: ParamsOxide::new(DEFAULT_FLAGS), |
435 | huff: Box::default(), |
436 | dict: DictOxide::new(DEFAULT_FLAGS), |
437 | } |
438 | } |
439 | } |
440 | |
441 | /// Callback function and user used in `compress_to_output`. |
442 | pub struct CallbackFunc<'a> { |
443 | pub put_buf_func: &'a mut dyn FnMut(&[u8]) -> bool, |
444 | } |
445 | |
446 | impl CallbackFunc<'_> { |
447 | fn flush_output( |
448 | &mut self, |
449 | saved_output: SavedOutputBufferOxide, |
450 | params: &mut ParamsOxide, |
451 | ) -> i32 { |
452 | // TODO: As this could be unsafe since |
453 | // we can't verify the function pointer |
454 | // this whole function should maybe be unsafe as well. |
455 | let call_success: bool = (self.put_buf_func)(¶ms.local_buf.b[0..saved_output.pos]); |
456 | |
457 | if !call_success { |
458 | params.prev_return_status = TDEFLStatus::PutBufFailed; |
459 | return params.prev_return_status as i32; |
460 | } |
461 | |
462 | params.flush_remaining as i32 |
463 | } |
464 | } |
465 | |
466 | struct CallbackBuf<'a> { |
467 | pub out_buf: &'a mut [u8], |
468 | } |
469 | |
470 | impl CallbackBuf<'_> { |
471 | fn flush_output( |
472 | &mut self, |
473 | saved_output: SavedOutputBufferOxide, |
474 | params: &mut ParamsOxide, |
475 | ) -> i32 { |
476 | if saved_output.local { |
477 | let n: usize = cmp::min(v1:saved_output.pos, self.out_buf.len() - params.out_buf_ofs); |
478 | (self.out_buf[params.out_buf_ofs..params.out_buf_ofs + n]) |
479 | .copy_from_slice(¶ms.local_buf.b[..n]); |
480 | |
481 | params.out_buf_ofs += n; |
482 | if saved_output.pos != n { |
483 | params.flush_ofs = n as u32; |
484 | params.flush_remaining = (saved_output.pos - n) as u32; |
485 | } |
486 | } else { |
487 | params.out_buf_ofs += saved_output.pos; |
488 | } |
489 | |
490 | params.flush_remaining as i32 |
491 | } |
492 | } |
493 | |
494 | enum CallbackOut<'a> { |
495 | Func(CallbackFunc<'a>), |
496 | Buf(CallbackBuf<'a>), |
497 | } |
498 | |
499 | impl CallbackOut<'_> { |
500 | fn new_output_buffer<'b>( |
501 | &'b mut self, |
502 | local_buf: &'b mut [u8], |
503 | out_buf_ofs: usize, |
504 | ) -> OutputBufferOxide<'b> { |
505 | let is_local; |
506 | let buf_len = OUT_BUF_SIZE - 16; |
507 | let chosen_buffer = match *self { |
508 | CallbackOut::Buf(ref mut cb) if cb.out_buf.len() - out_buf_ofs >= OUT_BUF_SIZE => { |
509 | is_local = false; |
510 | &mut cb.out_buf[out_buf_ofs..out_buf_ofs + buf_len] |
511 | } |
512 | _ => { |
513 | is_local = true; |
514 | &mut local_buf[..buf_len] |
515 | } |
516 | }; |
517 | |
518 | OutputBufferOxide { |
519 | inner: chosen_buffer, |
520 | inner_pos: 0, |
521 | local: is_local, |
522 | bit_buffer: 0, |
523 | bits_in: 0, |
524 | } |
525 | } |
526 | } |
527 | |
528 | pub(crate) struct CallbackOxide<'a> { |
529 | in_buf: Option<&'a [u8]>, |
530 | in_buf_size: Option<&'a mut usize>, |
531 | out_buf_size: Option<&'a mut usize>, |
532 | out: CallbackOut<'a>, |
533 | } |
534 | |
535 | impl<'a> CallbackOxide<'a> { |
536 | fn new_callback_buf(in_buf: &'a [u8], out_buf: &'a mut [u8]) -> Self { |
537 | CallbackOxide { |
538 | in_buf: Some(in_buf), |
539 | in_buf_size: None, |
540 | out_buf_size: None, |
541 | out: CallbackOut::Buf(CallbackBuf { out_buf }), |
542 | } |
543 | } |
544 | |
545 | fn new_callback_func(in_buf: &'a [u8], callback_func: CallbackFunc<'a>) -> Self { |
546 | CallbackOxide { |
547 | in_buf: Some(in_buf), |
548 | in_buf_size: None, |
549 | out_buf_size: None, |
550 | out: CallbackOut::Func(callback_func), |
551 | } |
552 | } |
553 | |
554 | fn update_size(&mut self, in_size: Option<usize>, out_size: Option<usize>) { |
555 | if let (Some(in_size), Some(size)) = (in_size, self.in_buf_size.as_mut()) { |
556 | **size = in_size; |
557 | } |
558 | |
559 | if let (Some(out_size), Some(size)) = (out_size, self.out_buf_size.as_mut()) { |
560 | **size = out_size |
561 | } |
562 | } |
563 | |
564 | fn flush_output( |
565 | &mut self, |
566 | saved_output: SavedOutputBufferOxide, |
567 | params: &mut ParamsOxide, |
568 | ) -> i32 { |
569 | if saved_output.pos == 0 { |
570 | return params.flush_remaining as i32; |
571 | } |
572 | |
573 | self.update_size(Some(params.src_pos), None); |
574 | match self.out { |
575 | CallbackOut::Func(ref mut cf) => cf.flush_output(saved_output, params), |
576 | CallbackOut::Buf(ref mut cb) => cb.flush_output(saved_output, params), |
577 | } |
578 | } |
579 | |
580 | pub(crate) fn buf(&mut self) -> Option<&'a [u8]> { |
581 | self.in_buf |
582 | } |
583 | } |
584 | |
585 | struct OutputBufferOxide<'a> { |
586 | pub inner: &'a mut [u8], |
587 | pub inner_pos: usize, |
588 | pub local: bool, |
589 | |
590 | pub bit_buffer: u32, |
591 | pub bits_in: u32, |
592 | } |
593 | |
594 | impl OutputBufferOxide<'_> { |
595 | /// Write bits to the bit buffer and flushes |
596 | /// the bit buffer so any whole bytes are output |
597 | /// to the underlying buffer. |
598 | fn put_bits(&mut self, bits: u32, len: u32) { |
599 | // TODO: Removing this assertion worsens performance |
600 | // Need to figure out why |
601 | assert!(bits <= ((1u32 << len) - 1u32)); |
602 | self.bit_buffer |= bits << self.bits_in; |
603 | self.bits_in += len; |
604 | |
605 | while self.bits_in >= 8 { |
606 | self.inner[self.inner_pos] = self.bit_buffer as u8; |
607 | self.inner_pos += 1; |
608 | self.bit_buffer >>= 8; |
609 | self.bits_in -= 8; |
610 | } |
611 | } |
612 | |
613 | #[inline ] |
614 | /// Write the provided bits to the bit buffer without flushing |
615 | /// anything. Does not check if there is actually space for it. |
616 | fn put_bits_no_flush(&mut self, bits: u32, len: u32) { |
617 | self.bit_buffer |= bits << self.bits_in; |
618 | self.bits_in += len; |
619 | } |
620 | |
621 | const fn save(&self) -> SavedOutputBufferOxide { |
622 | SavedOutputBufferOxide { |
623 | pos: self.inner_pos, |
624 | bit_buffer: self.bit_buffer, |
625 | bits_in: self.bits_in, |
626 | local: self.local, |
627 | } |
628 | } |
629 | |
630 | fn load(&mut self, saved: SavedOutputBufferOxide) { |
631 | self.inner_pos = saved.pos; |
632 | self.bit_buffer = saved.bit_buffer; |
633 | self.bits_in = saved.bits_in; |
634 | self.local = saved.local; |
635 | } |
636 | |
637 | #[inline ] |
638 | /// Pad the bit buffer to a whole byte with |
639 | /// zeroes and write that byte to the output buffer. |
640 | fn pad_to_bytes(&mut self) { |
641 | if self.bits_in != 0 { |
642 | let len = 8 - self.bits_in; |
643 | self.put_bits(0, len); |
644 | } |
645 | } |
646 | |
647 | #[inline ] |
648 | fn write_bytes(&mut self, bytes: &[u8]) { |
649 | debug_assert_eq!(self.bits_in, 0); |
650 | self.inner[self.inner_pos..self.inner_pos + bytes.len()].copy_from_slice(bytes); |
651 | self.inner_pos += bytes.len(); |
652 | } |
653 | } |
654 | |
655 | struct SavedOutputBufferOxide { |
656 | pub pos: usize, |
657 | pub bit_buffer: u32, |
658 | pub bits_in: u32, |
659 | pub local: bool, |
660 | } |
661 | |
662 | struct BitBuffer { |
663 | pub bit_buffer: u64, |
664 | pub bits_in: u32, |
665 | } |
666 | |
667 | impl BitBuffer { |
668 | fn put_fast(&mut self, bits: u64, len: u32) { |
669 | self.bit_buffer |= bits << self.bits_in; |
670 | self.bits_in += len; |
671 | } |
672 | |
673 | fn flush(&mut self, output: &mut OutputBufferOxide) -> Result<()> { |
674 | let pos: usize = output.inner_pos; |
675 | { |
676 | // isolation to please borrow checker |
677 | let inner: &mut [u8] = &mut output.inner[pos..pos + 8]; |
678 | let bytes: [u8; _] = u64::to_le_bytes(self.bit_buffer); |
679 | inner.copy_from_slice(&bytes); |
680 | } |
681 | match output.inner_pos.checked_add((self.bits_in >> 3) as usize) { |
682 | Some(n: usize) if n <= output.inner.len() => output.inner_pos = n, |
683 | _ => return Err(Error {}), |
684 | } |
685 | self.bit_buffer >>= self.bits_in & !7; |
686 | self.bits_in &= 7; |
687 | Ok(()) |
688 | } |
689 | } |
690 | |
691 | /// A struct containing data about huffman codes and symbol frequencies. |
692 | /// |
693 | /// NOTE: Only the literal/lengths have enough symbols to actually use |
694 | /// the full array. It's unclear why it's defined like this in miniz, |
695 | /// it could be for cache/alignment reasons. |
696 | pub(crate) struct HuffmanOxide { |
697 | /// Number of occurrences of each symbol. |
698 | pub count: [[u16; MAX_HUFF_SYMBOLS]; MAX_HUFF_TABLES], |
699 | /// The bits of the huffman code assigned to the symbol |
700 | pub codes: [[u16; MAX_HUFF_SYMBOLS]; MAX_HUFF_TABLES], |
701 | /// The length of the huffman code assigned to the symbol. |
702 | pub code_sizes: [[u8; MAX_HUFF_SYMBOLS]; MAX_HUFF_TABLES], |
703 | } |
704 | |
705 | /// Tables used for literal/lengths in `HuffmanOxide`. |
706 | const LITLEN_TABLE: usize = 0; |
707 | /// Tables for distances. |
708 | const DIST_TABLE: usize = 1; |
709 | /// Tables for the run-length encoded huffman lengths for literals/lengths/distances. |
710 | const HUFF_CODES_TABLE: usize = 2; |
711 | |
712 | /// Status of RLE encoding of huffman code lengths. |
713 | struct Rle { |
714 | pub z_count: u32, |
715 | pub repeat_count: u16, |
716 | pub prev_code_size: u8, |
717 | } |
718 | |
719 | impl Rle { |
720 | fn prev_code_size( |
721 | &mut self, |
722 | packed_code_sizes: &mut [u8], |
723 | packed_pos: &mut usize, |
724 | h: &mut HuffmanOxide, |
725 | ) -> Result<()> { |
726 | let mut write = |buf| write(buf, packed_code_sizes, packed_pos); |
727 | let counts = &mut h.count[HUFF_CODES_TABLE]; |
728 | if self.repeat_count != 0 { |
729 | if self.repeat_count < 3 { |
730 | counts[self.prev_code_size as usize] = |
731 | counts[self.prev_code_size as usize].wrapping_add(self.repeat_count); |
732 | let code = self.prev_code_size; |
733 | write(&[code, code, code][..self.repeat_count as usize])?; |
734 | } else { |
735 | counts[16] = counts[16].wrapping_add(1); |
736 | write(&[16, (self.repeat_count - 3) as u8][..])?; |
737 | } |
738 | self.repeat_count = 0; |
739 | } |
740 | |
741 | Ok(()) |
742 | } |
743 | |
744 | fn zero_code_size( |
745 | &mut self, |
746 | packed_code_sizes: &mut [u8], |
747 | packed_pos: &mut usize, |
748 | h: &mut HuffmanOxide, |
749 | ) -> Result<()> { |
750 | let mut write = |buf| write(buf, packed_code_sizes, packed_pos); |
751 | let counts = &mut h.count[HUFF_CODES_TABLE]; |
752 | if self.z_count != 0 { |
753 | if self.z_count < 3 { |
754 | counts[0] = counts[0].wrapping_add(self.z_count as u16); |
755 | write(&[0, 0, 0][..self.z_count as usize])?; |
756 | } else if self.z_count <= 10 { |
757 | counts[17] = counts[17].wrapping_add(1); |
758 | write(&[17, (self.z_count - 3) as u8][..])?; |
759 | } else { |
760 | counts[18] = counts[18].wrapping_add(1); |
761 | write(&[18, (self.z_count - 11) as u8][..])?; |
762 | } |
763 | self.z_count = 0; |
764 | } |
765 | |
766 | Ok(()) |
767 | } |
768 | } |
769 | |
770 | fn write(src: &[u8], dst: &mut [u8], dst_pos: &mut usize) -> Result<()> { |
771 | match dst.get_mut(*dst_pos..*dst_pos + src.len()) { |
772 | Some(s: &mut [u8]) => s.copy_from_slice(src), |
773 | None => return Err(Error {}), |
774 | } |
775 | *dst_pos += src.len(); |
776 | Ok(()) |
777 | } |
778 | |
779 | impl Default for HuffmanOxide { |
780 | fn default() -> Self { |
781 | HuffmanOxide { |
782 | count: [[0; MAX_HUFF_SYMBOLS]; MAX_HUFF_TABLES], |
783 | codes: [[0; MAX_HUFF_SYMBOLS]; MAX_HUFF_TABLES], |
784 | code_sizes: [[0; MAX_HUFF_SYMBOLS]; MAX_HUFF_TABLES], |
785 | } |
786 | } |
787 | } |
788 | |
789 | impl HuffmanOxide { |
790 | fn radix_sort_symbols<'a>( |
791 | symbols0: &'a mut [SymFreq], |
792 | symbols1: &'a mut [SymFreq], |
793 | ) -> &'a mut [SymFreq] { |
794 | let mut hist = [[0; 256]; 2]; |
795 | |
796 | for freq in symbols0.iter() { |
797 | hist[0][(freq.key & 0xFF) as usize] += 1; |
798 | hist[1][((freq.key >> 8) & 0xFF) as usize] += 1; |
799 | } |
800 | |
801 | let mut n_passes = 2; |
802 | if symbols0.len() == hist[1][0] { |
803 | n_passes -= 1; |
804 | } |
805 | |
806 | let mut current_symbols = symbols0; |
807 | let mut new_symbols = symbols1; |
808 | |
809 | for (pass, hist_item) in hist.iter().enumerate().take(n_passes) { |
810 | let mut offsets = [0; 256]; |
811 | let mut offset = 0; |
812 | for i in 0..256 { |
813 | offsets[i] = offset; |
814 | offset += hist_item[i]; |
815 | } |
816 | |
817 | for sym in current_symbols.iter() { |
818 | let j = ((sym.key >> (pass * 8)) & 0xFF) as usize; |
819 | new_symbols[offsets[j]] = *sym; |
820 | offsets[j] += 1; |
821 | } |
822 | |
823 | mem::swap(&mut current_symbols, &mut new_symbols); |
824 | } |
825 | |
826 | current_symbols |
827 | } |
828 | |
829 | fn calculate_minimum_redundancy(symbols: &mut [SymFreq]) { |
830 | match symbols.len() { |
831 | 0 => (), |
832 | 1 => symbols[0].key = 1, |
833 | n => { |
834 | symbols[0].key += symbols[1].key; |
835 | let mut root = 0; |
836 | let mut leaf = 2; |
837 | for next in 1..n - 1 { |
838 | if (leaf >= n) || (symbols[root].key < symbols[leaf].key) { |
839 | symbols[next].key = symbols[root].key; |
840 | symbols[root].key = next as u16; |
841 | root += 1; |
842 | } else { |
843 | symbols[next].key = symbols[leaf].key; |
844 | leaf += 1; |
845 | } |
846 | |
847 | if (leaf >= n) || (root < next && symbols[root].key < symbols[leaf].key) { |
848 | symbols[next].key = symbols[next].key.wrapping_add(symbols[root].key); |
849 | symbols[root].key = next as u16; |
850 | root += 1; |
851 | } else { |
852 | symbols[next].key = symbols[next].key.wrapping_add(symbols[leaf].key); |
853 | leaf += 1; |
854 | } |
855 | } |
856 | |
857 | symbols[n - 2].key = 0; |
858 | for next in (0..n - 2).rev() { |
859 | symbols[next].key = symbols[symbols[next].key as usize].key + 1; |
860 | } |
861 | |
862 | let mut avbl = 1; |
863 | let mut used = 0; |
864 | let mut dpth = 0; |
865 | let mut root = (n - 2) as i32; |
866 | let mut next = (n - 1) as i32; |
867 | while avbl > 0 { |
868 | while (root >= 0) && (symbols[root as usize].key == dpth) { |
869 | used += 1; |
870 | root -= 1; |
871 | } |
872 | while avbl > used { |
873 | symbols[next as usize].key = dpth; |
874 | next -= 1; |
875 | avbl -= 1; |
876 | } |
877 | avbl = 2 * used; |
878 | dpth += 1; |
879 | used = 0; |
880 | } |
881 | } |
882 | } |
883 | } |
884 | |
885 | fn enforce_max_code_size(num_codes: &mut [i32], code_list_len: usize, max_code_size: usize) { |
886 | if code_list_len <= 1 { |
887 | return; |
888 | } |
889 | |
890 | num_codes[max_code_size] += num_codes[max_code_size + 1..].iter().sum::<i32>(); |
891 | let total = num_codes[1..=max_code_size] |
892 | .iter() |
893 | .rev() |
894 | .enumerate() |
895 | .fold(0u32, |total, (i, &x)| total + ((x as u32) << i)); |
896 | |
897 | for _ in (1 << max_code_size)..total { |
898 | num_codes[max_code_size] -= 1; |
899 | for i in (1..max_code_size).rev() { |
900 | if num_codes[i] != 0 { |
901 | num_codes[i] -= 1; |
902 | num_codes[i + 1] += 2; |
903 | break; |
904 | } |
905 | } |
906 | } |
907 | } |
908 | |
909 | fn optimize_table( |
910 | &mut self, |
911 | table_num: usize, |
912 | table_len: usize, |
913 | code_size_limit: usize, |
914 | static_table: bool, |
915 | ) { |
916 | let mut num_codes = [0i32; 32 + 1]; |
917 | let mut next_code = [0u32; MAX_SUPPORTED_HUFF_CODESIZE + 1]; |
918 | |
919 | if static_table { |
920 | for &code_size in &self.code_sizes[table_num][..table_len] { |
921 | num_codes[code_size as usize] += 1; |
922 | } |
923 | } else { |
924 | let mut symbols0 = [SymFreq { |
925 | key: 0, |
926 | sym_index: 0, |
927 | }; MAX_HUFF_SYMBOLS]; |
928 | let mut symbols1 = [SymFreq { |
929 | key: 0, |
930 | sym_index: 0, |
931 | }; MAX_HUFF_SYMBOLS]; |
932 | |
933 | let mut num_used_symbols = 0; |
934 | for i in 0..table_len { |
935 | if self.count[table_num][i] != 0 { |
936 | symbols0[num_used_symbols] = SymFreq { |
937 | key: self.count[table_num][i], |
938 | sym_index: i as u16, |
939 | }; |
940 | num_used_symbols += 1; |
941 | } |
942 | } |
943 | |
944 | let symbols = Self::radix_sort_symbols( |
945 | &mut symbols0[..num_used_symbols], |
946 | &mut symbols1[..num_used_symbols], |
947 | ); |
948 | Self::calculate_minimum_redundancy(symbols); |
949 | |
950 | for symbol in symbols.iter() { |
951 | num_codes[symbol.key as usize] += 1; |
952 | } |
953 | |
954 | Self::enforce_max_code_size(&mut num_codes, num_used_symbols, code_size_limit); |
955 | |
956 | self.code_sizes[table_num].fill(0); |
957 | self.codes[table_num].fill(0); |
958 | |
959 | let mut last = num_used_symbols; |
960 | for (i, &num_item) in num_codes |
961 | .iter() |
962 | .enumerate() |
963 | .take(code_size_limit + 1) |
964 | .skip(1) |
965 | { |
966 | let first = last - num_item as usize; |
967 | for symbol in &symbols[first..last] { |
968 | self.code_sizes[table_num][symbol.sym_index as usize] = i as u8; |
969 | } |
970 | last = first; |
971 | } |
972 | } |
973 | |
974 | let mut j = 0; |
975 | next_code[1] = 0; |
976 | for i in 2..=code_size_limit { |
977 | j = (j + num_codes[i - 1]) << 1; |
978 | next_code[i] = j as u32; |
979 | } |
980 | |
981 | for (&code_size, huff_code) in self.code_sizes[table_num] |
982 | .iter() |
983 | .take(table_len) |
984 | .zip(self.codes[table_num].iter_mut().take(table_len)) |
985 | { |
986 | if code_size == 0 { |
987 | continue; |
988 | } |
989 | |
990 | let code = next_code[code_size as usize]; |
991 | |
992 | next_code[code_size as usize] += 1; |
993 | |
994 | let rev_code = (code as u16).reverse_bits() >> (16 - code_size); |
995 | |
996 | *huff_code = rev_code; |
997 | } |
998 | } |
999 | |
1000 | fn start_static_block(&mut self, output: &mut OutputBufferOxide) { |
1001 | self.code_sizes[LITLEN_TABLE][0..144].fill(8); |
1002 | self.code_sizes[LITLEN_TABLE][144..256].fill(9); |
1003 | self.code_sizes[LITLEN_TABLE][256..280].fill(7); |
1004 | self.code_sizes[LITLEN_TABLE][280..288].fill(8); |
1005 | |
1006 | self.code_sizes[DIST_TABLE][..32].fill(5); |
1007 | |
1008 | self.optimize_table(LITLEN_TABLE, 288, 15, true); |
1009 | self.optimize_table(DIST_TABLE, 32, 15, true); |
1010 | |
1011 | output.put_bits(0b01, 2) |
1012 | } |
1013 | |
1014 | fn start_dynamic_block(&mut self, output: &mut OutputBufferOxide) -> Result<()> { |
1015 | // There will always be one, and only one end of block code. |
1016 | self.count[0][256] = 1; |
1017 | |
1018 | self.optimize_table(0, MAX_HUFF_SYMBOLS_0, 15, false); |
1019 | self.optimize_table(1, MAX_HUFF_SYMBOLS_1, 15, false); |
1020 | |
1021 | let num_lit_codes = 286 |
1022 | - &self.code_sizes[0][257..286] |
1023 | .iter() |
1024 | .rev() |
1025 | .take_while(|&x| *x == 0) |
1026 | .count(); |
1027 | |
1028 | let num_dist_codes = 30 |
1029 | - &self.code_sizes[1][1..30] |
1030 | .iter() |
1031 | .rev() |
1032 | .take_while(|&x| *x == 0) |
1033 | .count(); |
1034 | |
1035 | let mut code_sizes_to_pack = [0u8; MAX_HUFF_SYMBOLS_0 + MAX_HUFF_SYMBOLS_1]; |
1036 | let mut packed_code_sizes = [0u8; MAX_HUFF_SYMBOLS_0 + MAX_HUFF_SYMBOLS_1]; |
1037 | |
1038 | let total_code_sizes_to_pack = num_lit_codes + num_dist_codes; |
1039 | |
1040 | code_sizes_to_pack[..num_lit_codes].copy_from_slice(&self.code_sizes[0][..num_lit_codes]); |
1041 | |
1042 | code_sizes_to_pack[num_lit_codes..total_code_sizes_to_pack] |
1043 | .copy_from_slice(&self.code_sizes[1][..num_dist_codes]); |
1044 | |
1045 | let mut rle = Rle { |
1046 | z_count: 0, |
1047 | repeat_count: 0, |
1048 | prev_code_size: 0xFF, |
1049 | }; |
1050 | |
1051 | self.count[HUFF_CODES_TABLE][..MAX_HUFF_SYMBOLS_2].fill(0); |
1052 | |
1053 | let mut packed_pos = 0; |
1054 | for &code_size in &code_sizes_to_pack[..total_code_sizes_to_pack] { |
1055 | if code_size == 0 { |
1056 | rle.prev_code_size(&mut packed_code_sizes, &mut packed_pos, self)?; |
1057 | rle.z_count += 1; |
1058 | if rle.z_count == 138 { |
1059 | rle.zero_code_size(&mut packed_code_sizes, &mut packed_pos, self)?; |
1060 | } |
1061 | } else { |
1062 | rle.zero_code_size(&mut packed_code_sizes, &mut packed_pos, self)?; |
1063 | if code_size != rle.prev_code_size { |
1064 | rle.prev_code_size(&mut packed_code_sizes, &mut packed_pos, self)?; |
1065 | self.count[HUFF_CODES_TABLE][code_size as usize] = |
1066 | self.count[HUFF_CODES_TABLE][code_size as usize].wrapping_add(1); |
1067 | write(&[code_size], &mut packed_code_sizes, &mut packed_pos)?; |
1068 | } else { |
1069 | rle.repeat_count += 1; |
1070 | if rle.repeat_count == 6 { |
1071 | rle.prev_code_size(&mut packed_code_sizes, &mut packed_pos, self)?; |
1072 | } |
1073 | } |
1074 | } |
1075 | rle.prev_code_size = code_size; |
1076 | } |
1077 | |
1078 | if rle.repeat_count != 0 { |
1079 | rle.prev_code_size(&mut packed_code_sizes, &mut packed_pos, self)?; |
1080 | } else { |
1081 | rle.zero_code_size(&mut packed_code_sizes, &mut packed_pos, self)?; |
1082 | } |
1083 | |
1084 | self.optimize_table(2, MAX_HUFF_SYMBOLS_2, 7, false); |
1085 | |
1086 | output.put_bits_no_flush(2, 2); |
1087 | |
1088 | output.put_bits_no_flush((num_lit_codes - 257) as u32, 5); |
1089 | output.put_bits_no_flush((num_dist_codes - 1) as u32, 5); |
1090 | |
1091 | let mut num_bit_lengths = 18 |
1092 | - HUFFMAN_LENGTH_ORDER |
1093 | .iter() |
1094 | .rev() |
1095 | .take_while(|&swizzle| self.code_sizes[HUFF_CODES_TABLE][*swizzle as usize] == 0) |
1096 | .count(); |
1097 | |
1098 | num_bit_lengths = cmp::max(4, num_bit_lengths + 1); |
1099 | output.put_bits(num_bit_lengths as u32 - 4, 4); |
1100 | for &swizzle in &HUFFMAN_LENGTH_ORDER[..num_bit_lengths] { |
1101 | output.put_bits( |
1102 | u32::from(self.code_sizes[HUFF_CODES_TABLE][swizzle as usize]), |
1103 | 3, |
1104 | ); |
1105 | } |
1106 | |
1107 | let mut packed_code_size_index = 0; |
1108 | while packed_code_size_index < packed_pos { |
1109 | let code = packed_code_sizes[packed_code_size_index] as usize; |
1110 | packed_code_size_index += 1; |
1111 | assert!(code < MAX_HUFF_SYMBOLS_2); |
1112 | output.put_bits( |
1113 | u32::from(self.codes[HUFF_CODES_TABLE][code]), |
1114 | u32::from(self.code_sizes[HUFF_CODES_TABLE][code]), |
1115 | ); |
1116 | if code >= 16 { |
1117 | output.put_bits( |
1118 | u32::from(packed_code_sizes[packed_code_size_index]), |
1119 | [2, 3, 7][code - 16], |
1120 | ); |
1121 | packed_code_size_index += 1; |
1122 | } |
1123 | } |
1124 | |
1125 | Ok(()) |
1126 | } |
1127 | } |
1128 | |
1129 | pub(crate) struct DictOxide { |
1130 | /// The maximum number of checks in the hash chain, for the initial, |
1131 | /// and the lazy match respectively. |
1132 | pub max_probes: [u32; 2], |
1133 | /// Buffer of input data. |
1134 | /// Padded with 1 byte to simplify matching code in `compress_fast`. |
1135 | pub b: HashBuffers, |
1136 | |
1137 | pub code_buf_dict_pos: usize, |
1138 | pub lookahead_size: usize, |
1139 | pub lookahead_pos: usize, |
1140 | pub size: usize, |
1141 | loop_len: u8, |
1142 | } |
1143 | |
1144 | const fn probes_from_flags(flags: u32) -> [u32; 2] { |
1145 | [ |
1146 | 1 + ((flags & 0xFFF) + 2) / 3, |
1147 | 1 + (((flags & 0xFFF) >> 2) + 2) / 3, |
1148 | ] |
1149 | } |
1150 | |
1151 | impl DictOxide { |
1152 | fn new(flags: u32) -> Self { |
1153 | DictOxide { |
1154 | max_probes: probes_from_flags(flags), |
1155 | b: HashBuffers::default(), |
1156 | code_buf_dict_pos: 0, |
1157 | lookahead_size: 0, |
1158 | lookahead_pos: 0, |
1159 | size: 0, |
1160 | loop_len: 32, |
1161 | } |
1162 | } |
1163 | |
1164 | fn update_flags(&mut self, flags: u32) { |
1165 | self.max_probes = probes_from_flags(flags); |
1166 | } |
1167 | |
1168 | fn reset(&mut self) { |
1169 | self.b.reset(); |
1170 | self.code_buf_dict_pos = 0; |
1171 | self.lookahead_size = 0; |
1172 | self.lookahead_pos = 0; |
1173 | self.size = 0; |
1174 | } |
1175 | |
1176 | /// Do an unaligned read of the data at `pos` in the dictionary and treat it as if it was of |
1177 | /// type T. |
1178 | #[inline ] |
1179 | fn read_unaligned_u32(&self, pos: usize) -> u32 { |
1180 | // Masking the value here helps avoid bounds checks. |
1181 | let pos = pos & LZ_DICT_SIZE_MASK; |
1182 | let end = pos + 4; |
1183 | // Somehow this assertion makes things faster. |
1184 | // TODO: as of may 2024 this does not seem to make any difference |
1185 | // so consider removing. |
1186 | assert!(end < LZ_DICT_FULL_SIZE); |
1187 | |
1188 | let bytes: [u8; 4] = self.b.dict[pos..end].try_into().unwrap(); |
1189 | u32::from_le_bytes(bytes) |
1190 | } |
1191 | |
1192 | /// Do an unaligned read of the data at `pos` in the dictionary and treat it as if it was of |
1193 | /// type T. |
1194 | #[inline ] |
1195 | fn read_unaligned_u64(&self, pos: usize) -> u64 { |
1196 | // Help evade bounds/panic code check by masking the position value |
1197 | // This provides a small speedup at the cost of an instruction or two instead of |
1198 | // having to use unsafe. |
1199 | let pos = pos & LZ_DICT_SIZE_MASK; |
1200 | let bytes: [u8; 8] = self.b.dict[pos..pos + 8].try_into().unwrap(); |
1201 | u64::from_le_bytes(bytes) |
1202 | } |
1203 | |
1204 | /// Try to find a match for the data at lookahead_pos in the dictionary that is |
1205 | /// longer than `match_len`. |
1206 | /// Returns a tuple containing (match_distance, match_length). Will be equal to the input |
1207 | /// values if no better matches were found. |
1208 | fn find_match( |
1209 | &self, |
1210 | lookahead_pos: usize, |
1211 | max_dist: usize, |
1212 | max_match_len: u32, |
1213 | mut match_dist: u32, |
1214 | mut match_len: u32, |
1215 | ) -> (u32, u32) { |
1216 | // Clamp the match len and max_match_len to be valid. (It should be when this is called, but |
1217 | // do it for now just in case for safety reasons.) |
1218 | // This should normally end up as at worst conditional moves, |
1219 | // so it shouldn't slow us down much. |
1220 | // TODO: Statically verify these so we don't need to do this. |
1221 | let max_match_len = cmp::min(MAX_MATCH_LEN as u32, max_match_len); |
1222 | match_len = cmp::max(match_len, 1); |
1223 | |
1224 | // If we already have a match of the full length don't bother searching for another one. |
1225 | if max_match_len <= match_len { |
1226 | return (match_dist, match_len); |
1227 | } |
1228 | |
1229 | let pos = lookahead_pos & LZ_DICT_SIZE_MASK; |
1230 | let mut probe_pos = pos; |
1231 | // Number of probes into the hash chains. |
1232 | let mut num_probes_left = if match_len < 32 { |
1233 | self.max_probes[0] |
1234 | } else { |
1235 | self.max_probes[1] |
1236 | }; |
1237 | |
1238 | // Read the last byte of the current match, and the next one, used to compare matches. |
1239 | let mut c01: u16 = read_u16_le(&self.b.dict, pos + match_len as usize - 1); |
1240 | // Read the two bytes at the end position of the current match. |
1241 | let s01: u16 = read_u16_le(&self.b.dict, pos); |
1242 | |
1243 | 'outer: loop { |
1244 | let mut dist; |
1245 | 'found: loop { |
1246 | num_probes_left -= 1; |
1247 | if num_probes_left == 0 { |
1248 | // We have done as many probes in the hash chain as the current compression |
1249 | // settings allow, so return the best match we found, if any. |
1250 | return (match_dist, match_len); |
1251 | } |
1252 | |
1253 | for _ in 0..3 { |
1254 | let next_probe_pos = self.b.next[probe_pos] as usize; |
1255 | |
1256 | dist = (lookahead_pos - next_probe_pos) & 0xFFFF; |
1257 | // Optimization: The last condition should never be hit but helps the compiler by avoiding |
1258 | // doing the bounds check in the read_u16_le call and adding the extra instructions |
1259 | // for branching to a panic after that and instead just adds the extra instruction here |
1260 | // instead saving some instructions and thus improving performance a bit. |
1261 | // May want to investigate whether we can avoid it entirely but as of now the compiler |
1262 | // isn't able to deduce that match_len - 1 is bounded to [1-257] |
1263 | // Disable clippy lint as it needs to be written in this specific way |
1264 | // rather than MAX_MATCH_LEN to work |
1265 | // because the compiler isn't super smart.... |
1266 | #[allow (clippy::int_plus_one)] |
1267 | if next_probe_pos == 0 |
1268 | || dist > max_dist |
1269 | || match_len as usize - 1 >= MAX_MATCH_LEN |
1270 | { |
1271 | // We reached the end of the hash chain, or the next value is further away |
1272 | // than the maximum allowed distance, so return the best match we found, if |
1273 | // any. |
1274 | return (match_dist, match_len); |
1275 | } |
1276 | |
1277 | // Mask the position value to get the position in the hash chain of the next |
1278 | // position to match against. |
1279 | probe_pos = next_probe_pos & LZ_DICT_SIZE_MASK; |
1280 | |
1281 | if read_u16_le(&self.b.dict, probe_pos + match_len as usize - 1) == c01 { |
1282 | break 'found; |
1283 | } |
1284 | } |
1285 | } |
1286 | |
1287 | if dist == 0 { |
1288 | // We've looked through the whole match range, so return the best match we |
1289 | // found. |
1290 | return (match_dist, match_len); |
1291 | } |
1292 | |
1293 | // Check if the two first bytes match. |
1294 | if read_u16_le(&self.b.dict, probe_pos) != s01 { |
1295 | continue; |
1296 | } |
1297 | |
1298 | let mut p = pos + 2; |
1299 | let mut q = probe_pos + 2; |
1300 | // The first two bytes matched, so check the full length of the match. |
1301 | // TODO: This is a workaround for an upstream issue introduced after a LLVM upgrade in rust 1.82. |
1302 | // the compiler is too smart and ends up unrolling the loop which causes the performance to get worse |
1303 | // Using a variable instead of a constant here to prevent it seems to at least get back some of the performance loss. |
1304 | for _ in 0..self.loop_len as i32 { |
1305 | let p_data: u64 = self.read_unaligned_u64(p); |
1306 | let q_data: u64 = self.read_unaligned_u64(q); |
1307 | // Compare of 8 bytes at a time by using unaligned loads of 64-bit integers. |
1308 | let xor_data = p_data ^ q_data; |
1309 | if xor_data == 0 { |
1310 | p += 8; |
1311 | q += 8; |
1312 | } else { |
1313 | // If not all of the last 8 bytes matched, check how may of them did. |
1314 | let trailing = xor_data.trailing_zeros(); |
1315 | |
1316 | let probe_len = p - pos + (trailing as usize >> 3); |
1317 | if probe_len > match_len as usize { |
1318 | match_dist = dist as u32; |
1319 | match_len = cmp::min(max_match_len, probe_len as u32); |
1320 | if match_len >= max_match_len { |
1321 | // We found a match that had the maximum allowed length, |
1322 | // so there is now point searching further. |
1323 | return (match_dist, match_len); |
1324 | } |
1325 | // We found a better match, so save the last two bytes for further match |
1326 | // comparisons. |
1327 | // Optimization: use saturating_sub makes the compiler able to evade the bounds check |
1328 | // at the cost of some extra instructions since it avoids any possibility of wraparound. |
1329 | // need to see if we can find a better way to do this since this is still a bit costly. |
1330 | c01 = |
1331 | read_u16_le(&self.b.dict, (pos + match_len as usize).saturating_sub(1)); |
1332 | } |
1333 | continue 'outer; |
1334 | } |
1335 | } |
1336 | |
1337 | return (dist as u32, cmp::min(max_match_len, MAX_MATCH_LEN as u32)); |
1338 | } |
1339 | } |
1340 | } |
1341 | |
1342 | pub(crate) struct ParamsOxide { |
1343 | pub flags: u32, |
1344 | pub greedy_parsing: bool, |
1345 | pub block_index: u32, |
1346 | |
1347 | pub saved_match_dist: u32, |
1348 | pub saved_match_len: u32, |
1349 | pub saved_lit: u8, |
1350 | |
1351 | pub flush: TDEFLFlush, |
1352 | pub flush_ofs: u32, |
1353 | pub flush_remaining: u32, |
1354 | pub finished: bool, |
1355 | |
1356 | pub adler32: u32, |
1357 | |
1358 | pub src_pos: usize, |
1359 | |
1360 | pub out_buf_ofs: usize, |
1361 | pub prev_return_status: TDEFLStatus, |
1362 | |
1363 | pub saved_bit_buffer: u32, |
1364 | pub saved_bits_in: u32, |
1365 | |
1366 | pub local_buf: Box<LocalBuf>, |
1367 | } |
1368 | |
1369 | impl ParamsOxide { |
1370 | fn new(flags: u32) -> Self { |
1371 | ParamsOxide { |
1372 | flags, |
1373 | greedy_parsing: flags & TDEFL_GREEDY_PARSING_FLAG != 0, |
1374 | block_index: 0, |
1375 | saved_match_dist: 0, |
1376 | saved_match_len: 0, |
1377 | saved_lit: 0, |
1378 | flush: TDEFLFlush::None, |
1379 | flush_ofs: 0, |
1380 | flush_remaining: 0, |
1381 | finished: false, |
1382 | adler32: MZ_ADLER32_INIT, |
1383 | src_pos: 0, |
1384 | out_buf_ofs: 0, |
1385 | prev_return_status: TDEFLStatus::Okay, |
1386 | saved_bit_buffer: 0, |
1387 | saved_bits_in: 0, |
1388 | local_buf: Box::default(), |
1389 | } |
1390 | } |
1391 | |
1392 | fn update_flags(&mut self, flags: u32) { |
1393 | self.flags = flags; |
1394 | self.greedy_parsing = self.flags & TDEFL_GREEDY_PARSING_FLAG != 0; |
1395 | } |
1396 | |
1397 | /// Reset state, saving settings. |
1398 | fn reset(&mut self) { |
1399 | self.block_index = 0; |
1400 | self.saved_match_len = 0; |
1401 | self.saved_match_dist = 0; |
1402 | self.saved_lit = 0; |
1403 | self.flush = TDEFLFlush::None; |
1404 | self.flush_ofs = 0; |
1405 | self.flush_remaining = 0; |
1406 | self.finished = false; |
1407 | self.adler32 = MZ_ADLER32_INIT; |
1408 | self.src_pos = 0; |
1409 | self.out_buf_ofs = 0; |
1410 | self.prev_return_status = TDEFLStatus::Okay; |
1411 | self.saved_bit_buffer = 0; |
1412 | self.saved_bits_in = 0; |
1413 | self.local_buf.b = [0; OUT_BUF_SIZE]; |
1414 | } |
1415 | } |
1416 | |
1417 | pub(crate) struct LZOxide { |
1418 | pub codes: [u8; LZ_CODE_BUF_SIZE], |
1419 | pub code_position: usize, |
1420 | pub flag_position: usize, |
1421 | |
1422 | // The total number of bytes in the current block. |
1423 | pub total_bytes: u32, |
1424 | pub num_flags_left: u32, |
1425 | } |
1426 | |
1427 | impl LZOxide { |
1428 | const fn new() -> Self { |
1429 | LZOxide { |
1430 | codes: [0; LZ_CODE_BUF_SIZE], |
1431 | code_position: 1, |
1432 | flag_position: 0, |
1433 | total_bytes: 0, |
1434 | num_flags_left: 8, |
1435 | } |
1436 | } |
1437 | |
1438 | fn write_code(&mut self, val: u8) { |
1439 | // Perf - go via u16 to help evade bounds check |
1440 | // TODO: see if we can use u16 for flag_position in general. |
1441 | self.codes[usize::from(self.code_position as u16)] = val; |
1442 | self.code_position += 1; |
1443 | } |
1444 | |
1445 | fn init_flag(&mut self) { |
1446 | if self.num_flags_left == 8 { |
1447 | *self.get_flag() = 0; |
1448 | self.code_position -= 1; |
1449 | } else { |
1450 | *self.get_flag() >>= self.num_flags_left; |
1451 | } |
1452 | } |
1453 | |
1454 | fn get_flag(&mut self) -> &mut u8 { |
1455 | // Perf - go via u16 to help evade bounds check |
1456 | // TODO: see if we can use u16 for flag_position in general. |
1457 | &mut self.codes[usize::from(self.flag_position as u16)] |
1458 | } |
1459 | |
1460 | fn plant_flag(&mut self) { |
1461 | self.flag_position = self.code_position; |
1462 | self.code_position += 1; |
1463 | } |
1464 | |
1465 | fn consume_flag(&mut self) { |
1466 | self.num_flags_left -= 1; |
1467 | if self.num_flags_left == 0 { |
1468 | self.num_flags_left = 8; |
1469 | self.plant_flag(); |
1470 | } |
1471 | } |
1472 | } |
1473 | |
1474 | fn compress_lz_codes( |
1475 | huff: &HuffmanOxide, |
1476 | output: &mut OutputBufferOxide, |
1477 | lz_code_buf: &[u8; LZ_CODE_BUF_SIZE], |
1478 | lz_code_buf_used_len: usize, |
1479 | ) -> Result<bool> { |
1480 | let mut flags = 1; |
1481 | let mut bb = BitBuffer { |
1482 | bit_buffer: u64::from(output.bit_buffer), |
1483 | bits_in: output.bits_in, |
1484 | }; |
1485 | |
1486 | // Help out the compiler know this variable won't be larger than |
1487 | // the buffer length since the constants won't propagate through the function call. |
1488 | let lz_code_buf_used_len = cmp::min(lz_code_buf.len(), lz_code_buf_used_len); |
1489 | |
1490 | let mut i: usize = 0; |
1491 | while i < lz_code_buf_used_len { |
1492 | if flags == 1 { |
1493 | flags = u32::from(lz_code_buf[i]) | 0x100; |
1494 | i += 1; |
1495 | } |
1496 | |
1497 | // The lz code was a length code |
1498 | if flags & 1 == 1 { |
1499 | flags >>= 1; |
1500 | |
1501 | let sym; |
1502 | let num_extra_bits; |
1503 | |
1504 | let match_len = lz_code_buf[i & LZ_CODE_BUF_MASK] as usize; |
1505 | |
1506 | let match_dist = lz_code_buf[(i + 1) & LZ_CODE_BUF_MASK] as u16 |
1507 | | ((lz_code_buf[(i + 2) & LZ_CODE_BUF_MASK] as u16) << 8); |
1508 | |
1509 | i += 3; |
1510 | |
1511 | debug_assert!(huff.code_sizes[0][LEN_SYM[match_len] as usize + LEN_SYM_OFFSET] != 0); |
1512 | let len_sym = (LEN_SYM[match_len] & 31) as usize + LEN_SYM_OFFSET; |
1513 | |
1514 | bb.put_fast( |
1515 | u64::from(huff.codes[0][len_sym]), |
1516 | u32::from(huff.code_sizes[0][len_sym]), |
1517 | ); |
1518 | bb.put_fast( |
1519 | match_len as u64 & u64::from(BITMASKS[(LEN_EXTRA[match_len] & 7) as usize]), |
1520 | u32::from(LEN_EXTRA[match_len]), |
1521 | ); |
1522 | |
1523 | if match_dist < 512 { |
1524 | sym = SMALL_DIST_SYM[match_dist as usize] as usize; |
1525 | num_extra_bits = SMALL_DIST_EXTRA[match_dist as usize] as usize; |
1526 | } else { |
1527 | sym = LARGE_DIST_SYM[(match_dist >> 8) as usize] as usize; |
1528 | num_extra_bits = LARGE_DIST_EXTRA[(match_dist >> 8) as usize] as usize; |
1529 | } |
1530 | |
1531 | debug_assert!(huff.code_sizes[1][sym] != 0); |
1532 | bb.put_fast( |
1533 | u64::from(huff.codes[1][sym]), |
1534 | u32::from(huff.code_sizes[1][sym]), |
1535 | ); |
1536 | bb.put_fast( |
1537 | u64::from(match_dist) & u64::from(BITMASKS[num_extra_bits & 15]), |
1538 | num_extra_bits as u32, |
1539 | ); |
1540 | } else { |
1541 | // The lz code was a literal |
1542 | for _ in 0..3 { |
1543 | flags >>= 1; |
1544 | let lit = lz_code_buf[i & LZ_CODE_BUF_MASK]; |
1545 | i += 1; |
1546 | |
1547 | debug_assert!(huff.code_sizes[0][lit as usize] != 0); |
1548 | bb.put_fast( |
1549 | u64::from(huff.codes[0][lit as usize]), |
1550 | u32::from(huff.code_sizes[0][lit as usize]), |
1551 | ); |
1552 | |
1553 | if flags & 1 == 1 || i >= lz_code_buf_used_len { |
1554 | break; |
1555 | } |
1556 | } |
1557 | } |
1558 | |
1559 | bb.flush(output)?; |
1560 | } |
1561 | |
1562 | output.bits_in = 0; |
1563 | output.bit_buffer = 0; |
1564 | while bb.bits_in != 0 { |
1565 | let n = cmp::min(bb.bits_in, 16); |
1566 | output.put_bits(bb.bit_buffer as u32 & BITMASKS[n as usize], n); |
1567 | bb.bit_buffer >>= n; |
1568 | bb.bits_in -= n; |
1569 | } |
1570 | |
1571 | // Output the end of block symbol. |
1572 | output.put_bits( |
1573 | u32::from(huff.codes[0][256]), |
1574 | u32::from(huff.code_sizes[0][256]), |
1575 | ); |
1576 | |
1577 | Ok(true) |
1578 | } |
1579 | |
1580 | fn compress_block( |
1581 | huff: &mut HuffmanOxide, |
1582 | output: &mut OutputBufferOxide, |
1583 | lz: &LZOxide, |
1584 | static_block: bool, |
1585 | ) -> Result<bool> { |
1586 | if static_block { |
1587 | huff.start_static_block(output); |
1588 | } else { |
1589 | huff.start_dynamic_block(output)?; |
1590 | } |
1591 | |
1592 | compress_lz_codes(huff, output, &lz.codes, lz_code_buf_used_len:lz.code_position) |
1593 | } |
1594 | |
1595 | pub(crate) fn flush_block( |
1596 | d: &mut CompressorOxide, |
1597 | callback: &mut CallbackOxide, |
1598 | flush: TDEFLFlush, |
1599 | ) -> Result<i32> { |
1600 | let mut saved_buffer; |
1601 | { |
1602 | let mut output = callback |
1603 | .out |
1604 | .new_output_buffer(&mut d.params.local_buf.b, d.params.out_buf_ofs); |
1605 | output.bit_buffer = d.params.saved_bit_buffer; |
1606 | output.bits_in = d.params.saved_bits_in; |
1607 | |
1608 | // TODO: Don't think this second condition should be here but need to verify. |
1609 | let use_raw_block = (d.params.flags & TDEFL_FORCE_ALL_RAW_BLOCKS != 0) |
1610 | && (d.dict.lookahead_pos - d.dict.code_buf_dict_pos) <= d.dict.size; |
1611 | debug_assert_eq!( |
1612 | use_raw_block, |
1613 | d.params.flags & TDEFL_FORCE_ALL_RAW_BLOCKS != 0 |
1614 | ); |
1615 | |
1616 | assert!(d.params.flush_remaining == 0); |
1617 | d.params.flush_ofs = 0; |
1618 | d.params.flush_remaining = 0; |
1619 | |
1620 | d.lz.init_flag(); |
1621 | |
1622 | // If we are at the start of the stream, write the zlib header if requested. |
1623 | if d.params.flags & TDEFL_WRITE_ZLIB_HEADER != 0 && d.params.block_index == 0 { |
1624 | let header = zlib::header_from_flags(d.params.flags); |
1625 | output.put_bits_no_flush(header[0].into(), 8); |
1626 | output.put_bits(header[1].into(), 8); |
1627 | } |
1628 | |
1629 | // Output the block header. |
1630 | output.put_bits((flush == TDEFLFlush::Finish) as u32, 1); |
1631 | |
1632 | saved_buffer = output.save(); |
1633 | |
1634 | let comp_success = if !use_raw_block { |
1635 | let use_static = |
1636 | (d.params.flags & TDEFL_FORCE_ALL_STATIC_BLOCKS != 0) || (d.lz.total_bytes < 48); |
1637 | compress_block(&mut d.huff, &mut output, &d.lz, use_static)? |
1638 | } else { |
1639 | false |
1640 | }; |
1641 | |
1642 | // If we failed to compress anything and the output would take up more space than the output |
1643 | // data, output a stored block instead, which has at most 5 bytes of overhead. |
1644 | // We only use some simple heuristics for now. |
1645 | // A stored block will have an overhead of at least 4 bytes containing the block length |
1646 | // but usually more due to the length parameters having to start at a byte boundary and thus |
1647 | // requiring up to 5 bytes of padding. |
1648 | // As a static block will have an overhead of at most 1 bit per byte |
1649 | // (as literals are either 8 or 9 bytes), a raw block will |
1650 | // never take up less space if the number of input bytes are less than 32. |
1651 | let expanded = (d.lz.total_bytes > 32) |
1652 | && (output.inner_pos - saved_buffer.pos + 1 >= (d.lz.total_bytes as usize)) |
1653 | && (d.dict.lookahead_pos - d.dict.code_buf_dict_pos <= d.dict.size); |
1654 | |
1655 | if use_raw_block || expanded { |
1656 | output.load(saved_buffer); |
1657 | |
1658 | // Block header. |
1659 | output.put_bits(0, 2); |
1660 | |
1661 | // Block length has to start on a byte boundary, so pad. |
1662 | output.pad_to_bytes(); |
1663 | |
1664 | // Block length and ones complement of block length. |
1665 | output.put_bits(d.lz.total_bytes & 0xFFFF, 16); |
1666 | output.put_bits(!d.lz.total_bytes & 0xFFFF, 16); |
1667 | |
1668 | // Write the actual bytes. |
1669 | let start = d.dict.code_buf_dict_pos & LZ_DICT_SIZE_MASK; |
1670 | let end = (d.dict.code_buf_dict_pos + d.lz.total_bytes as usize) & LZ_DICT_SIZE_MASK; |
1671 | let dict = &mut d.dict.b.dict; |
1672 | if start < end { |
1673 | // The data does not wrap around. |
1674 | output.write_bytes(&dict[start..end]); |
1675 | } else if d.lz.total_bytes > 0 { |
1676 | // The data wraps around and the input was not 0 bytes. |
1677 | output.write_bytes(&dict[start..LZ_DICT_SIZE]); |
1678 | output.write_bytes(&dict[..end]); |
1679 | } |
1680 | } else if !comp_success { |
1681 | output.load(saved_buffer); |
1682 | compress_block(&mut d.huff, &mut output, &d.lz, true)?; |
1683 | } |
1684 | |
1685 | if flush != TDEFLFlush::None { |
1686 | if flush == TDEFLFlush::Finish { |
1687 | output.pad_to_bytes(); |
1688 | if d.params.flags & TDEFL_WRITE_ZLIB_HEADER != 0 { |
1689 | let mut adler = d.params.adler32; |
1690 | for _ in 0..4 { |
1691 | output.put_bits((adler >> 24) & 0xFF, 8); |
1692 | adler <<= 8; |
1693 | } |
1694 | } |
1695 | } else { |
1696 | // Sync or Full flush. |
1697 | // Output an empty raw block. |
1698 | output.put_bits(0, 3); |
1699 | output.pad_to_bytes(); |
1700 | output.put_bits(0, 16); |
1701 | output.put_bits(0xFFFF, 16); |
1702 | } |
1703 | } |
1704 | |
1705 | d.huff.count[0][..MAX_HUFF_SYMBOLS_0].fill(0); |
1706 | d.huff.count[1][..MAX_HUFF_SYMBOLS_1].fill(0); |
1707 | |
1708 | // Clear LZ buffer for the next block. |
1709 | d.lz.code_position = 1; |
1710 | d.lz.flag_position = 0; |
1711 | d.lz.num_flags_left = 8; |
1712 | d.dict.code_buf_dict_pos += d.lz.total_bytes as usize; |
1713 | d.lz.total_bytes = 0; |
1714 | d.params.block_index += 1; |
1715 | |
1716 | saved_buffer = output.save(); |
1717 | |
1718 | d.params.saved_bit_buffer = saved_buffer.bit_buffer; |
1719 | d.params.saved_bits_in = saved_buffer.bits_in; |
1720 | } |
1721 | |
1722 | Ok(callback.flush_output(saved_buffer, &mut d.params)) |
1723 | } |
1724 | |
1725 | pub(crate) fn record_literal(h: &mut HuffmanOxide, lz: &mut LZOxide, lit: u8) { |
1726 | lz.total_bytes += 1; |
1727 | lz.write_code(val:lit); |
1728 | |
1729 | *lz.get_flag() >>= 1; |
1730 | lz.consume_flag(); |
1731 | |
1732 | h.count[0][lit as usize] += 1; |
1733 | } |
1734 | |
1735 | fn record_match(h: &mut HuffmanOxide, lz: &mut LZOxide, match_len: u32, mut match_dist: u32) { |
1736 | debug_assert!(match_len >= MIN_MATCH_LEN.into()); |
1737 | debug_assert!(match_dist >= 1); |
1738 | debug_assert!(match_dist as usize <= LZ_DICT_SIZE); |
1739 | |
1740 | lz.total_bytes += match_len; |
1741 | match_dist -= 1; |
1742 | let match_len = (match_len - u32::from(MIN_MATCH_LEN)) as u8; |
1743 | lz.write_code(match_len); |
1744 | lz.write_code(match_dist as u8); |
1745 | lz.write_code((match_dist >> 8) as u8); |
1746 | |
1747 | *lz.get_flag() >>= 1; |
1748 | *lz.get_flag() |= 0x80; |
1749 | lz.consume_flag(); |
1750 | |
1751 | let symbol = if match_dist < 512 { |
1752 | SMALL_DIST_SYM[match_dist as usize] |
1753 | } else { |
1754 | LARGE_DIST_SYM[((match_dist >> 8) & 127) as usize] |
1755 | } as usize; |
1756 | h.count[1][symbol] += 1; |
1757 | // Mask the values from LEN_SYM here as the compiler isn't quite smart enough to infer |
1758 | // that it only contains values smaller than 32. |
1759 | h.count[0][(LEN_SYM[match_len as usize] as usize & 31) + LEN_SYM_OFFSET] += 1; |
1760 | } |
1761 | |
1762 | fn compress_normal(d: &mut CompressorOxide, callback: &mut CallbackOxide) -> bool { |
1763 | let in_buf = match callback.in_buf { |
1764 | None => return true, |
1765 | Some(in_buf) => in_buf, |
1766 | }; |
1767 | |
1768 | let mut src_pos = d.params.src_pos; |
1769 | let mut lookahead_size = d.dict.lookahead_size; |
1770 | let mut lookahead_pos = d.dict.lookahead_pos; |
1771 | let mut saved_lit = d.params.saved_lit; |
1772 | let mut saved_match_dist = d.params.saved_match_dist; |
1773 | let mut saved_match_len = d.params.saved_match_len; |
1774 | |
1775 | while src_pos < in_buf.len() || (d.params.flush != TDEFLFlush::None && lookahead_size != 0) { |
1776 | let src_buf_left = in_buf.len() - src_pos; |
1777 | let num_bytes_to_process = cmp::min(src_buf_left, MAX_MATCH_LEN - lookahead_size); |
1778 | |
1779 | if lookahead_size + d.dict.size >= usize::from(MIN_MATCH_LEN) - 1 |
1780 | && num_bytes_to_process > 0 |
1781 | { |
1782 | let dictb = &mut d.dict.b; |
1783 | |
1784 | let mut dst_pos = (lookahead_pos + lookahead_size) & LZ_DICT_SIZE_MASK; |
1785 | let mut ins_pos = lookahead_pos + lookahead_size - 2; |
1786 | // Start the hash value from the first two bytes |
1787 | let mut hash = update_hash( |
1788 | u16::from(dictb.dict[ins_pos & LZ_DICT_SIZE_MASK]), |
1789 | dictb.dict[(ins_pos + 1) & LZ_DICT_SIZE_MASK], |
1790 | ); |
1791 | |
1792 | lookahead_size += num_bytes_to_process; |
1793 | |
1794 | for &c in &in_buf[src_pos..src_pos + num_bytes_to_process] { |
1795 | // Add byte to input buffer. |
1796 | dictb.dict[dst_pos] = c; |
1797 | if dst_pos < MAX_MATCH_LEN - 1 { |
1798 | dictb.dict[LZ_DICT_SIZE + dst_pos] = c; |
1799 | } |
1800 | |
1801 | // Generate hash from the current byte, |
1802 | hash = update_hash(hash, c); |
1803 | dictb.next[ins_pos & LZ_DICT_SIZE_MASK] = dictb.hash[hash as usize]; |
1804 | // and insert it into the hash chain. |
1805 | dictb.hash[hash as usize] = ins_pos as u16; |
1806 | dst_pos = (dst_pos + 1) & LZ_DICT_SIZE_MASK; |
1807 | ins_pos += 1; |
1808 | } |
1809 | |
1810 | src_pos += num_bytes_to_process; |
1811 | } else { |
1812 | let dictb = &mut d.dict.b; |
1813 | for &c in &in_buf[src_pos..src_pos + num_bytes_to_process] { |
1814 | let dst_pos = (lookahead_pos + lookahead_size) & LZ_DICT_SIZE_MASK; |
1815 | dictb.dict[dst_pos] = c; |
1816 | if dst_pos < MAX_MATCH_LEN - 1 { |
1817 | dictb.dict[LZ_DICT_SIZE + dst_pos] = c; |
1818 | } |
1819 | |
1820 | lookahead_size += 1; |
1821 | if lookahead_size + d.dict.size >= MIN_MATCH_LEN.into() { |
1822 | let ins_pos = lookahead_pos + lookahead_size - 3; |
1823 | let hash = ((u32::from(dictb.dict[ins_pos & LZ_DICT_SIZE_MASK]) |
1824 | << (LZ_HASH_SHIFT * 2)) |
1825 | ^ ((u32::from(dictb.dict[(ins_pos + 1) & LZ_DICT_SIZE_MASK]) |
1826 | << LZ_HASH_SHIFT) |
1827 | ^ u32::from(c))) |
1828 | & (LZ_HASH_SIZE as u32 - 1); |
1829 | |
1830 | dictb.next[ins_pos & LZ_DICT_SIZE_MASK] = dictb.hash[hash as usize]; |
1831 | dictb.hash[hash as usize] = ins_pos as u16; |
1832 | } |
1833 | } |
1834 | |
1835 | src_pos += num_bytes_to_process; |
1836 | } |
1837 | |
1838 | d.dict.size = cmp::min(LZ_DICT_SIZE - lookahead_size, d.dict.size); |
1839 | if d.params.flush == TDEFLFlush::None && lookahead_size < MAX_MATCH_LEN { |
1840 | break; |
1841 | } |
1842 | |
1843 | let mut len_to_move = 1; |
1844 | let mut cur_match_dist = 0; |
1845 | let mut cur_match_len = if saved_match_len != 0 { |
1846 | saved_match_len |
1847 | } else { |
1848 | u32::from(MIN_MATCH_LEN) - 1 |
1849 | }; |
1850 | let cur_pos = lookahead_pos & LZ_DICT_SIZE_MASK; |
1851 | if d.params.flags & TDEFL_RLE_MATCHES != 0 { |
1852 | // If TDEFL_RLE_MATCHES is set, we only look for repeating sequences of the current byte. |
1853 | if d.dict.size != 0 { |
1854 | let c = d.dict.b.dict[(cur_pos.wrapping_sub(1)) & LZ_DICT_SIZE_MASK]; |
1855 | cur_match_len = d.dict.b.dict[cur_pos..(cur_pos + lookahead_size)] |
1856 | .iter() |
1857 | .take_while(|&x| *x == c) |
1858 | .count() as u32; |
1859 | if cur_match_len < MIN_MATCH_LEN.into() { |
1860 | cur_match_len = 0 |
1861 | } else { |
1862 | cur_match_dist = 1 |
1863 | } |
1864 | } |
1865 | } else { |
1866 | // Try to find a match for the bytes at the current position. |
1867 | let dist_len = d.dict.find_match( |
1868 | lookahead_pos, |
1869 | d.dict.size, |
1870 | lookahead_size as u32, |
1871 | cur_match_dist, |
1872 | cur_match_len, |
1873 | ); |
1874 | cur_match_dist = dist_len.0; |
1875 | cur_match_len = dist_len.1; |
1876 | } |
1877 | |
1878 | let far_and_small = cur_match_len == MIN_MATCH_LEN.into() && cur_match_dist >= 8 * 1024; |
1879 | let filter_small = d.params.flags & TDEFL_FILTER_MATCHES != 0 && cur_match_len <= 5; |
1880 | if far_and_small || filter_small || cur_pos == cur_match_dist as usize { |
1881 | cur_match_dist = 0; |
1882 | cur_match_len = 0; |
1883 | } |
1884 | |
1885 | if saved_match_len != 0 { |
1886 | if cur_match_len > saved_match_len { |
1887 | record_literal(&mut d.huff, &mut d.lz, saved_lit); |
1888 | if cur_match_len >= 128 { |
1889 | record_match(&mut d.huff, &mut d.lz, cur_match_len, cur_match_dist); |
1890 | saved_match_len = 0; |
1891 | len_to_move = cur_match_len as usize; |
1892 | } else { |
1893 | saved_lit = d.dict.b.dict[cur_pos]; |
1894 | saved_match_dist = cur_match_dist; |
1895 | saved_match_len = cur_match_len; |
1896 | } |
1897 | } else { |
1898 | record_match(&mut d.huff, &mut d.lz, saved_match_len, saved_match_dist); |
1899 | len_to_move = (saved_match_len - 1) as usize; |
1900 | saved_match_len = 0; |
1901 | } |
1902 | } else if cur_match_dist == 0 { |
1903 | record_literal( |
1904 | &mut d.huff, |
1905 | &mut d.lz, |
1906 | d.dict.b.dict[cmp::min(cur_pos, d.dict.b.dict.len() - 1)], |
1907 | ); |
1908 | } else if d.params.greedy_parsing |
1909 | || (d.params.flags & TDEFL_RLE_MATCHES != 0) |
1910 | || cur_match_len >= 128 |
1911 | { |
1912 | // If we are using lazy matching, check for matches at the next byte if the current |
1913 | // match was shorter than 128 bytes. |
1914 | record_match(&mut d.huff, &mut d.lz, cur_match_len, cur_match_dist); |
1915 | len_to_move = cur_match_len as usize; |
1916 | } else { |
1917 | saved_lit = d.dict.b.dict[cmp::min(cur_pos, d.dict.b.dict.len() - 1)]; |
1918 | saved_match_dist = cur_match_dist; |
1919 | saved_match_len = cur_match_len; |
1920 | } |
1921 | |
1922 | lookahead_pos += len_to_move; |
1923 | assert!(lookahead_size >= len_to_move); |
1924 | lookahead_size -= len_to_move; |
1925 | d.dict.size = cmp::min(d.dict.size + len_to_move, LZ_DICT_SIZE); |
1926 | |
1927 | let lz_buf_tight = d.lz.code_position > LZ_CODE_BUF_SIZE - 8; |
1928 | let fat = ((d.lz.code_position * 115) >> 7) >= d.lz.total_bytes as usize; |
1929 | let buf_fat = (d.lz.total_bytes > 31 * 1024) && fat; |
1930 | |
1931 | if lz_buf_tight || buf_fat { |
1932 | d.params.src_pos = src_pos; |
1933 | // These values are used in flush_block, so we need to write them back here. |
1934 | d.dict.lookahead_size = lookahead_size; |
1935 | d.dict.lookahead_pos = lookahead_pos; |
1936 | |
1937 | let n = flush_block(d, callback, TDEFLFlush::None) |
1938 | .unwrap_or(TDEFLStatus::PutBufFailed as i32); |
1939 | if n != 0 { |
1940 | d.params.saved_lit = saved_lit; |
1941 | d.params.saved_match_dist = saved_match_dist; |
1942 | d.params.saved_match_len = saved_match_len; |
1943 | return n > 0; |
1944 | } |
1945 | } |
1946 | } |
1947 | |
1948 | d.params.src_pos = src_pos; |
1949 | d.dict.lookahead_size = lookahead_size; |
1950 | d.dict.lookahead_pos = lookahead_pos; |
1951 | d.params.saved_lit = saved_lit; |
1952 | d.params.saved_match_dist = saved_match_dist; |
1953 | d.params.saved_match_len = saved_match_len; |
1954 | true |
1955 | } |
1956 | |
1957 | const COMP_FAST_LOOKAHEAD_SIZE: usize = 4096; |
1958 | |
1959 | fn compress_fast(d: &mut CompressorOxide, callback: &mut CallbackOxide) -> bool { |
1960 | let mut src_pos = d.params.src_pos; |
1961 | let mut lookahead_size = d.dict.lookahead_size; |
1962 | let mut lookahead_pos = d.dict.lookahead_pos; |
1963 | |
1964 | let mut cur_pos = lookahead_pos & LZ_DICT_SIZE_MASK; |
1965 | let in_buf = match callback.in_buf { |
1966 | None => return true, |
1967 | Some(in_buf) => in_buf, |
1968 | }; |
1969 | |
1970 | debug_assert!(d.lz.code_position < LZ_CODE_BUF_SIZE - 2); |
1971 | |
1972 | while src_pos < in_buf.len() || (d.params.flush != TDEFLFlush::None && lookahead_size > 0) { |
1973 | let mut dst_pos = (lookahead_pos + lookahead_size) & LZ_DICT_SIZE_MASK; |
1974 | let mut num_bytes_to_process = cmp::min( |
1975 | in_buf.len() - src_pos, |
1976 | COMP_FAST_LOOKAHEAD_SIZE - lookahead_size, |
1977 | ); |
1978 | lookahead_size += num_bytes_to_process; |
1979 | |
1980 | while num_bytes_to_process != 0 { |
1981 | let n = cmp::min(LZ_DICT_SIZE - dst_pos, num_bytes_to_process); |
1982 | d.dict.b.dict[dst_pos..dst_pos + n].copy_from_slice(&in_buf[src_pos..src_pos + n]); |
1983 | |
1984 | if dst_pos < MAX_MATCH_LEN - 1 { |
1985 | let m = cmp::min(n, MAX_MATCH_LEN - 1 - dst_pos); |
1986 | d.dict.b.dict[dst_pos + LZ_DICT_SIZE..dst_pos + LZ_DICT_SIZE + m] |
1987 | .copy_from_slice(&in_buf[src_pos..src_pos + m]); |
1988 | } |
1989 | |
1990 | src_pos += n; |
1991 | dst_pos = (dst_pos + n) & LZ_DICT_SIZE_MASK; |
1992 | num_bytes_to_process -= n; |
1993 | } |
1994 | |
1995 | d.dict.size = cmp::min(LZ_DICT_SIZE - lookahead_size, d.dict.size); |
1996 | if d.params.flush == TDEFLFlush::None && lookahead_size < COMP_FAST_LOOKAHEAD_SIZE { |
1997 | break; |
1998 | } |
1999 | |
2000 | while lookahead_size >= 4 { |
2001 | let mut cur_match_len = 1; |
2002 | |
2003 | let first_trigram = d.dict.read_unaligned_u32(cur_pos) & 0xFF_FFFF; |
2004 | |
2005 | let hash = (first_trigram ^ (first_trigram >> (24 - (LZ_HASH_BITS - 8)))) |
2006 | & LEVEL1_HASH_SIZE_MASK; |
2007 | |
2008 | let mut probe_pos = usize::from(d.dict.b.hash[hash as usize]); |
2009 | d.dict.b.hash[hash as usize] = lookahead_pos as u16; |
2010 | |
2011 | let mut cur_match_dist = (lookahead_pos - probe_pos) as u16; |
2012 | if cur_match_dist as usize <= d.dict.size { |
2013 | probe_pos &= LZ_DICT_SIZE_MASK; |
2014 | |
2015 | let trigram = d.dict.read_unaligned_u32(probe_pos) & 0xFF_FFFF; |
2016 | |
2017 | if first_trigram == trigram { |
2018 | // Trigram was tested, so we can start with "+ 3" displacement. |
2019 | let mut p = cur_pos + 3; |
2020 | let mut q = probe_pos + 3; |
2021 | cur_match_len = (|| { |
2022 | for _ in 0..32 { |
2023 | let p_data: u64 = d.dict.read_unaligned_u64(p); |
2024 | let q_data: u64 = d.dict.read_unaligned_u64(q); |
2025 | let xor_data = p_data ^ q_data; |
2026 | if xor_data == 0 { |
2027 | p += 8; |
2028 | q += 8; |
2029 | } else { |
2030 | let trailing = xor_data.trailing_zeros(); |
2031 | return p as u32 - cur_pos as u32 + (trailing >> 3); |
2032 | } |
2033 | } |
2034 | |
2035 | if cur_match_dist == 0 { |
2036 | 0 |
2037 | } else { |
2038 | MAX_MATCH_LEN as u32 |
2039 | } |
2040 | })(); |
2041 | |
2042 | if cur_match_len < MIN_MATCH_LEN.into() |
2043 | || (cur_match_len == MIN_MATCH_LEN.into() && cur_match_dist >= 8 * 1024) |
2044 | { |
2045 | let lit = first_trigram as u8; |
2046 | cur_match_len = 1; |
2047 | d.lz.write_code(lit); |
2048 | *d.lz.get_flag() >>= 1; |
2049 | d.huff.count[0][lit as usize] += 1; |
2050 | } else { |
2051 | // Limit the match to the length of the lookahead so we don't create a match |
2052 | // that ends after the end of the input data. |
2053 | cur_match_len = cmp::min(cur_match_len, lookahead_size as u32); |
2054 | debug_assert!(cur_match_len >= MIN_MATCH_LEN.into()); |
2055 | debug_assert!(cur_match_len <= MAX_MATCH_LEN as u32); |
2056 | debug_assert!(cur_match_dist >= 1); |
2057 | debug_assert!(cur_match_dist as usize <= LZ_DICT_SIZE); |
2058 | cur_match_dist -= 1; |
2059 | |
2060 | d.lz.write_code((cur_match_len - u32::from(MIN_MATCH_LEN)) as u8); |
2061 | d.lz.write_code(cur_match_dist as u8); |
2062 | d.lz.write_code((cur_match_dist >> 8) as u8); |
2063 | |
2064 | *d.lz.get_flag() >>= 1; |
2065 | *d.lz.get_flag() |= 0x80; |
2066 | if cur_match_dist < 512 { |
2067 | d.huff.count[1][SMALL_DIST_SYM[cur_match_dist as usize] as usize] += 1; |
2068 | } else { |
2069 | d.huff.count[1] |
2070 | [LARGE_DIST_SYM[(cur_match_dist >> 8) as usize] as usize] += 1; |
2071 | } |
2072 | |
2073 | d.huff.count[0][(LEN_SYM |
2074 | [(cur_match_len - u32::from(MIN_MATCH_LEN)) as usize & 255] |
2075 | as usize |
2076 | & 31) |
2077 | + LEN_SYM_OFFSET] += 1; |
2078 | } |
2079 | } else { |
2080 | d.lz.write_code(first_trigram as u8); |
2081 | *d.lz.get_flag() >>= 1; |
2082 | d.huff.count[0][first_trigram as u8 as usize] += 1; |
2083 | } |
2084 | |
2085 | d.lz.consume_flag(); |
2086 | d.lz.total_bytes += cur_match_len; |
2087 | lookahead_pos += cur_match_len as usize; |
2088 | d.dict.size = cmp::min(d.dict.size + cur_match_len as usize, LZ_DICT_SIZE); |
2089 | cur_pos = (cur_pos + cur_match_len as usize) & LZ_DICT_SIZE_MASK; |
2090 | lookahead_size -= cur_match_len as usize; |
2091 | |
2092 | if d.lz.code_position > LZ_CODE_BUF_SIZE - 8 { |
2093 | // These values are used in flush_block, so we need to write them back here. |
2094 | d.dict.lookahead_size = lookahead_size; |
2095 | d.dict.lookahead_pos = lookahead_pos; |
2096 | |
2097 | let n = match flush_block(d, callback, TDEFLFlush::None) { |
2098 | Err(_) => { |
2099 | d.params.src_pos = src_pos; |
2100 | d.params.prev_return_status = TDEFLStatus::PutBufFailed; |
2101 | return false; |
2102 | } |
2103 | Ok(status) => status, |
2104 | }; |
2105 | if n != 0 { |
2106 | d.params.src_pos = src_pos; |
2107 | return n > 0; |
2108 | } |
2109 | debug_assert!(d.lz.code_position < LZ_CODE_BUF_SIZE - 2); |
2110 | |
2111 | lookahead_size = d.dict.lookahead_size; |
2112 | lookahead_pos = d.dict.lookahead_pos; |
2113 | } |
2114 | } |
2115 | } |
2116 | |
2117 | while lookahead_size != 0 { |
2118 | let lit = d.dict.b.dict[cur_pos]; |
2119 | d.lz.total_bytes += 1; |
2120 | d.lz.write_code(lit); |
2121 | *d.lz.get_flag() >>= 1; |
2122 | d.lz.consume_flag(); |
2123 | |
2124 | d.huff.count[0][lit as usize] += 1; |
2125 | lookahead_pos += 1; |
2126 | d.dict.size = cmp::min(d.dict.size + 1, LZ_DICT_SIZE); |
2127 | cur_pos = (cur_pos + 1) & LZ_DICT_SIZE_MASK; |
2128 | lookahead_size -= 1; |
2129 | |
2130 | if d.lz.code_position > LZ_CODE_BUF_SIZE - 8 { |
2131 | // These values are used in flush_block, so we need to write them back here. |
2132 | d.dict.lookahead_size = lookahead_size; |
2133 | d.dict.lookahead_pos = lookahead_pos; |
2134 | |
2135 | let n = match flush_block(d, callback, TDEFLFlush::None) { |
2136 | Err(_) => { |
2137 | d.params.prev_return_status = TDEFLStatus::PutBufFailed; |
2138 | d.params.src_pos = src_pos; |
2139 | return false; |
2140 | } |
2141 | Ok(status) => status, |
2142 | }; |
2143 | if n != 0 { |
2144 | d.params.src_pos = src_pos; |
2145 | return n > 0; |
2146 | } |
2147 | |
2148 | lookahead_size = d.dict.lookahead_size; |
2149 | lookahead_pos = d.dict.lookahead_pos; |
2150 | } |
2151 | } |
2152 | } |
2153 | |
2154 | d.params.src_pos = src_pos; |
2155 | d.dict.lookahead_size = lookahead_size; |
2156 | d.dict.lookahead_pos = lookahead_pos; |
2157 | true |
2158 | } |
2159 | |
2160 | fn flush_output_buffer(c: &mut CallbackOxide, p: &mut ParamsOxide) -> (TDEFLStatus, usize, usize) { |
2161 | let mut res: (TDEFLStatus, usize, usize) = (TDEFLStatus::Okay, p.src_pos, 0); |
2162 | if let CallbackOut::Buf(ref mut cb: &mut CallbackBuf<'_>) = c.out { |
2163 | let n: usize = cmp::min(v1:cb.out_buf.len() - p.out_buf_ofs, v2:p.flush_remaining as usize); |
2164 | if n != 0 { |
2165 | cb.out_buf[p.out_buf_ofs..p.out_buf_ofs + n] |
2166 | .copy_from_slice(&p.local_buf.b[p.flush_ofs as usize..p.flush_ofs as usize + n]); |
2167 | } |
2168 | p.flush_ofs += n as u32; |
2169 | p.flush_remaining -= n as u32; |
2170 | p.out_buf_ofs += n; |
2171 | res.2 = p.out_buf_ofs; |
2172 | } |
2173 | |
2174 | if p.finished && p.flush_remaining == 0 { |
2175 | res.0 = TDEFLStatus::Done |
2176 | } |
2177 | res |
2178 | } |
2179 | |
2180 | /// Main compression function. Tries to compress as much as possible from `in_buf` and |
2181 | /// puts compressed output into `out_buf`. |
2182 | /// |
2183 | /// The value of `flush` determines if the compressor should attempt to flush all output |
2184 | /// and alternatively try to finish the stream. |
2185 | /// |
2186 | /// Use [`TDEFLFlush::Finish`] on the final call to signal that the stream is finishing. |
2187 | /// |
2188 | /// Note that this function does not keep track of whether a flush marker has been output, so |
2189 | /// if called using [`TDEFLFlush::Sync`], the caller needs to ensure there is enough space in the |
2190 | /// output buffer if they want to avoid repeated flush markers. |
2191 | /// See #105 for details. |
2192 | /// |
2193 | /// # Returns |
2194 | /// Returns a tuple containing the current status of the compressor, the current position |
2195 | /// in the input buffer and the current position in the output buffer. |
2196 | pub fn compress( |
2197 | d: &mut CompressorOxide, |
2198 | in_buf: &[u8], |
2199 | out_buf: &mut [u8], |
2200 | flush: TDEFLFlush, |
2201 | ) -> (TDEFLStatus, usize, usize) { |
2202 | compress_inner( |
2203 | d, |
2204 | &mut CallbackOxide::new_callback_buf(in_buf, out_buf), |
2205 | flush, |
2206 | ) |
2207 | } |
2208 | |
2209 | /// Main compression function. Callbacks output. |
2210 | /// |
2211 | /// # Returns |
2212 | /// Returns a tuple containing the current status of the compressor, the current position |
2213 | /// in the input buffer. |
2214 | /// |
2215 | /// The caller is responsible for ensuring the `CallbackFunc` struct will not cause undefined |
2216 | /// behaviour. |
2217 | pub fn compress_to_output( |
2218 | d: &mut CompressorOxide, |
2219 | in_buf: &[u8], |
2220 | flush: TDEFLFlush, |
2221 | mut callback_func: impl FnMut(&[u8]) -> bool, |
2222 | ) -> (TDEFLStatus, usize) { |
2223 | let res: (TDEFLStatus, usize, usize) = compress_inner( |
2224 | d, |
2225 | &mut CallbackOxide::new_callback_func( |
2226 | in_buf, |
2227 | CallbackFunc { |
2228 | put_buf_func: &mut callback_func, |
2229 | }, |
2230 | ), |
2231 | flush, |
2232 | ); |
2233 | |
2234 | (res.0, res.1) |
2235 | } |
2236 | |
2237 | fn compress_inner( |
2238 | d: &mut CompressorOxide, |
2239 | callback: &mut CallbackOxide, |
2240 | flush: TDEFLFlush, |
2241 | ) -> (TDEFLStatus, usize, usize) { |
2242 | d.params.out_buf_ofs = 0; |
2243 | d.params.src_pos = 0; |
2244 | |
2245 | let prev_ok = d.params.prev_return_status == TDEFLStatus::Okay; |
2246 | let flush_finish_once = d.params.flush != TDEFLFlush::Finish || flush == TDEFLFlush::Finish; |
2247 | |
2248 | d.params.flush = flush; |
2249 | if !prev_ok || !flush_finish_once { |
2250 | d.params.prev_return_status = TDEFLStatus::BadParam; |
2251 | return (d.params.prev_return_status, 0, 0); |
2252 | } |
2253 | |
2254 | if d.params.flush_remaining != 0 || d.params.finished { |
2255 | let res = flush_output_buffer(callback, &mut d.params); |
2256 | d.params.prev_return_status = res.0; |
2257 | return res; |
2258 | } |
2259 | |
2260 | let one_probe = d.params.flags & MAX_PROBES_MASK == 1; |
2261 | let greedy = d.params.flags & TDEFL_GREEDY_PARSING_FLAG != 0; |
2262 | let filter_or_rle = d.params.flags & (TDEFL_FILTER_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS) != 0; |
2263 | |
2264 | let raw = d.params.flags & TDEFL_FORCE_ALL_RAW_BLOCKS != 0; |
2265 | |
2266 | let compress_success = if raw { |
2267 | compress_stored(d, callback) |
2268 | } else if one_probe && greedy && !filter_or_rle { |
2269 | compress_fast(d, callback) |
2270 | } else { |
2271 | compress_normal(d, callback) |
2272 | }; |
2273 | |
2274 | if !compress_success { |
2275 | return ( |
2276 | d.params.prev_return_status, |
2277 | d.params.src_pos, |
2278 | d.params.out_buf_ofs, |
2279 | ); |
2280 | } |
2281 | |
2282 | if let Some(in_buf) = callback.in_buf { |
2283 | if d.params.flags & (TDEFL_WRITE_ZLIB_HEADER | TDEFL_COMPUTE_ADLER32) != 0 { |
2284 | d.params.adler32 = update_adler32(d.params.adler32, &in_buf[..d.params.src_pos]); |
2285 | } |
2286 | } |
2287 | |
2288 | let flush_none = d.params.flush == TDEFLFlush::None; |
2289 | let in_left = callback.in_buf.map_or(0, |buf| buf.len()) - d.params.src_pos; |
2290 | let remaining = in_left != 0 || d.params.flush_remaining != 0; |
2291 | if !flush_none && d.dict.lookahead_size == 0 && !remaining { |
2292 | let flush = d.params.flush; |
2293 | match flush_block(d, callback, flush) { |
2294 | Err(_) => { |
2295 | d.params.prev_return_status = TDEFLStatus::PutBufFailed; |
2296 | return ( |
2297 | d.params.prev_return_status, |
2298 | d.params.src_pos, |
2299 | d.params.out_buf_ofs, |
2300 | ); |
2301 | } |
2302 | Ok(x) if x < 0 => { |
2303 | return ( |
2304 | d.params.prev_return_status, |
2305 | d.params.src_pos, |
2306 | d.params.out_buf_ofs, |
2307 | ) |
2308 | } |
2309 | _ => { |
2310 | d.params.finished = d.params.flush == TDEFLFlush::Finish; |
2311 | if d.params.flush == TDEFLFlush::Full { |
2312 | d.dict.b.hash.fill(0); |
2313 | d.dict.b.next.fill(0); |
2314 | d.dict.size = 0; |
2315 | } |
2316 | } |
2317 | } |
2318 | } |
2319 | |
2320 | let res = flush_output_buffer(callback, &mut d.params); |
2321 | d.params.prev_return_status = res.0; |
2322 | |
2323 | res |
2324 | } |
2325 | |
2326 | /// Create a set of compression flags using parameters used by zlib and other compressors. |
2327 | /// Mainly intended for use with transition from c libraries as it deals with raw integers. |
2328 | /// |
2329 | /// # Parameters |
2330 | /// `level` determines compression level. Clamped to maximum of 10. Negative values result in |
2331 | /// `CompressionLevel::DefaultLevel`. |
2332 | /// `window_bits`: Above 0, wraps the stream in a zlib wrapper, 0 or negative for a raw deflate |
2333 | /// stream. |
2334 | /// `strategy`: Sets the strategy if this conforms to any of the values in `CompressionStrategy`. |
2335 | /// |
2336 | /// # Notes |
2337 | /// This function may be removed or moved to the `miniz_oxide_c_api` in the future. |
2338 | pub fn create_comp_flags_from_zip_params(level: i32, window_bits: i32, strategy: i32) -> u32 { |
2339 | let num_probes = (if level >= 0 { |
2340 | cmp::min(10, level) |
2341 | } else { |
2342 | CompressionLevel::DefaultLevel as i32 |
2343 | }) as usize; |
2344 | let greedy = if level <= 3 { |
2345 | TDEFL_GREEDY_PARSING_FLAG |
2346 | } else { |
2347 | 0 |
2348 | }; |
2349 | let mut comp_flags = u32::from(NUM_PROBES[num_probes]) | greedy; |
2350 | |
2351 | if window_bits > 0 { |
2352 | comp_flags |= TDEFL_WRITE_ZLIB_HEADER; |
2353 | } |
2354 | |
2355 | if level == 0 { |
2356 | comp_flags |= TDEFL_FORCE_ALL_RAW_BLOCKS; |
2357 | } else if strategy == CompressionStrategy::Filtered as i32 { |
2358 | comp_flags |= TDEFL_FILTER_MATCHES; |
2359 | } else if strategy == CompressionStrategy::HuffmanOnly as i32 { |
2360 | comp_flags &= !MAX_PROBES_MASK; |
2361 | } else if strategy == CompressionStrategy::Fixed as i32 { |
2362 | comp_flags |= TDEFL_FORCE_ALL_STATIC_BLOCKS; |
2363 | } else if strategy == CompressionStrategy::RLE as i32 { |
2364 | comp_flags |= TDEFL_RLE_MATCHES; |
2365 | } |
2366 | |
2367 | comp_flags |
2368 | } |
2369 | |
2370 | #[cfg (test)] |
2371 | mod test { |
2372 | use super::{ |
2373 | compress_to_output, create_comp_flags_from_zip_params, read_u16_le, write_u16_le, |
2374 | CompressionStrategy, CompressorOxide, TDEFLFlush, TDEFLStatus, DEFAULT_FLAGS, |
2375 | MZ_DEFAULT_WINDOW_BITS, |
2376 | }; |
2377 | use crate::inflate::decompress_to_vec; |
2378 | use alloc::vec; |
2379 | |
2380 | #[test ] |
2381 | fn u16_to_slice() { |
2382 | let mut slice = [0, 0]; |
2383 | write_u16_le(2000, &mut slice, 0); |
2384 | assert_eq!(slice, [208, 7]); |
2385 | } |
2386 | |
2387 | #[test ] |
2388 | fn u16_from_slice() { |
2389 | let slice = [208, 7]; |
2390 | assert_eq!(read_u16_le(&slice, 0), 2000); |
2391 | } |
2392 | |
2393 | #[test ] |
2394 | fn compress_output() { |
2395 | assert_eq!( |
2396 | DEFAULT_FLAGS, |
2397 | create_comp_flags_from_zip_params( |
2398 | 4, |
2399 | MZ_DEFAULT_WINDOW_BITS, |
2400 | CompressionStrategy::Default as i32 |
2401 | ) |
2402 | ); |
2403 | |
2404 | let slice = [ |
2405 | 1, 2, 3, 4, 1, 2, 3, 1, 2, 3, 1, 2, 6, 1, 2, 3, 1, 2, 3, 2, 3, 1, 2, 3, |
2406 | ]; |
2407 | let mut encoded = vec![]; |
2408 | let flags = create_comp_flags_from_zip_params(6, 0, 0); |
2409 | let mut d = CompressorOxide::new(flags); |
2410 | let (status, in_consumed) = |
2411 | compress_to_output(&mut d, &slice, TDEFLFlush::Finish, |out: &[u8]| { |
2412 | encoded.extend_from_slice(out); |
2413 | true |
2414 | }); |
2415 | |
2416 | assert_eq!(status, TDEFLStatus::Done); |
2417 | assert_eq!(in_consumed, slice.len()); |
2418 | |
2419 | let decoded = decompress_to_vec(&encoded[..]).unwrap(); |
2420 | assert_eq!(&decoded[..], &slice[..]); |
2421 | } |
2422 | |
2423 | #[test ] |
2424 | /// Check fast compress mode |
2425 | fn compress_fast() { |
2426 | let slice = [ |
2427 | 1, 2, 3, 4, 1, 2, 3, 1, 2, 3, 1, 2, 6, 1, 2, 3, 1, 2, 3, 2, 3, 1, 2, 3, |
2428 | ]; |
2429 | let mut encoded = vec![]; |
2430 | let flags = create_comp_flags_from_zip_params(1, 0, 0); |
2431 | let mut d = CompressorOxide::new(flags); |
2432 | let (status, in_consumed) = |
2433 | compress_to_output(&mut d, &slice, TDEFLFlush::Finish, |out: &[u8]| { |
2434 | encoded.extend_from_slice(out); |
2435 | true |
2436 | }); |
2437 | |
2438 | assert_eq!(status, TDEFLStatus::Done); |
2439 | assert_eq!(in_consumed, slice.len()); |
2440 | |
2441 | // Needs to be altered if algorithm improves. |
2442 | assert_eq!( |
2443 | &encoded[..], |
2444 | [99, 100, 98, 102, 1, 98, 48, 98, 3, 147, 204, 76, 204, 140, 76, 204, 0] |
2445 | ); |
2446 | |
2447 | let decoded = decompress_to_vec(&encoded[..]).unwrap(); |
2448 | assert_eq!(&decoded[..], &slice[..]); |
2449 | } |
2450 | |
2451 | #[test ] |
2452 | fn zlib_window_bits() { |
2453 | use crate::inflate::stream::{inflate, InflateState}; |
2454 | use crate::DataFormat; |
2455 | use alloc::boxed::Box; |
2456 | let slice = [ |
2457 | 1, 2, 3, 4, 1, 2, 3, 1, 2, 3, 1, 2, 6, 1, 2, 3, 1, 2, 3, 2, 3, 1, 2, 3, 35, 22, 22, 2, |
2458 | 6, 2, 6, |
2459 | ]; |
2460 | let mut encoded = vec![]; |
2461 | let flags = create_comp_flags_from_zip_params(2, 1, CompressionStrategy::RLE.into()); |
2462 | let mut d = CompressorOxide::new(flags); |
2463 | let (status, in_consumed) = |
2464 | compress_to_output(&mut d, &slice, TDEFLFlush::Finish, |out: &[u8]| { |
2465 | encoded.extend_from_slice(out); |
2466 | true |
2467 | }); |
2468 | |
2469 | assert_eq!(status, TDEFLStatus::Done); |
2470 | assert_eq!(in_consumed, slice.len()); |
2471 | |
2472 | let mut output = vec![0; slice.len()]; |
2473 | |
2474 | let mut decompressor = Box::new(InflateState::new(DataFormat::Zlib)); |
2475 | |
2476 | let mut out_slice = output.as_mut_slice(); |
2477 | // Feed 1 byte at a time and no back buffer to test that RLE encoding has been used. |
2478 | for i in 0..encoded.len() { |
2479 | let result = inflate( |
2480 | &mut decompressor, |
2481 | &encoded[i..i + 1], |
2482 | out_slice, |
2483 | crate::MZFlush::None, |
2484 | ); |
2485 | out_slice = &mut out_slice[result.bytes_written..]; |
2486 | } |
2487 | let cmf = decompressor.decompressor().zlib_header().0; |
2488 | assert_eq!(cmf, 8); |
2489 | assert_eq!(output, slice) |
2490 | } |
2491 | } |
2492 | |