1 | // Keeps us from accidentally creating a recursive impl rather than a real one. |
2 | #![deny (unconditional_recursion)] |
3 | |
4 | use core::ops::Neg; |
5 | |
6 | use num_traits::{Float, FloatConst, Num, NumCast}; |
7 | |
8 | use crate::Complex; |
9 | |
10 | mod private { |
11 | use num_traits::{Float, FloatConst}; |
12 | |
13 | use crate::Complex; |
14 | |
15 | pub trait Seal {} |
16 | |
17 | impl<T> Seal for T where T: Float + FloatConst {} |
18 | impl<T: Float + FloatConst> Seal for Complex<T> {} |
19 | } |
20 | |
21 | /// Generic trait for floating point complex numbers. |
22 | /// |
23 | /// This trait defines methods which are common to complex floating point |
24 | /// numbers and regular floating point numbers. |
25 | /// |
26 | /// This trait is sealed to prevent it from being implemented by anything other |
27 | /// than floating point scalars and [Complex] floats. |
28 | pub trait ComplexFloat: Num + NumCast + Copy + Neg<Output = Self> + private::Seal { |
29 | /// The type used to represent the real coefficients of this complex number. |
30 | type Real: Float + FloatConst; |
31 | |
32 | /// Returns `true` if this value is `NaN` and false otherwise. |
33 | fn is_nan(self) -> bool; |
34 | |
35 | /// Returns `true` if this value is positive infinity or negative infinity and |
36 | /// false otherwise. |
37 | fn is_infinite(self) -> bool; |
38 | |
39 | /// Returns `true` if this number is neither infinite nor `NaN`. |
40 | fn is_finite(self) -> bool; |
41 | |
42 | /// Returns `true` if the number is neither zero, infinite, |
43 | /// [subnormal](http://en.wikipedia.org/wiki/Denormal_number), or `NaN`. |
44 | fn is_normal(self) -> bool; |
45 | |
46 | /// Take the reciprocal (inverse) of a number, `1/x`. See also [Complex::finv]. |
47 | fn recip(self) -> Self; |
48 | |
49 | /// Raises `self` to a signed integer power. |
50 | fn powi(self, exp: i32) -> Self; |
51 | |
52 | /// Raises `self` to a real power. |
53 | fn powf(self, exp: Self::Real) -> Self; |
54 | |
55 | /// Raises `self` to a complex power. |
56 | fn powc(self, exp: Complex<Self::Real>) -> Complex<Self::Real>; |
57 | |
58 | /// Take the square root of a number. |
59 | fn sqrt(self) -> Self; |
60 | |
61 | /// Returns `e^(self)`, (the exponential function). |
62 | fn exp(self) -> Self; |
63 | |
64 | /// Returns `2^(self)`. |
65 | fn exp2(self) -> Self; |
66 | |
67 | /// Returns `base^(self)`. |
68 | fn expf(self, base: Self::Real) -> Self; |
69 | |
70 | /// Returns the natural logarithm of the number. |
71 | fn ln(self) -> Self; |
72 | |
73 | /// Returns the logarithm of the number with respect to an arbitrary base. |
74 | fn log(self, base: Self::Real) -> Self; |
75 | |
76 | /// Returns the base 2 logarithm of the number. |
77 | fn log2(self) -> Self; |
78 | |
79 | /// Returns the base 10 logarithm of the number. |
80 | fn log10(self) -> Self; |
81 | |
82 | /// Take the cubic root of a number. |
83 | fn cbrt(self) -> Self; |
84 | |
85 | /// Computes the sine of a number (in radians). |
86 | fn sin(self) -> Self; |
87 | |
88 | /// Computes the cosine of a number (in radians). |
89 | fn cos(self) -> Self; |
90 | |
91 | /// Computes the tangent of a number (in radians). |
92 | fn tan(self) -> Self; |
93 | |
94 | /// Computes the arcsine of a number. Return value is in radians in |
95 | /// the range [-pi/2, pi/2] or NaN if the number is outside the range |
96 | /// [-1, 1]. |
97 | fn asin(self) -> Self; |
98 | |
99 | /// Computes the arccosine of a number. Return value is in radians in |
100 | /// the range [0, pi] or NaN if the number is outside the range |
101 | /// [-1, 1]. |
102 | fn acos(self) -> Self; |
103 | |
104 | /// Computes the arctangent of a number. Return value is in radians in the |
105 | /// range [-pi/2, pi/2]; |
106 | fn atan(self) -> Self; |
107 | |
108 | /// Hyperbolic sine function. |
109 | fn sinh(self) -> Self; |
110 | |
111 | /// Hyperbolic cosine function. |
112 | fn cosh(self) -> Self; |
113 | |
114 | /// Hyperbolic tangent function. |
115 | fn tanh(self) -> Self; |
116 | |
117 | /// Inverse hyperbolic sine function. |
118 | fn asinh(self) -> Self; |
119 | |
120 | /// Inverse hyperbolic cosine function. |
121 | fn acosh(self) -> Self; |
122 | |
123 | /// Inverse hyperbolic tangent function. |
124 | fn atanh(self) -> Self; |
125 | |
126 | /// Returns the real part of the number. |
127 | fn re(self) -> Self::Real; |
128 | |
129 | /// Returns the imaginary part of the number. |
130 | fn im(self) -> Self::Real; |
131 | |
132 | /// Returns the absolute value of the number. See also [Complex::norm] |
133 | fn abs(self) -> Self::Real; |
134 | |
135 | /// Returns the L1 norm `|re| + |im|` -- the [Manhattan distance] from the origin. |
136 | /// |
137 | /// [Manhattan distance]: https://en.wikipedia.org/wiki/Taxicab_geometry |
138 | fn l1_norm(&self) -> Self::Real; |
139 | |
140 | /// Computes the argument of the number. |
141 | fn arg(self) -> Self::Real; |
142 | |
143 | /// Computes the complex conjugate of the number. |
144 | /// |
145 | /// Formula: `a+bi -> a-bi` |
146 | fn conj(self) -> Self; |
147 | } |
148 | |
149 | macro_rules! forward { |
150 | ($( $base:ident :: $method:ident ( self $( , $arg:ident : $ty:ty )* ) -> $ret:ty ; )*) |
151 | => {$( |
152 | #[inline] |
153 | fn $method(self $( , $arg : $ty )* ) -> $ret { |
154 | $base::$method(self $( , $arg )* ) |
155 | } |
156 | )*}; |
157 | } |
158 | |
159 | macro_rules! forward_ref { |
160 | ($( Self :: $method:ident ( & self $( , $arg:ident : $ty:ty )* ) -> $ret:ty ; )*) |
161 | => {$( |
162 | #[inline] |
163 | fn $method(self $( , $arg : $ty )* ) -> $ret { |
164 | Self::$method(&self $( , $arg )* ) |
165 | } |
166 | )*}; |
167 | } |
168 | |
169 | impl<T> ComplexFloat for T |
170 | where |
171 | T: Float + FloatConst, |
172 | { |
173 | type Real = T; |
174 | |
175 | fn re(self) -> Self::Real { |
176 | self |
177 | } |
178 | |
179 | fn im(self) -> Self::Real { |
180 | T::zero() |
181 | } |
182 | |
183 | fn l1_norm(&self) -> Self::Real { |
184 | self.abs() |
185 | } |
186 | |
187 | fn arg(self) -> Self::Real { |
188 | if self.is_nan() { |
189 | self |
190 | } else if self.is_sign_negative() { |
191 | T::PI() |
192 | } else { |
193 | T::zero() |
194 | } |
195 | } |
196 | |
197 | fn powc(self, exp: Complex<Self::Real>) -> Complex<Self::Real> { |
198 | Complex::new(self, T::zero()).powc(exp) |
199 | } |
200 | |
201 | fn conj(self) -> Self { |
202 | self |
203 | } |
204 | |
205 | fn expf(self, base: Self::Real) -> Self { |
206 | base.powf(self) |
207 | } |
208 | |
209 | forward! { |
210 | Float::is_normal(self) -> bool; |
211 | Float::is_infinite(self) -> bool; |
212 | Float::is_finite(self) -> bool; |
213 | Float::is_nan(self) -> bool; |
214 | Float::recip(self) -> Self; |
215 | Float::powi(self, n: i32) -> Self; |
216 | Float::powf(self, f: Self) -> Self; |
217 | Float::sqrt(self) -> Self; |
218 | Float::cbrt(self) -> Self; |
219 | Float::exp(self) -> Self; |
220 | Float::exp2(self) -> Self; |
221 | Float::ln(self) -> Self; |
222 | Float::log(self, base: Self) -> Self; |
223 | Float::log2(self) -> Self; |
224 | Float::log10(self) -> Self; |
225 | Float::sin(self) -> Self; |
226 | Float::cos(self) -> Self; |
227 | Float::tan(self) -> Self; |
228 | Float::asin(self) -> Self; |
229 | Float::acos(self) -> Self; |
230 | Float::atan(self) -> Self; |
231 | Float::sinh(self) -> Self; |
232 | Float::cosh(self) -> Self; |
233 | Float::tanh(self) -> Self; |
234 | Float::asinh(self) -> Self; |
235 | Float::acosh(self) -> Self; |
236 | Float::atanh(self) -> Self; |
237 | Float::abs(self) -> Self; |
238 | } |
239 | } |
240 | |
241 | impl<T: Float + FloatConst> ComplexFloat for Complex<T> { |
242 | type Real = T; |
243 | |
244 | fn re(self) -> Self::Real { |
245 | self.re |
246 | } |
247 | |
248 | fn im(self) -> Self::Real { |
249 | self.im |
250 | } |
251 | |
252 | fn abs(self) -> Self::Real { |
253 | self.norm() |
254 | } |
255 | |
256 | fn recip(self) -> Self { |
257 | self.finv() |
258 | } |
259 | |
260 | // `Complex::l1_norm` uses `Signed::abs` to let it work |
261 | // for integers too, but we can just use `Float::abs`. |
262 | fn l1_norm(&self) -> Self::Real { |
263 | self.re.abs() + self.im.abs() |
264 | } |
265 | |
266 | // `Complex::is_*` methods use `T: FloatCore`, but we |
267 | // have `T: Float` that can do them as well. |
268 | fn is_nan(self) -> bool { |
269 | self.re.is_nan() || self.im.is_nan() |
270 | } |
271 | |
272 | fn is_infinite(self) -> bool { |
273 | !self.is_nan() && (self.re.is_infinite() || self.im.is_infinite()) |
274 | } |
275 | |
276 | fn is_finite(self) -> bool { |
277 | self.re.is_finite() && self.im.is_finite() |
278 | } |
279 | |
280 | fn is_normal(self) -> bool { |
281 | self.re.is_normal() && self.im.is_normal() |
282 | } |
283 | |
284 | forward! { |
285 | Complex::arg(self) -> Self::Real; |
286 | Complex::powc(self, exp: Complex<Self::Real>) -> Complex<Self::Real>; |
287 | Complex::exp2(self) -> Self; |
288 | Complex::log(self, base: Self::Real) -> Self; |
289 | Complex::log2(self) -> Self; |
290 | Complex::log10(self) -> Self; |
291 | Complex::powf(self, f: Self::Real) -> Self; |
292 | Complex::sqrt(self) -> Self; |
293 | Complex::cbrt(self) -> Self; |
294 | Complex::exp(self) -> Self; |
295 | Complex::expf(self, base: Self::Real) -> Self; |
296 | Complex::ln(self) -> Self; |
297 | Complex::sin(self) -> Self; |
298 | Complex::cos(self) -> Self; |
299 | Complex::tan(self) -> Self; |
300 | Complex::asin(self) -> Self; |
301 | Complex::acos(self) -> Self; |
302 | Complex::atan(self) -> Self; |
303 | Complex::sinh(self) -> Self; |
304 | Complex::cosh(self) -> Self; |
305 | Complex::tanh(self) -> Self; |
306 | Complex::asinh(self) -> Self; |
307 | Complex::acosh(self) -> Self; |
308 | Complex::atanh(self) -> Self; |
309 | } |
310 | |
311 | forward_ref! { |
312 | Self::powi(&self, n: i32) -> Self; |
313 | Self::conj(&self) -> Self; |
314 | } |
315 | } |
316 | |
317 | #[cfg (test)] |
318 | mod test { |
319 | use crate::{ |
320 | complex_float::ComplexFloat, |
321 | test::{_0_0i, _0_1i, _1_0i, _1_1i, float::close}, |
322 | Complex, |
323 | }; |
324 | use std::f64; // for constants before Rust 1.43. |
325 | |
326 | fn closef(a: f64, b: f64) -> bool { |
327 | close_to_tolf(a, b, 1e-10) |
328 | } |
329 | |
330 | fn close_to_tolf(a: f64, b: f64, tol: f64) -> bool { |
331 | // returns true if a and b are reasonably close |
332 | let close = (a == b) || (a - b).abs() < tol; |
333 | if !close { |
334 | println!("{:?} != {:?}" , a, b); |
335 | } |
336 | close |
337 | } |
338 | |
339 | #[test ] |
340 | fn test_exp2() { |
341 | assert!(close(ComplexFloat::exp2(_0_0i), _1_0i)); |
342 | assert!(closef(<f64 as ComplexFloat>::exp2(0.), 1.)); |
343 | } |
344 | |
345 | #[test ] |
346 | fn test_exp() { |
347 | assert!(close(ComplexFloat::exp(_0_0i), _1_0i)); |
348 | assert!(closef(ComplexFloat::exp(0.), 1.)); |
349 | } |
350 | |
351 | #[test ] |
352 | fn test_powi() { |
353 | assert!(close(ComplexFloat::powi(_0_1i, 4), _1_0i)); |
354 | assert!(closef(ComplexFloat::powi(-1., 4), 1.)); |
355 | } |
356 | |
357 | #[test ] |
358 | fn test_powz() { |
359 | assert!(close(ComplexFloat::powc(_1_0i, _0_1i), _1_0i)); |
360 | assert!(close(ComplexFloat::powc(1., _0_1i), _1_0i)); |
361 | } |
362 | |
363 | #[test ] |
364 | fn test_log2() { |
365 | assert!(close(ComplexFloat::log2(_1_0i), _0_0i)); |
366 | assert!(closef(ComplexFloat::log2(1.), 0.)); |
367 | } |
368 | |
369 | #[test ] |
370 | fn test_log10() { |
371 | assert!(close(ComplexFloat::log10(_1_0i), _0_0i)); |
372 | assert!(closef(ComplexFloat::log10(1.), 0.)); |
373 | } |
374 | |
375 | #[test ] |
376 | fn test_conj() { |
377 | assert_eq!(ComplexFloat::conj(_0_1i), Complex::new(0., -1.)); |
378 | assert_eq!(ComplexFloat::conj(1.), 1.); |
379 | } |
380 | |
381 | #[test ] |
382 | fn test_is_nan() { |
383 | assert!(!ComplexFloat::is_nan(_1_0i)); |
384 | assert!(!ComplexFloat::is_nan(1.)); |
385 | |
386 | assert!(ComplexFloat::is_nan(Complex::new(f64::NAN, f64::NAN))); |
387 | assert!(ComplexFloat::is_nan(f64::NAN)); |
388 | } |
389 | |
390 | #[test ] |
391 | fn test_is_infinite() { |
392 | assert!(!ComplexFloat::is_infinite(_1_0i)); |
393 | assert!(!ComplexFloat::is_infinite(1.)); |
394 | |
395 | assert!(ComplexFloat::is_infinite(Complex::new( |
396 | f64::INFINITY, |
397 | f64::INFINITY |
398 | ))); |
399 | assert!(ComplexFloat::is_infinite(f64::INFINITY)); |
400 | } |
401 | |
402 | #[test ] |
403 | fn test_is_finite() { |
404 | assert!(ComplexFloat::is_finite(_1_0i)); |
405 | assert!(ComplexFloat::is_finite(1.)); |
406 | |
407 | assert!(!ComplexFloat::is_finite(Complex::new( |
408 | f64::INFINITY, |
409 | f64::INFINITY |
410 | ))); |
411 | assert!(!ComplexFloat::is_finite(f64::INFINITY)); |
412 | } |
413 | |
414 | #[test ] |
415 | fn test_is_normal() { |
416 | assert!(ComplexFloat::is_normal(_1_1i)); |
417 | assert!(ComplexFloat::is_normal(1.)); |
418 | |
419 | assert!(!ComplexFloat::is_normal(Complex::new( |
420 | f64::INFINITY, |
421 | f64::INFINITY |
422 | ))); |
423 | assert!(!ComplexFloat::is_normal(f64::INFINITY)); |
424 | } |
425 | |
426 | #[test ] |
427 | fn test_arg() { |
428 | assert!(closef( |
429 | ComplexFloat::arg(_0_1i), |
430 | core::f64::consts::FRAC_PI_2 |
431 | )); |
432 | |
433 | assert!(closef(ComplexFloat::arg(-1.), core::f64::consts::PI)); |
434 | assert!(closef(ComplexFloat::arg(-0.), core::f64::consts::PI)); |
435 | assert!(closef(ComplexFloat::arg(0.), 0.)); |
436 | assert!(closef(ComplexFloat::arg(1.), 0.)); |
437 | assert!(ComplexFloat::arg(f64::NAN).is_nan()); |
438 | } |
439 | } |
440 | |