1 | // Copyright 2013 The Rust Project Developers. See the COPYRIGHT |
2 | // file at the top-level directory of this distribution and at |
3 | // http://rust-lang.org/COPYRIGHT. |
4 | // |
5 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
6 | // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
7 | // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
8 | // option. This file may not be copied, modified, or distributed |
9 | // except according to those terms. |
10 | |
11 | //! Complex numbers. |
12 | //! |
13 | //! ## Compatibility |
14 | //! |
15 | //! The `num-complex` crate is tested for rustc 1.60 and greater. |
16 | |
17 | #![doc (html_root_url = "https://docs.rs/num-complex/0.4" )] |
18 | #![no_std ] |
19 | |
20 | #[cfg (any(test, feature = "std" ))] |
21 | #[cfg_attr (test, macro_use)] |
22 | extern crate std; |
23 | |
24 | use core::fmt; |
25 | #[cfg (test)] |
26 | use core::hash; |
27 | use core::iter::{Product, Sum}; |
28 | use core::ops::{Add, Div, Mul, Neg, Rem, Sub}; |
29 | use core::str::FromStr; |
30 | #[cfg (feature = "std" )] |
31 | use std::error::Error; |
32 | |
33 | use num_traits::{ConstOne, ConstZero, Inv, MulAdd, Num, One, Pow, Signed, Zero}; |
34 | |
35 | use num_traits::float::FloatCore; |
36 | #[cfg (any(feature = "std" , feature = "libm" ))] |
37 | use num_traits::float::{Float, FloatConst}; |
38 | |
39 | mod cast; |
40 | mod pow; |
41 | |
42 | #[cfg (any(feature = "std" , feature = "libm" ))] |
43 | mod complex_float; |
44 | #[cfg (any(feature = "std" , feature = "libm" ))] |
45 | pub use crate::complex_float::ComplexFloat; |
46 | |
47 | #[cfg (feature = "rand" )] |
48 | mod crand; |
49 | #[cfg (feature = "rand" )] |
50 | pub use crate::crand::ComplexDistribution; |
51 | |
52 | // FIXME #1284: handle complex NaN & infinity etc. This |
53 | // probably doesn't map to C's _Complex correctly. |
54 | |
55 | /// A complex number in Cartesian form. |
56 | /// |
57 | /// ## Representation and Foreign Function Interface Compatibility |
58 | /// |
59 | /// `Complex<T>` is memory layout compatible with an array `[T; 2]`. |
60 | /// |
61 | /// Note that `Complex<F>` where F is a floating point type is **only** memory |
62 | /// layout compatible with C's complex types, **not** necessarily calling |
63 | /// convention compatible. This means that for FFI you can only pass |
64 | /// `Complex<F>` behind a pointer, not as a value. |
65 | /// |
66 | /// ## Examples |
67 | /// |
68 | /// Example of extern function declaration. |
69 | /// |
70 | /// ``` |
71 | /// use num_complex::Complex; |
72 | /// use std::os::raw::c_int; |
73 | /// |
74 | /// extern "C" { |
75 | /// fn zaxpy_(n: *const c_int, alpha: *const Complex<f64>, |
76 | /// x: *const Complex<f64>, incx: *const c_int, |
77 | /// y: *mut Complex<f64>, incy: *const c_int); |
78 | /// } |
79 | /// ``` |
80 | #[derive (PartialEq, Eq, Copy, Clone, Hash, Debug, Default)] |
81 | #[repr (C)] |
82 | #[cfg_attr ( |
83 | feature = "rkyv" , |
84 | derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize) |
85 | )] |
86 | #[cfg_attr (feature = "rkyv" , archive(as = "Complex<T::Archived>" ))] |
87 | #[cfg_attr (feature = "bytecheck" , derive(bytecheck::CheckBytes))] |
88 | pub struct Complex<T> { |
89 | /// Real portion of the complex number |
90 | pub re: T, |
91 | /// Imaginary portion of the complex number |
92 | pub im: T, |
93 | } |
94 | |
95 | /// Alias for a [`Complex<f32>`] |
96 | pub type Complex32 = Complex<f32>; |
97 | |
98 | /// Create a new [`Complex<f32>`] with arguments that can convert [`Into<f32>`]. |
99 | /// |
100 | /// ``` |
101 | /// use num_complex::{c32, Complex32}; |
102 | /// assert_eq!(c32(1u8, 2), Complex32::new(1.0, 2.0)); |
103 | /// ``` |
104 | /// |
105 | /// Note: ambiguous integer literals in Rust will [default] to `i32`, which does **not** implement |
106 | /// `Into<f32>`, so a call like `c32(1, 2)` will result in a type error. The example above uses a |
107 | /// suffixed `1u8` to set its type, and then the `2` can be inferred as the same type. |
108 | /// |
109 | /// [default]: https://doc.rust-lang.org/reference/expressions/literal-expr.html#integer-literal-expressions |
110 | #[inline ] |
111 | pub fn c32<T: Into<f32>>(re: T, im: T) -> Complex32 { |
112 | Complex::new(re.into(), im.into()) |
113 | } |
114 | |
115 | /// Alias for a [`Complex<f64>`] |
116 | pub type Complex64 = Complex<f64>; |
117 | |
118 | /// Create a new [`Complex<f64>`] with arguments that can convert [`Into<f64>`]. |
119 | /// |
120 | /// ``` |
121 | /// use num_complex::{c64, Complex64}; |
122 | /// assert_eq!(c64(1, 2), Complex64::new(1.0, 2.0)); |
123 | /// ``` |
124 | #[inline ] |
125 | pub fn c64<T: Into<f64>>(re: T, im: T) -> Complex64 { |
126 | Complex::new(re.into(), im.into()) |
127 | } |
128 | |
129 | impl<T> Complex<T> { |
130 | /// Create a new `Complex` |
131 | #[inline ] |
132 | pub const fn new(re: T, im: T) -> Self { |
133 | Complex { re, im } |
134 | } |
135 | } |
136 | |
137 | impl<T: Clone + Num> Complex<T> { |
138 | /// Returns the imaginary unit. |
139 | /// |
140 | /// See also [`Complex::I`]. |
141 | #[inline ] |
142 | pub fn i() -> Self { |
143 | Self::new(T::zero(), T::one()) |
144 | } |
145 | |
146 | /// Returns the square of the norm (since `T` doesn't necessarily |
147 | /// have a sqrt function), i.e. `re^2 + im^2`. |
148 | #[inline ] |
149 | pub fn norm_sqr(&self) -> T { |
150 | self.re.clone() * self.re.clone() + self.im.clone() * self.im.clone() |
151 | } |
152 | |
153 | /// Multiplies `self` by the scalar `t`. |
154 | #[inline ] |
155 | pub fn scale(&self, t: T) -> Self { |
156 | Self::new(self.re.clone() * t.clone(), self.im.clone() * t) |
157 | } |
158 | |
159 | /// Divides `self` by the scalar `t`. |
160 | #[inline ] |
161 | pub fn unscale(&self, t: T) -> Self { |
162 | Self::new(self.re.clone() / t.clone(), self.im.clone() / t) |
163 | } |
164 | |
165 | /// Raises `self` to an unsigned integer power. |
166 | #[inline ] |
167 | pub fn powu(&self, exp: u32) -> Self { |
168 | Pow::pow(self, exp) |
169 | } |
170 | } |
171 | |
172 | impl<T: Clone + Num + Neg<Output = T>> Complex<T> { |
173 | /// Returns the complex conjugate. i.e. `re - i im` |
174 | #[inline ] |
175 | pub fn conj(&self) -> Self { |
176 | Self::new(self.re.clone(), -self.im.clone()) |
177 | } |
178 | |
179 | /// Returns `1/self` |
180 | #[inline ] |
181 | pub fn inv(&self) -> Self { |
182 | let norm_sqr: T = self.norm_sqr(); |
183 | Self::new( |
184 | self.re.clone() / norm_sqr.clone(), |
185 | -self.im.clone() / norm_sqr, |
186 | ) |
187 | } |
188 | |
189 | /// Raises `self` to a signed integer power. |
190 | #[inline ] |
191 | pub fn powi(&self, exp: i32) -> Self { |
192 | Pow::pow(self, rhs:exp) |
193 | } |
194 | } |
195 | |
196 | impl<T: Clone + Signed> Complex<T> { |
197 | /// Returns the L1 norm `|re| + |im|` -- the [Manhattan distance] from the origin. |
198 | /// |
199 | /// [Manhattan distance]: https://en.wikipedia.org/wiki/Taxicab_geometry |
200 | #[inline ] |
201 | pub fn l1_norm(&self) -> T { |
202 | self.re.abs() + self.im.abs() |
203 | } |
204 | } |
205 | |
206 | #[cfg (any(feature = "std" , feature = "libm" ))] |
207 | impl<T: Float> Complex<T> { |
208 | /// Create a new Complex with a given phase: `exp(i * phase)`. |
209 | /// See [cis (mathematics)](https://en.wikipedia.org/wiki/Cis_(mathematics)). |
210 | #[inline ] |
211 | pub fn cis(phase: T) -> Self { |
212 | Self::new(phase.cos(), phase.sin()) |
213 | } |
214 | |
215 | /// Calculate |self| |
216 | #[inline ] |
217 | pub fn norm(self) -> T { |
218 | self.re.hypot(self.im) |
219 | } |
220 | /// Calculate the principal Arg of self. |
221 | #[inline ] |
222 | pub fn arg(self) -> T { |
223 | self.im.atan2(self.re) |
224 | } |
225 | /// Convert to polar form (r, theta), such that |
226 | /// `self = r * exp(i * theta)` |
227 | #[inline ] |
228 | pub fn to_polar(self) -> (T, T) { |
229 | (self.norm(), self.arg()) |
230 | } |
231 | /// Convert a polar representation into a complex number. |
232 | #[inline ] |
233 | pub fn from_polar(r: T, theta: T) -> Self { |
234 | Self::new(r * theta.cos(), r * theta.sin()) |
235 | } |
236 | |
237 | /// Computes `e^(self)`, where `e` is the base of the natural logarithm. |
238 | #[inline ] |
239 | pub fn exp(self) -> Self { |
240 | // formula: e^(a + bi) = e^a (cos(b) + i*sin(b)) = from_polar(e^a, b) |
241 | |
242 | let Complex { re, mut im } = self; |
243 | // Treat the corner cases +∞, -∞, and NaN |
244 | if re.is_infinite() { |
245 | if re < T::zero() { |
246 | if !im.is_finite() { |
247 | return Self::new(T::zero(), T::zero()); |
248 | } |
249 | } else if im == T::zero() || !im.is_finite() { |
250 | if im.is_infinite() { |
251 | im = T::nan(); |
252 | } |
253 | return Self::new(re, im); |
254 | } |
255 | } else if re.is_nan() && im == T::zero() { |
256 | return self; |
257 | } |
258 | |
259 | Self::from_polar(re.exp(), im) |
260 | } |
261 | |
262 | /// Computes the principal value of natural logarithm of `self`. |
263 | /// |
264 | /// This function has one branch cut: |
265 | /// |
266 | /// * `(-∞, 0]`, continuous from above. |
267 | /// |
268 | /// The branch satisfies `-π ≤ arg(ln(z)) ≤ π`. |
269 | #[inline ] |
270 | pub fn ln(self) -> Self { |
271 | // formula: ln(z) = ln|z| + i*arg(z) |
272 | let (r, theta) = self.to_polar(); |
273 | Self::new(r.ln(), theta) |
274 | } |
275 | |
276 | /// Computes the principal value of the square root of `self`. |
277 | /// |
278 | /// This function has one branch cut: |
279 | /// |
280 | /// * `(-∞, 0)`, continuous from above. |
281 | /// |
282 | /// The branch satisfies `-π/2 ≤ arg(sqrt(z)) ≤ π/2`. |
283 | #[inline ] |
284 | pub fn sqrt(self) -> Self { |
285 | if self.im.is_zero() { |
286 | if self.re.is_sign_positive() { |
287 | // simple positive real √r, and copy `im` for its sign |
288 | Self::new(self.re.sqrt(), self.im) |
289 | } else { |
290 | // √(r e^(iπ)) = √r e^(iπ/2) = i√r |
291 | // √(r e^(-iπ)) = √r e^(-iπ/2) = -i√r |
292 | let re = T::zero(); |
293 | let im = (-self.re).sqrt(); |
294 | if self.im.is_sign_positive() { |
295 | Self::new(re, im) |
296 | } else { |
297 | Self::new(re, -im) |
298 | } |
299 | } |
300 | } else if self.re.is_zero() { |
301 | // √(r e^(iπ/2)) = √r e^(iπ/4) = √(r/2) + i√(r/2) |
302 | // √(r e^(-iπ/2)) = √r e^(-iπ/4) = √(r/2) - i√(r/2) |
303 | let one = T::one(); |
304 | let two = one + one; |
305 | let x = (self.im.abs() / two).sqrt(); |
306 | if self.im.is_sign_positive() { |
307 | Self::new(x, x) |
308 | } else { |
309 | Self::new(x, -x) |
310 | } |
311 | } else { |
312 | // formula: sqrt(r e^(it)) = sqrt(r) e^(it/2) |
313 | let one = T::one(); |
314 | let two = one + one; |
315 | let (r, theta) = self.to_polar(); |
316 | Self::from_polar(r.sqrt(), theta / two) |
317 | } |
318 | } |
319 | |
320 | /// Computes the principal value of the cube root of `self`. |
321 | /// |
322 | /// This function has one branch cut: |
323 | /// |
324 | /// * `(-∞, 0)`, continuous from above. |
325 | /// |
326 | /// The branch satisfies `-π/3 ≤ arg(cbrt(z)) ≤ π/3`. |
327 | /// |
328 | /// Note that this does not match the usual result for the cube root of |
329 | /// negative real numbers. For example, the real cube root of `-8` is `-2`, |
330 | /// but the principal complex cube root of `-8` is `1 + i√3`. |
331 | #[inline ] |
332 | pub fn cbrt(self) -> Self { |
333 | if self.im.is_zero() { |
334 | if self.re.is_sign_positive() { |
335 | // simple positive real ∛r, and copy `im` for its sign |
336 | Self::new(self.re.cbrt(), self.im) |
337 | } else { |
338 | // ∛(r e^(iπ)) = ∛r e^(iπ/3) = ∛r/2 + i∛r√3/2 |
339 | // ∛(r e^(-iπ)) = ∛r e^(-iπ/3) = ∛r/2 - i∛r√3/2 |
340 | let one = T::one(); |
341 | let two = one + one; |
342 | let three = two + one; |
343 | let re = (-self.re).cbrt() / two; |
344 | let im = three.sqrt() * re; |
345 | if self.im.is_sign_positive() { |
346 | Self::new(re, im) |
347 | } else { |
348 | Self::new(re, -im) |
349 | } |
350 | } |
351 | } else if self.re.is_zero() { |
352 | // ∛(r e^(iπ/2)) = ∛r e^(iπ/6) = ∛r√3/2 + i∛r/2 |
353 | // ∛(r e^(-iπ/2)) = ∛r e^(-iπ/6) = ∛r√3/2 - i∛r/2 |
354 | let one = T::one(); |
355 | let two = one + one; |
356 | let three = two + one; |
357 | let im = self.im.abs().cbrt() / two; |
358 | let re = three.sqrt() * im; |
359 | if self.im.is_sign_positive() { |
360 | Self::new(re, im) |
361 | } else { |
362 | Self::new(re, -im) |
363 | } |
364 | } else { |
365 | // formula: cbrt(r e^(it)) = cbrt(r) e^(it/3) |
366 | let one = T::one(); |
367 | let three = one + one + one; |
368 | let (r, theta) = self.to_polar(); |
369 | Self::from_polar(r.cbrt(), theta / three) |
370 | } |
371 | } |
372 | |
373 | /// Raises `self` to a floating point power. |
374 | #[inline ] |
375 | pub fn powf(self, exp: T) -> Self { |
376 | if exp.is_zero() { |
377 | return Self::one(); |
378 | } |
379 | // formula: x^y = (ρ e^(i θ))^y = ρ^y e^(i θ y) |
380 | // = from_polar(ρ^y, θ y) |
381 | let (r, theta) = self.to_polar(); |
382 | Self::from_polar(r.powf(exp), theta * exp) |
383 | } |
384 | |
385 | /// Returns the logarithm of `self` with respect to an arbitrary base. |
386 | #[inline ] |
387 | pub fn log(self, base: T) -> Self { |
388 | // formula: log_y(x) = log_y(ρ e^(i θ)) |
389 | // = log_y(ρ) + log_y(e^(i θ)) = log_y(ρ) + ln(e^(i θ)) / ln(y) |
390 | // = log_y(ρ) + i θ / ln(y) |
391 | let (r, theta) = self.to_polar(); |
392 | Self::new(r.log(base), theta / base.ln()) |
393 | } |
394 | |
395 | /// Raises `self` to a complex power. |
396 | #[inline ] |
397 | pub fn powc(self, exp: Self) -> Self { |
398 | if exp.is_zero() { |
399 | return Self::one(); |
400 | } |
401 | // formula: x^y = exp(y * ln(x)) |
402 | (exp * self.ln()).exp() |
403 | } |
404 | |
405 | /// Raises a floating point number to the complex power `self`. |
406 | #[inline ] |
407 | pub fn expf(self, base: T) -> Self { |
408 | // formula: x^(a+bi) = x^a x^bi = x^a e^(b ln(x) i) |
409 | // = from_polar(x^a, b ln(x)) |
410 | Self::from_polar(base.powf(self.re), self.im * base.ln()) |
411 | } |
412 | |
413 | /// Computes the sine of `self`. |
414 | #[inline ] |
415 | pub fn sin(self) -> Self { |
416 | // formula: sin(a + bi) = sin(a)cosh(b) + i*cos(a)sinh(b) |
417 | Self::new( |
418 | self.re.sin() * self.im.cosh(), |
419 | self.re.cos() * self.im.sinh(), |
420 | ) |
421 | } |
422 | |
423 | /// Computes the cosine of `self`. |
424 | #[inline ] |
425 | pub fn cos(self) -> Self { |
426 | // formula: cos(a + bi) = cos(a)cosh(b) - i*sin(a)sinh(b) |
427 | Self::new( |
428 | self.re.cos() * self.im.cosh(), |
429 | -self.re.sin() * self.im.sinh(), |
430 | ) |
431 | } |
432 | |
433 | /// Computes the tangent of `self`. |
434 | #[inline ] |
435 | pub fn tan(self) -> Self { |
436 | // formula: tan(a + bi) = (sin(2a) + i*sinh(2b))/(cos(2a) + cosh(2b)) |
437 | let (two_re, two_im) = (self.re + self.re, self.im + self.im); |
438 | Self::new(two_re.sin(), two_im.sinh()).unscale(two_re.cos() + two_im.cosh()) |
439 | } |
440 | |
441 | /// Computes the principal value of the inverse sine of `self`. |
442 | /// |
443 | /// This function has two branch cuts: |
444 | /// |
445 | /// * `(-∞, -1)`, continuous from above. |
446 | /// * `(1, ∞)`, continuous from below. |
447 | /// |
448 | /// The branch satisfies `-π/2 ≤ Re(asin(z)) ≤ π/2`. |
449 | #[inline ] |
450 | pub fn asin(self) -> Self { |
451 | // formula: arcsin(z) = -i ln(sqrt(1-z^2) + iz) |
452 | let i = Self::i(); |
453 | -i * ((Self::one() - self * self).sqrt() + i * self).ln() |
454 | } |
455 | |
456 | /// Computes the principal value of the inverse cosine of `self`. |
457 | /// |
458 | /// This function has two branch cuts: |
459 | /// |
460 | /// * `(-∞, -1)`, continuous from above. |
461 | /// * `(1, ∞)`, continuous from below. |
462 | /// |
463 | /// The branch satisfies `0 ≤ Re(acos(z)) ≤ π`. |
464 | #[inline ] |
465 | pub fn acos(self) -> Self { |
466 | // formula: arccos(z) = -i ln(i sqrt(1-z^2) + z) |
467 | let i = Self::i(); |
468 | -i * (i * (Self::one() - self * self).sqrt() + self).ln() |
469 | } |
470 | |
471 | /// Computes the principal value of the inverse tangent of `self`. |
472 | /// |
473 | /// This function has two branch cuts: |
474 | /// |
475 | /// * `(-∞i, -i]`, continuous from the left. |
476 | /// * `[i, ∞i)`, continuous from the right. |
477 | /// |
478 | /// The branch satisfies `-π/2 ≤ Re(atan(z)) ≤ π/2`. |
479 | #[inline ] |
480 | pub fn atan(self) -> Self { |
481 | // formula: arctan(z) = (ln(1+iz) - ln(1-iz))/(2i) |
482 | let i = Self::i(); |
483 | let one = Self::one(); |
484 | let two = one + one; |
485 | if self == i { |
486 | return Self::new(T::zero(), T::infinity()); |
487 | } else if self == -i { |
488 | return Self::new(T::zero(), -T::infinity()); |
489 | } |
490 | ((one + i * self).ln() - (one - i * self).ln()) / (two * i) |
491 | } |
492 | |
493 | /// Computes the hyperbolic sine of `self`. |
494 | #[inline ] |
495 | pub fn sinh(self) -> Self { |
496 | // formula: sinh(a + bi) = sinh(a)cos(b) + i*cosh(a)sin(b) |
497 | Self::new( |
498 | self.re.sinh() * self.im.cos(), |
499 | self.re.cosh() * self.im.sin(), |
500 | ) |
501 | } |
502 | |
503 | /// Computes the hyperbolic cosine of `self`. |
504 | #[inline ] |
505 | pub fn cosh(self) -> Self { |
506 | // formula: cosh(a + bi) = cosh(a)cos(b) + i*sinh(a)sin(b) |
507 | Self::new( |
508 | self.re.cosh() * self.im.cos(), |
509 | self.re.sinh() * self.im.sin(), |
510 | ) |
511 | } |
512 | |
513 | /// Computes the hyperbolic tangent of `self`. |
514 | #[inline ] |
515 | pub fn tanh(self) -> Self { |
516 | // formula: tanh(a + bi) = (sinh(2a) + i*sin(2b))/(cosh(2a) + cos(2b)) |
517 | let (two_re, two_im) = (self.re + self.re, self.im + self.im); |
518 | Self::new(two_re.sinh(), two_im.sin()).unscale(two_re.cosh() + two_im.cos()) |
519 | } |
520 | |
521 | /// Computes the principal value of inverse hyperbolic sine of `self`. |
522 | /// |
523 | /// This function has two branch cuts: |
524 | /// |
525 | /// * `(-∞i, -i)`, continuous from the left. |
526 | /// * `(i, ∞i)`, continuous from the right. |
527 | /// |
528 | /// The branch satisfies `-π/2 ≤ Im(asinh(z)) ≤ π/2`. |
529 | #[inline ] |
530 | pub fn asinh(self) -> Self { |
531 | // formula: arcsinh(z) = ln(z + sqrt(1+z^2)) |
532 | let one = Self::one(); |
533 | (self + (one + self * self).sqrt()).ln() |
534 | } |
535 | |
536 | /// Computes the principal value of inverse hyperbolic cosine of `self`. |
537 | /// |
538 | /// This function has one branch cut: |
539 | /// |
540 | /// * `(-∞, 1)`, continuous from above. |
541 | /// |
542 | /// The branch satisfies `-π ≤ Im(acosh(z)) ≤ π` and `0 ≤ Re(acosh(z)) < ∞`. |
543 | #[inline ] |
544 | pub fn acosh(self) -> Self { |
545 | // formula: arccosh(z) = 2 ln(sqrt((z+1)/2) + sqrt((z-1)/2)) |
546 | let one = Self::one(); |
547 | let two = one + one; |
548 | two * (((self + one) / two).sqrt() + ((self - one) / two).sqrt()).ln() |
549 | } |
550 | |
551 | /// Computes the principal value of inverse hyperbolic tangent of `self`. |
552 | /// |
553 | /// This function has two branch cuts: |
554 | /// |
555 | /// * `(-∞, -1]`, continuous from above. |
556 | /// * `[1, ∞)`, continuous from below. |
557 | /// |
558 | /// The branch satisfies `-π/2 ≤ Im(atanh(z)) ≤ π/2`. |
559 | #[inline ] |
560 | pub fn atanh(self) -> Self { |
561 | // formula: arctanh(z) = (ln(1+z) - ln(1-z))/2 |
562 | let one = Self::one(); |
563 | let two = one + one; |
564 | if self == one { |
565 | return Self::new(T::infinity(), T::zero()); |
566 | } else if self == -one { |
567 | return Self::new(-T::infinity(), T::zero()); |
568 | } |
569 | ((one + self).ln() - (one - self).ln()) / two |
570 | } |
571 | |
572 | /// Returns `1/self` using floating-point operations. |
573 | /// |
574 | /// This may be more accurate than the generic `self.inv()` in cases |
575 | /// where `self.norm_sqr()` would overflow to ∞ or underflow to 0. |
576 | /// |
577 | /// # Examples |
578 | /// |
579 | /// ``` |
580 | /// use num_complex::Complex64; |
581 | /// let c = Complex64::new(1e300, 1e300); |
582 | /// |
583 | /// // The generic `inv()` will overflow. |
584 | /// assert!(!c.inv().is_normal()); |
585 | /// |
586 | /// // But we can do better for `Float` types. |
587 | /// let inv = c.finv(); |
588 | /// assert!(inv.is_normal()); |
589 | /// println!("{:e}" , inv); |
590 | /// |
591 | /// let expected = Complex64::new(5e-301, -5e-301); |
592 | /// assert!((inv - expected).norm() < 1e-315); |
593 | /// ``` |
594 | #[inline ] |
595 | pub fn finv(self) -> Complex<T> { |
596 | let norm = self.norm(); |
597 | self.conj() / norm / norm |
598 | } |
599 | |
600 | /// Returns `self/other` using floating-point operations. |
601 | /// |
602 | /// This may be more accurate than the generic `Div` implementation in cases |
603 | /// where `other.norm_sqr()` would overflow to ∞ or underflow to 0. |
604 | /// |
605 | /// # Examples |
606 | /// |
607 | /// ``` |
608 | /// use num_complex::Complex64; |
609 | /// let a = Complex64::new(2.0, 3.0); |
610 | /// let b = Complex64::new(1e300, 1e300); |
611 | /// |
612 | /// // Generic division will overflow. |
613 | /// assert!(!(a / b).is_normal()); |
614 | /// |
615 | /// // But we can do better for `Float` types. |
616 | /// let quotient = a.fdiv(b); |
617 | /// assert!(quotient.is_normal()); |
618 | /// println!("{:e}" , quotient); |
619 | /// |
620 | /// let expected = Complex64::new(2.5e-300, 5e-301); |
621 | /// assert!((quotient - expected).norm() < 1e-315); |
622 | /// ``` |
623 | #[inline ] |
624 | pub fn fdiv(self, other: Complex<T>) -> Complex<T> { |
625 | self * other.finv() |
626 | } |
627 | } |
628 | |
629 | #[cfg (any(feature = "std" , feature = "libm" ))] |
630 | impl<T: Float + FloatConst> Complex<T> { |
631 | /// Computes `2^(self)`. |
632 | #[inline ] |
633 | pub fn exp2(self) -> Self { |
634 | // formula: 2^(a + bi) = 2^a (cos(b*log2) + i*sin(b*log2)) |
635 | // = from_polar(2^a, b*log2) |
636 | Self::from_polar(self.re.exp2(), self.im * T::LN_2()) |
637 | } |
638 | |
639 | /// Computes the principal value of log base 2 of `self`. |
640 | #[inline ] |
641 | pub fn log2(self) -> Self { |
642 | Self::ln(self) / T::LN_2() |
643 | } |
644 | |
645 | /// Computes the principal value of log base 10 of `self`. |
646 | #[inline ] |
647 | pub fn log10(self) -> Self { |
648 | Self::ln(self) / T::LN_10() |
649 | } |
650 | } |
651 | |
652 | impl<T: FloatCore> Complex<T> { |
653 | /// Checks if the given complex number is NaN |
654 | #[inline ] |
655 | pub fn is_nan(self) -> bool { |
656 | self.re.is_nan() || self.im.is_nan() |
657 | } |
658 | |
659 | /// Checks if the given complex number is infinite |
660 | #[inline ] |
661 | pub fn is_infinite(self) -> bool { |
662 | !self.is_nan() && (self.re.is_infinite() || self.im.is_infinite()) |
663 | } |
664 | |
665 | /// Checks if the given complex number is finite |
666 | #[inline ] |
667 | pub fn is_finite(self) -> bool { |
668 | self.re.is_finite() && self.im.is_finite() |
669 | } |
670 | |
671 | /// Checks if the given complex number is normal |
672 | #[inline ] |
673 | pub fn is_normal(self) -> bool { |
674 | self.re.is_normal() && self.im.is_normal() |
675 | } |
676 | } |
677 | |
678 | // Safety: `Complex<T>` is `repr(C)` and contains only instances of `T`, so we |
679 | // can guarantee it contains no *added* padding. Thus, if `T: Zeroable`, |
680 | // `Complex<T>` is also `Zeroable` |
681 | #[cfg (feature = "bytemuck" )] |
682 | unsafe impl<T: bytemuck::Zeroable> bytemuck::Zeroable for Complex<T> {} |
683 | |
684 | // Safety: `Complex<T>` is `repr(C)` and contains only instances of `T`, so we |
685 | // can guarantee it contains no *added* padding. Thus, if `T: Pod`, |
686 | // `Complex<T>` is also `Pod` |
687 | #[cfg (feature = "bytemuck" )] |
688 | unsafe impl<T: bytemuck::Pod> bytemuck::Pod for Complex<T> {} |
689 | |
690 | impl<T: Clone + Num> From<T> for Complex<T> { |
691 | #[inline ] |
692 | fn from(re: T) -> Self { |
693 | Self::new(re, T::zero()) |
694 | } |
695 | } |
696 | |
697 | impl<'a, T: Clone + Num> From<&'a T> for Complex<T> { |
698 | #[inline ] |
699 | fn from(re: &T) -> Self { |
700 | From::from(re.clone()) |
701 | } |
702 | } |
703 | |
704 | macro_rules! forward_ref_ref_binop { |
705 | (impl $imp:ident, $method:ident) => { |
706 | impl<'a, 'b, T: Clone + Num> $imp<&'b Complex<T>> for &'a Complex<T> { |
707 | type Output = Complex<T>; |
708 | |
709 | #[inline] |
710 | fn $method(self, other: &Complex<T>) -> Self::Output { |
711 | self.clone().$method(other.clone()) |
712 | } |
713 | } |
714 | }; |
715 | } |
716 | |
717 | macro_rules! forward_ref_val_binop { |
718 | (impl $imp:ident, $method:ident) => { |
719 | impl<'a, T: Clone + Num> $imp<Complex<T>> for &'a Complex<T> { |
720 | type Output = Complex<T>; |
721 | |
722 | #[inline] |
723 | fn $method(self, other: Complex<T>) -> Self::Output { |
724 | self.clone().$method(other) |
725 | } |
726 | } |
727 | }; |
728 | } |
729 | |
730 | macro_rules! forward_val_ref_binop { |
731 | (impl $imp:ident, $method:ident) => { |
732 | impl<'a, T: Clone + Num> $imp<&'a Complex<T>> for Complex<T> { |
733 | type Output = Complex<T>; |
734 | |
735 | #[inline] |
736 | fn $method(self, other: &Complex<T>) -> Self::Output { |
737 | self.$method(other.clone()) |
738 | } |
739 | } |
740 | }; |
741 | } |
742 | |
743 | macro_rules! forward_all_binop { |
744 | (impl $imp:ident, $method:ident) => { |
745 | forward_ref_ref_binop!(impl $imp, $method); |
746 | forward_ref_val_binop!(impl $imp, $method); |
747 | forward_val_ref_binop!(impl $imp, $method); |
748 | }; |
749 | } |
750 | |
751 | // arithmetic |
752 | forward_all_binop!(impl Add, add); |
753 | |
754 | // (a + i b) + (c + i d) == (a + c) + i (b + d) |
755 | impl<T: Clone + Num> Add<Complex<T>> for Complex<T> { |
756 | type Output = Self; |
757 | |
758 | #[inline ] |
759 | fn add(self, other: Self) -> Self::Output { |
760 | Self::Output::new(self.re + other.re, self.im + other.im) |
761 | } |
762 | } |
763 | |
764 | forward_all_binop!(impl Sub, sub); |
765 | |
766 | // (a + i b) - (c + i d) == (a - c) + i (b - d) |
767 | impl<T: Clone + Num> Sub<Complex<T>> for Complex<T> { |
768 | type Output = Self; |
769 | |
770 | #[inline ] |
771 | fn sub(self, other: Self) -> Self::Output { |
772 | Self::Output::new(self.re - other.re, self.im - other.im) |
773 | } |
774 | } |
775 | |
776 | forward_all_binop!(impl Mul, mul); |
777 | |
778 | // (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c) |
779 | impl<T: Clone + Num> Mul<Complex<T>> for Complex<T> { |
780 | type Output = Self; |
781 | |
782 | #[inline ] |
783 | fn mul(self, other: Self) -> Self::Output { |
784 | let re: T = self.re.clone() * other.re.clone() - self.im.clone() * other.im.clone(); |
785 | let im: T = self.re * other.im + self.im * other.re; |
786 | Self::Output::new(re, im) |
787 | } |
788 | } |
789 | |
790 | // (a + i b) * (c + i d) + (e + i f) == ((a*c + e) - b*d) + i (a*d + (b*c + f)) |
791 | impl<T: Clone + Num + MulAdd<Output = T>> MulAdd<Complex<T>> for Complex<T> { |
792 | type Output = Complex<T>; |
793 | |
794 | #[inline ] |
795 | fn mul_add(self, other: Complex<T>, add: Complex<T>) -> Complex<T> { |
796 | let re: T = self.re.clone().mul_add(a:other.re.clone(), b:add.re) |
797 | - (self.im.clone() * other.im.clone()); // FIXME: use mulsub when available in rust |
798 | let im: T = self.re.mul_add(a:other.im, self.im.mul_add(a:other.re, b:add.im)); |
799 | Complex::new(re, im) |
800 | } |
801 | } |
802 | impl<'a, 'b, T: Clone + Num + MulAdd<Output = T>> MulAdd<&'b Complex<T>> for &'a Complex<T> { |
803 | type Output = Complex<T>; |
804 | |
805 | #[inline ] |
806 | fn mul_add(self, other: &Complex<T>, add: &Complex<T>) -> Complex<T> { |
807 | self.clone().mul_add(a:other.clone(), b:add.clone()) |
808 | } |
809 | } |
810 | |
811 | forward_all_binop!(impl Div, div); |
812 | |
813 | // (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d) |
814 | // == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)] |
815 | impl<T: Clone + Num> Div<Complex<T>> for Complex<T> { |
816 | type Output = Self; |
817 | |
818 | #[inline ] |
819 | fn div(self, other: Self) -> Self::Output { |
820 | let norm_sqr: T = other.norm_sqr(); |
821 | let re: T = self.re.clone() * other.re.clone() + self.im.clone() * other.im.clone(); |
822 | let im: T = self.im * other.re - self.re * other.im; |
823 | Self::Output::new(re:re / norm_sqr.clone(), im:im / norm_sqr) |
824 | } |
825 | } |
826 | |
827 | forward_all_binop!(impl Rem, rem); |
828 | |
829 | impl<T: Clone + Num> Complex<T> { |
830 | /// Find the gaussian integer corresponding to the true ratio rounded towards zero. |
831 | fn div_trunc(&self, divisor: &Self) -> Self { |
832 | let Complex { re: T, im: T } = self / divisor; |
833 | Complex::new(re:re.clone() - re % T::one(), im:im.clone() - im % T::one()) |
834 | } |
835 | } |
836 | |
837 | impl<T: Clone + Num> Rem<Complex<T>> for Complex<T> { |
838 | type Output = Self; |
839 | |
840 | #[inline ] |
841 | fn rem(self, modulus: Self) -> Self::Output { |
842 | let gaussian: Complex = self.div_trunc(&modulus); |
843 | self - modulus * gaussian |
844 | } |
845 | } |
846 | |
847 | // Op Assign |
848 | |
849 | mod opassign { |
850 | use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign}; |
851 | |
852 | use num_traits::{MulAddAssign, NumAssign}; |
853 | |
854 | use crate::Complex; |
855 | |
856 | impl<T: Clone + NumAssign> AddAssign for Complex<T> { |
857 | fn add_assign(&mut self, other: Self) { |
858 | self.re += other.re; |
859 | self.im += other.im; |
860 | } |
861 | } |
862 | |
863 | impl<T: Clone + NumAssign> SubAssign for Complex<T> { |
864 | fn sub_assign(&mut self, other: Self) { |
865 | self.re -= other.re; |
866 | self.im -= other.im; |
867 | } |
868 | } |
869 | |
870 | // (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c) |
871 | impl<T: Clone + NumAssign> MulAssign for Complex<T> { |
872 | fn mul_assign(&mut self, other: Self) { |
873 | let a = self.re.clone(); |
874 | |
875 | self.re *= other.re.clone(); |
876 | self.re -= self.im.clone() * other.im.clone(); |
877 | |
878 | self.im *= other.re; |
879 | self.im += a * other.im; |
880 | } |
881 | } |
882 | |
883 | // (a + i b) * (c + i d) + (e + i f) == ((a*c + e) - b*d) + i (b*c + (a*d + f)) |
884 | impl<T: Clone + NumAssign + MulAddAssign> MulAddAssign for Complex<T> { |
885 | fn mul_add_assign(&mut self, other: Complex<T>, add: Complex<T>) { |
886 | let a = self.re.clone(); |
887 | |
888 | self.re.mul_add_assign(other.re.clone(), add.re); // (a*c + e) |
889 | self.re -= self.im.clone() * other.im.clone(); // ((a*c + e) - b*d) |
890 | |
891 | let mut adf = a; |
892 | adf.mul_add_assign(other.im, add.im); // (a*d + f) |
893 | self.im.mul_add_assign(other.re, adf); // (b*c + (a*d + f)) |
894 | } |
895 | } |
896 | |
897 | impl<'a, 'b, T: Clone + NumAssign + MulAddAssign> MulAddAssign<&'a Complex<T>, &'b Complex<T>> |
898 | for Complex<T> |
899 | { |
900 | fn mul_add_assign(&mut self, other: &Complex<T>, add: &Complex<T>) { |
901 | self.mul_add_assign(other.clone(), add.clone()); |
902 | } |
903 | } |
904 | |
905 | // (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d) |
906 | // == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)] |
907 | impl<T: Clone + NumAssign> DivAssign for Complex<T> { |
908 | fn div_assign(&mut self, other: Self) { |
909 | let a = self.re.clone(); |
910 | let norm_sqr = other.norm_sqr(); |
911 | |
912 | self.re *= other.re.clone(); |
913 | self.re += self.im.clone() * other.im.clone(); |
914 | self.re /= norm_sqr.clone(); |
915 | |
916 | self.im *= other.re; |
917 | self.im -= a * other.im; |
918 | self.im /= norm_sqr; |
919 | } |
920 | } |
921 | |
922 | impl<T: Clone + NumAssign> RemAssign for Complex<T> { |
923 | fn rem_assign(&mut self, modulus: Self) { |
924 | let gaussian = self.div_trunc(&modulus); |
925 | *self -= modulus * gaussian; |
926 | } |
927 | } |
928 | |
929 | impl<T: Clone + NumAssign> AddAssign<T> for Complex<T> { |
930 | fn add_assign(&mut self, other: T) { |
931 | self.re += other; |
932 | } |
933 | } |
934 | |
935 | impl<T: Clone + NumAssign> SubAssign<T> for Complex<T> { |
936 | fn sub_assign(&mut self, other: T) { |
937 | self.re -= other; |
938 | } |
939 | } |
940 | |
941 | impl<T: Clone + NumAssign> MulAssign<T> for Complex<T> { |
942 | fn mul_assign(&mut self, other: T) { |
943 | self.re *= other.clone(); |
944 | self.im *= other; |
945 | } |
946 | } |
947 | |
948 | impl<T: Clone + NumAssign> DivAssign<T> for Complex<T> { |
949 | fn div_assign(&mut self, other: T) { |
950 | self.re /= other.clone(); |
951 | self.im /= other; |
952 | } |
953 | } |
954 | |
955 | impl<T: Clone + NumAssign> RemAssign<T> for Complex<T> { |
956 | fn rem_assign(&mut self, other: T) { |
957 | self.re %= other.clone(); |
958 | self.im %= other; |
959 | } |
960 | } |
961 | |
962 | macro_rules! forward_op_assign { |
963 | (impl $imp:ident, $method:ident) => { |
964 | impl<'a, T: Clone + NumAssign> $imp<&'a Complex<T>> for Complex<T> { |
965 | #[inline] |
966 | fn $method(&mut self, other: &Self) { |
967 | self.$method(other.clone()) |
968 | } |
969 | } |
970 | impl<'a, T: Clone + NumAssign> $imp<&'a T> for Complex<T> { |
971 | #[inline] |
972 | fn $method(&mut self, other: &T) { |
973 | self.$method(other.clone()) |
974 | } |
975 | } |
976 | }; |
977 | } |
978 | |
979 | forward_op_assign!(impl AddAssign, add_assign); |
980 | forward_op_assign!(impl SubAssign, sub_assign); |
981 | forward_op_assign!(impl MulAssign, mul_assign); |
982 | forward_op_assign!(impl DivAssign, div_assign); |
983 | forward_op_assign!(impl RemAssign, rem_assign); |
984 | } |
985 | |
986 | impl<T: Clone + Num + Neg<Output = T>> Neg for Complex<T> { |
987 | type Output = Self; |
988 | |
989 | #[inline ] |
990 | fn neg(self) -> Self::Output { |
991 | Self::Output::new(-self.re, -self.im) |
992 | } |
993 | } |
994 | |
995 | impl<'a, T: Clone + Num + Neg<Output = T>> Neg for &'a Complex<T> { |
996 | type Output = Complex<T>; |
997 | |
998 | #[inline ] |
999 | fn neg(self) -> Self::Output { |
1000 | -self.clone() |
1001 | } |
1002 | } |
1003 | |
1004 | impl<T: Clone + Num + Neg<Output = T>> Inv for Complex<T> { |
1005 | type Output = Self; |
1006 | |
1007 | #[inline ] |
1008 | fn inv(self) -> Self::Output { |
1009 | Complex::inv(&self) |
1010 | } |
1011 | } |
1012 | |
1013 | impl<'a, T: Clone + Num + Neg<Output = T>> Inv for &'a Complex<T> { |
1014 | type Output = Complex<T>; |
1015 | |
1016 | #[inline ] |
1017 | fn inv(self) -> Self::Output { |
1018 | Complex::inv(self) |
1019 | } |
1020 | } |
1021 | |
1022 | macro_rules! real_arithmetic { |
1023 | (@forward $imp:ident::$method:ident for $($real:ident),*) => ( |
1024 | impl<'a, T: Clone + Num> $imp<&'a T> for Complex<T> { |
1025 | type Output = Complex<T>; |
1026 | |
1027 | #[inline] |
1028 | fn $method(self, other: &T) -> Self::Output { |
1029 | self.$method(other.clone()) |
1030 | } |
1031 | } |
1032 | impl<'a, T: Clone + Num> $imp<T> for &'a Complex<T> { |
1033 | type Output = Complex<T>; |
1034 | |
1035 | #[inline] |
1036 | fn $method(self, other: T) -> Self::Output { |
1037 | self.clone().$method(other) |
1038 | } |
1039 | } |
1040 | impl<'a, 'b, T: Clone + Num> $imp<&'a T> for &'b Complex<T> { |
1041 | type Output = Complex<T>; |
1042 | |
1043 | #[inline] |
1044 | fn $method(self, other: &T) -> Self::Output { |
1045 | self.clone().$method(other.clone()) |
1046 | } |
1047 | } |
1048 | $( |
1049 | impl<'a> $imp<&'a Complex<$real>> for $real { |
1050 | type Output = Complex<$real>; |
1051 | |
1052 | #[inline] |
1053 | fn $method(self, other: &Complex<$real>) -> Complex<$real> { |
1054 | self.$method(other.clone()) |
1055 | } |
1056 | } |
1057 | impl<'a> $imp<Complex<$real>> for &'a $real { |
1058 | type Output = Complex<$real>; |
1059 | |
1060 | #[inline] |
1061 | fn $method(self, other: Complex<$real>) -> Complex<$real> { |
1062 | self.clone().$method(other) |
1063 | } |
1064 | } |
1065 | impl<'a, 'b> $imp<&'a Complex<$real>> for &'b $real { |
1066 | type Output = Complex<$real>; |
1067 | |
1068 | #[inline] |
1069 | fn $method(self, other: &Complex<$real>) -> Complex<$real> { |
1070 | self.clone().$method(other.clone()) |
1071 | } |
1072 | } |
1073 | )* |
1074 | ); |
1075 | ($($real:ident),*) => ( |
1076 | real_arithmetic!(@forward Add::add for $($real),*); |
1077 | real_arithmetic!(@forward Sub::sub for $($real),*); |
1078 | real_arithmetic!(@forward Mul::mul for $($real),*); |
1079 | real_arithmetic!(@forward Div::div for $($real),*); |
1080 | real_arithmetic!(@forward Rem::rem for $($real),*); |
1081 | |
1082 | $( |
1083 | impl Add<Complex<$real>> for $real { |
1084 | type Output = Complex<$real>; |
1085 | |
1086 | #[inline] |
1087 | fn add(self, other: Complex<$real>) -> Self::Output { |
1088 | Self::Output::new(self + other.re, other.im) |
1089 | } |
1090 | } |
1091 | |
1092 | impl Sub<Complex<$real>> for $real { |
1093 | type Output = Complex<$real>; |
1094 | |
1095 | #[inline] |
1096 | fn sub(self, other: Complex<$real>) -> Self::Output { |
1097 | Self::Output::new(self - other.re, $real::zero() - other.im) |
1098 | } |
1099 | } |
1100 | |
1101 | impl Mul<Complex<$real>> for $real { |
1102 | type Output = Complex<$real>; |
1103 | |
1104 | #[inline] |
1105 | fn mul(self, other: Complex<$real>) -> Self::Output { |
1106 | Self::Output::new(self * other.re, self * other.im) |
1107 | } |
1108 | } |
1109 | |
1110 | impl Div<Complex<$real>> for $real { |
1111 | type Output = Complex<$real>; |
1112 | |
1113 | #[inline] |
1114 | fn div(self, other: Complex<$real>) -> Self::Output { |
1115 | // a / (c + i d) == [a * (c - i d)] / (c*c + d*d) |
1116 | let norm_sqr = other.norm_sqr(); |
1117 | Self::Output::new(self * other.re / norm_sqr.clone(), |
1118 | $real::zero() - self * other.im / norm_sqr) |
1119 | } |
1120 | } |
1121 | |
1122 | impl Rem<Complex<$real>> for $real { |
1123 | type Output = Complex<$real>; |
1124 | |
1125 | #[inline] |
1126 | fn rem(self, other: Complex<$real>) -> Self::Output { |
1127 | Self::Output::new(self, Self::zero()) % other |
1128 | } |
1129 | } |
1130 | )* |
1131 | ); |
1132 | } |
1133 | |
1134 | impl<T: Clone + Num> Add<T> for Complex<T> { |
1135 | type Output = Complex<T>; |
1136 | |
1137 | #[inline ] |
1138 | fn add(self, other: T) -> Self::Output { |
1139 | Self::Output::new(self.re + other, self.im) |
1140 | } |
1141 | } |
1142 | |
1143 | impl<T: Clone + Num> Sub<T> for Complex<T> { |
1144 | type Output = Complex<T>; |
1145 | |
1146 | #[inline ] |
1147 | fn sub(self, other: T) -> Self::Output { |
1148 | Self::Output::new(self.re - other, self.im) |
1149 | } |
1150 | } |
1151 | |
1152 | impl<T: Clone + Num> Mul<T> for Complex<T> { |
1153 | type Output = Complex<T>; |
1154 | |
1155 | #[inline ] |
1156 | fn mul(self, other: T) -> Self::Output { |
1157 | Self::Output::new(self.re * other.clone(), self.im * other) |
1158 | } |
1159 | } |
1160 | |
1161 | impl<T: Clone + Num> Div<T> for Complex<T> { |
1162 | type Output = Self; |
1163 | |
1164 | #[inline ] |
1165 | fn div(self, other: T) -> Self::Output { |
1166 | Self::Output::new(self.re / other.clone(), self.im / other) |
1167 | } |
1168 | } |
1169 | |
1170 | impl<T: Clone + Num> Rem<T> for Complex<T> { |
1171 | type Output = Complex<T>; |
1172 | |
1173 | #[inline ] |
1174 | fn rem(self, other: T) -> Self::Output { |
1175 | Self::Output::new(self.re % other.clone(), self.im % other) |
1176 | } |
1177 | } |
1178 | |
1179 | real_arithmetic!(usize, u8, u16, u32, u64, u128, isize, i8, i16, i32, i64, i128, f32, f64); |
1180 | |
1181 | // constants |
1182 | impl<T: ConstZero> Complex<T> { |
1183 | /// A constant `Complex` 0. |
1184 | pub const ZERO: Self = Self::new(T::ZERO, T::ZERO); |
1185 | } |
1186 | |
1187 | impl<T: Clone + Num + ConstZero> ConstZero for Complex<T> { |
1188 | const ZERO: Self = Self::ZERO; |
1189 | } |
1190 | |
1191 | impl<T: Clone + Num> Zero for Complex<T> { |
1192 | #[inline ] |
1193 | fn zero() -> Self { |
1194 | Self::new(re:Zero::zero(), im:Zero::zero()) |
1195 | } |
1196 | |
1197 | #[inline ] |
1198 | fn is_zero(&self) -> bool { |
1199 | self.re.is_zero() && self.im.is_zero() |
1200 | } |
1201 | |
1202 | #[inline ] |
1203 | fn set_zero(&mut self) { |
1204 | self.re.set_zero(); |
1205 | self.im.set_zero(); |
1206 | } |
1207 | } |
1208 | |
1209 | impl<T: ConstOne + ConstZero> Complex<T> { |
1210 | /// A constant `Complex` 1. |
1211 | pub const ONE: Self = Self::new(T::ONE, T::ZERO); |
1212 | |
1213 | /// A constant `Complex` _i_, the imaginary unit. |
1214 | pub const I: Self = Self::new(T::ZERO, T::ONE); |
1215 | } |
1216 | |
1217 | impl<T: Clone + Num + ConstOne + ConstZero> ConstOne for Complex<T> { |
1218 | const ONE: Self = Self::ONE; |
1219 | } |
1220 | |
1221 | impl<T: Clone + Num> One for Complex<T> { |
1222 | #[inline ] |
1223 | fn one() -> Self { |
1224 | Self::new(re:One::one(), im:Zero::zero()) |
1225 | } |
1226 | |
1227 | #[inline ] |
1228 | fn is_one(&self) -> bool { |
1229 | self.re.is_one() && self.im.is_zero() |
1230 | } |
1231 | |
1232 | #[inline ] |
1233 | fn set_one(&mut self) { |
1234 | self.re.set_one(); |
1235 | self.im.set_zero(); |
1236 | } |
1237 | } |
1238 | |
1239 | macro_rules! write_complex { |
1240 | ($f:ident, $t:expr, $prefix:expr, $re:expr, $im:expr, $T:ident) => {{ |
1241 | let abs_re = if $re < Zero::zero() { |
1242 | $T::zero() - $re.clone() |
1243 | } else { |
1244 | $re.clone() |
1245 | }; |
1246 | let abs_im = if $im < Zero::zero() { |
1247 | $T::zero() - $im.clone() |
1248 | } else { |
1249 | $im.clone() |
1250 | }; |
1251 | |
1252 | return if let Some(prec) = $f.precision() { |
1253 | fmt_re_im( |
1254 | $f, |
1255 | $re < $T::zero(), |
1256 | $im < $T::zero(), |
1257 | format_args!(concat!("{:.1$" , $t, "}" ), abs_re, prec), |
1258 | format_args!(concat!("{:.1$" , $t, "}" ), abs_im, prec), |
1259 | ) |
1260 | } else { |
1261 | fmt_re_im( |
1262 | $f, |
1263 | $re < $T::zero(), |
1264 | $im < $T::zero(), |
1265 | format_args!(concat!("{:" , $t, "}" ), abs_re), |
1266 | format_args!(concat!("{:" , $t, "}" ), abs_im), |
1267 | ) |
1268 | }; |
1269 | |
1270 | fn fmt_re_im( |
1271 | f: &mut fmt::Formatter<'_>, |
1272 | re_neg: bool, |
1273 | im_neg: bool, |
1274 | real: fmt::Arguments<'_>, |
1275 | imag: fmt::Arguments<'_>, |
1276 | ) -> fmt::Result { |
1277 | let prefix = if f.alternate() { $prefix } else { "" }; |
1278 | let sign = if re_neg { |
1279 | "-" |
1280 | } else if f.sign_plus() { |
1281 | "+" |
1282 | } else { |
1283 | "" |
1284 | }; |
1285 | |
1286 | if im_neg { |
1287 | fmt_complex( |
1288 | f, |
1289 | format_args!( |
1290 | "{}{pre}{re}-{pre}{im}i" , |
1291 | sign, |
1292 | re = real, |
1293 | im = imag, |
1294 | pre = prefix |
1295 | ), |
1296 | ) |
1297 | } else { |
1298 | fmt_complex( |
1299 | f, |
1300 | format_args!( |
1301 | "{}{pre}{re}+{pre}{im}i" , |
1302 | sign, |
1303 | re = real, |
1304 | im = imag, |
1305 | pre = prefix |
1306 | ), |
1307 | ) |
1308 | } |
1309 | } |
1310 | |
1311 | #[cfg(feature = "std" )] |
1312 | // Currently, we can only apply width using an intermediate `String` (and thus `std`) |
1313 | fn fmt_complex(f: &mut fmt::Formatter<'_>, complex: fmt::Arguments<'_>) -> fmt::Result { |
1314 | use std::string::ToString; |
1315 | if let Some(width) = f.width() { |
1316 | write!(f, "{0: >1$}" , complex.to_string(), width) |
1317 | } else { |
1318 | write!(f, "{}" , complex) |
1319 | } |
1320 | } |
1321 | |
1322 | #[cfg(not(feature = "std" ))] |
1323 | fn fmt_complex(f: &mut fmt::Formatter<'_>, complex: fmt::Arguments<'_>) -> fmt::Result { |
1324 | write!(f, "{}" , complex) |
1325 | } |
1326 | }}; |
1327 | } |
1328 | |
1329 | // string conversions |
1330 | impl<T> fmt::Display for Complex<T> |
1331 | where |
1332 | T: fmt::Display + Num + PartialOrd + Clone, |
1333 | { |
1334 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1335 | write_complex!(f, "" , "" , self.re, self.im, T) |
1336 | } |
1337 | } |
1338 | |
1339 | impl<T> fmt::LowerExp for Complex<T> |
1340 | where |
1341 | T: fmt::LowerExp + Num + PartialOrd + Clone, |
1342 | { |
1343 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1344 | write_complex!(f, "e" , "" , self.re, self.im, T) |
1345 | } |
1346 | } |
1347 | |
1348 | impl<T> fmt::UpperExp for Complex<T> |
1349 | where |
1350 | T: fmt::UpperExp + Num + PartialOrd + Clone, |
1351 | { |
1352 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1353 | write_complex!(f, "E" , "" , self.re, self.im, T) |
1354 | } |
1355 | } |
1356 | |
1357 | impl<T> fmt::LowerHex for Complex<T> |
1358 | where |
1359 | T: fmt::LowerHex + Num + PartialOrd + Clone, |
1360 | { |
1361 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1362 | write_complex!(f, "x" , "0x" , self.re, self.im, T) |
1363 | } |
1364 | } |
1365 | |
1366 | impl<T> fmt::UpperHex for Complex<T> |
1367 | where |
1368 | T: fmt::UpperHex + Num + PartialOrd + Clone, |
1369 | { |
1370 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1371 | write_complex!(f, "X" , "0x" , self.re, self.im, T) |
1372 | } |
1373 | } |
1374 | |
1375 | impl<T> fmt::Octal for Complex<T> |
1376 | where |
1377 | T: fmt::Octal + Num + PartialOrd + Clone, |
1378 | { |
1379 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1380 | write_complex!(f, "o" , "0o" , self.re, self.im, T) |
1381 | } |
1382 | } |
1383 | |
1384 | impl<T> fmt::Binary for Complex<T> |
1385 | where |
1386 | T: fmt::Binary + Num + PartialOrd + Clone, |
1387 | { |
1388 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1389 | write_complex!(f, "b" , "0b" , self.re, self.im, T) |
1390 | } |
1391 | } |
1392 | |
1393 | fn from_str_generic<T, E, F>(s: &str, from: F) -> Result<Complex<T>, ParseComplexError<E>> |
1394 | where |
1395 | F: Fn(&str) -> Result<T, E>, |
1396 | T: Clone + Num, |
1397 | { |
1398 | let imag = match s.rfind('j' ) { |
1399 | None => 'i' , |
1400 | _ => 'j' , |
1401 | }; |
1402 | |
1403 | let mut neg_b = false; |
1404 | let mut a = s; |
1405 | let mut b = "" ; |
1406 | |
1407 | for (i, w) in s.as_bytes().windows(2).enumerate() { |
1408 | let p = w[0]; |
1409 | let c = w[1]; |
1410 | |
1411 | // ignore '+'/'-' if part of an exponent |
1412 | if (c == b'+' || c == b'-' ) && !(p == b'e' || p == b'E' ) { |
1413 | // trim whitespace around the separator |
1414 | a = s[..=i].trim_end_matches(char::is_whitespace); |
1415 | b = s[i + 2..].trim_start_matches(char::is_whitespace); |
1416 | neg_b = c == b'-' ; |
1417 | |
1418 | if b.is_empty() || (neg_b && b.starts_with('-' )) { |
1419 | return Err(ParseComplexError::expr_error()); |
1420 | } |
1421 | break; |
1422 | } |
1423 | } |
1424 | |
1425 | // split off real and imaginary parts |
1426 | if b.is_empty() { |
1427 | // input was either pure real or pure imaginary |
1428 | b = if a.ends_with(imag) { "0" } else { "0i" }; |
1429 | } |
1430 | |
1431 | let re; |
1432 | let neg_re; |
1433 | let im; |
1434 | let neg_im; |
1435 | if a.ends_with(imag) { |
1436 | im = a; |
1437 | neg_im = false; |
1438 | re = b; |
1439 | neg_re = neg_b; |
1440 | } else if b.ends_with(imag) { |
1441 | re = a; |
1442 | neg_re = false; |
1443 | im = b; |
1444 | neg_im = neg_b; |
1445 | } else { |
1446 | return Err(ParseComplexError::expr_error()); |
1447 | } |
1448 | |
1449 | // parse re |
1450 | let re = from(re).map_err(ParseComplexError::from_error)?; |
1451 | let re = if neg_re { T::zero() - re } else { re }; |
1452 | |
1453 | // pop imaginary unit off |
1454 | let mut im = &im[..im.len() - 1]; |
1455 | // handle im == "i" or im == "-i" |
1456 | if im.is_empty() || im == "+" { |
1457 | im = "1" ; |
1458 | } else if im == "-" { |
1459 | im = "-1" ; |
1460 | } |
1461 | |
1462 | // parse im |
1463 | let im = from(im).map_err(ParseComplexError::from_error)?; |
1464 | let im = if neg_im { T::zero() - im } else { im }; |
1465 | |
1466 | Ok(Complex::new(re, im)) |
1467 | } |
1468 | |
1469 | impl<T> FromStr for Complex<T> |
1470 | where |
1471 | T: FromStr + Num + Clone, |
1472 | { |
1473 | type Err = ParseComplexError<T::Err>; |
1474 | |
1475 | /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T` |
1476 | fn from_str(s: &str) -> Result<Self, Self::Err> { |
1477 | from_str_generic(s, T::from_str) |
1478 | } |
1479 | } |
1480 | |
1481 | impl<T: Num + Clone> Num for Complex<T> { |
1482 | type FromStrRadixErr = ParseComplexError<T::FromStrRadixErr>; |
1483 | |
1484 | /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T` |
1485 | /// |
1486 | /// `radix` must be <= 18; larger radix would include *i* and *j* as digits, |
1487 | /// which cannot be supported. |
1488 | /// |
1489 | /// The conversion returns an error if 18 <= radix <= 36; it panics if radix > 36. |
1490 | /// |
1491 | /// The elements of `T` are parsed using `Num::from_str_radix` too, and errors |
1492 | /// (or panics) from that are reflected here as well. |
1493 | fn from_str_radix(s: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> { |
1494 | assert!( |
1495 | radix <= 36, |
1496 | "from_str_radix: radix is too high (maximum 36)" |
1497 | ); |
1498 | |
1499 | // larger radix would include 'i' and 'j' as digits, which cannot be supported |
1500 | if radix > 18 { |
1501 | return Err(ParseComplexError::unsupported_radix()); |
1502 | } |
1503 | |
1504 | from_str_generic(s, |x| -> Result<T, T::FromStrRadixErr> { |
1505 | T::from_str_radix(x, radix) |
1506 | }) |
1507 | } |
1508 | } |
1509 | |
1510 | impl<T: Num + Clone> Sum for Complex<T> { |
1511 | fn sum<I>(iter: I) -> Self |
1512 | where |
1513 | I: Iterator<Item = Self>, |
1514 | { |
1515 | iter.fold(Self::zero(), |acc: Complex, c: Complex| acc + c) |
1516 | } |
1517 | } |
1518 | |
1519 | impl<'a, T: 'a + Num + Clone> Sum<&'a Complex<T>> for Complex<T> { |
1520 | fn sum<I>(iter: I) -> Self |
1521 | where |
1522 | I: Iterator<Item = &'a Complex<T>>, |
1523 | { |
1524 | iter.fold(Self::zero(), |acc: Complex, c: &'a Complex| acc + c) |
1525 | } |
1526 | } |
1527 | |
1528 | impl<T: Num + Clone> Product for Complex<T> { |
1529 | fn product<I>(iter: I) -> Self |
1530 | where |
1531 | I: Iterator<Item = Self>, |
1532 | { |
1533 | iter.fold(Self::one(), |acc: Complex, c: Complex| acc * c) |
1534 | } |
1535 | } |
1536 | |
1537 | impl<'a, T: 'a + Num + Clone> Product<&'a Complex<T>> for Complex<T> { |
1538 | fn product<I>(iter: I) -> Self |
1539 | where |
1540 | I: Iterator<Item = &'a Complex<T>>, |
1541 | { |
1542 | iter.fold(Self::one(), |acc: Complex, c: &'a Complex| acc * c) |
1543 | } |
1544 | } |
1545 | |
1546 | #[cfg (feature = "serde" )] |
1547 | impl<T> serde::Serialize for Complex<T> |
1548 | where |
1549 | T: serde::Serialize, |
1550 | { |
1551 | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> |
1552 | where |
1553 | S: serde::Serializer, |
1554 | { |
1555 | (&self.re, &self.im).serialize(serializer) |
1556 | } |
1557 | } |
1558 | |
1559 | #[cfg (feature = "serde" )] |
1560 | impl<'de, T> serde::Deserialize<'de> for Complex<T> |
1561 | where |
1562 | T: serde::Deserialize<'de>, |
1563 | { |
1564 | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> |
1565 | where |
1566 | D: serde::Deserializer<'de>, |
1567 | { |
1568 | let (re, im) = serde::Deserialize::deserialize(deserializer)?; |
1569 | Ok(Self::new(re, im)) |
1570 | } |
1571 | } |
1572 | |
1573 | #[derive (Debug, PartialEq)] |
1574 | pub struct ParseComplexError<E> { |
1575 | kind: ComplexErrorKind<E>, |
1576 | } |
1577 | |
1578 | #[derive (Debug, PartialEq)] |
1579 | enum ComplexErrorKind<E> { |
1580 | ParseError(E), |
1581 | ExprError, |
1582 | UnsupportedRadix, |
1583 | } |
1584 | |
1585 | impl<E> ParseComplexError<E> { |
1586 | fn expr_error() -> Self { |
1587 | ParseComplexError { |
1588 | kind: ComplexErrorKind::ExprError, |
1589 | } |
1590 | } |
1591 | |
1592 | fn unsupported_radix() -> Self { |
1593 | ParseComplexError { |
1594 | kind: ComplexErrorKind::UnsupportedRadix, |
1595 | } |
1596 | } |
1597 | |
1598 | fn from_error(error: E) -> Self { |
1599 | ParseComplexError { |
1600 | kind: ComplexErrorKind::ParseError(error), |
1601 | } |
1602 | } |
1603 | } |
1604 | |
1605 | #[cfg (feature = "std" )] |
1606 | impl<E: Error> Error for ParseComplexError<E> { |
1607 | #[allow (deprecated)] |
1608 | fn description(&self) -> &str { |
1609 | match self.kind { |
1610 | ComplexErrorKind::ParseError(ref e: &E) => e.description(), |
1611 | ComplexErrorKind::ExprError => "invalid or unsupported complex expression" , |
1612 | ComplexErrorKind::UnsupportedRadix => "unsupported radix for conversion" , |
1613 | } |
1614 | } |
1615 | } |
1616 | |
1617 | impl<E: fmt::Display> fmt::Display for ParseComplexError<E> { |
1618 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1619 | match self.kind { |
1620 | ComplexErrorKind::ParseError(ref e: &E) => e.fmt(f), |
1621 | ComplexErrorKind::ExprError => "invalid or unsupported complex expression" .fmt(f), |
1622 | ComplexErrorKind::UnsupportedRadix => "unsupported radix for conversion" .fmt(f), |
1623 | } |
1624 | } |
1625 | } |
1626 | |
1627 | #[cfg (test)] |
1628 | fn hash<T: hash::Hash>(x: &T) -> u64 { |
1629 | use std::collections::hash_map::RandomState; |
1630 | use std::hash::{BuildHasher, Hasher}; |
1631 | let mut hasher = <RandomState as BuildHasher>::Hasher::new(); |
1632 | x.hash(&mut hasher); |
1633 | hasher.finish() |
1634 | } |
1635 | |
1636 | #[cfg (test)] |
1637 | pub(crate) mod test { |
1638 | #![allow (non_upper_case_globals)] |
1639 | |
1640 | use super::{Complex, Complex64}; |
1641 | use super::{ComplexErrorKind, ParseComplexError}; |
1642 | use core::f64; |
1643 | use core::str::FromStr; |
1644 | |
1645 | use std::string::{String, ToString}; |
1646 | |
1647 | use num_traits::{Num, One, Zero}; |
1648 | |
1649 | pub const _0_0i: Complex64 = Complex::new(0.0, 0.0); |
1650 | pub const _1_0i: Complex64 = Complex::new(1.0, 0.0); |
1651 | pub const _1_1i: Complex64 = Complex::new(1.0, 1.0); |
1652 | pub const _0_1i: Complex64 = Complex::new(0.0, 1.0); |
1653 | pub const _neg1_1i: Complex64 = Complex::new(-1.0, 1.0); |
1654 | pub const _05_05i: Complex64 = Complex::new(0.5, 0.5); |
1655 | pub const all_consts: [Complex64; 5] = [_0_0i, _1_0i, _1_1i, _neg1_1i, _05_05i]; |
1656 | pub const _4_2i: Complex64 = Complex::new(4.0, 2.0); |
1657 | pub const _1_infi: Complex64 = Complex::new(1.0, f64::INFINITY); |
1658 | pub const _neg1_infi: Complex64 = Complex::new(-1.0, f64::INFINITY); |
1659 | pub const _1_nani: Complex64 = Complex::new(1.0, f64::NAN); |
1660 | pub const _neg1_nani: Complex64 = Complex::new(-1.0, f64::NAN); |
1661 | pub const _inf_0i: Complex64 = Complex::new(f64::INFINITY, 0.0); |
1662 | pub const _neginf_1i: Complex64 = Complex::new(f64::NEG_INFINITY, 1.0); |
1663 | pub const _neginf_neg1i: Complex64 = Complex::new(f64::NEG_INFINITY, -1.0); |
1664 | pub const _inf_1i: Complex64 = Complex::new(f64::INFINITY, 1.0); |
1665 | pub const _inf_neg1i: Complex64 = Complex::new(f64::INFINITY, -1.0); |
1666 | pub const _neginf_infi: Complex64 = Complex::new(f64::NEG_INFINITY, f64::INFINITY); |
1667 | pub const _inf_infi: Complex64 = Complex::new(f64::INFINITY, f64::INFINITY); |
1668 | pub const _neginf_nani: Complex64 = Complex::new(f64::NEG_INFINITY, f64::NAN); |
1669 | pub const _inf_nani: Complex64 = Complex::new(f64::INFINITY, f64::NAN); |
1670 | pub const _nan_0i: Complex64 = Complex::new(f64::NAN, 0.0); |
1671 | pub const _nan_1i: Complex64 = Complex::new(f64::NAN, 1.0); |
1672 | pub const _nan_neg1i: Complex64 = Complex::new(f64::NAN, -1.0); |
1673 | pub const _nan_nani: Complex64 = Complex::new(f64::NAN, f64::NAN); |
1674 | |
1675 | #[test ] |
1676 | fn test_consts() { |
1677 | // check our constants are what Complex::new creates |
1678 | fn test(c: Complex64, r: f64, i: f64) { |
1679 | assert_eq!(c, Complex::new(r, i)); |
1680 | } |
1681 | test (_0_0i, 0.0, 0.0); |
1682 | test (_1_0i, 1.0, 0.0); |
1683 | test (_1_1i, 1.0, 1.0); |
1684 | test (_neg1_1i, -1.0, 1.0); |
1685 | test (_05_05i, 0.5, 0.5); |
1686 | |
1687 | assert_eq!(_0_0i, Zero::zero()); |
1688 | assert_eq!(_1_0i, One::one()); |
1689 | } |
1690 | |
1691 | #[test ] |
1692 | fn test_scale_unscale() { |
1693 | assert_eq!(_05_05i.scale(2.0), _1_1i); |
1694 | assert_eq!(_1_1i.unscale(2.0), _05_05i); |
1695 | for &c in all_consts.iter() { |
1696 | assert_eq!(c.scale(2.0).unscale(2.0), c); |
1697 | } |
1698 | } |
1699 | |
1700 | #[test ] |
1701 | fn test_conj() { |
1702 | for &c in all_consts.iter() { |
1703 | assert_eq!(c.conj(), Complex::new(c.re, -c.im)); |
1704 | assert_eq!(c.conj().conj(), c); |
1705 | } |
1706 | } |
1707 | |
1708 | #[test ] |
1709 | fn test_inv() { |
1710 | assert_eq!(_1_1i.inv(), _05_05i.conj()); |
1711 | assert_eq!(_1_0i.inv(), _1_0i.inv()); |
1712 | } |
1713 | |
1714 | #[test ] |
1715 | #[should_panic ] |
1716 | fn test_divide_by_zero_natural() { |
1717 | let n = Complex::new(2, 3); |
1718 | let d = Complex::new(0, 0); |
1719 | let _x = n / d; |
1720 | } |
1721 | |
1722 | #[test ] |
1723 | fn test_inv_zero() { |
1724 | // FIXME #20: should this really fail, or just NaN? |
1725 | assert!(_0_0i.inv().is_nan()); |
1726 | } |
1727 | |
1728 | #[test ] |
1729 | #[allow (clippy::float_cmp)] |
1730 | fn test_l1_norm() { |
1731 | assert_eq!(_0_0i.l1_norm(), 0.0); |
1732 | assert_eq!(_1_0i.l1_norm(), 1.0); |
1733 | assert_eq!(_1_1i.l1_norm(), 2.0); |
1734 | assert_eq!(_0_1i.l1_norm(), 1.0); |
1735 | assert_eq!(_neg1_1i.l1_norm(), 2.0); |
1736 | assert_eq!(_05_05i.l1_norm(), 1.0); |
1737 | assert_eq!(_4_2i.l1_norm(), 6.0); |
1738 | } |
1739 | |
1740 | #[test ] |
1741 | fn test_pow() { |
1742 | for c in all_consts.iter() { |
1743 | assert_eq!(c.powi(0), _1_0i); |
1744 | let mut pos = _1_0i; |
1745 | let mut neg = _1_0i; |
1746 | for i in 1i32..20 { |
1747 | pos *= c; |
1748 | assert_eq!(pos, c.powi(i)); |
1749 | if c.is_zero() { |
1750 | assert!(c.powi(-i).is_nan()); |
1751 | } else { |
1752 | neg /= c; |
1753 | assert_eq!(neg, c.powi(-i)); |
1754 | } |
1755 | } |
1756 | } |
1757 | } |
1758 | |
1759 | #[cfg (any(feature = "std" , feature = "libm" ))] |
1760 | pub(crate) mod float { |
1761 | |
1762 | use core::f64::INFINITY; |
1763 | |
1764 | use super::*; |
1765 | use num_traits::{Float, Pow}; |
1766 | |
1767 | #[test ] |
1768 | fn test_cis() { |
1769 | assert!(close(Complex::cis(0.0 * f64::consts::PI), _1_0i)); |
1770 | assert!(close(Complex::cis(0.5 * f64::consts::PI), _0_1i)); |
1771 | assert!(close(Complex::cis(1.0 * f64::consts::PI), -_1_0i)); |
1772 | assert!(close(Complex::cis(1.5 * f64::consts::PI), -_0_1i)); |
1773 | assert!(close(Complex::cis(2.0 * f64::consts::PI), _1_0i)); |
1774 | } |
1775 | |
1776 | #[test ] |
1777 | #[cfg_attr (target_arch = "x86" , ignore)] |
1778 | // FIXME #7158: (maybe?) currently failing on x86. |
1779 | #[allow (clippy::float_cmp)] |
1780 | fn test_norm() { |
1781 | fn test(c: Complex64, ns: f64) { |
1782 | assert_eq!(c.norm_sqr(), ns); |
1783 | assert_eq!(c.norm(), ns.sqrt()) |
1784 | } |
1785 | test (_0_0i, 0.0); |
1786 | test (_1_0i, 1.0); |
1787 | test (_1_1i, 2.0); |
1788 | test (_neg1_1i, 2.0); |
1789 | test (_05_05i, 0.5); |
1790 | } |
1791 | |
1792 | #[test ] |
1793 | fn test_arg() { |
1794 | fn test(c: Complex64, arg: f64) { |
1795 | assert!((c.arg() - arg).abs() < 1.0e-6) |
1796 | } |
1797 | test (_1_0i, 0.0); |
1798 | test (_1_1i, 0.25 * f64::consts::PI); |
1799 | test (_neg1_1i, 0.75 * f64::consts::PI); |
1800 | test (_05_05i, 0.25 * f64::consts::PI); |
1801 | } |
1802 | |
1803 | #[test ] |
1804 | fn test_polar_conv() { |
1805 | fn test(c: Complex64) { |
1806 | let (r, theta) = c.to_polar(); |
1807 | assert!((c - Complex::from_polar(r, theta)).norm() < 1e-6); |
1808 | } |
1809 | for &c in all_consts.iter() { |
1810 | test (c); |
1811 | } |
1812 | } |
1813 | |
1814 | pub(crate) fn close(a: Complex64, b: Complex64) -> bool { |
1815 | close_to_tol(a, b, 1e-10) |
1816 | } |
1817 | |
1818 | fn close_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool { |
1819 | // returns true if a and b are reasonably close |
1820 | let close = (a == b) || (a - b).norm() < tol; |
1821 | if !close { |
1822 | println!("{:?} != {:?}" , a, b); |
1823 | } |
1824 | close |
1825 | } |
1826 | |
1827 | // Version that also works if re or im are +inf, -inf, or nan |
1828 | fn close_naninf(a: Complex64, b: Complex64) -> bool { |
1829 | close_naninf_to_tol(a, b, 1.0e-10) |
1830 | } |
1831 | |
1832 | fn close_naninf_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool { |
1833 | let mut close = true; |
1834 | |
1835 | // Compare the real parts |
1836 | if a.re.is_finite() { |
1837 | if b.re.is_finite() { |
1838 | close = (a.re == b.re) || (a.re - b.re).abs() < tol; |
1839 | } else { |
1840 | close = false; |
1841 | } |
1842 | } else if (a.re.is_nan() && !b.re.is_nan()) |
1843 | || (a.re.is_infinite() |
1844 | && a.re.is_sign_positive() |
1845 | && !(b.re.is_infinite() && b.re.is_sign_positive())) |
1846 | || (a.re.is_infinite() |
1847 | && a.re.is_sign_negative() |
1848 | && !(b.re.is_infinite() && b.re.is_sign_negative())) |
1849 | { |
1850 | close = false; |
1851 | } |
1852 | |
1853 | // Compare the imaginary parts |
1854 | if a.im.is_finite() { |
1855 | if b.im.is_finite() { |
1856 | close &= (a.im == b.im) || (a.im - b.im).abs() < tol; |
1857 | } else { |
1858 | close = false; |
1859 | } |
1860 | } else if (a.im.is_nan() && !b.im.is_nan()) |
1861 | || (a.im.is_infinite() |
1862 | && a.im.is_sign_positive() |
1863 | && !(b.im.is_infinite() && b.im.is_sign_positive())) |
1864 | || (a.im.is_infinite() |
1865 | && a.im.is_sign_negative() |
1866 | && !(b.im.is_infinite() && b.im.is_sign_negative())) |
1867 | { |
1868 | close = false; |
1869 | } |
1870 | |
1871 | if close == false { |
1872 | println!("{:?} != {:?}" , a, b); |
1873 | } |
1874 | close |
1875 | } |
1876 | |
1877 | #[test ] |
1878 | fn test_exp2() { |
1879 | assert!(close(_0_0i.exp2(), _1_0i)); |
1880 | } |
1881 | |
1882 | #[test ] |
1883 | fn test_exp() { |
1884 | assert!(close(_1_0i.exp(), _1_0i.scale(f64::consts::E))); |
1885 | assert!(close(_0_0i.exp(), _1_0i)); |
1886 | assert!(close(_0_1i.exp(), Complex::new(1.0.cos(), 1.0.sin()))); |
1887 | assert!(close(_05_05i.exp() * _05_05i.exp(), _1_1i.exp())); |
1888 | assert!(close( |
1889 | _0_1i.scale(-f64::consts::PI).exp(), |
1890 | _1_0i.scale(-1.0) |
1891 | )); |
1892 | for &c in all_consts.iter() { |
1893 | // e^conj(z) = conj(e^z) |
1894 | assert!(close(c.conj().exp(), c.exp().conj())); |
1895 | // e^(z + 2 pi i) = e^z |
1896 | assert!(close( |
1897 | c.exp(), |
1898 | (c + _0_1i.scale(f64::consts::PI * 2.0)).exp() |
1899 | )); |
1900 | } |
1901 | |
1902 | // The test values below were taken from https://en.cppreference.com/w/cpp/numeric/complex/exp |
1903 | assert!(close_naninf(_1_infi.exp(), _nan_nani)); |
1904 | assert!(close_naninf(_neg1_infi.exp(), _nan_nani)); |
1905 | assert!(close_naninf(_1_nani.exp(), _nan_nani)); |
1906 | assert!(close_naninf(_neg1_nani.exp(), _nan_nani)); |
1907 | assert!(close_naninf(_inf_0i.exp(), _inf_0i)); |
1908 | assert!(close_naninf(_neginf_1i.exp(), 0.0 * Complex::cis(1.0))); |
1909 | assert!(close_naninf(_neginf_neg1i.exp(), 0.0 * Complex::cis(-1.0))); |
1910 | assert!(close_naninf( |
1911 | _inf_1i.exp(), |
1912 | f64::INFINITY * Complex::cis(1.0) |
1913 | )); |
1914 | assert!(close_naninf( |
1915 | _inf_neg1i.exp(), |
1916 | f64::INFINITY * Complex::cis(-1.0) |
1917 | )); |
1918 | assert!(close_naninf(_neginf_infi.exp(), _0_0i)); // Note: ±0±0i: signs of zeros are unspecified |
1919 | assert!(close_naninf(_inf_infi.exp(), _inf_nani)); // Note: ±∞+NaN*i: sign of the real part is unspecified |
1920 | assert!(close_naninf(_neginf_nani.exp(), _0_0i)); // Note: ±0±0i: signs of zeros are unspecified |
1921 | assert!(close_naninf(_inf_nani.exp(), _inf_nani)); // Note: ±∞+NaN*i: sign of the real part is unspecified |
1922 | assert!(close_naninf(_nan_0i.exp(), _nan_0i)); |
1923 | assert!(close_naninf(_nan_1i.exp(), _nan_nani)); |
1924 | assert!(close_naninf(_nan_neg1i.exp(), _nan_nani)); |
1925 | assert!(close_naninf(_nan_nani.exp(), _nan_nani)); |
1926 | } |
1927 | |
1928 | #[test ] |
1929 | fn test_ln() { |
1930 | assert!(close(_1_0i.ln(), _0_0i)); |
1931 | assert!(close(_0_1i.ln(), _0_1i.scale(f64::consts::PI / 2.0))); |
1932 | assert!(close(_0_0i.ln(), Complex::new(f64::neg_infinity(), 0.0))); |
1933 | assert!(close( |
1934 | (_neg1_1i * _05_05i).ln(), |
1935 | _neg1_1i.ln() + _05_05i.ln() |
1936 | )); |
1937 | for &c in all_consts.iter() { |
1938 | // ln(conj(z() = conj(ln(z)) |
1939 | assert!(close(c.conj().ln(), c.ln().conj())); |
1940 | // for this branch, -pi <= arg(ln(z)) <= pi |
1941 | assert!(-f64::consts::PI <= c.ln().arg() && c.ln().arg() <= f64::consts::PI); |
1942 | } |
1943 | } |
1944 | |
1945 | #[test ] |
1946 | fn test_powc() { |
1947 | let a = Complex::new(2.0, -3.0); |
1948 | let b = Complex::new(3.0, 0.0); |
1949 | assert!(close(a.powc(b), a.powf(b.re))); |
1950 | assert!(close(b.powc(a), a.expf(b.re))); |
1951 | let c = Complex::new(1.0 / 3.0, 0.1); |
1952 | assert!(close_to_tol( |
1953 | a.powc(c), |
1954 | Complex::new(1.65826, -0.33502), |
1955 | 1e-5 |
1956 | )); |
1957 | let z = Complex::new(0.0, 0.0); |
1958 | assert!(close(z.powc(b), z)); |
1959 | assert!(z.powc(Complex64::new(0., INFINITY)).is_nan()); |
1960 | assert!(z.powc(Complex64::new(10., INFINITY)).is_nan()); |
1961 | assert!(z.powc(Complex64::new(INFINITY, INFINITY)).is_nan()); |
1962 | assert!(close(z.powc(Complex64::new(INFINITY, 0.)), z)); |
1963 | assert!(z.powc(Complex64::new(-1., 0.)).re.is_infinite()); |
1964 | assert!(z.powc(Complex64::new(-1., 0.)).im.is_nan()); |
1965 | |
1966 | for c in all_consts.iter() { |
1967 | assert_eq!(c.powc(_0_0i), _1_0i); |
1968 | } |
1969 | assert_eq!(_nan_nani.powc(_0_0i), _1_0i); |
1970 | } |
1971 | |
1972 | #[test ] |
1973 | fn test_powf() { |
1974 | let c = Complex64::new(2.0, -1.0); |
1975 | let expected = Complex64::new(-0.8684746, -16.695934); |
1976 | assert!(close_to_tol(c.powf(3.5), expected, 1e-5)); |
1977 | assert!(close_to_tol(Pow::pow(c, 3.5_f64), expected, 1e-5)); |
1978 | assert!(close_to_tol(Pow::pow(c, 3.5_f32), expected, 1e-5)); |
1979 | |
1980 | for c in all_consts.iter() { |
1981 | assert_eq!(c.powf(0.0), _1_0i); |
1982 | } |
1983 | assert_eq!(_nan_nani.powf(0.0), _1_0i); |
1984 | } |
1985 | |
1986 | #[test ] |
1987 | fn test_log() { |
1988 | let c = Complex::new(2.0, -1.0); |
1989 | let r = c.log(10.0); |
1990 | assert!(close_to_tol(r, Complex::new(0.349485, -0.20135958), 1e-5)); |
1991 | } |
1992 | |
1993 | #[test ] |
1994 | fn test_log2() { |
1995 | assert!(close(_1_0i.log2(), _0_0i)); |
1996 | } |
1997 | |
1998 | #[test ] |
1999 | fn test_log10() { |
2000 | assert!(close(_1_0i.log10(), _0_0i)); |
2001 | } |
2002 | |
2003 | #[test ] |
2004 | fn test_some_expf_cases() { |
2005 | let c = Complex::new(2.0, -1.0); |
2006 | let r = c.expf(10.0); |
2007 | assert!(close_to_tol(r, Complex::new(-66.82015, -74.39803), 1e-5)); |
2008 | |
2009 | let c = Complex::new(5.0, -2.0); |
2010 | let r = c.expf(3.4); |
2011 | assert!(close_to_tol(r, Complex::new(-349.25, -290.63), 1e-2)); |
2012 | |
2013 | let c = Complex::new(-1.5, 2.0 / 3.0); |
2014 | let r = c.expf(1.0 / 3.0); |
2015 | assert!(close_to_tol(r, Complex::new(3.8637, -3.4745), 1e-2)); |
2016 | } |
2017 | |
2018 | #[test ] |
2019 | fn test_sqrt() { |
2020 | assert!(close(_0_0i.sqrt(), _0_0i)); |
2021 | assert!(close(_1_0i.sqrt(), _1_0i)); |
2022 | assert!(close(Complex::new(-1.0, 0.0).sqrt(), _0_1i)); |
2023 | assert!(close(Complex::new(-1.0, -0.0).sqrt(), _0_1i.scale(-1.0))); |
2024 | assert!(close(_0_1i.sqrt(), _05_05i.scale(2.0.sqrt()))); |
2025 | for &c in all_consts.iter() { |
2026 | // sqrt(conj(z() = conj(sqrt(z)) |
2027 | assert!(close(c.conj().sqrt(), c.sqrt().conj())); |
2028 | // for this branch, -pi/2 <= arg(sqrt(z)) <= pi/2 |
2029 | assert!( |
2030 | -f64::consts::FRAC_PI_2 <= c.sqrt().arg() |
2031 | && c.sqrt().arg() <= f64::consts::FRAC_PI_2 |
2032 | ); |
2033 | // sqrt(z) * sqrt(z) = z |
2034 | assert!(close(c.sqrt() * c.sqrt(), c)); |
2035 | } |
2036 | } |
2037 | |
2038 | #[test ] |
2039 | fn test_sqrt_real() { |
2040 | for n in (0..100).map(f64::from) { |
2041 | // √(n² + 0i) = n + 0i |
2042 | let n2 = n * n; |
2043 | assert_eq!(Complex64::new(n2, 0.0).sqrt(), Complex64::new(n, 0.0)); |
2044 | // √(-n² + 0i) = 0 + ni |
2045 | assert_eq!(Complex64::new(-n2, 0.0).sqrt(), Complex64::new(0.0, n)); |
2046 | // √(-n² - 0i) = 0 - ni |
2047 | assert_eq!(Complex64::new(-n2, -0.0).sqrt(), Complex64::new(0.0, -n)); |
2048 | } |
2049 | } |
2050 | |
2051 | #[test ] |
2052 | fn test_sqrt_imag() { |
2053 | for n in (0..100).map(f64::from) { |
2054 | // √(0 + n²i) = n e^(iπ/4) |
2055 | let n2 = n * n; |
2056 | assert!(close( |
2057 | Complex64::new(0.0, n2).sqrt(), |
2058 | Complex64::from_polar(n, f64::consts::FRAC_PI_4) |
2059 | )); |
2060 | // √(0 - n²i) = n e^(-iπ/4) |
2061 | assert!(close( |
2062 | Complex64::new(0.0, -n2).sqrt(), |
2063 | Complex64::from_polar(n, -f64::consts::FRAC_PI_4) |
2064 | )); |
2065 | } |
2066 | } |
2067 | |
2068 | #[test ] |
2069 | fn test_cbrt() { |
2070 | assert!(close(_0_0i.cbrt(), _0_0i)); |
2071 | assert!(close(_1_0i.cbrt(), _1_0i)); |
2072 | assert!(close( |
2073 | Complex::new(-1.0, 0.0).cbrt(), |
2074 | Complex::new(0.5, 0.75.sqrt()) |
2075 | )); |
2076 | assert!(close( |
2077 | Complex::new(-1.0, -0.0).cbrt(), |
2078 | Complex::new(0.5, -(0.75.sqrt())) |
2079 | )); |
2080 | assert!(close(_0_1i.cbrt(), Complex::new(0.75.sqrt(), 0.5))); |
2081 | assert!(close(_0_1i.conj().cbrt(), Complex::new(0.75.sqrt(), -0.5))); |
2082 | for &c in all_consts.iter() { |
2083 | // cbrt(conj(z() = conj(cbrt(z)) |
2084 | assert!(close(c.conj().cbrt(), c.cbrt().conj())); |
2085 | // for this branch, -pi/3 <= arg(cbrt(z)) <= pi/3 |
2086 | assert!( |
2087 | -f64::consts::FRAC_PI_3 <= c.cbrt().arg() |
2088 | && c.cbrt().arg() <= f64::consts::FRAC_PI_3 |
2089 | ); |
2090 | // cbrt(z) * cbrt(z) cbrt(z) = z |
2091 | assert!(close(c.cbrt() * c.cbrt() * c.cbrt(), c)); |
2092 | } |
2093 | } |
2094 | |
2095 | #[test ] |
2096 | fn test_cbrt_real() { |
2097 | for n in (0..100).map(f64::from) { |
2098 | // ∛(n³ + 0i) = n + 0i |
2099 | let n3 = n * n * n; |
2100 | assert!(close( |
2101 | Complex64::new(n3, 0.0).cbrt(), |
2102 | Complex64::new(n, 0.0) |
2103 | )); |
2104 | // ∛(-n³ + 0i) = n e^(iπ/3) |
2105 | assert!(close( |
2106 | Complex64::new(-n3, 0.0).cbrt(), |
2107 | Complex64::from_polar(n, f64::consts::FRAC_PI_3) |
2108 | )); |
2109 | // ∛(-n³ - 0i) = n e^(-iπ/3) |
2110 | assert!(close( |
2111 | Complex64::new(-n3, -0.0).cbrt(), |
2112 | Complex64::from_polar(n, -f64::consts::FRAC_PI_3) |
2113 | )); |
2114 | } |
2115 | } |
2116 | |
2117 | #[test ] |
2118 | fn test_cbrt_imag() { |
2119 | for n in (0..100).map(f64::from) { |
2120 | // ∛(0 + n³i) = n e^(iπ/6) |
2121 | let n3 = n * n * n; |
2122 | assert!(close( |
2123 | Complex64::new(0.0, n3).cbrt(), |
2124 | Complex64::from_polar(n, f64::consts::FRAC_PI_6) |
2125 | )); |
2126 | // ∛(0 - n³i) = n e^(-iπ/6) |
2127 | assert!(close( |
2128 | Complex64::new(0.0, -n3).cbrt(), |
2129 | Complex64::from_polar(n, -f64::consts::FRAC_PI_6) |
2130 | )); |
2131 | } |
2132 | } |
2133 | |
2134 | #[test ] |
2135 | fn test_sin() { |
2136 | assert!(close(_0_0i.sin(), _0_0i)); |
2137 | assert!(close(_1_0i.scale(f64::consts::PI * 2.0).sin(), _0_0i)); |
2138 | assert!(close(_0_1i.sin(), _0_1i.scale(1.0.sinh()))); |
2139 | for &c in all_consts.iter() { |
2140 | // sin(conj(z)) = conj(sin(z)) |
2141 | assert!(close(c.conj().sin(), c.sin().conj())); |
2142 | // sin(-z) = -sin(z) |
2143 | assert!(close(c.scale(-1.0).sin(), c.sin().scale(-1.0))); |
2144 | } |
2145 | } |
2146 | |
2147 | #[test ] |
2148 | fn test_cos() { |
2149 | assert!(close(_0_0i.cos(), _1_0i)); |
2150 | assert!(close(_1_0i.scale(f64::consts::PI * 2.0).cos(), _1_0i)); |
2151 | assert!(close(_0_1i.cos(), _1_0i.scale(1.0.cosh()))); |
2152 | for &c in all_consts.iter() { |
2153 | // cos(conj(z)) = conj(cos(z)) |
2154 | assert!(close(c.conj().cos(), c.cos().conj())); |
2155 | // cos(-z) = cos(z) |
2156 | assert!(close(c.scale(-1.0).cos(), c.cos())); |
2157 | } |
2158 | } |
2159 | |
2160 | #[test ] |
2161 | fn test_tan() { |
2162 | assert!(close(_0_0i.tan(), _0_0i)); |
2163 | assert!(close(_1_0i.scale(f64::consts::PI / 4.0).tan(), _1_0i)); |
2164 | assert!(close(_1_0i.scale(f64::consts::PI).tan(), _0_0i)); |
2165 | for &c in all_consts.iter() { |
2166 | // tan(conj(z)) = conj(tan(z)) |
2167 | assert!(close(c.conj().tan(), c.tan().conj())); |
2168 | // tan(-z) = -tan(z) |
2169 | assert!(close(c.scale(-1.0).tan(), c.tan().scale(-1.0))); |
2170 | } |
2171 | } |
2172 | |
2173 | #[test ] |
2174 | fn test_asin() { |
2175 | assert!(close(_0_0i.asin(), _0_0i)); |
2176 | assert!(close(_1_0i.asin(), _1_0i.scale(f64::consts::PI / 2.0))); |
2177 | assert!(close( |
2178 | _1_0i.scale(-1.0).asin(), |
2179 | _1_0i.scale(-f64::consts::PI / 2.0) |
2180 | )); |
2181 | assert!(close(_0_1i.asin(), _0_1i.scale((1.0 + 2.0.sqrt()).ln()))); |
2182 | for &c in all_consts.iter() { |
2183 | // asin(conj(z)) = conj(asin(z)) |
2184 | assert!(close(c.conj().asin(), c.asin().conj())); |
2185 | // asin(-z) = -asin(z) |
2186 | assert!(close(c.scale(-1.0).asin(), c.asin().scale(-1.0))); |
2187 | // for this branch, -pi/2 <= asin(z).re <= pi/2 |
2188 | assert!( |
2189 | -f64::consts::PI / 2.0 <= c.asin().re && c.asin().re <= f64::consts::PI / 2.0 |
2190 | ); |
2191 | } |
2192 | } |
2193 | |
2194 | #[test ] |
2195 | fn test_acos() { |
2196 | assert!(close(_0_0i.acos(), _1_0i.scale(f64::consts::PI / 2.0))); |
2197 | assert!(close(_1_0i.acos(), _0_0i)); |
2198 | assert!(close( |
2199 | _1_0i.scale(-1.0).acos(), |
2200 | _1_0i.scale(f64::consts::PI) |
2201 | )); |
2202 | assert!(close( |
2203 | _0_1i.acos(), |
2204 | Complex::new(f64::consts::PI / 2.0, (2.0.sqrt() - 1.0).ln()) |
2205 | )); |
2206 | for &c in all_consts.iter() { |
2207 | // acos(conj(z)) = conj(acos(z)) |
2208 | assert!(close(c.conj().acos(), c.acos().conj())); |
2209 | // for this branch, 0 <= acos(z).re <= pi |
2210 | assert!(0.0 <= c.acos().re && c.acos().re <= f64::consts::PI); |
2211 | } |
2212 | } |
2213 | |
2214 | #[test ] |
2215 | fn test_atan() { |
2216 | assert!(close(_0_0i.atan(), _0_0i)); |
2217 | assert!(close(_1_0i.atan(), _1_0i.scale(f64::consts::PI / 4.0))); |
2218 | assert!(close( |
2219 | _1_0i.scale(-1.0).atan(), |
2220 | _1_0i.scale(-f64::consts::PI / 4.0) |
2221 | )); |
2222 | assert!(close(_0_1i.atan(), Complex::new(0.0, f64::infinity()))); |
2223 | for &c in all_consts.iter() { |
2224 | // atan(conj(z)) = conj(atan(z)) |
2225 | assert!(close(c.conj().atan(), c.atan().conj())); |
2226 | // atan(-z) = -atan(z) |
2227 | assert!(close(c.scale(-1.0).atan(), c.atan().scale(-1.0))); |
2228 | // for this branch, -pi/2 <= atan(z).re <= pi/2 |
2229 | assert!( |
2230 | -f64::consts::PI / 2.0 <= c.atan().re && c.atan().re <= f64::consts::PI / 2.0 |
2231 | ); |
2232 | } |
2233 | } |
2234 | |
2235 | #[test ] |
2236 | fn test_sinh() { |
2237 | assert!(close(_0_0i.sinh(), _0_0i)); |
2238 | assert!(close( |
2239 | _1_0i.sinh(), |
2240 | _1_0i.scale((f64::consts::E - 1.0 / f64::consts::E) / 2.0) |
2241 | )); |
2242 | assert!(close(_0_1i.sinh(), _0_1i.scale(1.0.sin()))); |
2243 | for &c in all_consts.iter() { |
2244 | // sinh(conj(z)) = conj(sinh(z)) |
2245 | assert!(close(c.conj().sinh(), c.sinh().conj())); |
2246 | // sinh(-z) = -sinh(z) |
2247 | assert!(close(c.scale(-1.0).sinh(), c.sinh().scale(-1.0))); |
2248 | } |
2249 | } |
2250 | |
2251 | #[test ] |
2252 | fn test_cosh() { |
2253 | assert!(close(_0_0i.cosh(), _1_0i)); |
2254 | assert!(close( |
2255 | _1_0i.cosh(), |
2256 | _1_0i.scale((f64::consts::E + 1.0 / f64::consts::E) / 2.0) |
2257 | )); |
2258 | assert!(close(_0_1i.cosh(), _1_0i.scale(1.0.cos()))); |
2259 | for &c in all_consts.iter() { |
2260 | // cosh(conj(z)) = conj(cosh(z)) |
2261 | assert!(close(c.conj().cosh(), c.cosh().conj())); |
2262 | // cosh(-z) = cosh(z) |
2263 | assert!(close(c.scale(-1.0).cosh(), c.cosh())); |
2264 | } |
2265 | } |
2266 | |
2267 | #[test ] |
2268 | fn test_tanh() { |
2269 | assert!(close(_0_0i.tanh(), _0_0i)); |
2270 | assert!(close( |
2271 | _1_0i.tanh(), |
2272 | _1_0i.scale((f64::consts::E.powi(2) - 1.0) / (f64::consts::E.powi(2) + 1.0)) |
2273 | )); |
2274 | assert!(close(_0_1i.tanh(), _0_1i.scale(1.0.tan()))); |
2275 | for &c in all_consts.iter() { |
2276 | // tanh(conj(z)) = conj(tanh(z)) |
2277 | assert!(close(c.conj().tanh(), c.conj().tanh())); |
2278 | // tanh(-z) = -tanh(z) |
2279 | assert!(close(c.scale(-1.0).tanh(), c.tanh().scale(-1.0))); |
2280 | } |
2281 | } |
2282 | |
2283 | #[test ] |
2284 | fn test_asinh() { |
2285 | assert!(close(_0_0i.asinh(), _0_0i)); |
2286 | assert!(close(_1_0i.asinh(), _1_0i.scale(1.0 + 2.0.sqrt()).ln())); |
2287 | assert!(close(_0_1i.asinh(), _0_1i.scale(f64::consts::PI / 2.0))); |
2288 | assert!(close( |
2289 | _0_1i.asinh().scale(-1.0), |
2290 | _0_1i.scale(-f64::consts::PI / 2.0) |
2291 | )); |
2292 | for &c in all_consts.iter() { |
2293 | // asinh(conj(z)) = conj(asinh(z)) |
2294 | assert!(close(c.conj().asinh(), c.conj().asinh())); |
2295 | // asinh(-z) = -asinh(z) |
2296 | assert!(close(c.scale(-1.0).asinh(), c.asinh().scale(-1.0))); |
2297 | // for this branch, -pi/2 <= asinh(z).im <= pi/2 |
2298 | assert!( |
2299 | -f64::consts::PI / 2.0 <= c.asinh().im && c.asinh().im <= f64::consts::PI / 2.0 |
2300 | ); |
2301 | } |
2302 | } |
2303 | |
2304 | #[test ] |
2305 | fn test_acosh() { |
2306 | assert!(close(_0_0i.acosh(), _0_1i.scale(f64::consts::PI / 2.0))); |
2307 | assert!(close(_1_0i.acosh(), _0_0i)); |
2308 | assert!(close( |
2309 | _1_0i.scale(-1.0).acosh(), |
2310 | _0_1i.scale(f64::consts::PI) |
2311 | )); |
2312 | for &c in all_consts.iter() { |
2313 | // acosh(conj(z)) = conj(acosh(z)) |
2314 | assert!(close(c.conj().acosh(), c.conj().acosh())); |
2315 | // for this branch, -pi <= acosh(z).im <= pi and 0 <= acosh(z).re |
2316 | assert!( |
2317 | -f64::consts::PI <= c.acosh().im |
2318 | && c.acosh().im <= f64::consts::PI |
2319 | && 0.0 <= c.cosh().re |
2320 | ); |
2321 | } |
2322 | } |
2323 | |
2324 | #[test ] |
2325 | fn test_atanh() { |
2326 | assert!(close(_0_0i.atanh(), _0_0i)); |
2327 | assert!(close(_0_1i.atanh(), _0_1i.scale(f64::consts::PI / 4.0))); |
2328 | assert!(close(_1_0i.atanh(), Complex::new(f64::infinity(), 0.0))); |
2329 | for &c in all_consts.iter() { |
2330 | // atanh(conj(z)) = conj(atanh(z)) |
2331 | assert!(close(c.conj().atanh(), c.conj().atanh())); |
2332 | // atanh(-z) = -atanh(z) |
2333 | assert!(close(c.scale(-1.0).atanh(), c.atanh().scale(-1.0))); |
2334 | // for this branch, -pi/2 <= atanh(z).im <= pi/2 |
2335 | assert!( |
2336 | -f64::consts::PI / 2.0 <= c.atanh().im && c.atanh().im <= f64::consts::PI / 2.0 |
2337 | ); |
2338 | } |
2339 | } |
2340 | |
2341 | #[test ] |
2342 | fn test_exp_ln() { |
2343 | for &c in all_consts.iter() { |
2344 | // e^ln(z) = z |
2345 | assert!(close(c.ln().exp(), c)); |
2346 | } |
2347 | } |
2348 | |
2349 | #[test ] |
2350 | fn test_exp2_log() { |
2351 | for &c in all_consts.iter() { |
2352 | // 2^log2(z) = z |
2353 | assert!(close(c.log2().exp2(), c)); |
2354 | } |
2355 | } |
2356 | |
2357 | #[test ] |
2358 | fn test_trig_to_hyperbolic() { |
2359 | for &c in all_consts.iter() { |
2360 | // sin(iz) = i sinh(z) |
2361 | assert!(close((_0_1i * c).sin(), _0_1i * c.sinh())); |
2362 | // cos(iz) = cosh(z) |
2363 | assert!(close((_0_1i * c).cos(), c.cosh())); |
2364 | // tan(iz) = i tanh(z) |
2365 | assert!(close((_0_1i * c).tan(), _0_1i * c.tanh())); |
2366 | } |
2367 | } |
2368 | |
2369 | #[test ] |
2370 | fn test_trig_identities() { |
2371 | for &c in all_consts.iter() { |
2372 | // tan(z) = sin(z)/cos(z) |
2373 | assert!(close(c.tan(), c.sin() / c.cos())); |
2374 | // sin(z)^2 + cos(z)^2 = 1 |
2375 | assert!(close(c.sin() * c.sin() + c.cos() * c.cos(), _1_0i)); |
2376 | |
2377 | // sin(asin(z)) = z |
2378 | assert!(close(c.asin().sin(), c)); |
2379 | // cos(acos(z)) = z |
2380 | assert!(close(c.acos().cos(), c)); |
2381 | // tan(atan(z)) = z |
2382 | // i and -i are branch points |
2383 | if c != _0_1i && c != _0_1i.scale(-1.0) { |
2384 | assert!(close(c.atan().tan(), c)); |
2385 | } |
2386 | |
2387 | // sin(z) = (e^(iz) - e^(-iz))/(2i) |
2388 | assert!(close( |
2389 | ((_0_1i * c).exp() - (_0_1i * c).exp().inv()) / _0_1i.scale(2.0), |
2390 | c.sin() |
2391 | )); |
2392 | // cos(z) = (e^(iz) + e^(-iz))/2 |
2393 | assert!(close( |
2394 | ((_0_1i * c).exp() + (_0_1i * c).exp().inv()).unscale(2.0), |
2395 | c.cos() |
2396 | )); |
2397 | // tan(z) = i (1 - e^(2iz))/(1 + e^(2iz)) |
2398 | assert!(close( |
2399 | _0_1i * (_1_0i - (_0_1i * c).scale(2.0).exp()) |
2400 | / (_1_0i + (_0_1i * c).scale(2.0).exp()), |
2401 | c.tan() |
2402 | )); |
2403 | } |
2404 | } |
2405 | |
2406 | #[test ] |
2407 | fn test_hyperbolic_identites() { |
2408 | for &c in all_consts.iter() { |
2409 | // tanh(z) = sinh(z)/cosh(z) |
2410 | assert!(close(c.tanh(), c.sinh() / c.cosh())); |
2411 | // cosh(z)^2 - sinh(z)^2 = 1 |
2412 | assert!(close(c.cosh() * c.cosh() - c.sinh() * c.sinh(), _1_0i)); |
2413 | |
2414 | // sinh(asinh(z)) = z |
2415 | assert!(close(c.asinh().sinh(), c)); |
2416 | // cosh(acosh(z)) = z |
2417 | assert!(close(c.acosh().cosh(), c)); |
2418 | // tanh(atanh(z)) = z |
2419 | // 1 and -1 are branch points |
2420 | if c != _1_0i && c != _1_0i.scale(-1.0) { |
2421 | assert!(close(c.atanh().tanh(), c)); |
2422 | } |
2423 | |
2424 | // sinh(z) = (e^z - e^(-z))/2 |
2425 | assert!(close((c.exp() - c.exp().inv()).unscale(2.0), c.sinh())); |
2426 | // cosh(z) = (e^z + e^(-z))/2 |
2427 | assert!(close((c.exp() + c.exp().inv()).unscale(2.0), c.cosh())); |
2428 | // tanh(z) = ( e^(2z) - 1)/(e^(2z) + 1) |
2429 | assert!(close( |
2430 | (c.scale(2.0).exp() - _1_0i) / (c.scale(2.0).exp() + _1_0i), |
2431 | c.tanh() |
2432 | )); |
2433 | } |
2434 | } |
2435 | } |
2436 | |
2437 | // Test both a + b and a += b |
2438 | macro_rules! test_a_op_b { |
2439 | ($a:ident + $b:expr, $answer:expr) => { |
2440 | assert_eq!($a + $b, $answer); |
2441 | assert_eq!( |
2442 | { |
2443 | let mut x = $a; |
2444 | x += $b; |
2445 | x |
2446 | }, |
2447 | $answer |
2448 | ); |
2449 | }; |
2450 | ($a:ident - $b:expr, $answer:expr) => { |
2451 | assert_eq!($a - $b, $answer); |
2452 | assert_eq!( |
2453 | { |
2454 | let mut x = $a; |
2455 | x -= $b; |
2456 | x |
2457 | }, |
2458 | $answer |
2459 | ); |
2460 | }; |
2461 | ($a:ident * $b:expr, $answer:expr) => { |
2462 | assert_eq!($a * $b, $answer); |
2463 | assert_eq!( |
2464 | { |
2465 | let mut x = $a; |
2466 | x *= $b; |
2467 | x |
2468 | }, |
2469 | $answer |
2470 | ); |
2471 | }; |
2472 | ($a:ident / $b:expr, $answer:expr) => { |
2473 | assert_eq!($a / $b, $answer); |
2474 | assert_eq!( |
2475 | { |
2476 | let mut x = $a; |
2477 | x /= $b; |
2478 | x |
2479 | }, |
2480 | $answer |
2481 | ); |
2482 | }; |
2483 | ($a:ident % $b:expr, $answer:expr) => { |
2484 | assert_eq!($a % $b, $answer); |
2485 | assert_eq!( |
2486 | { |
2487 | let mut x = $a; |
2488 | x %= $b; |
2489 | x |
2490 | }, |
2491 | $answer |
2492 | ); |
2493 | }; |
2494 | } |
2495 | |
2496 | // Test both a + b and a + &b |
2497 | macro_rules! test_op { |
2498 | ($a:ident $op:tt $b:expr, $answer:expr) => { |
2499 | test_a_op_b!($a $op $b, $answer); |
2500 | test_a_op_b!($a $op &$b, $answer); |
2501 | }; |
2502 | } |
2503 | |
2504 | mod complex_arithmetic { |
2505 | use super::{_05_05i, _0_0i, _0_1i, _1_0i, _1_1i, _4_2i, _neg1_1i, all_consts}; |
2506 | use num_traits::{MulAdd, MulAddAssign, Zero}; |
2507 | |
2508 | #[test ] |
2509 | fn test_add() { |
2510 | test_op!(_05_05i + _05_05i, _1_1i); |
2511 | test_op!(_0_1i + _1_0i, _1_1i); |
2512 | test_op!(_1_0i + _neg1_1i, _0_1i); |
2513 | |
2514 | for &c in all_consts.iter() { |
2515 | test_op!(_0_0i + c, c); |
2516 | test_op!(c + _0_0i, c); |
2517 | } |
2518 | } |
2519 | |
2520 | #[test ] |
2521 | fn test_sub() { |
2522 | test_op!(_05_05i - _05_05i, _0_0i); |
2523 | test_op!(_0_1i - _1_0i, _neg1_1i); |
2524 | test_op!(_0_1i - _neg1_1i, _1_0i); |
2525 | |
2526 | for &c in all_consts.iter() { |
2527 | test_op!(c - _0_0i, c); |
2528 | test_op!(c - c, _0_0i); |
2529 | } |
2530 | } |
2531 | |
2532 | #[test ] |
2533 | fn test_mul() { |
2534 | test_op!(_05_05i * _05_05i, _0_1i.unscale(2.0)); |
2535 | test_op!(_1_1i * _0_1i, _neg1_1i); |
2536 | |
2537 | // i^2 & i^4 |
2538 | test_op!(_0_1i * _0_1i, -_1_0i); |
2539 | assert_eq!(_0_1i * _0_1i * _0_1i * _0_1i, _1_0i); |
2540 | |
2541 | for &c in all_consts.iter() { |
2542 | test_op!(c * _1_0i, c); |
2543 | test_op!(_1_0i * c, c); |
2544 | } |
2545 | } |
2546 | |
2547 | #[test ] |
2548 | #[cfg (any(feature = "std" , feature = "libm" ))] |
2549 | fn test_mul_add_float() { |
2550 | assert_eq!(_05_05i.mul_add(_05_05i, _0_0i), _05_05i * _05_05i + _0_0i); |
2551 | assert_eq!(_05_05i * _05_05i + _0_0i, _05_05i.mul_add(_05_05i, _0_0i)); |
2552 | assert_eq!(_0_1i.mul_add(_0_1i, _0_1i), _neg1_1i); |
2553 | assert_eq!(_1_0i.mul_add(_1_0i, _1_0i), _1_0i * _1_0i + _1_0i); |
2554 | assert_eq!(_1_0i * _1_0i + _1_0i, _1_0i.mul_add(_1_0i, _1_0i)); |
2555 | |
2556 | let mut x = _1_0i; |
2557 | x.mul_add_assign(_1_0i, _1_0i); |
2558 | assert_eq!(x, _1_0i * _1_0i + _1_0i); |
2559 | |
2560 | for &a in &all_consts { |
2561 | for &b in &all_consts { |
2562 | for &c in &all_consts { |
2563 | let abc = a * b + c; |
2564 | assert_eq!(a.mul_add(b, c), abc); |
2565 | let mut x = a; |
2566 | x.mul_add_assign(b, c); |
2567 | assert_eq!(x, abc); |
2568 | } |
2569 | } |
2570 | } |
2571 | } |
2572 | |
2573 | #[test ] |
2574 | fn test_mul_add() { |
2575 | use super::Complex; |
2576 | const _0_0i: Complex<i32> = Complex { re: 0, im: 0 }; |
2577 | const _1_0i: Complex<i32> = Complex { re: 1, im: 0 }; |
2578 | const _1_1i: Complex<i32> = Complex { re: 1, im: 1 }; |
2579 | const _0_1i: Complex<i32> = Complex { re: 0, im: 1 }; |
2580 | const _neg1_1i: Complex<i32> = Complex { re: -1, im: 1 }; |
2581 | const all_consts: [Complex<i32>; 5] = [_0_0i, _1_0i, _1_1i, _0_1i, _neg1_1i]; |
2582 | |
2583 | assert_eq!(_1_0i.mul_add(_1_0i, _0_0i), _1_0i * _1_0i + _0_0i); |
2584 | assert_eq!(_1_0i * _1_0i + _0_0i, _1_0i.mul_add(_1_0i, _0_0i)); |
2585 | assert_eq!(_0_1i.mul_add(_0_1i, _0_1i), _neg1_1i); |
2586 | assert_eq!(_1_0i.mul_add(_1_0i, _1_0i), _1_0i * _1_0i + _1_0i); |
2587 | assert_eq!(_1_0i * _1_0i + _1_0i, _1_0i.mul_add(_1_0i, _1_0i)); |
2588 | |
2589 | let mut x = _1_0i; |
2590 | x.mul_add_assign(_1_0i, _1_0i); |
2591 | assert_eq!(x, _1_0i * _1_0i + _1_0i); |
2592 | |
2593 | for &a in &all_consts { |
2594 | for &b in &all_consts { |
2595 | for &c in &all_consts { |
2596 | let abc = a * b + c; |
2597 | assert_eq!(a.mul_add(b, c), abc); |
2598 | let mut x = a; |
2599 | x.mul_add_assign(b, c); |
2600 | assert_eq!(x, abc); |
2601 | } |
2602 | } |
2603 | } |
2604 | } |
2605 | |
2606 | #[test ] |
2607 | fn test_div() { |
2608 | test_op!(_neg1_1i / _0_1i, _1_1i); |
2609 | for &c in all_consts.iter() { |
2610 | if c != Zero::zero() { |
2611 | test_op!(c / c, _1_0i); |
2612 | } |
2613 | } |
2614 | } |
2615 | |
2616 | #[test ] |
2617 | fn test_rem() { |
2618 | test_op!(_neg1_1i % _0_1i, _0_0i); |
2619 | test_op!(_4_2i % _0_1i, _0_0i); |
2620 | test_op!(_05_05i % _0_1i, _05_05i); |
2621 | test_op!(_05_05i % _1_1i, _05_05i); |
2622 | assert_eq!((_4_2i + _05_05i) % _0_1i, _05_05i); |
2623 | assert_eq!((_4_2i + _05_05i) % _1_1i, _05_05i); |
2624 | } |
2625 | |
2626 | #[test ] |
2627 | fn test_neg() { |
2628 | assert_eq!(-_1_0i + _0_1i, _neg1_1i); |
2629 | assert_eq!((-_0_1i) * _0_1i, _1_0i); |
2630 | for &c in all_consts.iter() { |
2631 | assert_eq!(-(-c), c); |
2632 | } |
2633 | } |
2634 | } |
2635 | |
2636 | mod real_arithmetic { |
2637 | use super::super::Complex; |
2638 | use super::{_4_2i, _neg1_1i}; |
2639 | |
2640 | #[test ] |
2641 | fn test_add() { |
2642 | test_op!(_4_2i + 0.5, Complex::new(4.5, 2.0)); |
2643 | assert_eq!(0.5 + _4_2i, Complex::new(4.5, 2.0)); |
2644 | } |
2645 | |
2646 | #[test ] |
2647 | fn test_sub() { |
2648 | test_op!(_4_2i - 0.5, Complex::new(3.5, 2.0)); |
2649 | assert_eq!(0.5 - _4_2i, Complex::new(-3.5, -2.0)); |
2650 | } |
2651 | |
2652 | #[test ] |
2653 | fn test_mul() { |
2654 | assert_eq!(_4_2i * 0.5, Complex::new(2.0, 1.0)); |
2655 | assert_eq!(0.5 * _4_2i, Complex::new(2.0, 1.0)); |
2656 | } |
2657 | |
2658 | #[test ] |
2659 | fn test_div() { |
2660 | assert_eq!(_4_2i / 0.5, Complex::new(8.0, 4.0)); |
2661 | assert_eq!(0.5 / _4_2i, Complex::new(0.1, -0.05)); |
2662 | } |
2663 | |
2664 | #[test ] |
2665 | fn test_rem() { |
2666 | assert_eq!(_4_2i % 2.0, Complex::new(0.0, 0.0)); |
2667 | assert_eq!(_4_2i % 3.0, Complex::new(1.0, 2.0)); |
2668 | assert_eq!(3.0 % _4_2i, Complex::new(3.0, 0.0)); |
2669 | assert_eq!(_neg1_1i % 2.0, _neg1_1i); |
2670 | assert_eq!(-_4_2i % 3.0, Complex::new(-1.0, -2.0)); |
2671 | } |
2672 | |
2673 | #[test ] |
2674 | fn test_div_rem_gaussian() { |
2675 | // These would overflow with `norm_sqr` division. |
2676 | let max = Complex::new(255u8, 255u8); |
2677 | assert_eq!(max / 200, Complex::new(1, 1)); |
2678 | assert_eq!(max % 200, Complex::new(55, 55)); |
2679 | } |
2680 | } |
2681 | |
2682 | #[test ] |
2683 | fn test_to_string() { |
2684 | fn test(c: Complex64, s: String) { |
2685 | assert_eq!(c.to_string(), s); |
2686 | } |
2687 | test (_0_0i, "0+0i" .to_string()); |
2688 | test (_1_0i, "1+0i" .to_string()); |
2689 | test (_0_1i, "0+1i" .to_string()); |
2690 | test (_1_1i, "1+1i" .to_string()); |
2691 | test (_neg1_1i, "-1+1i" .to_string()); |
2692 | test (-_neg1_1i, "1-1i" .to_string()); |
2693 | test (_05_05i, "0.5+0.5i" .to_string()); |
2694 | } |
2695 | |
2696 | #[test ] |
2697 | fn test_string_formatting() { |
2698 | let a = Complex::new(1.23456, 123.456); |
2699 | assert_eq!(format!("{}" , a), "1.23456+123.456i" ); |
2700 | assert_eq!(format!("{:.2}" , a), "1.23+123.46i" ); |
2701 | assert_eq!(format!("{:.2e}" , a), "1.23e0+1.23e2i" ); |
2702 | assert_eq!(format!("{:+.2E}" , a), "+1.23E0+1.23E2i" ); |
2703 | #[cfg (feature = "std" )] |
2704 | assert_eq!(format!("{:+20.2E}" , a), " +1.23E0+1.23E2i" ); |
2705 | |
2706 | let b = Complex::new(0x80, 0xff); |
2707 | assert_eq!(format!("{:X}" , b), "80+FFi" ); |
2708 | assert_eq!(format!("{:#x}" , b), "0x80+0xffi" ); |
2709 | assert_eq!(format!("{:+#b}" , b), "+0b10000000+0b11111111i" ); |
2710 | assert_eq!(format!("{:+#o}" , b), "+0o200+0o377i" ); |
2711 | #[cfg (feature = "std" )] |
2712 | assert_eq!(format!("{:+#16o}" , b), " +0o200+0o377i" ); |
2713 | |
2714 | let c = Complex::new(-10, -10000); |
2715 | assert_eq!(format!("{}" , c), "-10-10000i" ); |
2716 | #[cfg (feature = "std" )] |
2717 | assert_eq!(format!("{:16}" , c), " -10-10000i" ); |
2718 | } |
2719 | |
2720 | #[test ] |
2721 | fn test_hash() { |
2722 | let a = Complex::new(0i32, 0i32); |
2723 | let b = Complex::new(1i32, 0i32); |
2724 | let c = Complex::new(0i32, 1i32); |
2725 | assert!(crate::hash(&a) != crate::hash(&b)); |
2726 | assert!(crate::hash(&b) != crate::hash(&c)); |
2727 | assert!(crate::hash(&c) != crate::hash(&a)); |
2728 | } |
2729 | |
2730 | #[test ] |
2731 | fn test_hashset() { |
2732 | use std::collections::HashSet; |
2733 | let a = Complex::new(0i32, 0i32); |
2734 | let b = Complex::new(1i32, 0i32); |
2735 | let c = Complex::new(0i32, 1i32); |
2736 | |
2737 | let set: HashSet<_> = [a, b, c].iter().cloned().collect(); |
2738 | assert!(set.contains(&a)); |
2739 | assert!(set.contains(&b)); |
2740 | assert!(set.contains(&c)); |
2741 | assert!(!set.contains(&(a + b + c))); |
2742 | } |
2743 | |
2744 | #[test ] |
2745 | fn test_is_nan() { |
2746 | assert!(!_1_1i.is_nan()); |
2747 | let a = Complex::new(f64::NAN, f64::NAN); |
2748 | assert!(a.is_nan()); |
2749 | } |
2750 | |
2751 | #[test ] |
2752 | fn test_is_nan_special_cases() { |
2753 | let a = Complex::new(0f64, f64::NAN); |
2754 | let b = Complex::new(f64::NAN, 0f64); |
2755 | assert!(a.is_nan()); |
2756 | assert!(b.is_nan()); |
2757 | } |
2758 | |
2759 | #[test ] |
2760 | fn test_is_infinite() { |
2761 | let a = Complex::new(2f64, f64::INFINITY); |
2762 | assert!(a.is_infinite()); |
2763 | } |
2764 | |
2765 | #[test ] |
2766 | fn test_is_finite() { |
2767 | assert!(_1_1i.is_finite()) |
2768 | } |
2769 | |
2770 | #[test ] |
2771 | fn test_is_normal() { |
2772 | let a = Complex::new(0f64, f64::NAN); |
2773 | let b = Complex::new(2f64, f64::INFINITY); |
2774 | assert!(!a.is_normal()); |
2775 | assert!(!b.is_normal()); |
2776 | assert!(_1_1i.is_normal()); |
2777 | } |
2778 | |
2779 | #[test ] |
2780 | fn test_from_str() { |
2781 | fn test(z: Complex64, s: &str) { |
2782 | assert_eq!(FromStr::from_str(s), Ok(z)); |
2783 | } |
2784 | test (_0_0i, "0 + 0i" ); |
2785 | test (_0_0i, "0+0j" ); |
2786 | test (_0_0i, "0 - 0j" ); |
2787 | test (_0_0i, "0-0i" ); |
2788 | test (_0_0i, "0i + 0" ); |
2789 | test (_0_0i, "0" ); |
2790 | test (_0_0i, "-0" ); |
2791 | test (_0_0i, "0i" ); |
2792 | test (_0_0i, "0j" ); |
2793 | test (_0_0i, "+0j" ); |
2794 | test (_0_0i, "-0i" ); |
2795 | |
2796 | test (_1_0i, "1 + 0i" ); |
2797 | test (_1_0i, "1+0j" ); |
2798 | test (_1_0i, "1 - 0j" ); |
2799 | test (_1_0i, "+1-0i" ); |
2800 | test (_1_0i, "-0j+1" ); |
2801 | test (_1_0i, "1" ); |
2802 | |
2803 | test (_1_1i, "1 + i" ); |
2804 | test (_1_1i, "1+j" ); |
2805 | test (_1_1i, "1 + 1j" ); |
2806 | test (_1_1i, "1+1i" ); |
2807 | test (_1_1i, "i + 1" ); |
2808 | test (_1_1i, "1i+1" ); |
2809 | test (_1_1i, "+j+1" ); |
2810 | |
2811 | test (_0_1i, "0 + i" ); |
2812 | test (_0_1i, "0+j" ); |
2813 | test (_0_1i, "-0 + j" ); |
2814 | test (_0_1i, "-0+i" ); |
2815 | test (_0_1i, "0 + 1i" ); |
2816 | test (_0_1i, "0+1j" ); |
2817 | test (_0_1i, "-0 + 1j" ); |
2818 | test (_0_1i, "-0+1i" ); |
2819 | test (_0_1i, "j + 0" ); |
2820 | test (_0_1i, "i" ); |
2821 | test (_0_1i, "j" ); |
2822 | test (_0_1i, "1j" ); |
2823 | |
2824 | test (_neg1_1i, "-1 + i" ); |
2825 | test (_neg1_1i, "-1+j" ); |
2826 | test (_neg1_1i, "-1 + 1j" ); |
2827 | test (_neg1_1i, "-1+1i" ); |
2828 | test (_neg1_1i, "1i-1" ); |
2829 | test (_neg1_1i, "j + -1" ); |
2830 | |
2831 | test (_05_05i, "0.5 + 0.5i" ); |
2832 | test (_05_05i, "0.5+0.5j" ); |
2833 | test (_05_05i, "5e-1+0.5j" ); |
2834 | test (_05_05i, "5E-1 + 0.5j" ); |
2835 | test (_05_05i, "5E-1i + 0.5" ); |
2836 | test (_05_05i, "0.05e+1j + 50E-2" ); |
2837 | } |
2838 | |
2839 | #[test ] |
2840 | fn test_from_str_radix() { |
2841 | fn test(z: Complex64, s: &str, radix: u32) { |
2842 | let res: Result<Complex64, <Complex64 as Num>::FromStrRadixErr> = |
2843 | Num::from_str_radix(s, radix); |
2844 | assert_eq!(res.unwrap(), z) |
2845 | } |
2846 | test (_4_2i, "4+2i" , 10); |
2847 | test (Complex::new(15.0, 32.0), "F+20i" , 16); |
2848 | test (Complex::new(15.0, 32.0), "1111+100000i" , 2); |
2849 | test (Complex::new(-15.0, -32.0), "-F-20i" , 16); |
2850 | test (Complex::new(-15.0, -32.0), "-1111-100000i" , 2); |
2851 | |
2852 | fn test_error(s: &str, radix: u32) -> ParseComplexError<<f64 as Num>::FromStrRadixErr> { |
2853 | let res = Complex64::from_str_radix(s, radix); |
2854 | |
2855 | res.expect_err(&format!("Expected failure on input {:?}" , s)) |
2856 | } |
2857 | |
2858 | let err = test_error("1ii" , 19); |
2859 | if let ComplexErrorKind::UnsupportedRadix = err.kind { |
2860 | /* pass */ |
2861 | } else { |
2862 | panic!("Expected failure on invalid radix, got {:?}" , err); |
2863 | } |
2864 | |
2865 | let err = test_error("1 + 0" , 16); |
2866 | if let ComplexErrorKind::ExprError = err.kind { |
2867 | /* pass */ |
2868 | } else { |
2869 | panic!("Expected failure on expr error, got {:?}" , err); |
2870 | } |
2871 | } |
2872 | |
2873 | #[test ] |
2874 | #[should_panic (expected = "radix is too high" )] |
2875 | fn test_from_str_radix_fail() { |
2876 | // ensure we preserve the underlying panic on radix > 36 |
2877 | let _complex = Complex64::from_str_radix("1" , 37); |
2878 | } |
2879 | |
2880 | #[test ] |
2881 | fn test_from_str_fail() { |
2882 | fn test(s: &str) { |
2883 | let complex: Result<Complex64, _> = FromStr::from_str(s); |
2884 | assert!( |
2885 | complex.is_err(), |
2886 | "complex {:?} -> {:?} should be an error" , |
2887 | s, |
2888 | complex |
2889 | ); |
2890 | } |
2891 | test ("foo" ); |
2892 | test ("6E" ); |
2893 | test ("0 + 2.718" ); |
2894 | test ("1 - -2i" ); |
2895 | test ("314e-2ij" ); |
2896 | test ("4.3j - i" ); |
2897 | test ("1i - 2i" ); |
2898 | test ("+ 1 - 3.0i" ); |
2899 | } |
2900 | |
2901 | #[test ] |
2902 | fn test_sum() { |
2903 | let v = vec![_0_1i, _1_0i]; |
2904 | assert_eq!(v.iter().sum::<Complex64>(), _1_1i); |
2905 | assert_eq!(v.into_iter().sum::<Complex64>(), _1_1i); |
2906 | } |
2907 | |
2908 | #[test ] |
2909 | fn test_prod() { |
2910 | let v = vec![_0_1i, _1_0i]; |
2911 | assert_eq!(v.iter().product::<Complex64>(), _0_1i); |
2912 | assert_eq!(v.into_iter().product::<Complex64>(), _0_1i); |
2913 | } |
2914 | |
2915 | #[test ] |
2916 | fn test_zero() { |
2917 | let zero = Complex64::zero(); |
2918 | assert!(zero.is_zero()); |
2919 | |
2920 | let mut c = Complex::new(1.23, 4.56); |
2921 | assert!(!c.is_zero()); |
2922 | assert_eq!(c + zero, c); |
2923 | |
2924 | c.set_zero(); |
2925 | assert!(c.is_zero()); |
2926 | } |
2927 | |
2928 | #[test ] |
2929 | fn test_one() { |
2930 | let one = Complex64::one(); |
2931 | assert!(one.is_one()); |
2932 | |
2933 | let mut c = Complex::new(1.23, 4.56); |
2934 | assert!(!c.is_one()); |
2935 | assert_eq!(c * one, c); |
2936 | |
2937 | c.set_one(); |
2938 | assert!(c.is_one()); |
2939 | } |
2940 | |
2941 | #[test ] |
2942 | #[allow (clippy::float_cmp)] |
2943 | fn test_const() { |
2944 | const R: f64 = 12.3; |
2945 | const I: f64 = -4.5; |
2946 | const C: Complex64 = Complex::new(R, I); |
2947 | |
2948 | assert_eq!(C.re, 12.3); |
2949 | assert_eq!(C.im, -4.5); |
2950 | } |
2951 | } |
2952 | |