| 1 | // Keeps us from accidentally creating a recursive impl rather than a real one. |
| 2 | #![deny (unconditional_recursion)] |
| 3 | |
| 4 | use core::ops::Neg; |
| 5 | |
| 6 | use num_traits::{Float, FloatConst, Num, NumCast}; |
| 7 | |
| 8 | use crate::Complex; |
| 9 | |
| 10 | mod private { |
| 11 | use num_traits::{Float, FloatConst}; |
| 12 | |
| 13 | use crate::Complex; |
| 14 | |
| 15 | pub trait Seal {} |
| 16 | |
| 17 | impl<T> Seal for T where T: Float + FloatConst {} |
| 18 | impl<T: Float + FloatConst> Seal for Complex<T> {} |
| 19 | } |
| 20 | |
| 21 | /// Generic trait for floating point complex numbers. |
| 22 | /// |
| 23 | /// This trait defines methods which are common to complex floating point |
| 24 | /// numbers and regular floating point numbers. |
| 25 | /// |
| 26 | /// This trait is sealed to prevent it from being implemented by anything other |
| 27 | /// than floating point scalars and [Complex] floats. |
| 28 | pub trait ComplexFloat: Num + NumCast + Copy + Neg<Output = Self> + private::Seal { |
| 29 | /// The type used to represent the real coefficients of this complex number. |
| 30 | type Real: Float + FloatConst; |
| 31 | |
| 32 | /// Returns `true` if this value is `NaN` and false otherwise. |
| 33 | fn is_nan(self) -> bool; |
| 34 | |
| 35 | /// Returns `true` if this value is positive infinity or negative infinity and |
| 36 | /// false otherwise. |
| 37 | fn is_infinite(self) -> bool; |
| 38 | |
| 39 | /// Returns `true` if this number is neither infinite nor `NaN`. |
| 40 | fn is_finite(self) -> bool; |
| 41 | |
| 42 | /// Returns `true` if the number is neither zero, infinite, |
| 43 | /// [subnormal](http://en.wikipedia.org/wiki/Denormal_number), or `NaN`. |
| 44 | fn is_normal(self) -> bool; |
| 45 | |
| 46 | /// Take the reciprocal (inverse) of a number, `1/x`. See also [Complex::finv]. |
| 47 | fn recip(self) -> Self; |
| 48 | |
| 49 | /// Raises `self` to a signed integer power. |
| 50 | fn powi(self, exp: i32) -> Self; |
| 51 | |
| 52 | /// Raises `self` to a real power. |
| 53 | fn powf(self, exp: Self::Real) -> Self; |
| 54 | |
| 55 | /// Raises `self` to a complex power. |
| 56 | fn powc(self, exp: Complex<Self::Real>) -> Complex<Self::Real>; |
| 57 | |
| 58 | /// Take the square root of a number. |
| 59 | fn sqrt(self) -> Self; |
| 60 | |
| 61 | /// Returns `e^(self)`, (the exponential function). |
| 62 | fn exp(self) -> Self; |
| 63 | |
| 64 | /// Returns `2^(self)`. |
| 65 | fn exp2(self) -> Self; |
| 66 | |
| 67 | /// Returns `base^(self)`. |
| 68 | fn expf(self, base: Self::Real) -> Self; |
| 69 | |
| 70 | /// Returns the natural logarithm of the number. |
| 71 | fn ln(self) -> Self; |
| 72 | |
| 73 | /// Returns the logarithm of the number with respect to an arbitrary base. |
| 74 | fn log(self, base: Self::Real) -> Self; |
| 75 | |
| 76 | /// Returns the base 2 logarithm of the number. |
| 77 | fn log2(self) -> Self; |
| 78 | |
| 79 | /// Returns the base 10 logarithm of the number. |
| 80 | fn log10(self) -> Self; |
| 81 | |
| 82 | /// Take the cubic root of a number. |
| 83 | fn cbrt(self) -> Self; |
| 84 | |
| 85 | /// Computes the sine of a number (in radians). |
| 86 | fn sin(self) -> Self; |
| 87 | |
| 88 | /// Computes the cosine of a number (in radians). |
| 89 | fn cos(self) -> Self; |
| 90 | |
| 91 | /// Computes the tangent of a number (in radians). |
| 92 | fn tan(self) -> Self; |
| 93 | |
| 94 | /// Computes the arcsine of a number. Return value is in radians in |
| 95 | /// the range [-pi/2, pi/2] or NaN if the number is outside the range |
| 96 | /// [-1, 1]. |
| 97 | fn asin(self) -> Self; |
| 98 | |
| 99 | /// Computes the arccosine of a number. Return value is in radians in |
| 100 | /// the range [0, pi] or NaN if the number is outside the range |
| 101 | /// [-1, 1]. |
| 102 | fn acos(self) -> Self; |
| 103 | |
| 104 | /// Computes the arctangent of a number. Return value is in radians in the |
| 105 | /// range [-pi/2, pi/2]; |
| 106 | fn atan(self) -> Self; |
| 107 | |
| 108 | /// Hyperbolic sine function. |
| 109 | fn sinh(self) -> Self; |
| 110 | |
| 111 | /// Hyperbolic cosine function. |
| 112 | fn cosh(self) -> Self; |
| 113 | |
| 114 | /// Hyperbolic tangent function. |
| 115 | fn tanh(self) -> Self; |
| 116 | |
| 117 | /// Inverse hyperbolic sine function. |
| 118 | fn asinh(self) -> Self; |
| 119 | |
| 120 | /// Inverse hyperbolic cosine function. |
| 121 | fn acosh(self) -> Self; |
| 122 | |
| 123 | /// Inverse hyperbolic tangent function. |
| 124 | fn atanh(self) -> Self; |
| 125 | |
| 126 | /// Returns the real part of the number. |
| 127 | fn re(self) -> Self::Real; |
| 128 | |
| 129 | /// Returns the imaginary part of the number. |
| 130 | fn im(self) -> Self::Real; |
| 131 | |
| 132 | /// Returns the absolute value of the number. See also [Complex::norm] |
| 133 | fn abs(self) -> Self::Real; |
| 134 | |
| 135 | /// Returns the L1 norm `|re| + |im|` -- the [Manhattan distance] from the origin. |
| 136 | /// |
| 137 | /// [Manhattan distance]: https://en.wikipedia.org/wiki/Taxicab_geometry |
| 138 | fn l1_norm(&self) -> Self::Real; |
| 139 | |
| 140 | /// Computes the argument of the number. |
| 141 | fn arg(self) -> Self::Real; |
| 142 | |
| 143 | /// Computes the complex conjugate of the number. |
| 144 | /// |
| 145 | /// Formula: `a+bi -> a-bi` |
| 146 | fn conj(self) -> Self; |
| 147 | } |
| 148 | |
| 149 | macro_rules! forward { |
| 150 | ($( $base:ident :: $method:ident ( self $( , $arg:ident : $ty:ty )* ) -> $ret:ty ; )*) |
| 151 | => {$( |
| 152 | #[inline] |
| 153 | fn $method(self $( , $arg : $ty )* ) -> $ret { |
| 154 | $base::$method(self $( , $arg )* ) |
| 155 | } |
| 156 | )*}; |
| 157 | } |
| 158 | |
| 159 | macro_rules! forward_ref { |
| 160 | ($( Self :: $method:ident ( & self $( , $arg:ident : $ty:ty )* ) -> $ret:ty ; )*) |
| 161 | => {$( |
| 162 | #[inline] |
| 163 | fn $method(self $( , $arg : $ty )* ) -> $ret { |
| 164 | Self::$method(&self $( , $arg )* ) |
| 165 | } |
| 166 | )*}; |
| 167 | } |
| 168 | |
| 169 | impl<T> ComplexFloat for T |
| 170 | where |
| 171 | T: Float + FloatConst, |
| 172 | { |
| 173 | type Real = T; |
| 174 | |
| 175 | fn re(self) -> Self::Real { |
| 176 | self |
| 177 | } |
| 178 | |
| 179 | fn im(self) -> Self::Real { |
| 180 | T::zero() |
| 181 | } |
| 182 | |
| 183 | fn l1_norm(&self) -> Self::Real { |
| 184 | self.abs() |
| 185 | } |
| 186 | |
| 187 | fn arg(self) -> Self::Real { |
| 188 | if self.is_nan() { |
| 189 | self |
| 190 | } else if self.is_sign_negative() { |
| 191 | T::PI() |
| 192 | } else { |
| 193 | T::zero() |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | fn powc(self, exp: Complex<Self::Real>) -> Complex<Self::Real> { |
| 198 | Complex::new(self, T::zero()).powc(exp) |
| 199 | } |
| 200 | |
| 201 | fn conj(self) -> Self { |
| 202 | self |
| 203 | } |
| 204 | |
| 205 | fn expf(self, base: Self::Real) -> Self { |
| 206 | base.powf(self) |
| 207 | } |
| 208 | |
| 209 | forward! { |
| 210 | Float::is_normal(self) -> bool; |
| 211 | Float::is_infinite(self) -> bool; |
| 212 | Float::is_finite(self) -> bool; |
| 213 | Float::is_nan(self) -> bool; |
| 214 | Float::recip(self) -> Self; |
| 215 | Float::powi(self, n: i32) -> Self; |
| 216 | Float::powf(self, f: Self) -> Self; |
| 217 | Float::sqrt(self) -> Self; |
| 218 | Float::cbrt(self) -> Self; |
| 219 | Float::exp(self) -> Self; |
| 220 | Float::exp2(self) -> Self; |
| 221 | Float::ln(self) -> Self; |
| 222 | Float::log(self, base: Self) -> Self; |
| 223 | Float::log2(self) -> Self; |
| 224 | Float::log10(self) -> Self; |
| 225 | Float::sin(self) -> Self; |
| 226 | Float::cos(self) -> Self; |
| 227 | Float::tan(self) -> Self; |
| 228 | Float::asin(self) -> Self; |
| 229 | Float::acos(self) -> Self; |
| 230 | Float::atan(self) -> Self; |
| 231 | Float::sinh(self) -> Self; |
| 232 | Float::cosh(self) -> Self; |
| 233 | Float::tanh(self) -> Self; |
| 234 | Float::asinh(self) -> Self; |
| 235 | Float::acosh(self) -> Self; |
| 236 | Float::atanh(self) -> Self; |
| 237 | Float::abs(self) -> Self; |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | impl<T: Float + FloatConst> ComplexFloat for Complex<T> { |
| 242 | type Real = T; |
| 243 | |
| 244 | fn re(self) -> Self::Real { |
| 245 | self.re |
| 246 | } |
| 247 | |
| 248 | fn im(self) -> Self::Real { |
| 249 | self.im |
| 250 | } |
| 251 | |
| 252 | fn abs(self) -> Self::Real { |
| 253 | self.norm() |
| 254 | } |
| 255 | |
| 256 | fn recip(self) -> Self { |
| 257 | self.finv() |
| 258 | } |
| 259 | |
| 260 | // `Complex::l1_norm` uses `Signed::abs` to let it work |
| 261 | // for integers too, but we can just use `Float::abs`. |
| 262 | fn l1_norm(&self) -> Self::Real { |
| 263 | self.re.abs() + self.im.abs() |
| 264 | } |
| 265 | |
| 266 | // `Complex::is_*` methods use `T: FloatCore`, but we |
| 267 | // have `T: Float` that can do them as well. |
| 268 | fn is_nan(self) -> bool { |
| 269 | self.re.is_nan() || self.im.is_nan() |
| 270 | } |
| 271 | |
| 272 | fn is_infinite(self) -> bool { |
| 273 | !self.is_nan() && (self.re.is_infinite() || self.im.is_infinite()) |
| 274 | } |
| 275 | |
| 276 | fn is_finite(self) -> bool { |
| 277 | self.re.is_finite() && self.im.is_finite() |
| 278 | } |
| 279 | |
| 280 | fn is_normal(self) -> bool { |
| 281 | self.re.is_normal() && self.im.is_normal() |
| 282 | } |
| 283 | |
| 284 | forward! { |
| 285 | Complex::arg(self) -> Self::Real; |
| 286 | Complex::powc(self, exp: Complex<Self::Real>) -> Complex<Self::Real>; |
| 287 | Complex::exp2(self) -> Self; |
| 288 | Complex::log(self, base: Self::Real) -> Self; |
| 289 | Complex::log2(self) -> Self; |
| 290 | Complex::log10(self) -> Self; |
| 291 | Complex::powf(self, f: Self::Real) -> Self; |
| 292 | Complex::sqrt(self) -> Self; |
| 293 | Complex::cbrt(self) -> Self; |
| 294 | Complex::exp(self) -> Self; |
| 295 | Complex::expf(self, base: Self::Real) -> Self; |
| 296 | Complex::ln(self) -> Self; |
| 297 | Complex::sin(self) -> Self; |
| 298 | Complex::cos(self) -> Self; |
| 299 | Complex::tan(self) -> Self; |
| 300 | Complex::asin(self) -> Self; |
| 301 | Complex::acos(self) -> Self; |
| 302 | Complex::atan(self) -> Self; |
| 303 | Complex::sinh(self) -> Self; |
| 304 | Complex::cosh(self) -> Self; |
| 305 | Complex::tanh(self) -> Self; |
| 306 | Complex::asinh(self) -> Self; |
| 307 | Complex::acosh(self) -> Self; |
| 308 | Complex::atanh(self) -> Self; |
| 309 | } |
| 310 | |
| 311 | forward_ref! { |
| 312 | Self::powi(&self, n: i32) -> Self; |
| 313 | Self::conj(&self) -> Self; |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | #[cfg (test)] |
| 318 | mod test { |
| 319 | use crate::{ |
| 320 | complex_float::ComplexFloat, |
| 321 | test::{_0_0i, _0_1i, _1_0i, _1_1i, float::close}, |
| 322 | Complex, |
| 323 | }; |
| 324 | use std::f64; // for constants before Rust 1.43. |
| 325 | |
| 326 | fn closef(a: f64, b: f64) -> bool { |
| 327 | close_to_tolf(a, b, 1e-10) |
| 328 | } |
| 329 | |
| 330 | fn close_to_tolf(a: f64, b: f64, tol: f64) -> bool { |
| 331 | // returns true if a and b are reasonably close |
| 332 | let close = (a == b) || (a - b).abs() < tol; |
| 333 | if !close { |
| 334 | println!("{:?} != {:?}" , a, b); |
| 335 | } |
| 336 | close |
| 337 | } |
| 338 | |
| 339 | #[test ] |
| 340 | fn test_exp2() { |
| 341 | assert!(close(ComplexFloat::exp2(_0_0i), _1_0i)); |
| 342 | assert!(closef(<f64 as ComplexFloat>::exp2(0.), 1.)); |
| 343 | } |
| 344 | |
| 345 | #[test ] |
| 346 | fn test_exp() { |
| 347 | assert!(close(ComplexFloat::exp(_0_0i), _1_0i)); |
| 348 | assert!(closef(ComplexFloat::exp(0.), 1.)); |
| 349 | } |
| 350 | |
| 351 | #[test ] |
| 352 | fn test_powi() { |
| 353 | assert!(close(ComplexFloat::powi(_0_1i, 4), _1_0i)); |
| 354 | assert!(closef(ComplexFloat::powi(-1., 4), 1.)); |
| 355 | } |
| 356 | |
| 357 | #[test ] |
| 358 | fn test_powz() { |
| 359 | assert!(close(ComplexFloat::powc(_1_0i, _0_1i), _1_0i)); |
| 360 | assert!(close(ComplexFloat::powc(1., _0_1i), _1_0i)); |
| 361 | } |
| 362 | |
| 363 | #[test ] |
| 364 | fn test_log2() { |
| 365 | assert!(close(ComplexFloat::log2(_1_0i), _0_0i)); |
| 366 | assert!(closef(ComplexFloat::log2(1.), 0.)); |
| 367 | } |
| 368 | |
| 369 | #[test ] |
| 370 | fn test_log10() { |
| 371 | assert!(close(ComplexFloat::log10(_1_0i), _0_0i)); |
| 372 | assert!(closef(ComplexFloat::log10(1.), 0.)); |
| 373 | } |
| 374 | |
| 375 | #[test ] |
| 376 | fn test_conj() { |
| 377 | assert_eq!(ComplexFloat::conj(_0_1i), Complex::new(0., -1.)); |
| 378 | assert_eq!(ComplexFloat::conj(1.), 1.); |
| 379 | } |
| 380 | |
| 381 | #[test ] |
| 382 | fn test_is_nan() { |
| 383 | assert!(!ComplexFloat::is_nan(_1_0i)); |
| 384 | assert!(!ComplexFloat::is_nan(1.)); |
| 385 | |
| 386 | assert!(ComplexFloat::is_nan(Complex::new(f64::NAN, f64::NAN))); |
| 387 | assert!(ComplexFloat::is_nan(f64::NAN)); |
| 388 | } |
| 389 | |
| 390 | #[test ] |
| 391 | fn test_is_infinite() { |
| 392 | assert!(!ComplexFloat::is_infinite(_1_0i)); |
| 393 | assert!(!ComplexFloat::is_infinite(1.)); |
| 394 | |
| 395 | assert!(ComplexFloat::is_infinite(Complex::new( |
| 396 | f64::INFINITY, |
| 397 | f64::INFINITY |
| 398 | ))); |
| 399 | assert!(ComplexFloat::is_infinite(f64::INFINITY)); |
| 400 | } |
| 401 | |
| 402 | #[test ] |
| 403 | fn test_is_finite() { |
| 404 | assert!(ComplexFloat::is_finite(_1_0i)); |
| 405 | assert!(ComplexFloat::is_finite(1.)); |
| 406 | |
| 407 | assert!(!ComplexFloat::is_finite(Complex::new( |
| 408 | f64::INFINITY, |
| 409 | f64::INFINITY |
| 410 | ))); |
| 411 | assert!(!ComplexFloat::is_finite(f64::INFINITY)); |
| 412 | } |
| 413 | |
| 414 | #[test ] |
| 415 | fn test_is_normal() { |
| 416 | assert!(ComplexFloat::is_normal(_1_1i)); |
| 417 | assert!(ComplexFloat::is_normal(1.)); |
| 418 | |
| 419 | assert!(!ComplexFloat::is_normal(Complex::new( |
| 420 | f64::INFINITY, |
| 421 | f64::INFINITY |
| 422 | ))); |
| 423 | assert!(!ComplexFloat::is_normal(f64::INFINITY)); |
| 424 | } |
| 425 | |
| 426 | #[test ] |
| 427 | fn test_arg() { |
| 428 | assert!(closef( |
| 429 | ComplexFloat::arg(_0_1i), |
| 430 | core::f64::consts::FRAC_PI_2 |
| 431 | )); |
| 432 | |
| 433 | assert!(closef(ComplexFloat::arg(-1.), core::f64::consts::PI)); |
| 434 | assert!(closef(ComplexFloat::arg(-0.), core::f64::consts::PI)); |
| 435 | assert!(closef(ComplexFloat::arg(0.), 0.)); |
| 436 | assert!(closef(ComplexFloat::arg(1.), 0.)); |
| 437 | assert!(ComplexFloat::arg(f64::NAN).is_nan()); |
| 438 | } |
| 439 | } |
| 440 | |