| 1 | // Copyright 2013 The Rust Project Developers. See the COPYRIGHT |
| 2 | // file at the top-level directory of this distribution and at |
| 3 | // http://rust-lang.org/COPYRIGHT. |
| 4 | // |
| 5 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| 6 | // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 7 | // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| 8 | // option. This file may not be copied, modified, or distributed |
| 9 | // except according to those terms. |
| 10 | |
| 11 | //! Complex numbers. |
| 12 | //! |
| 13 | //! ## Compatibility |
| 14 | //! |
| 15 | //! The `num-complex` crate is tested for rustc 1.60 and greater. |
| 16 | |
| 17 | #![doc (html_root_url = "https://docs.rs/num-complex/0.4" )] |
| 18 | #![no_std ] |
| 19 | |
| 20 | #[cfg (any(test, feature = "std" ))] |
| 21 | #[cfg_attr (test, macro_use)] |
| 22 | extern crate std; |
| 23 | |
| 24 | use core::fmt; |
| 25 | #[cfg (test)] |
| 26 | use core::hash; |
| 27 | use core::iter::{Product, Sum}; |
| 28 | use core::ops::{Add, Div, Mul, Neg, Rem, Sub}; |
| 29 | use core::str::FromStr; |
| 30 | #[cfg (feature = "std" )] |
| 31 | use std::error::Error; |
| 32 | |
| 33 | use num_traits::{ConstOne, ConstZero, Inv, MulAdd, Num, One, Pow, Signed, Zero}; |
| 34 | |
| 35 | use num_traits::float::FloatCore; |
| 36 | #[cfg (any(feature = "std" , feature = "libm" ))] |
| 37 | use num_traits::float::{Float, FloatConst}; |
| 38 | |
| 39 | mod cast; |
| 40 | mod pow; |
| 41 | |
| 42 | #[cfg (any(feature = "std" , feature = "libm" ))] |
| 43 | mod complex_float; |
| 44 | #[cfg (any(feature = "std" , feature = "libm" ))] |
| 45 | pub use crate::complex_float::ComplexFloat; |
| 46 | |
| 47 | #[cfg (feature = "rand" )] |
| 48 | mod crand; |
| 49 | #[cfg (feature = "rand" )] |
| 50 | pub use crate::crand::ComplexDistribution; |
| 51 | |
| 52 | // FIXME #1284: handle complex NaN & infinity etc. This |
| 53 | // probably doesn't map to C's _Complex correctly. |
| 54 | |
| 55 | /// A complex number in Cartesian form. |
| 56 | /// |
| 57 | /// ## Representation and Foreign Function Interface Compatibility |
| 58 | /// |
| 59 | /// `Complex<T>` is memory layout compatible with an array `[T; 2]`. |
| 60 | /// |
| 61 | /// Note that `Complex<F>` where F is a floating point type is **only** memory |
| 62 | /// layout compatible with C's complex types, **not** necessarily calling |
| 63 | /// convention compatible. This means that for FFI you can only pass |
| 64 | /// `Complex<F>` behind a pointer, not as a value. |
| 65 | /// |
| 66 | /// ## Examples |
| 67 | /// |
| 68 | /// Example of extern function declaration. |
| 69 | /// |
| 70 | /// ``` |
| 71 | /// use num_complex::Complex; |
| 72 | /// use std::os::raw::c_int; |
| 73 | /// |
| 74 | /// extern "C" { |
| 75 | /// fn zaxpy_(n: *const c_int, alpha: *const Complex<f64>, |
| 76 | /// x: *const Complex<f64>, incx: *const c_int, |
| 77 | /// y: *mut Complex<f64>, incy: *const c_int); |
| 78 | /// } |
| 79 | /// ``` |
| 80 | #[derive (PartialEq, Eq, Copy, Clone, Hash, Debug, Default)] |
| 81 | #[repr (C)] |
| 82 | #[cfg_attr ( |
| 83 | feature = "rkyv" , |
| 84 | derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize) |
| 85 | )] |
| 86 | #[cfg_attr (feature = "rkyv" , archive(as = "Complex<T::Archived>" ))] |
| 87 | #[cfg_attr (feature = "bytecheck" , derive(bytecheck::CheckBytes))] |
| 88 | pub struct Complex<T> { |
| 89 | /// Real portion of the complex number |
| 90 | pub re: T, |
| 91 | /// Imaginary portion of the complex number |
| 92 | pub im: T, |
| 93 | } |
| 94 | |
| 95 | /// Alias for a [`Complex<f32>`] |
| 96 | pub type Complex32 = Complex<f32>; |
| 97 | |
| 98 | /// Create a new [`Complex<f32>`] with arguments that can convert [`Into<f32>`]. |
| 99 | /// |
| 100 | /// ``` |
| 101 | /// use num_complex::{c32, Complex32}; |
| 102 | /// assert_eq!(c32(1u8, 2), Complex32::new(1.0, 2.0)); |
| 103 | /// ``` |
| 104 | /// |
| 105 | /// Note: ambiguous integer literals in Rust will [default] to `i32`, which does **not** implement |
| 106 | /// `Into<f32>`, so a call like `c32(1, 2)` will result in a type error. The example above uses a |
| 107 | /// suffixed `1u8` to set its type, and then the `2` can be inferred as the same type. |
| 108 | /// |
| 109 | /// [default]: https://doc.rust-lang.org/reference/expressions/literal-expr.html#integer-literal-expressions |
| 110 | #[inline ] |
| 111 | pub fn c32<T: Into<f32>>(re: T, im: T) -> Complex32 { |
| 112 | Complex::new(re.into(), im.into()) |
| 113 | } |
| 114 | |
| 115 | /// Alias for a [`Complex<f64>`] |
| 116 | pub type Complex64 = Complex<f64>; |
| 117 | |
| 118 | /// Create a new [`Complex<f64>`] with arguments that can convert [`Into<f64>`]. |
| 119 | /// |
| 120 | /// ``` |
| 121 | /// use num_complex::{c64, Complex64}; |
| 122 | /// assert_eq!(c64(1, 2), Complex64::new(1.0, 2.0)); |
| 123 | /// ``` |
| 124 | #[inline ] |
| 125 | pub fn c64<T: Into<f64>>(re: T, im: T) -> Complex64 { |
| 126 | Complex::new(re.into(), im.into()) |
| 127 | } |
| 128 | |
| 129 | impl<T> Complex<T> { |
| 130 | /// Create a new `Complex` |
| 131 | #[inline ] |
| 132 | pub const fn new(re: T, im: T) -> Self { |
| 133 | Complex { re, im } |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | impl<T: Clone + Num> Complex<T> { |
| 138 | /// Returns the imaginary unit. |
| 139 | /// |
| 140 | /// See also [`Complex::I`]. |
| 141 | #[inline ] |
| 142 | pub fn i() -> Self { |
| 143 | Self::new(T::zero(), T::one()) |
| 144 | } |
| 145 | |
| 146 | /// Returns the square of the norm (since `T` doesn't necessarily |
| 147 | /// have a sqrt function), i.e. `re^2 + im^2`. |
| 148 | #[inline ] |
| 149 | pub fn norm_sqr(&self) -> T { |
| 150 | self.re.clone() * self.re.clone() + self.im.clone() * self.im.clone() |
| 151 | } |
| 152 | |
| 153 | /// Multiplies `self` by the scalar `t`. |
| 154 | #[inline ] |
| 155 | pub fn scale(&self, t: T) -> Self { |
| 156 | Self::new(self.re.clone() * t.clone(), self.im.clone() * t) |
| 157 | } |
| 158 | |
| 159 | /// Divides `self` by the scalar `t`. |
| 160 | #[inline ] |
| 161 | pub fn unscale(&self, t: T) -> Self { |
| 162 | Self::new(self.re.clone() / t.clone(), self.im.clone() / t) |
| 163 | } |
| 164 | |
| 165 | /// Raises `self` to an unsigned integer power. |
| 166 | #[inline ] |
| 167 | pub fn powu(&self, exp: u32) -> Self { |
| 168 | Pow::pow(self, exp) |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | impl<T: Clone + Num + Neg<Output = T>> Complex<T> { |
| 173 | /// Returns the complex conjugate. i.e. `re - i im` |
| 174 | #[inline ] |
| 175 | pub fn conj(&self) -> Self { |
| 176 | Self::new(self.re.clone(), -self.im.clone()) |
| 177 | } |
| 178 | |
| 179 | /// Returns `1/self` |
| 180 | #[inline ] |
| 181 | pub fn inv(&self) -> Self { |
| 182 | let norm_sqr: T = self.norm_sqr(); |
| 183 | Self::new( |
| 184 | self.re.clone() / norm_sqr.clone(), |
| 185 | -self.im.clone() / norm_sqr, |
| 186 | ) |
| 187 | } |
| 188 | |
| 189 | /// Raises `self` to a signed integer power. |
| 190 | #[inline ] |
| 191 | pub fn powi(&self, exp: i32) -> Self { |
| 192 | Pow::pow(self, rhs:exp) |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | impl<T: Clone + Signed> Complex<T> { |
| 197 | /// Returns the L1 norm `|re| + |im|` -- the [Manhattan distance] from the origin. |
| 198 | /// |
| 199 | /// [Manhattan distance]: https://en.wikipedia.org/wiki/Taxicab_geometry |
| 200 | #[inline ] |
| 201 | pub fn l1_norm(&self) -> T { |
| 202 | self.re.abs() + self.im.abs() |
| 203 | } |
| 204 | } |
| 205 | |
| 206 | #[cfg (any(feature = "std" , feature = "libm" ))] |
| 207 | impl<T: Float> Complex<T> { |
| 208 | /// Create a new Complex with a given phase: `exp(i * phase)`. |
| 209 | /// See [cis (mathematics)](https://en.wikipedia.org/wiki/Cis_(mathematics)). |
| 210 | #[inline ] |
| 211 | pub fn cis(phase: T) -> Self { |
| 212 | Self::new(phase.cos(), phase.sin()) |
| 213 | } |
| 214 | |
| 215 | /// Calculate |self| |
| 216 | #[inline ] |
| 217 | pub fn norm(self) -> T { |
| 218 | self.re.hypot(self.im) |
| 219 | } |
| 220 | /// Calculate the principal Arg of self. |
| 221 | #[inline ] |
| 222 | pub fn arg(self) -> T { |
| 223 | self.im.atan2(self.re) |
| 224 | } |
| 225 | /// Convert to polar form (r, theta), such that |
| 226 | /// `self = r * exp(i * theta)` |
| 227 | #[inline ] |
| 228 | pub fn to_polar(self) -> (T, T) { |
| 229 | (self.norm(), self.arg()) |
| 230 | } |
| 231 | /// Convert a polar representation into a complex number. |
| 232 | #[inline ] |
| 233 | pub fn from_polar(r: T, theta: T) -> Self { |
| 234 | Self::new(r * theta.cos(), r * theta.sin()) |
| 235 | } |
| 236 | |
| 237 | /// Computes `e^(self)`, where `e` is the base of the natural logarithm. |
| 238 | #[inline ] |
| 239 | pub fn exp(self) -> Self { |
| 240 | // formula: e^(a + bi) = e^a (cos(b) + i*sin(b)) = from_polar(e^a, b) |
| 241 | |
| 242 | let Complex { re, mut im } = self; |
| 243 | // Treat the corner cases +∞, -∞, and NaN |
| 244 | if re.is_infinite() { |
| 245 | if re < T::zero() { |
| 246 | if !im.is_finite() { |
| 247 | return Self::new(T::zero(), T::zero()); |
| 248 | } |
| 249 | } else if im == T::zero() || !im.is_finite() { |
| 250 | if im.is_infinite() { |
| 251 | im = T::nan(); |
| 252 | } |
| 253 | return Self::new(re, im); |
| 254 | } |
| 255 | } else if re.is_nan() && im == T::zero() { |
| 256 | return self; |
| 257 | } |
| 258 | |
| 259 | Self::from_polar(re.exp(), im) |
| 260 | } |
| 261 | |
| 262 | /// Computes the principal value of natural logarithm of `self`. |
| 263 | /// |
| 264 | /// This function has one branch cut: |
| 265 | /// |
| 266 | /// * `(-∞, 0]`, continuous from above. |
| 267 | /// |
| 268 | /// The branch satisfies `-π ≤ arg(ln(z)) ≤ π`. |
| 269 | #[inline ] |
| 270 | pub fn ln(self) -> Self { |
| 271 | // formula: ln(z) = ln|z| + i*arg(z) |
| 272 | let (r, theta) = self.to_polar(); |
| 273 | Self::new(r.ln(), theta) |
| 274 | } |
| 275 | |
| 276 | /// Computes the principal value of the square root of `self`. |
| 277 | /// |
| 278 | /// This function has one branch cut: |
| 279 | /// |
| 280 | /// * `(-∞, 0)`, continuous from above. |
| 281 | /// |
| 282 | /// The branch satisfies `-π/2 ≤ arg(sqrt(z)) ≤ π/2`. |
| 283 | #[inline ] |
| 284 | pub fn sqrt(self) -> Self { |
| 285 | if self.im.is_zero() { |
| 286 | if self.re.is_sign_positive() { |
| 287 | // simple positive real √r, and copy `im` for its sign |
| 288 | Self::new(self.re.sqrt(), self.im) |
| 289 | } else { |
| 290 | // √(r e^(iπ)) = √r e^(iπ/2) = i√r |
| 291 | // √(r e^(-iπ)) = √r e^(-iπ/2) = -i√r |
| 292 | let re = T::zero(); |
| 293 | let im = (-self.re).sqrt(); |
| 294 | if self.im.is_sign_positive() { |
| 295 | Self::new(re, im) |
| 296 | } else { |
| 297 | Self::new(re, -im) |
| 298 | } |
| 299 | } |
| 300 | } else if self.re.is_zero() { |
| 301 | // √(r e^(iπ/2)) = √r e^(iπ/4) = √(r/2) + i√(r/2) |
| 302 | // √(r e^(-iπ/2)) = √r e^(-iπ/4) = √(r/2) - i√(r/2) |
| 303 | let one = T::one(); |
| 304 | let two = one + one; |
| 305 | let x = (self.im.abs() / two).sqrt(); |
| 306 | if self.im.is_sign_positive() { |
| 307 | Self::new(x, x) |
| 308 | } else { |
| 309 | Self::new(x, -x) |
| 310 | } |
| 311 | } else { |
| 312 | // formula: sqrt(r e^(it)) = sqrt(r) e^(it/2) |
| 313 | let one = T::one(); |
| 314 | let two = one + one; |
| 315 | let (r, theta) = self.to_polar(); |
| 316 | Self::from_polar(r.sqrt(), theta / two) |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | /// Computes the principal value of the cube root of `self`. |
| 321 | /// |
| 322 | /// This function has one branch cut: |
| 323 | /// |
| 324 | /// * `(-∞, 0)`, continuous from above. |
| 325 | /// |
| 326 | /// The branch satisfies `-π/3 ≤ arg(cbrt(z)) ≤ π/3`. |
| 327 | /// |
| 328 | /// Note that this does not match the usual result for the cube root of |
| 329 | /// negative real numbers. For example, the real cube root of `-8` is `-2`, |
| 330 | /// but the principal complex cube root of `-8` is `1 + i√3`. |
| 331 | #[inline ] |
| 332 | pub fn cbrt(self) -> Self { |
| 333 | if self.im.is_zero() { |
| 334 | if self.re.is_sign_positive() { |
| 335 | // simple positive real ∛r, and copy `im` for its sign |
| 336 | Self::new(self.re.cbrt(), self.im) |
| 337 | } else { |
| 338 | // ∛(r e^(iπ)) = ∛r e^(iπ/3) = ∛r/2 + i∛r√3/2 |
| 339 | // ∛(r e^(-iπ)) = ∛r e^(-iπ/3) = ∛r/2 - i∛r√3/2 |
| 340 | let one = T::one(); |
| 341 | let two = one + one; |
| 342 | let three = two + one; |
| 343 | let re = (-self.re).cbrt() / two; |
| 344 | let im = three.sqrt() * re; |
| 345 | if self.im.is_sign_positive() { |
| 346 | Self::new(re, im) |
| 347 | } else { |
| 348 | Self::new(re, -im) |
| 349 | } |
| 350 | } |
| 351 | } else if self.re.is_zero() { |
| 352 | // ∛(r e^(iπ/2)) = ∛r e^(iπ/6) = ∛r√3/2 + i∛r/2 |
| 353 | // ∛(r e^(-iπ/2)) = ∛r e^(-iπ/6) = ∛r√3/2 - i∛r/2 |
| 354 | let one = T::one(); |
| 355 | let two = one + one; |
| 356 | let three = two + one; |
| 357 | let im = self.im.abs().cbrt() / two; |
| 358 | let re = three.sqrt() * im; |
| 359 | if self.im.is_sign_positive() { |
| 360 | Self::new(re, im) |
| 361 | } else { |
| 362 | Self::new(re, -im) |
| 363 | } |
| 364 | } else { |
| 365 | // formula: cbrt(r e^(it)) = cbrt(r) e^(it/3) |
| 366 | let one = T::one(); |
| 367 | let three = one + one + one; |
| 368 | let (r, theta) = self.to_polar(); |
| 369 | Self::from_polar(r.cbrt(), theta / three) |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | /// Raises `self` to a floating point power. |
| 374 | #[inline ] |
| 375 | pub fn powf(self, exp: T) -> Self { |
| 376 | if exp.is_zero() { |
| 377 | return Self::one(); |
| 378 | } |
| 379 | // formula: x^y = (ρ e^(i θ))^y = ρ^y e^(i θ y) |
| 380 | // = from_polar(ρ^y, θ y) |
| 381 | let (r, theta) = self.to_polar(); |
| 382 | Self::from_polar(r.powf(exp), theta * exp) |
| 383 | } |
| 384 | |
| 385 | /// Returns the logarithm of `self` with respect to an arbitrary base. |
| 386 | #[inline ] |
| 387 | pub fn log(self, base: T) -> Self { |
| 388 | // formula: log_y(x) = log_y(ρ e^(i θ)) |
| 389 | // = log_y(ρ) + log_y(e^(i θ)) = log_y(ρ) + ln(e^(i θ)) / ln(y) |
| 390 | // = log_y(ρ) + i θ / ln(y) |
| 391 | let (r, theta) = self.to_polar(); |
| 392 | Self::new(r.log(base), theta / base.ln()) |
| 393 | } |
| 394 | |
| 395 | /// Raises `self` to a complex power. |
| 396 | #[inline ] |
| 397 | pub fn powc(self, exp: Self) -> Self { |
| 398 | if exp.is_zero() { |
| 399 | return Self::one(); |
| 400 | } |
| 401 | // formula: x^y = exp(y * ln(x)) |
| 402 | (exp * self.ln()).exp() |
| 403 | } |
| 404 | |
| 405 | /// Raises a floating point number to the complex power `self`. |
| 406 | #[inline ] |
| 407 | pub fn expf(self, base: T) -> Self { |
| 408 | // formula: x^(a+bi) = x^a x^bi = x^a e^(b ln(x) i) |
| 409 | // = from_polar(x^a, b ln(x)) |
| 410 | Self::from_polar(base.powf(self.re), self.im * base.ln()) |
| 411 | } |
| 412 | |
| 413 | /// Computes the sine of `self`. |
| 414 | #[inline ] |
| 415 | pub fn sin(self) -> Self { |
| 416 | // formula: sin(a + bi) = sin(a)cosh(b) + i*cos(a)sinh(b) |
| 417 | Self::new( |
| 418 | self.re.sin() * self.im.cosh(), |
| 419 | self.re.cos() * self.im.sinh(), |
| 420 | ) |
| 421 | } |
| 422 | |
| 423 | /// Computes the cosine of `self`. |
| 424 | #[inline ] |
| 425 | pub fn cos(self) -> Self { |
| 426 | // formula: cos(a + bi) = cos(a)cosh(b) - i*sin(a)sinh(b) |
| 427 | Self::new( |
| 428 | self.re.cos() * self.im.cosh(), |
| 429 | -self.re.sin() * self.im.sinh(), |
| 430 | ) |
| 431 | } |
| 432 | |
| 433 | /// Computes the tangent of `self`. |
| 434 | #[inline ] |
| 435 | pub fn tan(self) -> Self { |
| 436 | // formula: tan(a + bi) = (sin(2a) + i*sinh(2b))/(cos(2a) + cosh(2b)) |
| 437 | let (two_re, two_im) = (self.re + self.re, self.im + self.im); |
| 438 | Self::new(two_re.sin(), two_im.sinh()).unscale(two_re.cos() + two_im.cosh()) |
| 439 | } |
| 440 | |
| 441 | /// Computes the principal value of the inverse sine of `self`. |
| 442 | /// |
| 443 | /// This function has two branch cuts: |
| 444 | /// |
| 445 | /// * `(-∞, -1)`, continuous from above. |
| 446 | /// * `(1, ∞)`, continuous from below. |
| 447 | /// |
| 448 | /// The branch satisfies `-π/2 ≤ Re(asin(z)) ≤ π/2`. |
| 449 | #[inline ] |
| 450 | pub fn asin(self) -> Self { |
| 451 | // formula: arcsin(z) = -i ln(sqrt(1-z^2) + iz) |
| 452 | let i = Self::i(); |
| 453 | -i * ((Self::one() - self * self).sqrt() + i * self).ln() |
| 454 | } |
| 455 | |
| 456 | /// Computes the principal value of the inverse cosine of `self`. |
| 457 | /// |
| 458 | /// This function has two branch cuts: |
| 459 | /// |
| 460 | /// * `(-∞, -1)`, continuous from above. |
| 461 | /// * `(1, ∞)`, continuous from below. |
| 462 | /// |
| 463 | /// The branch satisfies `0 ≤ Re(acos(z)) ≤ π`. |
| 464 | #[inline ] |
| 465 | pub fn acos(self) -> Self { |
| 466 | // formula: arccos(z) = -i ln(i sqrt(1-z^2) + z) |
| 467 | let i = Self::i(); |
| 468 | -i * (i * (Self::one() - self * self).sqrt() + self).ln() |
| 469 | } |
| 470 | |
| 471 | /// Computes the principal value of the inverse tangent of `self`. |
| 472 | /// |
| 473 | /// This function has two branch cuts: |
| 474 | /// |
| 475 | /// * `(-∞i, -i]`, continuous from the left. |
| 476 | /// * `[i, ∞i)`, continuous from the right. |
| 477 | /// |
| 478 | /// The branch satisfies `-π/2 ≤ Re(atan(z)) ≤ π/2`. |
| 479 | #[inline ] |
| 480 | pub fn atan(self) -> Self { |
| 481 | // formula: arctan(z) = (ln(1+iz) - ln(1-iz))/(2i) |
| 482 | let i = Self::i(); |
| 483 | let one = Self::one(); |
| 484 | let two = one + one; |
| 485 | if self == i { |
| 486 | return Self::new(T::zero(), T::infinity()); |
| 487 | } else if self == -i { |
| 488 | return Self::new(T::zero(), -T::infinity()); |
| 489 | } |
| 490 | ((one + i * self).ln() - (one - i * self).ln()) / (two * i) |
| 491 | } |
| 492 | |
| 493 | /// Computes the hyperbolic sine of `self`. |
| 494 | #[inline ] |
| 495 | pub fn sinh(self) -> Self { |
| 496 | // formula: sinh(a + bi) = sinh(a)cos(b) + i*cosh(a)sin(b) |
| 497 | Self::new( |
| 498 | self.re.sinh() * self.im.cos(), |
| 499 | self.re.cosh() * self.im.sin(), |
| 500 | ) |
| 501 | } |
| 502 | |
| 503 | /// Computes the hyperbolic cosine of `self`. |
| 504 | #[inline ] |
| 505 | pub fn cosh(self) -> Self { |
| 506 | // formula: cosh(a + bi) = cosh(a)cos(b) + i*sinh(a)sin(b) |
| 507 | Self::new( |
| 508 | self.re.cosh() * self.im.cos(), |
| 509 | self.re.sinh() * self.im.sin(), |
| 510 | ) |
| 511 | } |
| 512 | |
| 513 | /// Computes the hyperbolic tangent of `self`. |
| 514 | #[inline ] |
| 515 | pub fn tanh(self) -> Self { |
| 516 | // formula: tanh(a + bi) = (sinh(2a) + i*sin(2b))/(cosh(2a) + cos(2b)) |
| 517 | let (two_re, two_im) = (self.re + self.re, self.im + self.im); |
| 518 | Self::new(two_re.sinh(), two_im.sin()).unscale(two_re.cosh() + two_im.cos()) |
| 519 | } |
| 520 | |
| 521 | /// Computes the principal value of inverse hyperbolic sine of `self`. |
| 522 | /// |
| 523 | /// This function has two branch cuts: |
| 524 | /// |
| 525 | /// * `(-∞i, -i)`, continuous from the left. |
| 526 | /// * `(i, ∞i)`, continuous from the right. |
| 527 | /// |
| 528 | /// The branch satisfies `-π/2 ≤ Im(asinh(z)) ≤ π/2`. |
| 529 | #[inline ] |
| 530 | pub fn asinh(self) -> Self { |
| 531 | // formula: arcsinh(z) = ln(z + sqrt(1+z^2)) |
| 532 | let one = Self::one(); |
| 533 | (self + (one + self * self).sqrt()).ln() |
| 534 | } |
| 535 | |
| 536 | /// Computes the principal value of inverse hyperbolic cosine of `self`. |
| 537 | /// |
| 538 | /// This function has one branch cut: |
| 539 | /// |
| 540 | /// * `(-∞, 1)`, continuous from above. |
| 541 | /// |
| 542 | /// The branch satisfies `-π ≤ Im(acosh(z)) ≤ π` and `0 ≤ Re(acosh(z)) < ∞`. |
| 543 | #[inline ] |
| 544 | pub fn acosh(self) -> Self { |
| 545 | // formula: arccosh(z) = 2 ln(sqrt((z+1)/2) + sqrt((z-1)/2)) |
| 546 | let one = Self::one(); |
| 547 | let two = one + one; |
| 548 | two * (((self + one) / two).sqrt() + ((self - one) / two).sqrt()).ln() |
| 549 | } |
| 550 | |
| 551 | /// Computes the principal value of inverse hyperbolic tangent of `self`. |
| 552 | /// |
| 553 | /// This function has two branch cuts: |
| 554 | /// |
| 555 | /// * `(-∞, -1]`, continuous from above. |
| 556 | /// * `[1, ∞)`, continuous from below. |
| 557 | /// |
| 558 | /// The branch satisfies `-π/2 ≤ Im(atanh(z)) ≤ π/2`. |
| 559 | #[inline ] |
| 560 | pub fn atanh(self) -> Self { |
| 561 | // formula: arctanh(z) = (ln(1+z) - ln(1-z))/2 |
| 562 | let one = Self::one(); |
| 563 | let two = one + one; |
| 564 | if self == one { |
| 565 | return Self::new(T::infinity(), T::zero()); |
| 566 | } else if self == -one { |
| 567 | return Self::new(-T::infinity(), T::zero()); |
| 568 | } |
| 569 | ((one + self).ln() - (one - self).ln()) / two |
| 570 | } |
| 571 | |
| 572 | /// Returns `1/self` using floating-point operations. |
| 573 | /// |
| 574 | /// This may be more accurate than the generic `self.inv()` in cases |
| 575 | /// where `self.norm_sqr()` would overflow to ∞ or underflow to 0. |
| 576 | /// |
| 577 | /// # Examples |
| 578 | /// |
| 579 | /// ``` |
| 580 | /// use num_complex::Complex64; |
| 581 | /// let c = Complex64::new(1e300, 1e300); |
| 582 | /// |
| 583 | /// // The generic `inv()` will overflow. |
| 584 | /// assert!(!c.inv().is_normal()); |
| 585 | /// |
| 586 | /// // But we can do better for `Float` types. |
| 587 | /// let inv = c.finv(); |
| 588 | /// assert!(inv.is_normal()); |
| 589 | /// println!("{:e}" , inv); |
| 590 | /// |
| 591 | /// let expected = Complex64::new(5e-301, -5e-301); |
| 592 | /// assert!((inv - expected).norm() < 1e-315); |
| 593 | /// ``` |
| 594 | #[inline ] |
| 595 | pub fn finv(self) -> Complex<T> { |
| 596 | let norm = self.norm(); |
| 597 | self.conj() / norm / norm |
| 598 | } |
| 599 | |
| 600 | /// Returns `self/other` using floating-point operations. |
| 601 | /// |
| 602 | /// This may be more accurate than the generic `Div` implementation in cases |
| 603 | /// where `other.norm_sqr()` would overflow to ∞ or underflow to 0. |
| 604 | /// |
| 605 | /// # Examples |
| 606 | /// |
| 607 | /// ``` |
| 608 | /// use num_complex::Complex64; |
| 609 | /// let a = Complex64::new(2.0, 3.0); |
| 610 | /// let b = Complex64::new(1e300, 1e300); |
| 611 | /// |
| 612 | /// // Generic division will overflow. |
| 613 | /// assert!(!(a / b).is_normal()); |
| 614 | /// |
| 615 | /// // But we can do better for `Float` types. |
| 616 | /// let quotient = a.fdiv(b); |
| 617 | /// assert!(quotient.is_normal()); |
| 618 | /// println!("{:e}" , quotient); |
| 619 | /// |
| 620 | /// let expected = Complex64::new(2.5e-300, 5e-301); |
| 621 | /// assert!((quotient - expected).norm() < 1e-315); |
| 622 | /// ``` |
| 623 | #[inline ] |
| 624 | pub fn fdiv(self, other: Complex<T>) -> Complex<T> { |
| 625 | self * other.finv() |
| 626 | } |
| 627 | } |
| 628 | |
| 629 | #[cfg (any(feature = "std" , feature = "libm" ))] |
| 630 | impl<T: Float + FloatConst> Complex<T> { |
| 631 | /// Computes `2^(self)`. |
| 632 | #[inline ] |
| 633 | pub fn exp2(self) -> Self { |
| 634 | // formula: 2^(a + bi) = 2^a (cos(b*log2) + i*sin(b*log2)) |
| 635 | // = from_polar(2^a, b*log2) |
| 636 | Self::from_polar(self.re.exp2(), self.im * T::LN_2()) |
| 637 | } |
| 638 | |
| 639 | /// Computes the principal value of log base 2 of `self`. |
| 640 | #[inline ] |
| 641 | pub fn log2(self) -> Self { |
| 642 | Self::ln(self) / T::LN_2() |
| 643 | } |
| 644 | |
| 645 | /// Computes the principal value of log base 10 of `self`. |
| 646 | #[inline ] |
| 647 | pub fn log10(self) -> Self { |
| 648 | Self::ln(self) / T::LN_10() |
| 649 | } |
| 650 | } |
| 651 | |
| 652 | impl<T: FloatCore> Complex<T> { |
| 653 | /// Checks if the given complex number is NaN |
| 654 | #[inline ] |
| 655 | pub fn is_nan(self) -> bool { |
| 656 | self.re.is_nan() || self.im.is_nan() |
| 657 | } |
| 658 | |
| 659 | /// Checks if the given complex number is infinite |
| 660 | #[inline ] |
| 661 | pub fn is_infinite(self) -> bool { |
| 662 | !self.is_nan() && (self.re.is_infinite() || self.im.is_infinite()) |
| 663 | } |
| 664 | |
| 665 | /// Checks if the given complex number is finite |
| 666 | #[inline ] |
| 667 | pub fn is_finite(self) -> bool { |
| 668 | self.re.is_finite() && self.im.is_finite() |
| 669 | } |
| 670 | |
| 671 | /// Checks if the given complex number is normal |
| 672 | #[inline ] |
| 673 | pub fn is_normal(self) -> bool { |
| 674 | self.re.is_normal() && self.im.is_normal() |
| 675 | } |
| 676 | } |
| 677 | |
| 678 | // Safety: `Complex<T>` is `repr(C)` and contains only instances of `T`, so we |
| 679 | // can guarantee it contains no *added* padding. Thus, if `T: Zeroable`, |
| 680 | // `Complex<T>` is also `Zeroable` |
| 681 | #[cfg (feature = "bytemuck" )] |
| 682 | unsafe impl<T: bytemuck::Zeroable> bytemuck::Zeroable for Complex<T> {} |
| 683 | |
| 684 | // Safety: `Complex<T>` is `repr(C)` and contains only instances of `T`, so we |
| 685 | // can guarantee it contains no *added* padding. Thus, if `T: Pod`, |
| 686 | // `Complex<T>` is also `Pod` |
| 687 | #[cfg (feature = "bytemuck" )] |
| 688 | unsafe impl<T: bytemuck::Pod> bytemuck::Pod for Complex<T> {} |
| 689 | |
| 690 | impl<T: Clone + Num> From<T> for Complex<T> { |
| 691 | #[inline ] |
| 692 | fn from(re: T) -> Self { |
| 693 | Self::new(re, T::zero()) |
| 694 | } |
| 695 | } |
| 696 | |
| 697 | impl<'a, T: Clone + Num> From<&'a T> for Complex<T> { |
| 698 | #[inline ] |
| 699 | fn from(re: &T) -> Self { |
| 700 | From::from(re.clone()) |
| 701 | } |
| 702 | } |
| 703 | |
| 704 | macro_rules! forward_ref_ref_binop { |
| 705 | (impl $imp:ident, $method:ident) => { |
| 706 | impl<'a, 'b, T: Clone + Num> $imp<&'b Complex<T>> for &'a Complex<T> { |
| 707 | type Output = Complex<T>; |
| 708 | |
| 709 | #[inline] |
| 710 | fn $method(self, other: &Complex<T>) -> Self::Output { |
| 711 | self.clone().$method(other.clone()) |
| 712 | } |
| 713 | } |
| 714 | }; |
| 715 | } |
| 716 | |
| 717 | macro_rules! forward_ref_val_binop { |
| 718 | (impl $imp:ident, $method:ident) => { |
| 719 | impl<'a, T: Clone + Num> $imp<Complex<T>> for &'a Complex<T> { |
| 720 | type Output = Complex<T>; |
| 721 | |
| 722 | #[inline] |
| 723 | fn $method(self, other: Complex<T>) -> Self::Output { |
| 724 | self.clone().$method(other) |
| 725 | } |
| 726 | } |
| 727 | }; |
| 728 | } |
| 729 | |
| 730 | macro_rules! forward_val_ref_binop { |
| 731 | (impl $imp:ident, $method:ident) => { |
| 732 | impl<'a, T: Clone + Num> $imp<&'a Complex<T>> for Complex<T> { |
| 733 | type Output = Complex<T>; |
| 734 | |
| 735 | #[inline] |
| 736 | fn $method(self, other: &Complex<T>) -> Self::Output { |
| 737 | self.$method(other.clone()) |
| 738 | } |
| 739 | } |
| 740 | }; |
| 741 | } |
| 742 | |
| 743 | macro_rules! forward_all_binop { |
| 744 | (impl $imp:ident, $method:ident) => { |
| 745 | forward_ref_ref_binop!(impl $imp, $method); |
| 746 | forward_ref_val_binop!(impl $imp, $method); |
| 747 | forward_val_ref_binop!(impl $imp, $method); |
| 748 | }; |
| 749 | } |
| 750 | |
| 751 | // arithmetic |
| 752 | forward_all_binop!(impl Add, add); |
| 753 | |
| 754 | // (a + i b) + (c + i d) == (a + c) + i (b + d) |
| 755 | impl<T: Clone + Num> Add<Complex<T>> for Complex<T> { |
| 756 | type Output = Self; |
| 757 | |
| 758 | #[inline ] |
| 759 | fn add(self, other: Self) -> Self::Output { |
| 760 | Self::Output::new(self.re + other.re, self.im + other.im) |
| 761 | } |
| 762 | } |
| 763 | |
| 764 | forward_all_binop!(impl Sub, sub); |
| 765 | |
| 766 | // (a + i b) - (c + i d) == (a - c) + i (b - d) |
| 767 | impl<T: Clone + Num> Sub<Complex<T>> for Complex<T> { |
| 768 | type Output = Self; |
| 769 | |
| 770 | #[inline ] |
| 771 | fn sub(self, other: Self) -> Self::Output { |
| 772 | Self::Output::new(self.re - other.re, self.im - other.im) |
| 773 | } |
| 774 | } |
| 775 | |
| 776 | forward_all_binop!(impl Mul, mul); |
| 777 | |
| 778 | // (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c) |
| 779 | impl<T: Clone + Num> Mul<Complex<T>> for Complex<T> { |
| 780 | type Output = Self; |
| 781 | |
| 782 | #[inline ] |
| 783 | fn mul(self, other: Self) -> Self::Output { |
| 784 | let re: T = self.re.clone() * other.re.clone() - self.im.clone() * other.im.clone(); |
| 785 | let im: T = self.re * other.im + self.im * other.re; |
| 786 | Self::Output::new(re, im) |
| 787 | } |
| 788 | } |
| 789 | |
| 790 | // (a + i b) * (c + i d) + (e + i f) == ((a*c + e) - b*d) + i (a*d + (b*c + f)) |
| 791 | impl<T: Clone + Num + MulAdd<Output = T>> MulAdd<Complex<T>> for Complex<T> { |
| 792 | type Output = Complex<T>; |
| 793 | |
| 794 | #[inline ] |
| 795 | fn mul_add(self, other: Complex<T>, add: Complex<T>) -> Complex<T> { |
| 796 | let re: T = self.re.clone().mul_add(a:other.re.clone(), b:add.re) |
| 797 | - (self.im.clone() * other.im.clone()); // FIXME: use mulsub when available in rust |
| 798 | let im: T = self.re.mul_add(a:other.im, self.im.mul_add(a:other.re, b:add.im)); |
| 799 | Complex::new(re, im) |
| 800 | } |
| 801 | } |
| 802 | impl<'a, 'b, T: Clone + Num + MulAdd<Output = T>> MulAdd<&'b Complex<T>> for &'a Complex<T> { |
| 803 | type Output = Complex<T>; |
| 804 | |
| 805 | #[inline ] |
| 806 | fn mul_add(self, other: &Complex<T>, add: &Complex<T>) -> Complex<T> { |
| 807 | self.clone().mul_add(a:other.clone(), b:add.clone()) |
| 808 | } |
| 809 | } |
| 810 | |
| 811 | forward_all_binop!(impl Div, div); |
| 812 | |
| 813 | // (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d) |
| 814 | // == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)] |
| 815 | impl<T: Clone + Num> Div<Complex<T>> for Complex<T> { |
| 816 | type Output = Self; |
| 817 | |
| 818 | #[inline ] |
| 819 | fn div(self, other: Self) -> Self::Output { |
| 820 | let norm_sqr: T = other.norm_sqr(); |
| 821 | let re: T = self.re.clone() * other.re.clone() + self.im.clone() * other.im.clone(); |
| 822 | let im: T = self.im * other.re - self.re * other.im; |
| 823 | Self::Output::new(re:re / norm_sqr.clone(), im:im / norm_sqr) |
| 824 | } |
| 825 | } |
| 826 | |
| 827 | forward_all_binop!(impl Rem, rem); |
| 828 | |
| 829 | impl<T: Clone + Num> Complex<T> { |
| 830 | /// Find the gaussian integer corresponding to the true ratio rounded towards zero. |
| 831 | fn div_trunc(&self, divisor: &Self) -> Self { |
| 832 | let Complex { re: T, im: T } = self / divisor; |
| 833 | Complex::new(re:re.clone() - re % T::one(), im:im.clone() - im % T::one()) |
| 834 | } |
| 835 | } |
| 836 | |
| 837 | impl<T: Clone + Num> Rem<Complex<T>> for Complex<T> { |
| 838 | type Output = Self; |
| 839 | |
| 840 | #[inline ] |
| 841 | fn rem(self, modulus: Self) -> Self::Output { |
| 842 | let gaussian: Complex = self.div_trunc(&modulus); |
| 843 | self - modulus * gaussian |
| 844 | } |
| 845 | } |
| 846 | |
| 847 | // Op Assign |
| 848 | |
| 849 | mod opassign { |
| 850 | use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign}; |
| 851 | |
| 852 | use num_traits::{MulAddAssign, NumAssign}; |
| 853 | |
| 854 | use crate::Complex; |
| 855 | |
| 856 | impl<T: Clone + NumAssign> AddAssign for Complex<T> { |
| 857 | fn add_assign(&mut self, other: Self) { |
| 858 | self.re += other.re; |
| 859 | self.im += other.im; |
| 860 | } |
| 861 | } |
| 862 | |
| 863 | impl<T: Clone + NumAssign> SubAssign for Complex<T> { |
| 864 | fn sub_assign(&mut self, other: Self) { |
| 865 | self.re -= other.re; |
| 866 | self.im -= other.im; |
| 867 | } |
| 868 | } |
| 869 | |
| 870 | // (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c) |
| 871 | impl<T: Clone + NumAssign> MulAssign for Complex<T> { |
| 872 | fn mul_assign(&mut self, other: Self) { |
| 873 | let a = self.re.clone(); |
| 874 | |
| 875 | self.re *= other.re.clone(); |
| 876 | self.re -= self.im.clone() * other.im.clone(); |
| 877 | |
| 878 | self.im *= other.re; |
| 879 | self.im += a * other.im; |
| 880 | } |
| 881 | } |
| 882 | |
| 883 | // (a + i b) * (c + i d) + (e + i f) == ((a*c + e) - b*d) + i (b*c + (a*d + f)) |
| 884 | impl<T: Clone + NumAssign + MulAddAssign> MulAddAssign for Complex<T> { |
| 885 | fn mul_add_assign(&mut self, other: Complex<T>, add: Complex<T>) { |
| 886 | let a = self.re.clone(); |
| 887 | |
| 888 | self.re.mul_add_assign(other.re.clone(), add.re); // (a*c + e) |
| 889 | self.re -= self.im.clone() * other.im.clone(); // ((a*c + e) - b*d) |
| 890 | |
| 891 | let mut adf = a; |
| 892 | adf.mul_add_assign(other.im, add.im); // (a*d + f) |
| 893 | self.im.mul_add_assign(other.re, adf); // (b*c + (a*d + f)) |
| 894 | } |
| 895 | } |
| 896 | |
| 897 | impl<'a, 'b, T: Clone + NumAssign + MulAddAssign> MulAddAssign<&'a Complex<T>, &'b Complex<T>> |
| 898 | for Complex<T> |
| 899 | { |
| 900 | fn mul_add_assign(&mut self, other: &Complex<T>, add: &Complex<T>) { |
| 901 | self.mul_add_assign(other.clone(), add.clone()); |
| 902 | } |
| 903 | } |
| 904 | |
| 905 | // (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d) |
| 906 | // == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)] |
| 907 | impl<T: Clone + NumAssign> DivAssign for Complex<T> { |
| 908 | fn div_assign(&mut self, other: Self) { |
| 909 | let a = self.re.clone(); |
| 910 | let norm_sqr = other.norm_sqr(); |
| 911 | |
| 912 | self.re *= other.re.clone(); |
| 913 | self.re += self.im.clone() * other.im.clone(); |
| 914 | self.re /= norm_sqr.clone(); |
| 915 | |
| 916 | self.im *= other.re; |
| 917 | self.im -= a * other.im; |
| 918 | self.im /= norm_sqr; |
| 919 | } |
| 920 | } |
| 921 | |
| 922 | impl<T: Clone + NumAssign> RemAssign for Complex<T> { |
| 923 | fn rem_assign(&mut self, modulus: Self) { |
| 924 | let gaussian = self.div_trunc(&modulus); |
| 925 | *self -= modulus * gaussian; |
| 926 | } |
| 927 | } |
| 928 | |
| 929 | impl<T: Clone + NumAssign> AddAssign<T> for Complex<T> { |
| 930 | fn add_assign(&mut self, other: T) { |
| 931 | self.re += other; |
| 932 | } |
| 933 | } |
| 934 | |
| 935 | impl<T: Clone + NumAssign> SubAssign<T> for Complex<T> { |
| 936 | fn sub_assign(&mut self, other: T) { |
| 937 | self.re -= other; |
| 938 | } |
| 939 | } |
| 940 | |
| 941 | impl<T: Clone + NumAssign> MulAssign<T> for Complex<T> { |
| 942 | fn mul_assign(&mut self, other: T) { |
| 943 | self.re *= other.clone(); |
| 944 | self.im *= other; |
| 945 | } |
| 946 | } |
| 947 | |
| 948 | impl<T: Clone + NumAssign> DivAssign<T> for Complex<T> { |
| 949 | fn div_assign(&mut self, other: T) { |
| 950 | self.re /= other.clone(); |
| 951 | self.im /= other; |
| 952 | } |
| 953 | } |
| 954 | |
| 955 | impl<T: Clone + NumAssign> RemAssign<T> for Complex<T> { |
| 956 | fn rem_assign(&mut self, other: T) { |
| 957 | self.re %= other.clone(); |
| 958 | self.im %= other; |
| 959 | } |
| 960 | } |
| 961 | |
| 962 | macro_rules! forward_op_assign { |
| 963 | (impl $imp:ident, $method:ident) => { |
| 964 | impl<'a, T: Clone + NumAssign> $imp<&'a Complex<T>> for Complex<T> { |
| 965 | #[inline] |
| 966 | fn $method(&mut self, other: &Self) { |
| 967 | self.$method(other.clone()) |
| 968 | } |
| 969 | } |
| 970 | impl<'a, T: Clone + NumAssign> $imp<&'a T> for Complex<T> { |
| 971 | #[inline] |
| 972 | fn $method(&mut self, other: &T) { |
| 973 | self.$method(other.clone()) |
| 974 | } |
| 975 | } |
| 976 | }; |
| 977 | } |
| 978 | |
| 979 | forward_op_assign!(impl AddAssign, add_assign); |
| 980 | forward_op_assign!(impl SubAssign, sub_assign); |
| 981 | forward_op_assign!(impl MulAssign, mul_assign); |
| 982 | forward_op_assign!(impl DivAssign, div_assign); |
| 983 | forward_op_assign!(impl RemAssign, rem_assign); |
| 984 | } |
| 985 | |
| 986 | impl<T: Clone + Num + Neg<Output = T>> Neg for Complex<T> { |
| 987 | type Output = Self; |
| 988 | |
| 989 | #[inline ] |
| 990 | fn neg(self) -> Self::Output { |
| 991 | Self::Output::new(-self.re, -self.im) |
| 992 | } |
| 993 | } |
| 994 | |
| 995 | impl<'a, T: Clone + Num + Neg<Output = T>> Neg for &'a Complex<T> { |
| 996 | type Output = Complex<T>; |
| 997 | |
| 998 | #[inline ] |
| 999 | fn neg(self) -> Self::Output { |
| 1000 | -self.clone() |
| 1001 | } |
| 1002 | } |
| 1003 | |
| 1004 | impl<T: Clone + Num + Neg<Output = T>> Inv for Complex<T> { |
| 1005 | type Output = Self; |
| 1006 | |
| 1007 | #[inline ] |
| 1008 | fn inv(self) -> Self::Output { |
| 1009 | Complex::inv(&self) |
| 1010 | } |
| 1011 | } |
| 1012 | |
| 1013 | impl<'a, T: Clone + Num + Neg<Output = T>> Inv for &'a Complex<T> { |
| 1014 | type Output = Complex<T>; |
| 1015 | |
| 1016 | #[inline ] |
| 1017 | fn inv(self) -> Self::Output { |
| 1018 | Complex::inv(self) |
| 1019 | } |
| 1020 | } |
| 1021 | |
| 1022 | macro_rules! real_arithmetic { |
| 1023 | (@forward $imp:ident::$method:ident for $($real:ident),*) => ( |
| 1024 | impl<'a, T: Clone + Num> $imp<&'a T> for Complex<T> { |
| 1025 | type Output = Complex<T>; |
| 1026 | |
| 1027 | #[inline] |
| 1028 | fn $method(self, other: &T) -> Self::Output { |
| 1029 | self.$method(other.clone()) |
| 1030 | } |
| 1031 | } |
| 1032 | impl<'a, T: Clone + Num> $imp<T> for &'a Complex<T> { |
| 1033 | type Output = Complex<T>; |
| 1034 | |
| 1035 | #[inline] |
| 1036 | fn $method(self, other: T) -> Self::Output { |
| 1037 | self.clone().$method(other) |
| 1038 | } |
| 1039 | } |
| 1040 | impl<'a, 'b, T: Clone + Num> $imp<&'a T> for &'b Complex<T> { |
| 1041 | type Output = Complex<T>; |
| 1042 | |
| 1043 | #[inline] |
| 1044 | fn $method(self, other: &T) -> Self::Output { |
| 1045 | self.clone().$method(other.clone()) |
| 1046 | } |
| 1047 | } |
| 1048 | $( |
| 1049 | impl<'a> $imp<&'a Complex<$real>> for $real { |
| 1050 | type Output = Complex<$real>; |
| 1051 | |
| 1052 | #[inline] |
| 1053 | fn $method(self, other: &Complex<$real>) -> Complex<$real> { |
| 1054 | self.$method(other.clone()) |
| 1055 | } |
| 1056 | } |
| 1057 | impl<'a> $imp<Complex<$real>> for &'a $real { |
| 1058 | type Output = Complex<$real>; |
| 1059 | |
| 1060 | #[inline] |
| 1061 | fn $method(self, other: Complex<$real>) -> Complex<$real> { |
| 1062 | self.clone().$method(other) |
| 1063 | } |
| 1064 | } |
| 1065 | impl<'a, 'b> $imp<&'a Complex<$real>> for &'b $real { |
| 1066 | type Output = Complex<$real>; |
| 1067 | |
| 1068 | #[inline] |
| 1069 | fn $method(self, other: &Complex<$real>) -> Complex<$real> { |
| 1070 | self.clone().$method(other.clone()) |
| 1071 | } |
| 1072 | } |
| 1073 | )* |
| 1074 | ); |
| 1075 | ($($real:ident),*) => ( |
| 1076 | real_arithmetic!(@forward Add::add for $($real),*); |
| 1077 | real_arithmetic!(@forward Sub::sub for $($real),*); |
| 1078 | real_arithmetic!(@forward Mul::mul for $($real),*); |
| 1079 | real_arithmetic!(@forward Div::div for $($real),*); |
| 1080 | real_arithmetic!(@forward Rem::rem for $($real),*); |
| 1081 | |
| 1082 | $( |
| 1083 | impl Add<Complex<$real>> for $real { |
| 1084 | type Output = Complex<$real>; |
| 1085 | |
| 1086 | #[inline] |
| 1087 | fn add(self, other: Complex<$real>) -> Self::Output { |
| 1088 | Self::Output::new(self + other.re, other.im) |
| 1089 | } |
| 1090 | } |
| 1091 | |
| 1092 | impl Sub<Complex<$real>> for $real { |
| 1093 | type Output = Complex<$real>; |
| 1094 | |
| 1095 | #[inline] |
| 1096 | fn sub(self, other: Complex<$real>) -> Self::Output { |
| 1097 | Self::Output::new(self - other.re, $real::zero() - other.im) |
| 1098 | } |
| 1099 | } |
| 1100 | |
| 1101 | impl Mul<Complex<$real>> for $real { |
| 1102 | type Output = Complex<$real>; |
| 1103 | |
| 1104 | #[inline] |
| 1105 | fn mul(self, other: Complex<$real>) -> Self::Output { |
| 1106 | Self::Output::new(self * other.re, self * other.im) |
| 1107 | } |
| 1108 | } |
| 1109 | |
| 1110 | impl Div<Complex<$real>> for $real { |
| 1111 | type Output = Complex<$real>; |
| 1112 | |
| 1113 | #[inline] |
| 1114 | fn div(self, other: Complex<$real>) -> Self::Output { |
| 1115 | // a / (c + i d) == [a * (c - i d)] / (c*c + d*d) |
| 1116 | let norm_sqr = other.norm_sqr(); |
| 1117 | Self::Output::new(self * other.re / norm_sqr.clone(), |
| 1118 | $real::zero() - self * other.im / norm_sqr) |
| 1119 | } |
| 1120 | } |
| 1121 | |
| 1122 | impl Rem<Complex<$real>> for $real { |
| 1123 | type Output = Complex<$real>; |
| 1124 | |
| 1125 | #[inline] |
| 1126 | fn rem(self, other: Complex<$real>) -> Self::Output { |
| 1127 | Self::Output::new(self, Self::zero()) % other |
| 1128 | } |
| 1129 | } |
| 1130 | )* |
| 1131 | ); |
| 1132 | } |
| 1133 | |
| 1134 | impl<T: Clone + Num> Add<T> for Complex<T> { |
| 1135 | type Output = Complex<T>; |
| 1136 | |
| 1137 | #[inline ] |
| 1138 | fn add(self, other: T) -> Self::Output { |
| 1139 | Self::Output::new(self.re + other, self.im) |
| 1140 | } |
| 1141 | } |
| 1142 | |
| 1143 | impl<T: Clone + Num> Sub<T> for Complex<T> { |
| 1144 | type Output = Complex<T>; |
| 1145 | |
| 1146 | #[inline ] |
| 1147 | fn sub(self, other: T) -> Self::Output { |
| 1148 | Self::Output::new(self.re - other, self.im) |
| 1149 | } |
| 1150 | } |
| 1151 | |
| 1152 | impl<T: Clone + Num> Mul<T> for Complex<T> { |
| 1153 | type Output = Complex<T>; |
| 1154 | |
| 1155 | #[inline ] |
| 1156 | fn mul(self, other: T) -> Self::Output { |
| 1157 | Self::Output::new(self.re * other.clone(), self.im * other) |
| 1158 | } |
| 1159 | } |
| 1160 | |
| 1161 | impl<T: Clone + Num> Div<T> for Complex<T> { |
| 1162 | type Output = Self; |
| 1163 | |
| 1164 | #[inline ] |
| 1165 | fn div(self, other: T) -> Self::Output { |
| 1166 | Self::Output::new(self.re / other.clone(), self.im / other) |
| 1167 | } |
| 1168 | } |
| 1169 | |
| 1170 | impl<T: Clone + Num> Rem<T> for Complex<T> { |
| 1171 | type Output = Complex<T>; |
| 1172 | |
| 1173 | #[inline ] |
| 1174 | fn rem(self, other: T) -> Self::Output { |
| 1175 | Self::Output::new(self.re % other.clone(), self.im % other) |
| 1176 | } |
| 1177 | } |
| 1178 | |
| 1179 | real_arithmetic!(usize, u8, u16, u32, u64, u128, isize, i8, i16, i32, i64, i128, f32, f64); |
| 1180 | |
| 1181 | // constants |
| 1182 | impl<T: ConstZero> Complex<T> { |
| 1183 | /// A constant `Complex` 0. |
| 1184 | pub const ZERO: Self = Self::new(T::ZERO, T::ZERO); |
| 1185 | } |
| 1186 | |
| 1187 | impl<T: Clone + Num + ConstZero> ConstZero for Complex<T> { |
| 1188 | const ZERO: Self = Self::ZERO; |
| 1189 | } |
| 1190 | |
| 1191 | impl<T: Clone + Num> Zero for Complex<T> { |
| 1192 | #[inline ] |
| 1193 | fn zero() -> Self { |
| 1194 | Self::new(re:Zero::zero(), im:Zero::zero()) |
| 1195 | } |
| 1196 | |
| 1197 | #[inline ] |
| 1198 | fn is_zero(&self) -> bool { |
| 1199 | self.re.is_zero() && self.im.is_zero() |
| 1200 | } |
| 1201 | |
| 1202 | #[inline ] |
| 1203 | fn set_zero(&mut self) { |
| 1204 | self.re.set_zero(); |
| 1205 | self.im.set_zero(); |
| 1206 | } |
| 1207 | } |
| 1208 | |
| 1209 | impl<T: ConstOne + ConstZero> Complex<T> { |
| 1210 | /// A constant `Complex` 1. |
| 1211 | pub const ONE: Self = Self::new(T::ONE, T::ZERO); |
| 1212 | |
| 1213 | /// A constant `Complex` _i_, the imaginary unit. |
| 1214 | pub const I: Self = Self::new(T::ZERO, T::ONE); |
| 1215 | } |
| 1216 | |
| 1217 | impl<T: Clone + Num + ConstOne + ConstZero> ConstOne for Complex<T> { |
| 1218 | const ONE: Self = Self::ONE; |
| 1219 | } |
| 1220 | |
| 1221 | impl<T: Clone + Num> One for Complex<T> { |
| 1222 | #[inline ] |
| 1223 | fn one() -> Self { |
| 1224 | Self::new(re:One::one(), im:Zero::zero()) |
| 1225 | } |
| 1226 | |
| 1227 | #[inline ] |
| 1228 | fn is_one(&self) -> bool { |
| 1229 | self.re.is_one() && self.im.is_zero() |
| 1230 | } |
| 1231 | |
| 1232 | #[inline ] |
| 1233 | fn set_one(&mut self) { |
| 1234 | self.re.set_one(); |
| 1235 | self.im.set_zero(); |
| 1236 | } |
| 1237 | } |
| 1238 | |
| 1239 | macro_rules! write_complex { |
| 1240 | ($f:ident, $t:expr, $prefix:expr, $re:expr, $im:expr, $T:ident) => {{ |
| 1241 | let abs_re = if $re < Zero::zero() { |
| 1242 | $T::zero() - $re.clone() |
| 1243 | } else { |
| 1244 | $re.clone() |
| 1245 | }; |
| 1246 | let abs_im = if $im < Zero::zero() { |
| 1247 | $T::zero() - $im.clone() |
| 1248 | } else { |
| 1249 | $im.clone() |
| 1250 | }; |
| 1251 | |
| 1252 | return if let Some(prec) = $f.precision() { |
| 1253 | fmt_re_im( |
| 1254 | $f, |
| 1255 | $re < $T::zero(), |
| 1256 | $im < $T::zero(), |
| 1257 | format_args!(concat!("{:.1$" , $t, "}" ), abs_re, prec), |
| 1258 | format_args!(concat!("{:.1$" , $t, "}" ), abs_im, prec), |
| 1259 | ) |
| 1260 | } else { |
| 1261 | fmt_re_im( |
| 1262 | $f, |
| 1263 | $re < $T::zero(), |
| 1264 | $im < $T::zero(), |
| 1265 | format_args!(concat!("{:" , $t, "}" ), abs_re), |
| 1266 | format_args!(concat!("{:" , $t, "}" ), abs_im), |
| 1267 | ) |
| 1268 | }; |
| 1269 | |
| 1270 | fn fmt_re_im( |
| 1271 | f: &mut fmt::Formatter<'_>, |
| 1272 | re_neg: bool, |
| 1273 | im_neg: bool, |
| 1274 | real: fmt::Arguments<'_>, |
| 1275 | imag: fmt::Arguments<'_>, |
| 1276 | ) -> fmt::Result { |
| 1277 | let prefix = if f.alternate() { $prefix } else { "" }; |
| 1278 | let sign = if re_neg { |
| 1279 | "-" |
| 1280 | } else if f.sign_plus() { |
| 1281 | "+" |
| 1282 | } else { |
| 1283 | "" |
| 1284 | }; |
| 1285 | |
| 1286 | if im_neg { |
| 1287 | fmt_complex( |
| 1288 | f, |
| 1289 | format_args!( |
| 1290 | "{}{pre}{re}-{pre}{im}i" , |
| 1291 | sign, |
| 1292 | re = real, |
| 1293 | im = imag, |
| 1294 | pre = prefix |
| 1295 | ), |
| 1296 | ) |
| 1297 | } else { |
| 1298 | fmt_complex( |
| 1299 | f, |
| 1300 | format_args!( |
| 1301 | "{}{pre}{re}+{pre}{im}i" , |
| 1302 | sign, |
| 1303 | re = real, |
| 1304 | im = imag, |
| 1305 | pre = prefix |
| 1306 | ), |
| 1307 | ) |
| 1308 | } |
| 1309 | } |
| 1310 | |
| 1311 | #[cfg(feature = "std" )] |
| 1312 | // Currently, we can only apply width using an intermediate `String` (and thus `std`) |
| 1313 | fn fmt_complex(f: &mut fmt::Formatter<'_>, complex: fmt::Arguments<'_>) -> fmt::Result { |
| 1314 | use std::string::ToString; |
| 1315 | if let Some(width) = f.width() { |
| 1316 | write!(f, "{0: >1$}" , complex.to_string(), width) |
| 1317 | } else { |
| 1318 | write!(f, "{}" , complex) |
| 1319 | } |
| 1320 | } |
| 1321 | |
| 1322 | #[cfg(not(feature = "std" ))] |
| 1323 | fn fmt_complex(f: &mut fmt::Formatter<'_>, complex: fmt::Arguments<'_>) -> fmt::Result { |
| 1324 | write!(f, "{}" , complex) |
| 1325 | } |
| 1326 | }}; |
| 1327 | } |
| 1328 | |
| 1329 | // string conversions |
| 1330 | impl<T> fmt::Display for Complex<T> |
| 1331 | where |
| 1332 | T: fmt::Display + Num + PartialOrd + Clone, |
| 1333 | { |
| 1334 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1335 | write_complex!(f, "" , "" , self.re, self.im, T) |
| 1336 | } |
| 1337 | } |
| 1338 | |
| 1339 | impl<T> fmt::LowerExp for Complex<T> |
| 1340 | where |
| 1341 | T: fmt::LowerExp + Num + PartialOrd + Clone, |
| 1342 | { |
| 1343 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1344 | write_complex!(f, "e" , "" , self.re, self.im, T) |
| 1345 | } |
| 1346 | } |
| 1347 | |
| 1348 | impl<T> fmt::UpperExp for Complex<T> |
| 1349 | where |
| 1350 | T: fmt::UpperExp + Num + PartialOrd + Clone, |
| 1351 | { |
| 1352 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1353 | write_complex!(f, "E" , "" , self.re, self.im, T) |
| 1354 | } |
| 1355 | } |
| 1356 | |
| 1357 | impl<T> fmt::LowerHex for Complex<T> |
| 1358 | where |
| 1359 | T: fmt::LowerHex + Num + PartialOrd + Clone, |
| 1360 | { |
| 1361 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1362 | write_complex!(f, "x" , "0x" , self.re, self.im, T) |
| 1363 | } |
| 1364 | } |
| 1365 | |
| 1366 | impl<T> fmt::UpperHex for Complex<T> |
| 1367 | where |
| 1368 | T: fmt::UpperHex + Num + PartialOrd + Clone, |
| 1369 | { |
| 1370 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1371 | write_complex!(f, "X" , "0x" , self.re, self.im, T) |
| 1372 | } |
| 1373 | } |
| 1374 | |
| 1375 | impl<T> fmt::Octal for Complex<T> |
| 1376 | where |
| 1377 | T: fmt::Octal + Num + PartialOrd + Clone, |
| 1378 | { |
| 1379 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1380 | write_complex!(f, "o" , "0o" , self.re, self.im, T) |
| 1381 | } |
| 1382 | } |
| 1383 | |
| 1384 | impl<T> fmt::Binary for Complex<T> |
| 1385 | where |
| 1386 | T: fmt::Binary + Num + PartialOrd + Clone, |
| 1387 | { |
| 1388 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1389 | write_complex!(f, "b" , "0b" , self.re, self.im, T) |
| 1390 | } |
| 1391 | } |
| 1392 | |
| 1393 | fn from_str_generic<T, E, F>(s: &str, from: F) -> Result<Complex<T>, ParseComplexError<E>> |
| 1394 | where |
| 1395 | F: Fn(&str) -> Result<T, E>, |
| 1396 | T: Clone + Num, |
| 1397 | { |
| 1398 | let imag = match s.rfind('j' ) { |
| 1399 | None => 'i' , |
| 1400 | _ => 'j' , |
| 1401 | }; |
| 1402 | |
| 1403 | let mut neg_b = false; |
| 1404 | let mut a = s; |
| 1405 | let mut b = "" ; |
| 1406 | |
| 1407 | for (i, w) in s.as_bytes().windows(2).enumerate() { |
| 1408 | let p = w[0]; |
| 1409 | let c = w[1]; |
| 1410 | |
| 1411 | // ignore '+'/'-' if part of an exponent |
| 1412 | if (c == b'+' || c == b'-' ) && !(p == b'e' || p == b'E' ) { |
| 1413 | // trim whitespace around the separator |
| 1414 | a = s[..=i].trim_end_matches(char::is_whitespace); |
| 1415 | b = s[i + 2..].trim_start_matches(char::is_whitespace); |
| 1416 | neg_b = c == b'-' ; |
| 1417 | |
| 1418 | if b.is_empty() || (neg_b && b.starts_with('-' )) { |
| 1419 | return Err(ParseComplexError::expr_error()); |
| 1420 | } |
| 1421 | break; |
| 1422 | } |
| 1423 | } |
| 1424 | |
| 1425 | // split off real and imaginary parts |
| 1426 | if b.is_empty() { |
| 1427 | // input was either pure real or pure imaginary |
| 1428 | b = if a.ends_with(imag) { "0" } else { "0i" }; |
| 1429 | } |
| 1430 | |
| 1431 | let re; |
| 1432 | let neg_re; |
| 1433 | let im; |
| 1434 | let neg_im; |
| 1435 | if a.ends_with(imag) { |
| 1436 | im = a; |
| 1437 | neg_im = false; |
| 1438 | re = b; |
| 1439 | neg_re = neg_b; |
| 1440 | } else if b.ends_with(imag) { |
| 1441 | re = a; |
| 1442 | neg_re = false; |
| 1443 | im = b; |
| 1444 | neg_im = neg_b; |
| 1445 | } else { |
| 1446 | return Err(ParseComplexError::expr_error()); |
| 1447 | } |
| 1448 | |
| 1449 | // parse re |
| 1450 | let re = from(re).map_err(ParseComplexError::from_error)?; |
| 1451 | let re = if neg_re { T::zero() - re } else { re }; |
| 1452 | |
| 1453 | // pop imaginary unit off |
| 1454 | let mut im = &im[..im.len() - 1]; |
| 1455 | // handle im == "i" or im == "-i" |
| 1456 | if im.is_empty() || im == "+" { |
| 1457 | im = "1" ; |
| 1458 | } else if im == "-" { |
| 1459 | im = "-1" ; |
| 1460 | } |
| 1461 | |
| 1462 | // parse im |
| 1463 | let im = from(im).map_err(ParseComplexError::from_error)?; |
| 1464 | let im = if neg_im { T::zero() - im } else { im }; |
| 1465 | |
| 1466 | Ok(Complex::new(re, im)) |
| 1467 | } |
| 1468 | |
| 1469 | impl<T> FromStr for Complex<T> |
| 1470 | where |
| 1471 | T: FromStr + Num + Clone, |
| 1472 | { |
| 1473 | type Err = ParseComplexError<T::Err>; |
| 1474 | |
| 1475 | /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T` |
| 1476 | fn from_str(s: &str) -> Result<Self, Self::Err> { |
| 1477 | from_str_generic(s, T::from_str) |
| 1478 | } |
| 1479 | } |
| 1480 | |
| 1481 | impl<T: Num + Clone> Num for Complex<T> { |
| 1482 | type FromStrRadixErr = ParseComplexError<T::FromStrRadixErr>; |
| 1483 | |
| 1484 | /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T` |
| 1485 | /// |
| 1486 | /// `radix` must be <= 18; larger radix would include *i* and *j* as digits, |
| 1487 | /// which cannot be supported. |
| 1488 | /// |
| 1489 | /// The conversion returns an error if 18 <= radix <= 36; it panics if radix > 36. |
| 1490 | /// |
| 1491 | /// The elements of `T` are parsed using `Num::from_str_radix` too, and errors |
| 1492 | /// (or panics) from that are reflected here as well. |
| 1493 | fn from_str_radix(s: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> { |
| 1494 | assert!( |
| 1495 | radix <= 36, |
| 1496 | "from_str_radix: radix is too high (maximum 36)" |
| 1497 | ); |
| 1498 | |
| 1499 | // larger radix would include 'i' and 'j' as digits, which cannot be supported |
| 1500 | if radix > 18 { |
| 1501 | return Err(ParseComplexError::unsupported_radix()); |
| 1502 | } |
| 1503 | |
| 1504 | from_str_generic(s, |x| -> Result<T, T::FromStrRadixErr> { |
| 1505 | T::from_str_radix(x, radix) |
| 1506 | }) |
| 1507 | } |
| 1508 | } |
| 1509 | |
| 1510 | impl<T: Num + Clone> Sum for Complex<T> { |
| 1511 | fn sum<I>(iter: I) -> Self |
| 1512 | where |
| 1513 | I: Iterator<Item = Self>, |
| 1514 | { |
| 1515 | iter.fold(Self::zero(), |acc: Complex, c: Complex| acc + c) |
| 1516 | } |
| 1517 | } |
| 1518 | |
| 1519 | impl<'a, T: 'a + Num + Clone> Sum<&'a Complex<T>> for Complex<T> { |
| 1520 | fn sum<I>(iter: I) -> Self |
| 1521 | where |
| 1522 | I: Iterator<Item = &'a Complex<T>>, |
| 1523 | { |
| 1524 | iter.fold(Self::zero(), |acc: Complex, c: &'a Complex| acc + c) |
| 1525 | } |
| 1526 | } |
| 1527 | |
| 1528 | impl<T: Num + Clone> Product for Complex<T> { |
| 1529 | fn product<I>(iter: I) -> Self |
| 1530 | where |
| 1531 | I: Iterator<Item = Self>, |
| 1532 | { |
| 1533 | iter.fold(Self::one(), |acc: Complex, c: Complex| acc * c) |
| 1534 | } |
| 1535 | } |
| 1536 | |
| 1537 | impl<'a, T: 'a + Num + Clone> Product<&'a Complex<T>> for Complex<T> { |
| 1538 | fn product<I>(iter: I) -> Self |
| 1539 | where |
| 1540 | I: Iterator<Item = &'a Complex<T>>, |
| 1541 | { |
| 1542 | iter.fold(Self::one(), |acc: Complex, c: &'a Complex| acc * c) |
| 1543 | } |
| 1544 | } |
| 1545 | |
| 1546 | #[cfg (feature = "serde" )] |
| 1547 | impl<T> serde::Serialize for Complex<T> |
| 1548 | where |
| 1549 | T: serde::Serialize, |
| 1550 | { |
| 1551 | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> |
| 1552 | where |
| 1553 | S: serde::Serializer, |
| 1554 | { |
| 1555 | (&self.re, &self.im).serialize(serializer) |
| 1556 | } |
| 1557 | } |
| 1558 | |
| 1559 | #[cfg (feature = "serde" )] |
| 1560 | impl<'de, T> serde::Deserialize<'de> for Complex<T> |
| 1561 | where |
| 1562 | T: serde::Deserialize<'de>, |
| 1563 | { |
| 1564 | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> |
| 1565 | where |
| 1566 | D: serde::Deserializer<'de>, |
| 1567 | { |
| 1568 | let (re, im) = serde::Deserialize::deserialize(deserializer)?; |
| 1569 | Ok(Self::new(re, im)) |
| 1570 | } |
| 1571 | } |
| 1572 | |
| 1573 | #[derive (Debug, PartialEq)] |
| 1574 | pub struct ParseComplexError<E> { |
| 1575 | kind: ComplexErrorKind<E>, |
| 1576 | } |
| 1577 | |
| 1578 | #[derive (Debug, PartialEq)] |
| 1579 | enum ComplexErrorKind<E> { |
| 1580 | ParseError(E), |
| 1581 | ExprError, |
| 1582 | UnsupportedRadix, |
| 1583 | } |
| 1584 | |
| 1585 | impl<E> ParseComplexError<E> { |
| 1586 | fn expr_error() -> Self { |
| 1587 | ParseComplexError { |
| 1588 | kind: ComplexErrorKind::ExprError, |
| 1589 | } |
| 1590 | } |
| 1591 | |
| 1592 | fn unsupported_radix() -> Self { |
| 1593 | ParseComplexError { |
| 1594 | kind: ComplexErrorKind::UnsupportedRadix, |
| 1595 | } |
| 1596 | } |
| 1597 | |
| 1598 | fn from_error(error: E) -> Self { |
| 1599 | ParseComplexError { |
| 1600 | kind: ComplexErrorKind::ParseError(error), |
| 1601 | } |
| 1602 | } |
| 1603 | } |
| 1604 | |
| 1605 | #[cfg (feature = "std" )] |
| 1606 | impl<E: Error> Error for ParseComplexError<E> { |
| 1607 | #[allow (deprecated)] |
| 1608 | fn description(&self) -> &str { |
| 1609 | match self.kind { |
| 1610 | ComplexErrorKind::ParseError(ref e: &E) => e.description(), |
| 1611 | ComplexErrorKind::ExprError => "invalid or unsupported complex expression" , |
| 1612 | ComplexErrorKind::UnsupportedRadix => "unsupported radix for conversion" , |
| 1613 | } |
| 1614 | } |
| 1615 | } |
| 1616 | |
| 1617 | impl<E: fmt::Display> fmt::Display for ParseComplexError<E> { |
| 1618 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1619 | match self.kind { |
| 1620 | ComplexErrorKind::ParseError(ref e: &E) => e.fmt(f), |
| 1621 | ComplexErrorKind::ExprError => "invalid or unsupported complex expression" .fmt(f), |
| 1622 | ComplexErrorKind::UnsupportedRadix => "unsupported radix for conversion" .fmt(f), |
| 1623 | } |
| 1624 | } |
| 1625 | } |
| 1626 | |
| 1627 | #[cfg (test)] |
| 1628 | fn hash<T: hash::Hash>(x: &T) -> u64 { |
| 1629 | use std::collections::hash_map::RandomState; |
| 1630 | use std::hash::{BuildHasher, Hasher}; |
| 1631 | let mut hasher = <RandomState as BuildHasher>::Hasher::new(); |
| 1632 | x.hash(&mut hasher); |
| 1633 | hasher.finish() |
| 1634 | } |
| 1635 | |
| 1636 | #[cfg (test)] |
| 1637 | pub(crate) mod test { |
| 1638 | #![allow (non_upper_case_globals)] |
| 1639 | |
| 1640 | use super::{Complex, Complex64}; |
| 1641 | use super::{ComplexErrorKind, ParseComplexError}; |
| 1642 | use core::f64; |
| 1643 | use core::str::FromStr; |
| 1644 | |
| 1645 | use std::string::{String, ToString}; |
| 1646 | |
| 1647 | use num_traits::{Num, One, Zero}; |
| 1648 | |
| 1649 | pub const _0_0i: Complex64 = Complex::new(0.0, 0.0); |
| 1650 | pub const _1_0i: Complex64 = Complex::new(1.0, 0.0); |
| 1651 | pub const _1_1i: Complex64 = Complex::new(1.0, 1.0); |
| 1652 | pub const _0_1i: Complex64 = Complex::new(0.0, 1.0); |
| 1653 | pub const _neg1_1i: Complex64 = Complex::new(-1.0, 1.0); |
| 1654 | pub const _05_05i: Complex64 = Complex::new(0.5, 0.5); |
| 1655 | pub const all_consts: [Complex64; 5] = [_0_0i, _1_0i, _1_1i, _neg1_1i, _05_05i]; |
| 1656 | pub const _4_2i: Complex64 = Complex::new(4.0, 2.0); |
| 1657 | pub const _1_infi: Complex64 = Complex::new(1.0, f64::INFINITY); |
| 1658 | pub const _neg1_infi: Complex64 = Complex::new(-1.0, f64::INFINITY); |
| 1659 | pub const _1_nani: Complex64 = Complex::new(1.0, f64::NAN); |
| 1660 | pub const _neg1_nani: Complex64 = Complex::new(-1.0, f64::NAN); |
| 1661 | pub const _inf_0i: Complex64 = Complex::new(f64::INFINITY, 0.0); |
| 1662 | pub const _neginf_1i: Complex64 = Complex::new(f64::NEG_INFINITY, 1.0); |
| 1663 | pub const _neginf_neg1i: Complex64 = Complex::new(f64::NEG_INFINITY, -1.0); |
| 1664 | pub const _inf_1i: Complex64 = Complex::new(f64::INFINITY, 1.0); |
| 1665 | pub const _inf_neg1i: Complex64 = Complex::new(f64::INFINITY, -1.0); |
| 1666 | pub const _neginf_infi: Complex64 = Complex::new(f64::NEG_INFINITY, f64::INFINITY); |
| 1667 | pub const _inf_infi: Complex64 = Complex::new(f64::INFINITY, f64::INFINITY); |
| 1668 | pub const _neginf_nani: Complex64 = Complex::new(f64::NEG_INFINITY, f64::NAN); |
| 1669 | pub const _inf_nani: Complex64 = Complex::new(f64::INFINITY, f64::NAN); |
| 1670 | pub const _nan_0i: Complex64 = Complex::new(f64::NAN, 0.0); |
| 1671 | pub const _nan_1i: Complex64 = Complex::new(f64::NAN, 1.0); |
| 1672 | pub const _nan_neg1i: Complex64 = Complex::new(f64::NAN, -1.0); |
| 1673 | pub const _nan_nani: Complex64 = Complex::new(f64::NAN, f64::NAN); |
| 1674 | |
| 1675 | #[test ] |
| 1676 | fn test_consts() { |
| 1677 | // check our constants are what Complex::new creates |
| 1678 | fn test(c: Complex64, r: f64, i: f64) { |
| 1679 | assert_eq!(c, Complex::new(r, i)); |
| 1680 | } |
| 1681 | test (_0_0i, 0.0, 0.0); |
| 1682 | test (_1_0i, 1.0, 0.0); |
| 1683 | test (_1_1i, 1.0, 1.0); |
| 1684 | test (_neg1_1i, -1.0, 1.0); |
| 1685 | test (_05_05i, 0.5, 0.5); |
| 1686 | |
| 1687 | assert_eq!(_0_0i, Zero::zero()); |
| 1688 | assert_eq!(_1_0i, One::one()); |
| 1689 | } |
| 1690 | |
| 1691 | #[test ] |
| 1692 | fn test_scale_unscale() { |
| 1693 | assert_eq!(_05_05i.scale(2.0), _1_1i); |
| 1694 | assert_eq!(_1_1i.unscale(2.0), _05_05i); |
| 1695 | for &c in all_consts.iter() { |
| 1696 | assert_eq!(c.scale(2.0).unscale(2.0), c); |
| 1697 | } |
| 1698 | } |
| 1699 | |
| 1700 | #[test ] |
| 1701 | fn test_conj() { |
| 1702 | for &c in all_consts.iter() { |
| 1703 | assert_eq!(c.conj(), Complex::new(c.re, -c.im)); |
| 1704 | assert_eq!(c.conj().conj(), c); |
| 1705 | } |
| 1706 | } |
| 1707 | |
| 1708 | #[test ] |
| 1709 | fn test_inv() { |
| 1710 | assert_eq!(_1_1i.inv(), _05_05i.conj()); |
| 1711 | assert_eq!(_1_0i.inv(), _1_0i.inv()); |
| 1712 | } |
| 1713 | |
| 1714 | #[test ] |
| 1715 | #[should_panic ] |
| 1716 | fn test_divide_by_zero_natural() { |
| 1717 | let n = Complex::new(2, 3); |
| 1718 | let d = Complex::new(0, 0); |
| 1719 | let _x = n / d; |
| 1720 | } |
| 1721 | |
| 1722 | #[test ] |
| 1723 | fn test_inv_zero() { |
| 1724 | // FIXME #20: should this really fail, or just NaN? |
| 1725 | assert!(_0_0i.inv().is_nan()); |
| 1726 | } |
| 1727 | |
| 1728 | #[test ] |
| 1729 | #[allow (clippy::float_cmp)] |
| 1730 | fn test_l1_norm() { |
| 1731 | assert_eq!(_0_0i.l1_norm(), 0.0); |
| 1732 | assert_eq!(_1_0i.l1_norm(), 1.0); |
| 1733 | assert_eq!(_1_1i.l1_norm(), 2.0); |
| 1734 | assert_eq!(_0_1i.l1_norm(), 1.0); |
| 1735 | assert_eq!(_neg1_1i.l1_norm(), 2.0); |
| 1736 | assert_eq!(_05_05i.l1_norm(), 1.0); |
| 1737 | assert_eq!(_4_2i.l1_norm(), 6.0); |
| 1738 | } |
| 1739 | |
| 1740 | #[test ] |
| 1741 | fn test_pow() { |
| 1742 | for c in all_consts.iter() { |
| 1743 | assert_eq!(c.powi(0), _1_0i); |
| 1744 | let mut pos = _1_0i; |
| 1745 | let mut neg = _1_0i; |
| 1746 | for i in 1i32..20 { |
| 1747 | pos *= c; |
| 1748 | assert_eq!(pos, c.powi(i)); |
| 1749 | if c.is_zero() { |
| 1750 | assert!(c.powi(-i).is_nan()); |
| 1751 | } else { |
| 1752 | neg /= c; |
| 1753 | assert_eq!(neg, c.powi(-i)); |
| 1754 | } |
| 1755 | } |
| 1756 | } |
| 1757 | } |
| 1758 | |
| 1759 | #[cfg (any(feature = "std" , feature = "libm" ))] |
| 1760 | pub(crate) mod float { |
| 1761 | |
| 1762 | use core::f64::INFINITY; |
| 1763 | |
| 1764 | use super::*; |
| 1765 | use num_traits::{Float, Pow}; |
| 1766 | |
| 1767 | #[test ] |
| 1768 | fn test_cis() { |
| 1769 | assert!(close(Complex::cis(0.0 * f64::consts::PI), _1_0i)); |
| 1770 | assert!(close(Complex::cis(0.5 * f64::consts::PI), _0_1i)); |
| 1771 | assert!(close(Complex::cis(1.0 * f64::consts::PI), -_1_0i)); |
| 1772 | assert!(close(Complex::cis(1.5 * f64::consts::PI), -_0_1i)); |
| 1773 | assert!(close(Complex::cis(2.0 * f64::consts::PI), _1_0i)); |
| 1774 | } |
| 1775 | |
| 1776 | #[test ] |
| 1777 | #[cfg_attr (target_arch = "x86" , ignore)] |
| 1778 | // FIXME #7158: (maybe?) currently failing on x86. |
| 1779 | #[allow (clippy::float_cmp)] |
| 1780 | fn test_norm() { |
| 1781 | fn test(c: Complex64, ns: f64) { |
| 1782 | assert_eq!(c.norm_sqr(), ns); |
| 1783 | assert_eq!(c.norm(), ns.sqrt()) |
| 1784 | } |
| 1785 | test (_0_0i, 0.0); |
| 1786 | test (_1_0i, 1.0); |
| 1787 | test (_1_1i, 2.0); |
| 1788 | test (_neg1_1i, 2.0); |
| 1789 | test (_05_05i, 0.5); |
| 1790 | } |
| 1791 | |
| 1792 | #[test ] |
| 1793 | fn test_arg() { |
| 1794 | fn test(c: Complex64, arg: f64) { |
| 1795 | assert!((c.arg() - arg).abs() < 1.0e-6) |
| 1796 | } |
| 1797 | test (_1_0i, 0.0); |
| 1798 | test (_1_1i, 0.25 * f64::consts::PI); |
| 1799 | test (_neg1_1i, 0.75 * f64::consts::PI); |
| 1800 | test (_05_05i, 0.25 * f64::consts::PI); |
| 1801 | } |
| 1802 | |
| 1803 | #[test ] |
| 1804 | fn test_polar_conv() { |
| 1805 | fn test(c: Complex64) { |
| 1806 | let (r, theta) = c.to_polar(); |
| 1807 | assert!((c - Complex::from_polar(r, theta)).norm() < 1e-6); |
| 1808 | } |
| 1809 | for &c in all_consts.iter() { |
| 1810 | test (c); |
| 1811 | } |
| 1812 | } |
| 1813 | |
| 1814 | pub(crate) fn close(a: Complex64, b: Complex64) -> bool { |
| 1815 | close_to_tol(a, b, 1e-10) |
| 1816 | } |
| 1817 | |
| 1818 | fn close_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool { |
| 1819 | // returns true if a and b are reasonably close |
| 1820 | let close = (a == b) || (a - b).norm() < tol; |
| 1821 | if !close { |
| 1822 | println!("{:?} != {:?}" , a, b); |
| 1823 | } |
| 1824 | close |
| 1825 | } |
| 1826 | |
| 1827 | // Version that also works if re or im are +inf, -inf, or nan |
| 1828 | fn close_naninf(a: Complex64, b: Complex64) -> bool { |
| 1829 | close_naninf_to_tol(a, b, 1.0e-10) |
| 1830 | } |
| 1831 | |
| 1832 | fn close_naninf_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool { |
| 1833 | let mut close = true; |
| 1834 | |
| 1835 | // Compare the real parts |
| 1836 | if a.re.is_finite() { |
| 1837 | if b.re.is_finite() { |
| 1838 | close = (a.re == b.re) || (a.re - b.re).abs() < tol; |
| 1839 | } else { |
| 1840 | close = false; |
| 1841 | } |
| 1842 | } else if (a.re.is_nan() && !b.re.is_nan()) |
| 1843 | || (a.re.is_infinite() |
| 1844 | && a.re.is_sign_positive() |
| 1845 | && !(b.re.is_infinite() && b.re.is_sign_positive())) |
| 1846 | || (a.re.is_infinite() |
| 1847 | && a.re.is_sign_negative() |
| 1848 | && !(b.re.is_infinite() && b.re.is_sign_negative())) |
| 1849 | { |
| 1850 | close = false; |
| 1851 | } |
| 1852 | |
| 1853 | // Compare the imaginary parts |
| 1854 | if a.im.is_finite() { |
| 1855 | if b.im.is_finite() { |
| 1856 | close &= (a.im == b.im) || (a.im - b.im).abs() < tol; |
| 1857 | } else { |
| 1858 | close = false; |
| 1859 | } |
| 1860 | } else if (a.im.is_nan() && !b.im.is_nan()) |
| 1861 | || (a.im.is_infinite() |
| 1862 | && a.im.is_sign_positive() |
| 1863 | && !(b.im.is_infinite() && b.im.is_sign_positive())) |
| 1864 | || (a.im.is_infinite() |
| 1865 | && a.im.is_sign_negative() |
| 1866 | && !(b.im.is_infinite() && b.im.is_sign_negative())) |
| 1867 | { |
| 1868 | close = false; |
| 1869 | } |
| 1870 | |
| 1871 | if close == false { |
| 1872 | println!("{:?} != {:?}" , a, b); |
| 1873 | } |
| 1874 | close |
| 1875 | } |
| 1876 | |
| 1877 | #[test ] |
| 1878 | fn test_exp2() { |
| 1879 | assert!(close(_0_0i.exp2(), _1_0i)); |
| 1880 | } |
| 1881 | |
| 1882 | #[test ] |
| 1883 | fn test_exp() { |
| 1884 | assert!(close(_1_0i.exp(), _1_0i.scale(f64::consts::E))); |
| 1885 | assert!(close(_0_0i.exp(), _1_0i)); |
| 1886 | assert!(close(_0_1i.exp(), Complex::new(1.0.cos(), 1.0.sin()))); |
| 1887 | assert!(close(_05_05i.exp() * _05_05i.exp(), _1_1i.exp())); |
| 1888 | assert!(close( |
| 1889 | _0_1i.scale(-f64::consts::PI).exp(), |
| 1890 | _1_0i.scale(-1.0) |
| 1891 | )); |
| 1892 | for &c in all_consts.iter() { |
| 1893 | // e^conj(z) = conj(e^z) |
| 1894 | assert!(close(c.conj().exp(), c.exp().conj())); |
| 1895 | // e^(z + 2 pi i) = e^z |
| 1896 | assert!(close( |
| 1897 | c.exp(), |
| 1898 | (c + _0_1i.scale(f64::consts::PI * 2.0)).exp() |
| 1899 | )); |
| 1900 | } |
| 1901 | |
| 1902 | // The test values below were taken from https://en.cppreference.com/w/cpp/numeric/complex/exp |
| 1903 | assert!(close_naninf(_1_infi.exp(), _nan_nani)); |
| 1904 | assert!(close_naninf(_neg1_infi.exp(), _nan_nani)); |
| 1905 | assert!(close_naninf(_1_nani.exp(), _nan_nani)); |
| 1906 | assert!(close_naninf(_neg1_nani.exp(), _nan_nani)); |
| 1907 | assert!(close_naninf(_inf_0i.exp(), _inf_0i)); |
| 1908 | assert!(close_naninf(_neginf_1i.exp(), 0.0 * Complex::cis(1.0))); |
| 1909 | assert!(close_naninf(_neginf_neg1i.exp(), 0.0 * Complex::cis(-1.0))); |
| 1910 | assert!(close_naninf( |
| 1911 | _inf_1i.exp(), |
| 1912 | f64::INFINITY * Complex::cis(1.0) |
| 1913 | )); |
| 1914 | assert!(close_naninf( |
| 1915 | _inf_neg1i.exp(), |
| 1916 | f64::INFINITY * Complex::cis(-1.0) |
| 1917 | )); |
| 1918 | assert!(close_naninf(_neginf_infi.exp(), _0_0i)); // Note: ±0±0i: signs of zeros are unspecified |
| 1919 | assert!(close_naninf(_inf_infi.exp(), _inf_nani)); // Note: ±∞+NaN*i: sign of the real part is unspecified |
| 1920 | assert!(close_naninf(_neginf_nani.exp(), _0_0i)); // Note: ±0±0i: signs of zeros are unspecified |
| 1921 | assert!(close_naninf(_inf_nani.exp(), _inf_nani)); // Note: ±∞+NaN*i: sign of the real part is unspecified |
| 1922 | assert!(close_naninf(_nan_0i.exp(), _nan_0i)); |
| 1923 | assert!(close_naninf(_nan_1i.exp(), _nan_nani)); |
| 1924 | assert!(close_naninf(_nan_neg1i.exp(), _nan_nani)); |
| 1925 | assert!(close_naninf(_nan_nani.exp(), _nan_nani)); |
| 1926 | } |
| 1927 | |
| 1928 | #[test ] |
| 1929 | fn test_ln() { |
| 1930 | assert!(close(_1_0i.ln(), _0_0i)); |
| 1931 | assert!(close(_0_1i.ln(), _0_1i.scale(f64::consts::PI / 2.0))); |
| 1932 | assert!(close(_0_0i.ln(), Complex::new(f64::neg_infinity(), 0.0))); |
| 1933 | assert!(close( |
| 1934 | (_neg1_1i * _05_05i).ln(), |
| 1935 | _neg1_1i.ln() + _05_05i.ln() |
| 1936 | )); |
| 1937 | for &c in all_consts.iter() { |
| 1938 | // ln(conj(z() = conj(ln(z)) |
| 1939 | assert!(close(c.conj().ln(), c.ln().conj())); |
| 1940 | // for this branch, -pi <= arg(ln(z)) <= pi |
| 1941 | assert!(-f64::consts::PI <= c.ln().arg() && c.ln().arg() <= f64::consts::PI); |
| 1942 | } |
| 1943 | } |
| 1944 | |
| 1945 | #[test ] |
| 1946 | fn test_powc() { |
| 1947 | let a = Complex::new(2.0, -3.0); |
| 1948 | let b = Complex::new(3.0, 0.0); |
| 1949 | assert!(close(a.powc(b), a.powf(b.re))); |
| 1950 | assert!(close(b.powc(a), a.expf(b.re))); |
| 1951 | let c = Complex::new(1.0 / 3.0, 0.1); |
| 1952 | assert!(close_to_tol( |
| 1953 | a.powc(c), |
| 1954 | Complex::new(1.65826, -0.33502), |
| 1955 | 1e-5 |
| 1956 | )); |
| 1957 | let z = Complex::new(0.0, 0.0); |
| 1958 | assert!(close(z.powc(b), z)); |
| 1959 | assert!(z.powc(Complex64::new(0., INFINITY)).is_nan()); |
| 1960 | assert!(z.powc(Complex64::new(10., INFINITY)).is_nan()); |
| 1961 | assert!(z.powc(Complex64::new(INFINITY, INFINITY)).is_nan()); |
| 1962 | assert!(close(z.powc(Complex64::new(INFINITY, 0.)), z)); |
| 1963 | assert!(z.powc(Complex64::new(-1., 0.)).re.is_infinite()); |
| 1964 | assert!(z.powc(Complex64::new(-1., 0.)).im.is_nan()); |
| 1965 | |
| 1966 | for c in all_consts.iter() { |
| 1967 | assert_eq!(c.powc(_0_0i), _1_0i); |
| 1968 | } |
| 1969 | assert_eq!(_nan_nani.powc(_0_0i), _1_0i); |
| 1970 | } |
| 1971 | |
| 1972 | #[test ] |
| 1973 | fn test_powf() { |
| 1974 | let c = Complex64::new(2.0, -1.0); |
| 1975 | let expected = Complex64::new(-0.8684746, -16.695934); |
| 1976 | assert!(close_to_tol(c.powf(3.5), expected, 1e-5)); |
| 1977 | assert!(close_to_tol(Pow::pow(c, 3.5_f64), expected, 1e-5)); |
| 1978 | assert!(close_to_tol(Pow::pow(c, 3.5_f32), expected, 1e-5)); |
| 1979 | |
| 1980 | for c in all_consts.iter() { |
| 1981 | assert_eq!(c.powf(0.0), _1_0i); |
| 1982 | } |
| 1983 | assert_eq!(_nan_nani.powf(0.0), _1_0i); |
| 1984 | } |
| 1985 | |
| 1986 | #[test ] |
| 1987 | fn test_log() { |
| 1988 | let c = Complex::new(2.0, -1.0); |
| 1989 | let r = c.log(10.0); |
| 1990 | assert!(close_to_tol(r, Complex::new(0.349485, -0.20135958), 1e-5)); |
| 1991 | } |
| 1992 | |
| 1993 | #[test ] |
| 1994 | fn test_log2() { |
| 1995 | assert!(close(_1_0i.log2(), _0_0i)); |
| 1996 | } |
| 1997 | |
| 1998 | #[test ] |
| 1999 | fn test_log10() { |
| 2000 | assert!(close(_1_0i.log10(), _0_0i)); |
| 2001 | } |
| 2002 | |
| 2003 | #[test ] |
| 2004 | fn test_some_expf_cases() { |
| 2005 | let c = Complex::new(2.0, -1.0); |
| 2006 | let r = c.expf(10.0); |
| 2007 | assert!(close_to_tol(r, Complex::new(-66.82015, -74.39803), 1e-5)); |
| 2008 | |
| 2009 | let c = Complex::new(5.0, -2.0); |
| 2010 | let r = c.expf(3.4); |
| 2011 | assert!(close_to_tol(r, Complex::new(-349.25, -290.63), 1e-2)); |
| 2012 | |
| 2013 | let c = Complex::new(-1.5, 2.0 / 3.0); |
| 2014 | let r = c.expf(1.0 / 3.0); |
| 2015 | assert!(close_to_tol(r, Complex::new(3.8637, -3.4745), 1e-2)); |
| 2016 | } |
| 2017 | |
| 2018 | #[test ] |
| 2019 | fn test_sqrt() { |
| 2020 | assert!(close(_0_0i.sqrt(), _0_0i)); |
| 2021 | assert!(close(_1_0i.sqrt(), _1_0i)); |
| 2022 | assert!(close(Complex::new(-1.0, 0.0).sqrt(), _0_1i)); |
| 2023 | assert!(close(Complex::new(-1.0, -0.0).sqrt(), _0_1i.scale(-1.0))); |
| 2024 | assert!(close(_0_1i.sqrt(), _05_05i.scale(2.0.sqrt()))); |
| 2025 | for &c in all_consts.iter() { |
| 2026 | // sqrt(conj(z() = conj(sqrt(z)) |
| 2027 | assert!(close(c.conj().sqrt(), c.sqrt().conj())); |
| 2028 | // for this branch, -pi/2 <= arg(sqrt(z)) <= pi/2 |
| 2029 | assert!( |
| 2030 | -f64::consts::FRAC_PI_2 <= c.sqrt().arg() |
| 2031 | && c.sqrt().arg() <= f64::consts::FRAC_PI_2 |
| 2032 | ); |
| 2033 | // sqrt(z) * sqrt(z) = z |
| 2034 | assert!(close(c.sqrt() * c.sqrt(), c)); |
| 2035 | } |
| 2036 | } |
| 2037 | |
| 2038 | #[test ] |
| 2039 | fn test_sqrt_real() { |
| 2040 | for n in (0..100).map(f64::from) { |
| 2041 | // √(n² + 0i) = n + 0i |
| 2042 | let n2 = n * n; |
| 2043 | assert_eq!(Complex64::new(n2, 0.0).sqrt(), Complex64::new(n, 0.0)); |
| 2044 | // √(-n² + 0i) = 0 + ni |
| 2045 | assert_eq!(Complex64::new(-n2, 0.0).sqrt(), Complex64::new(0.0, n)); |
| 2046 | // √(-n² - 0i) = 0 - ni |
| 2047 | assert_eq!(Complex64::new(-n2, -0.0).sqrt(), Complex64::new(0.0, -n)); |
| 2048 | } |
| 2049 | } |
| 2050 | |
| 2051 | #[test ] |
| 2052 | fn test_sqrt_imag() { |
| 2053 | for n in (0..100).map(f64::from) { |
| 2054 | // √(0 + n²i) = n e^(iπ/4) |
| 2055 | let n2 = n * n; |
| 2056 | assert!(close( |
| 2057 | Complex64::new(0.0, n2).sqrt(), |
| 2058 | Complex64::from_polar(n, f64::consts::FRAC_PI_4) |
| 2059 | )); |
| 2060 | // √(0 - n²i) = n e^(-iπ/4) |
| 2061 | assert!(close( |
| 2062 | Complex64::new(0.0, -n2).sqrt(), |
| 2063 | Complex64::from_polar(n, -f64::consts::FRAC_PI_4) |
| 2064 | )); |
| 2065 | } |
| 2066 | } |
| 2067 | |
| 2068 | #[test ] |
| 2069 | fn test_cbrt() { |
| 2070 | assert!(close(_0_0i.cbrt(), _0_0i)); |
| 2071 | assert!(close(_1_0i.cbrt(), _1_0i)); |
| 2072 | assert!(close( |
| 2073 | Complex::new(-1.0, 0.0).cbrt(), |
| 2074 | Complex::new(0.5, 0.75.sqrt()) |
| 2075 | )); |
| 2076 | assert!(close( |
| 2077 | Complex::new(-1.0, -0.0).cbrt(), |
| 2078 | Complex::new(0.5, -(0.75.sqrt())) |
| 2079 | )); |
| 2080 | assert!(close(_0_1i.cbrt(), Complex::new(0.75.sqrt(), 0.5))); |
| 2081 | assert!(close(_0_1i.conj().cbrt(), Complex::new(0.75.sqrt(), -0.5))); |
| 2082 | for &c in all_consts.iter() { |
| 2083 | // cbrt(conj(z() = conj(cbrt(z)) |
| 2084 | assert!(close(c.conj().cbrt(), c.cbrt().conj())); |
| 2085 | // for this branch, -pi/3 <= arg(cbrt(z)) <= pi/3 |
| 2086 | assert!( |
| 2087 | -f64::consts::FRAC_PI_3 <= c.cbrt().arg() |
| 2088 | && c.cbrt().arg() <= f64::consts::FRAC_PI_3 |
| 2089 | ); |
| 2090 | // cbrt(z) * cbrt(z) cbrt(z) = z |
| 2091 | assert!(close(c.cbrt() * c.cbrt() * c.cbrt(), c)); |
| 2092 | } |
| 2093 | } |
| 2094 | |
| 2095 | #[test ] |
| 2096 | fn test_cbrt_real() { |
| 2097 | for n in (0..100).map(f64::from) { |
| 2098 | // ∛(n³ + 0i) = n + 0i |
| 2099 | let n3 = n * n * n; |
| 2100 | assert!(close( |
| 2101 | Complex64::new(n3, 0.0).cbrt(), |
| 2102 | Complex64::new(n, 0.0) |
| 2103 | )); |
| 2104 | // ∛(-n³ + 0i) = n e^(iπ/3) |
| 2105 | assert!(close( |
| 2106 | Complex64::new(-n3, 0.0).cbrt(), |
| 2107 | Complex64::from_polar(n, f64::consts::FRAC_PI_3) |
| 2108 | )); |
| 2109 | // ∛(-n³ - 0i) = n e^(-iπ/3) |
| 2110 | assert!(close( |
| 2111 | Complex64::new(-n3, -0.0).cbrt(), |
| 2112 | Complex64::from_polar(n, -f64::consts::FRAC_PI_3) |
| 2113 | )); |
| 2114 | } |
| 2115 | } |
| 2116 | |
| 2117 | #[test ] |
| 2118 | fn test_cbrt_imag() { |
| 2119 | for n in (0..100).map(f64::from) { |
| 2120 | // ∛(0 + n³i) = n e^(iπ/6) |
| 2121 | let n3 = n * n * n; |
| 2122 | assert!(close( |
| 2123 | Complex64::new(0.0, n3).cbrt(), |
| 2124 | Complex64::from_polar(n, f64::consts::FRAC_PI_6) |
| 2125 | )); |
| 2126 | // ∛(0 - n³i) = n e^(-iπ/6) |
| 2127 | assert!(close( |
| 2128 | Complex64::new(0.0, -n3).cbrt(), |
| 2129 | Complex64::from_polar(n, -f64::consts::FRAC_PI_6) |
| 2130 | )); |
| 2131 | } |
| 2132 | } |
| 2133 | |
| 2134 | #[test ] |
| 2135 | fn test_sin() { |
| 2136 | assert!(close(_0_0i.sin(), _0_0i)); |
| 2137 | assert!(close(_1_0i.scale(f64::consts::PI * 2.0).sin(), _0_0i)); |
| 2138 | assert!(close(_0_1i.sin(), _0_1i.scale(1.0.sinh()))); |
| 2139 | for &c in all_consts.iter() { |
| 2140 | // sin(conj(z)) = conj(sin(z)) |
| 2141 | assert!(close(c.conj().sin(), c.sin().conj())); |
| 2142 | // sin(-z) = -sin(z) |
| 2143 | assert!(close(c.scale(-1.0).sin(), c.sin().scale(-1.0))); |
| 2144 | } |
| 2145 | } |
| 2146 | |
| 2147 | #[test ] |
| 2148 | fn test_cos() { |
| 2149 | assert!(close(_0_0i.cos(), _1_0i)); |
| 2150 | assert!(close(_1_0i.scale(f64::consts::PI * 2.0).cos(), _1_0i)); |
| 2151 | assert!(close(_0_1i.cos(), _1_0i.scale(1.0.cosh()))); |
| 2152 | for &c in all_consts.iter() { |
| 2153 | // cos(conj(z)) = conj(cos(z)) |
| 2154 | assert!(close(c.conj().cos(), c.cos().conj())); |
| 2155 | // cos(-z) = cos(z) |
| 2156 | assert!(close(c.scale(-1.0).cos(), c.cos())); |
| 2157 | } |
| 2158 | } |
| 2159 | |
| 2160 | #[test ] |
| 2161 | fn test_tan() { |
| 2162 | assert!(close(_0_0i.tan(), _0_0i)); |
| 2163 | assert!(close(_1_0i.scale(f64::consts::PI / 4.0).tan(), _1_0i)); |
| 2164 | assert!(close(_1_0i.scale(f64::consts::PI).tan(), _0_0i)); |
| 2165 | for &c in all_consts.iter() { |
| 2166 | // tan(conj(z)) = conj(tan(z)) |
| 2167 | assert!(close(c.conj().tan(), c.tan().conj())); |
| 2168 | // tan(-z) = -tan(z) |
| 2169 | assert!(close(c.scale(-1.0).tan(), c.tan().scale(-1.0))); |
| 2170 | } |
| 2171 | } |
| 2172 | |
| 2173 | #[test ] |
| 2174 | fn test_asin() { |
| 2175 | assert!(close(_0_0i.asin(), _0_0i)); |
| 2176 | assert!(close(_1_0i.asin(), _1_0i.scale(f64::consts::PI / 2.0))); |
| 2177 | assert!(close( |
| 2178 | _1_0i.scale(-1.0).asin(), |
| 2179 | _1_0i.scale(-f64::consts::PI / 2.0) |
| 2180 | )); |
| 2181 | assert!(close(_0_1i.asin(), _0_1i.scale((1.0 + 2.0.sqrt()).ln()))); |
| 2182 | for &c in all_consts.iter() { |
| 2183 | // asin(conj(z)) = conj(asin(z)) |
| 2184 | assert!(close(c.conj().asin(), c.asin().conj())); |
| 2185 | // asin(-z) = -asin(z) |
| 2186 | assert!(close(c.scale(-1.0).asin(), c.asin().scale(-1.0))); |
| 2187 | // for this branch, -pi/2 <= asin(z).re <= pi/2 |
| 2188 | assert!( |
| 2189 | -f64::consts::PI / 2.0 <= c.asin().re && c.asin().re <= f64::consts::PI / 2.0 |
| 2190 | ); |
| 2191 | } |
| 2192 | } |
| 2193 | |
| 2194 | #[test ] |
| 2195 | fn test_acos() { |
| 2196 | assert!(close(_0_0i.acos(), _1_0i.scale(f64::consts::PI / 2.0))); |
| 2197 | assert!(close(_1_0i.acos(), _0_0i)); |
| 2198 | assert!(close( |
| 2199 | _1_0i.scale(-1.0).acos(), |
| 2200 | _1_0i.scale(f64::consts::PI) |
| 2201 | )); |
| 2202 | assert!(close( |
| 2203 | _0_1i.acos(), |
| 2204 | Complex::new(f64::consts::PI / 2.0, (2.0.sqrt() - 1.0).ln()) |
| 2205 | )); |
| 2206 | for &c in all_consts.iter() { |
| 2207 | // acos(conj(z)) = conj(acos(z)) |
| 2208 | assert!(close(c.conj().acos(), c.acos().conj())); |
| 2209 | // for this branch, 0 <= acos(z).re <= pi |
| 2210 | assert!(0.0 <= c.acos().re && c.acos().re <= f64::consts::PI); |
| 2211 | } |
| 2212 | } |
| 2213 | |
| 2214 | #[test ] |
| 2215 | fn test_atan() { |
| 2216 | assert!(close(_0_0i.atan(), _0_0i)); |
| 2217 | assert!(close(_1_0i.atan(), _1_0i.scale(f64::consts::PI / 4.0))); |
| 2218 | assert!(close( |
| 2219 | _1_0i.scale(-1.0).atan(), |
| 2220 | _1_0i.scale(-f64::consts::PI / 4.0) |
| 2221 | )); |
| 2222 | assert!(close(_0_1i.atan(), Complex::new(0.0, f64::infinity()))); |
| 2223 | for &c in all_consts.iter() { |
| 2224 | // atan(conj(z)) = conj(atan(z)) |
| 2225 | assert!(close(c.conj().atan(), c.atan().conj())); |
| 2226 | // atan(-z) = -atan(z) |
| 2227 | assert!(close(c.scale(-1.0).atan(), c.atan().scale(-1.0))); |
| 2228 | // for this branch, -pi/2 <= atan(z).re <= pi/2 |
| 2229 | assert!( |
| 2230 | -f64::consts::PI / 2.0 <= c.atan().re && c.atan().re <= f64::consts::PI / 2.0 |
| 2231 | ); |
| 2232 | } |
| 2233 | } |
| 2234 | |
| 2235 | #[test ] |
| 2236 | fn test_sinh() { |
| 2237 | assert!(close(_0_0i.sinh(), _0_0i)); |
| 2238 | assert!(close( |
| 2239 | _1_0i.sinh(), |
| 2240 | _1_0i.scale((f64::consts::E - 1.0 / f64::consts::E) / 2.0) |
| 2241 | )); |
| 2242 | assert!(close(_0_1i.sinh(), _0_1i.scale(1.0.sin()))); |
| 2243 | for &c in all_consts.iter() { |
| 2244 | // sinh(conj(z)) = conj(sinh(z)) |
| 2245 | assert!(close(c.conj().sinh(), c.sinh().conj())); |
| 2246 | // sinh(-z) = -sinh(z) |
| 2247 | assert!(close(c.scale(-1.0).sinh(), c.sinh().scale(-1.0))); |
| 2248 | } |
| 2249 | } |
| 2250 | |
| 2251 | #[test ] |
| 2252 | fn test_cosh() { |
| 2253 | assert!(close(_0_0i.cosh(), _1_0i)); |
| 2254 | assert!(close( |
| 2255 | _1_0i.cosh(), |
| 2256 | _1_0i.scale((f64::consts::E + 1.0 / f64::consts::E) / 2.0) |
| 2257 | )); |
| 2258 | assert!(close(_0_1i.cosh(), _1_0i.scale(1.0.cos()))); |
| 2259 | for &c in all_consts.iter() { |
| 2260 | // cosh(conj(z)) = conj(cosh(z)) |
| 2261 | assert!(close(c.conj().cosh(), c.cosh().conj())); |
| 2262 | // cosh(-z) = cosh(z) |
| 2263 | assert!(close(c.scale(-1.0).cosh(), c.cosh())); |
| 2264 | } |
| 2265 | } |
| 2266 | |
| 2267 | #[test ] |
| 2268 | fn test_tanh() { |
| 2269 | assert!(close(_0_0i.tanh(), _0_0i)); |
| 2270 | assert!(close( |
| 2271 | _1_0i.tanh(), |
| 2272 | _1_0i.scale((f64::consts::E.powi(2) - 1.0) / (f64::consts::E.powi(2) + 1.0)) |
| 2273 | )); |
| 2274 | assert!(close(_0_1i.tanh(), _0_1i.scale(1.0.tan()))); |
| 2275 | for &c in all_consts.iter() { |
| 2276 | // tanh(conj(z)) = conj(tanh(z)) |
| 2277 | assert!(close(c.conj().tanh(), c.conj().tanh())); |
| 2278 | // tanh(-z) = -tanh(z) |
| 2279 | assert!(close(c.scale(-1.0).tanh(), c.tanh().scale(-1.0))); |
| 2280 | } |
| 2281 | } |
| 2282 | |
| 2283 | #[test ] |
| 2284 | fn test_asinh() { |
| 2285 | assert!(close(_0_0i.asinh(), _0_0i)); |
| 2286 | assert!(close(_1_0i.asinh(), _1_0i.scale(1.0 + 2.0.sqrt()).ln())); |
| 2287 | assert!(close(_0_1i.asinh(), _0_1i.scale(f64::consts::PI / 2.0))); |
| 2288 | assert!(close( |
| 2289 | _0_1i.asinh().scale(-1.0), |
| 2290 | _0_1i.scale(-f64::consts::PI / 2.0) |
| 2291 | )); |
| 2292 | for &c in all_consts.iter() { |
| 2293 | // asinh(conj(z)) = conj(asinh(z)) |
| 2294 | assert!(close(c.conj().asinh(), c.conj().asinh())); |
| 2295 | // asinh(-z) = -asinh(z) |
| 2296 | assert!(close(c.scale(-1.0).asinh(), c.asinh().scale(-1.0))); |
| 2297 | // for this branch, -pi/2 <= asinh(z).im <= pi/2 |
| 2298 | assert!( |
| 2299 | -f64::consts::PI / 2.0 <= c.asinh().im && c.asinh().im <= f64::consts::PI / 2.0 |
| 2300 | ); |
| 2301 | } |
| 2302 | } |
| 2303 | |
| 2304 | #[test ] |
| 2305 | fn test_acosh() { |
| 2306 | assert!(close(_0_0i.acosh(), _0_1i.scale(f64::consts::PI / 2.0))); |
| 2307 | assert!(close(_1_0i.acosh(), _0_0i)); |
| 2308 | assert!(close( |
| 2309 | _1_0i.scale(-1.0).acosh(), |
| 2310 | _0_1i.scale(f64::consts::PI) |
| 2311 | )); |
| 2312 | for &c in all_consts.iter() { |
| 2313 | // acosh(conj(z)) = conj(acosh(z)) |
| 2314 | assert!(close(c.conj().acosh(), c.conj().acosh())); |
| 2315 | // for this branch, -pi <= acosh(z).im <= pi and 0 <= acosh(z).re |
| 2316 | assert!( |
| 2317 | -f64::consts::PI <= c.acosh().im |
| 2318 | && c.acosh().im <= f64::consts::PI |
| 2319 | && 0.0 <= c.cosh().re |
| 2320 | ); |
| 2321 | } |
| 2322 | } |
| 2323 | |
| 2324 | #[test ] |
| 2325 | fn test_atanh() { |
| 2326 | assert!(close(_0_0i.atanh(), _0_0i)); |
| 2327 | assert!(close(_0_1i.atanh(), _0_1i.scale(f64::consts::PI / 4.0))); |
| 2328 | assert!(close(_1_0i.atanh(), Complex::new(f64::infinity(), 0.0))); |
| 2329 | for &c in all_consts.iter() { |
| 2330 | // atanh(conj(z)) = conj(atanh(z)) |
| 2331 | assert!(close(c.conj().atanh(), c.conj().atanh())); |
| 2332 | // atanh(-z) = -atanh(z) |
| 2333 | assert!(close(c.scale(-1.0).atanh(), c.atanh().scale(-1.0))); |
| 2334 | // for this branch, -pi/2 <= atanh(z).im <= pi/2 |
| 2335 | assert!( |
| 2336 | -f64::consts::PI / 2.0 <= c.atanh().im && c.atanh().im <= f64::consts::PI / 2.0 |
| 2337 | ); |
| 2338 | } |
| 2339 | } |
| 2340 | |
| 2341 | #[test ] |
| 2342 | fn test_exp_ln() { |
| 2343 | for &c in all_consts.iter() { |
| 2344 | // e^ln(z) = z |
| 2345 | assert!(close(c.ln().exp(), c)); |
| 2346 | } |
| 2347 | } |
| 2348 | |
| 2349 | #[test ] |
| 2350 | fn test_exp2_log() { |
| 2351 | for &c in all_consts.iter() { |
| 2352 | // 2^log2(z) = z |
| 2353 | assert!(close(c.log2().exp2(), c)); |
| 2354 | } |
| 2355 | } |
| 2356 | |
| 2357 | #[test ] |
| 2358 | fn test_trig_to_hyperbolic() { |
| 2359 | for &c in all_consts.iter() { |
| 2360 | // sin(iz) = i sinh(z) |
| 2361 | assert!(close((_0_1i * c).sin(), _0_1i * c.sinh())); |
| 2362 | // cos(iz) = cosh(z) |
| 2363 | assert!(close((_0_1i * c).cos(), c.cosh())); |
| 2364 | // tan(iz) = i tanh(z) |
| 2365 | assert!(close((_0_1i * c).tan(), _0_1i * c.tanh())); |
| 2366 | } |
| 2367 | } |
| 2368 | |
| 2369 | #[test ] |
| 2370 | fn test_trig_identities() { |
| 2371 | for &c in all_consts.iter() { |
| 2372 | // tan(z) = sin(z)/cos(z) |
| 2373 | assert!(close(c.tan(), c.sin() / c.cos())); |
| 2374 | // sin(z)^2 + cos(z)^2 = 1 |
| 2375 | assert!(close(c.sin() * c.sin() + c.cos() * c.cos(), _1_0i)); |
| 2376 | |
| 2377 | // sin(asin(z)) = z |
| 2378 | assert!(close(c.asin().sin(), c)); |
| 2379 | // cos(acos(z)) = z |
| 2380 | assert!(close(c.acos().cos(), c)); |
| 2381 | // tan(atan(z)) = z |
| 2382 | // i and -i are branch points |
| 2383 | if c != _0_1i && c != _0_1i.scale(-1.0) { |
| 2384 | assert!(close(c.atan().tan(), c)); |
| 2385 | } |
| 2386 | |
| 2387 | // sin(z) = (e^(iz) - e^(-iz))/(2i) |
| 2388 | assert!(close( |
| 2389 | ((_0_1i * c).exp() - (_0_1i * c).exp().inv()) / _0_1i.scale(2.0), |
| 2390 | c.sin() |
| 2391 | )); |
| 2392 | // cos(z) = (e^(iz) + e^(-iz))/2 |
| 2393 | assert!(close( |
| 2394 | ((_0_1i * c).exp() + (_0_1i * c).exp().inv()).unscale(2.0), |
| 2395 | c.cos() |
| 2396 | )); |
| 2397 | // tan(z) = i (1 - e^(2iz))/(1 + e^(2iz)) |
| 2398 | assert!(close( |
| 2399 | _0_1i * (_1_0i - (_0_1i * c).scale(2.0).exp()) |
| 2400 | / (_1_0i + (_0_1i * c).scale(2.0).exp()), |
| 2401 | c.tan() |
| 2402 | )); |
| 2403 | } |
| 2404 | } |
| 2405 | |
| 2406 | #[test ] |
| 2407 | fn test_hyperbolic_identites() { |
| 2408 | for &c in all_consts.iter() { |
| 2409 | // tanh(z) = sinh(z)/cosh(z) |
| 2410 | assert!(close(c.tanh(), c.sinh() / c.cosh())); |
| 2411 | // cosh(z)^2 - sinh(z)^2 = 1 |
| 2412 | assert!(close(c.cosh() * c.cosh() - c.sinh() * c.sinh(), _1_0i)); |
| 2413 | |
| 2414 | // sinh(asinh(z)) = z |
| 2415 | assert!(close(c.asinh().sinh(), c)); |
| 2416 | // cosh(acosh(z)) = z |
| 2417 | assert!(close(c.acosh().cosh(), c)); |
| 2418 | // tanh(atanh(z)) = z |
| 2419 | // 1 and -1 are branch points |
| 2420 | if c != _1_0i && c != _1_0i.scale(-1.0) { |
| 2421 | assert!(close(c.atanh().tanh(), c)); |
| 2422 | } |
| 2423 | |
| 2424 | // sinh(z) = (e^z - e^(-z))/2 |
| 2425 | assert!(close((c.exp() - c.exp().inv()).unscale(2.0), c.sinh())); |
| 2426 | // cosh(z) = (e^z + e^(-z))/2 |
| 2427 | assert!(close((c.exp() + c.exp().inv()).unscale(2.0), c.cosh())); |
| 2428 | // tanh(z) = ( e^(2z) - 1)/(e^(2z) + 1) |
| 2429 | assert!(close( |
| 2430 | (c.scale(2.0).exp() - _1_0i) / (c.scale(2.0).exp() + _1_0i), |
| 2431 | c.tanh() |
| 2432 | )); |
| 2433 | } |
| 2434 | } |
| 2435 | } |
| 2436 | |
| 2437 | // Test both a + b and a += b |
| 2438 | macro_rules! test_a_op_b { |
| 2439 | ($a:ident + $b:expr, $answer:expr) => { |
| 2440 | assert_eq!($a + $b, $answer); |
| 2441 | assert_eq!( |
| 2442 | { |
| 2443 | let mut x = $a; |
| 2444 | x += $b; |
| 2445 | x |
| 2446 | }, |
| 2447 | $answer |
| 2448 | ); |
| 2449 | }; |
| 2450 | ($a:ident - $b:expr, $answer:expr) => { |
| 2451 | assert_eq!($a - $b, $answer); |
| 2452 | assert_eq!( |
| 2453 | { |
| 2454 | let mut x = $a; |
| 2455 | x -= $b; |
| 2456 | x |
| 2457 | }, |
| 2458 | $answer |
| 2459 | ); |
| 2460 | }; |
| 2461 | ($a:ident * $b:expr, $answer:expr) => { |
| 2462 | assert_eq!($a * $b, $answer); |
| 2463 | assert_eq!( |
| 2464 | { |
| 2465 | let mut x = $a; |
| 2466 | x *= $b; |
| 2467 | x |
| 2468 | }, |
| 2469 | $answer |
| 2470 | ); |
| 2471 | }; |
| 2472 | ($a:ident / $b:expr, $answer:expr) => { |
| 2473 | assert_eq!($a / $b, $answer); |
| 2474 | assert_eq!( |
| 2475 | { |
| 2476 | let mut x = $a; |
| 2477 | x /= $b; |
| 2478 | x |
| 2479 | }, |
| 2480 | $answer |
| 2481 | ); |
| 2482 | }; |
| 2483 | ($a:ident % $b:expr, $answer:expr) => { |
| 2484 | assert_eq!($a % $b, $answer); |
| 2485 | assert_eq!( |
| 2486 | { |
| 2487 | let mut x = $a; |
| 2488 | x %= $b; |
| 2489 | x |
| 2490 | }, |
| 2491 | $answer |
| 2492 | ); |
| 2493 | }; |
| 2494 | } |
| 2495 | |
| 2496 | // Test both a + b and a + &b |
| 2497 | macro_rules! test_op { |
| 2498 | ($a:ident $op:tt $b:expr, $answer:expr) => { |
| 2499 | test_a_op_b!($a $op $b, $answer); |
| 2500 | test_a_op_b!($a $op &$b, $answer); |
| 2501 | }; |
| 2502 | } |
| 2503 | |
| 2504 | mod complex_arithmetic { |
| 2505 | use super::{_05_05i, _0_0i, _0_1i, _1_0i, _1_1i, _4_2i, _neg1_1i, all_consts}; |
| 2506 | use num_traits::{MulAdd, MulAddAssign, Zero}; |
| 2507 | |
| 2508 | #[test ] |
| 2509 | fn test_add() { |
| 2510 | test_op!(_05_05i + _05_05i, _1_1i); |
| 2511 | test_op!(_0_1i + _1_0i, _1_1i); |
| 2512 | test_op!(_1_0i + _neg1_1i, _0_1i); |
| 2513 | |
| 2514 | for &c in all_consts.iter() { |
| 2515 | test_op!(_0_0i + c, c); |
| 2516 | test_op!(c + _0_0i, c); |
| 2517 | } |
| 2518 | } |
| 2519 | |
| 2520 | #[test ] |
| 2521 | fn test_sub() { |
| 2522 | test_op!(_05_05i - _05_05i, _0_0i); |
| 2523 | test_op!(_0_1i - _1_0i, _neg1_1i); |
| 2524 | test_op!(_0_1i - _neg1_1i, _1_0i); |
| 2525 | |
| 2526 | for &c in all_consts.iter() { |
| 2527 | test_op!(c - _0_0i, c); |
| 2528 | test_op!(c - c, _0_0i); |
| 2529 | } |
| 2530 | } |
| 2531 | |
| 2532 | #[test ] |
| 2533 | fn test_mul() { |
| 2534 | test_op!(_05_05i * _05_05i, _0_1i.unscale(2.0)); |
| 2535 | test_op!(_1_1i * _0_1i, _neg1_1i); |
| 2536 | |
| 2537 | // i^2 & i^4 |
| 2538 | test_op!(_0_1i * _0_1i, -_1_0i); |
| 2539 | assert_eq!(_0_1i * _0_1i * _0_1i * _0_1i, _1_0i); |
| 2540 | |
| 2541 | for &c in all_consts.iter() { |
| 2542 | test_op!(c * _1_0i, c); |
| 2543 | test_op!(_1_0i * c, c); |
| 2544 | } |
| 2545 | } |
| 2546 | |
| 2547 | #[test ] |
| 2548 | #[cfg (any(feature = "std" , feature = "libm" ))] |
| 2549 | fn test_mul_add_float() { |
| 2550 | assert_eq!(_05_05i.mul_add(_05_05i, _0_0i), _05_05i * _05_05i + _0_0i); |
| 2551 | assert_eq!(_05_05i * _05_05i + _0_0i, _05_05i.mul_add(_05_05i, _0_0i)); |
| 2552 | assert_eq!(_0_1i.mul_add(_0_1i, _0_1i), _neg1_1i); |
| 2553 | assert_eq!(_1_0i.mul_add(_1_0i, _1_0i), _1_0i * _1_0i + _1_0i); |
| 2554 | assert_eq!(_1_0i * _1_0i + _1_0i, _1_0i.mul_add(_1_0i, _1_0i)); |
| 2555 | |
| 2556 | let mut x = _1_0i; |
| 2557 | x.mul_add_assign(_1_0i, _1_0i); |
| 2558 | assert_eq!(x, _1_0i * _1_0i + _1_0i); |
| 2559 | |
| 2560 | for &a in &all_consts { |
| 2561 | for &b in &all_consts { |
| 2562 | for &c in &all_consts { |
| 2563 | let abc = a * b + c; |
| 2564 | assert_eq!(a.mul_add(b, c), abc); |
| 2565 | let mut x = a; |
| 2566 | x.mul_add_assign(b, c); |
| 2567 | assert_eq!(x, abc); |
| 2568 | } |
| 2569 | } |
| 2570 | } |
| 2571 | } |
| 2572 | |
| 2573 | #[test ] |
| 2574 | fn test_mul_add() { |
| 2575 | use super::Complex; |
| 2576 | const _0_0i: Complex<i32> = Complex { re: 0, im: 0 }; |
| 2577 | const _1_0i: Complex<i32> = Complex { re: 1, im: 0 }; |
| 2578 | const _1_1i: Complex<i32> = Complex { re: 1, im: 1 }; |
| 2579 | const _0_1i: Complex<i32> = Complex { re: 0, im: 1 }; |
| 2580 | const _neg1_1i: Complex<i32> = Complex { re: -1, im: 1 }; |
| 2581 | const all_consts: [Complex<i32>; 5] = [_0_0i, _1_0i, _1_1i, _0_1i, _neg1_1i]; |
| 2582 | |
| 2583 | assert_eq!(_1_0i.mul_add(_1_0i, _0_0i), _1_0i * _1_0i + _0_0i); |
| 2584 | assert_eq!(_1_0i * _1_0i + _0_0i, _1_0i.mul_add(_1_0i, _0_0i)); |
| 2585 | assert_eq!(_0_1i.mul_add(_0_1i, _0_1i), _neg1_1i); |
| 2586 | assert_eq!(_1_0i.mul_add(_1_0i, _1_0i), _1_0i * _1_0i + _1_0i); |
| 2587 | assert_eq!(_1_0i * _1_0i + _1_0i, _1_0i.mul_add(_1_0i, _1_0i)); |
| 2588 | |
| 2589 | let mut x = _1_0i; |
| 2590 | x.mul_add_assign(_1_0i, _1_0i); |
| 2591 | assert_eq!(x, _1_0i * _1_0i + _1_0i); |
| 2592 | |
| 2593 | for &a in &all_consts { |
| 2594 | for &b in &all_consts { |
| 2595 | for &c in &all_consts { |
| 2596 | let abc = a * b + c; |
| 2597 | assert_eq!(a.mul_add(b, c), abc); |
| 2598 | let mut x = a; |
| 2599 | x.mul_add_assign(b, c); |
| 2600 | assert_eq!(x, abc); |
| 2601 | } |
| 2602 | } |
| 2603 | } |
| 2604 | } |
| 2605 | |
| 2606 | #[test ] |
| 2607 | fn test_div() { |
| 2608 | test_op!(_neg1_1i / _0_1i, _1_1i); |
| 2609 | for &c in all_consts.iter() { |
| 2610 | if c != Zero::zero() { |
| 2611 | test_op!(c / c, _1_0i); |
| 2612 | } |
| 2613 | } |
| 2614 | } |
| 2615 | |
| 2616 | #[test ] |
| 2617 | fn test_rem() { |
| 2618 | test_op!(_neg1_1i % _0_1i, _0_0i); |
| 2619 | test_op!(_4_2i % _0_1i, _0_0i); |
| 2620 | test_op!(_05_05i % _0_1i, _05_05i); |
| 2621 | test_op!(_05_05i % _1_1i, _05_05i); |
| 2622 | assert_eq!((_4_2i + _05_05i) % _0_1i, _05_05i); |
| 2623 | assert_eq!((_4_2i + _05_05i) % _1_1i, _05_05i); |
| 2624 | } |
| 2625 | |
| 2626 | #[test ] |
| 2627 | fn test_neg() { |
| 2628 | assert_eq!(-_1_0i + _0_1i, _neg1_1i); |
| 2629 | assert_eq!((-_0_1i) * _0_1i, _1_0i); |
| 2630 | for &c in all_consts.iter() { |
| 2631 | assert_eq!(-(-c), c); |
| 2632 | } |
| 2633 | } |
| 2634 | } |
| 2635 | |
| 2636 | mod real_arithmetic { |
| 2637 | use super::super::Complex; |
| 2638 | use super::{_4_2i, _neg1_1i}; |
| 2639 | |
| 2640 | #[test ] |
| 2641 | fn test_add() { |
| 2642 | test_op!(_4_2i + 0.5, Complex::new(4.5, 2.0)); |
| 2643 | assert_eq!(0.5 + _4_2i, Complex::new(4.5, 2.0)); |
| 2644 | } |
| 2645 | |
| 2646 | #[test ] |
| 2647 | fn test_sub() { |
| 2648 | test_op!(_4_2i - 0.5, Complex::new(3.5, 2.0)); |
| 2649 | assert_eq!(0.5 - _4_2i, Complex::new(-3.5, -2.0)); |
| 2650 | } |
| 2651 | |
| 2652 | #[test ] |
| 2653 | fn test_mul() { |
| 2654 | assert_eq!(_4_2i * 0.5, Complex::new(2.0, 1.0)); |
| 2655 | assert_eq!(0.5 * _4_2i, Complex::new(2.0, 1.0)); |
| 2656 | } |
| 2657 | |
| 2658 | #[test ] |
| 2659 | fn test_div() { |
| 2660 | assert_eq!(_4_2i / 0.5, Complex::new(8.0, 4.0)); |
| 2661 | assert_eq!(0.5 / _4_2i, Complex::new(0.1, -0.05)); |
| 2662 | } |
| 2663 | |
| 2664 | #[test ] |
| 2665 | fn test_rem() { |
| 2666 | assert_eq!(_4_2i % 2.0, Complex::new(0.0, 0.0)); |
| 2667 | assert_eq!(_4_2i % 3.0, Complex::new(1.0, 2.0)); |
| 2668 | assert_eq!(3.0 % _4_2i, Complex::new(3.0, 0.0)); |
| 2669 | assert_eq!(_neg1_1i % 2.0, _neg1_1i); |
| 2670 | assert_eq!(-_4_2i % 3.0, Complex::new(-1.0, -2.0)); |
| 2671 | } |
| 2672 | |
| 2673 | #[test ] |
| 2674 | fn test_div_rem_gaussian() { |
| 2675 | // These would overflow with `norm_sqr` division. |
| 2676 | let max = Complex::new(255u8, 255u8); |
| 2677 | assert_eq!(max / 200, Complex::new(1, 1)); |
| 2678 | assert_eq!(max % 200, Complex::new(55, 55)); |
| 2679 | } |
| 2680 | } |
| 2681 | |
| 2682 | #[test ] |
| 2683 | fn test_to_string() { |
| 2684 | fn test(c: Complex64, s: String) { |
| 2685 | assert_eq!(c.to_string(), s); |
| 2686 | } |
| 2687 | test (_0_0i, "0+0i" .to_string()); |
| 2688 | test (_1_0i, "1+0i" .to_string()); |
| 2689 | test (_0_1i, "0+1i" .to_string()); |
| 2690 | test (_1_1i, "1+1i" .to_string()); |
| 2691 | test (_neg1_1i, "-1+1i" .to_string()); |
| 2692 | test (-_neg1_1i, "1-1i" .to_string()); |
| 2693 | test (_05_05i, "0.5+0.5i" .to_string()); |
| 2694 | } |
| 2695 | |
| 2696 | #[test ] |
| 2697 | fn test_string_formatting() { |
| 2698 | let a = Complex::new(1.23456, 123.456); |
| 2699 | assert_eq!(format!("{}" , a), "1.23456+123.456i" ); |
| 2700 | assert_eq!(format!("{:.2}" , a), "1.23+123.46i" ); |
| 2701 | assert_eq!(format!("{:.2e}" , a), "1.23e0+1.23e2i" ); |
| 2702 | assert_eq!(format!("{:+.2E}" , a), "+1.23E0+1.23E2i" ); |
| 2703 | #[cfg (feature = "std" )] |
| 2704 | assert_eq!(format!("{:+20.2E}" , a), " +1.23E0+1.23E2i" ); |
| 2705 | |
| 2706 | let b = Complex::new(0x80, 0xff); |
| 2707 | assert_eq!(format!("{:X}" , b), "80+FFi" ); |
| 2708 | assert_eq!(format!("{:#x}" , b), "0x80+0xffi" ); |
| 2709 | assert_eq!(format!("{:+#b}" , b), "+0b10000000+0b11111111i" ); |
| 2710 | assert_eq!(format!("{:+#o}" , b), "+0o200+0o377i" ); |
| 2711 | #[cfg (feature = "std" )] |
| 2712 | assert_eq!(format!("{:+#16o}" , b), " +0o200+0o377i" ); |
| 2713 | |
| 2714 | let c = Complex::new(-10, -10000); |
| 2715 | assert_eq!(format!("{}" , c), "-10-10000i" ); |
| 2716 | #[cfg (feature = "std" )] |
| 2717 | assert_eq!(format!("{:16}" , c), " -10-10000i" ); |
| 2718 | } |
| 2719 | |
| 2720 | #[test ] |
| 2721 | fn test_hash() { |
| 2722 | let a = Complex::new(0i32, 0i32); |
| 2723 | let b = Complex::new(1i32, 0i32); |
| 2724 | let c = Complex::new(0i32, 1i32); |
| 2725 | assert!(crate::hash(&a) != crate::hash(&b)); |
| 2726 | assert!(crate::hash(&b) != crate::hash(&c)); |
| 2727 | assert!(crate::hash(&c) != crate::hash(&a)); |
| 2728 | } |
| 2729 | |
| 2730 | #[test ] |
| 2731 | fn test_hashset() { |
| 2732 | use std::collections::HashSet; |
| 2733 | let a = Complex::new(0i32, 0i32); |
| 2734 | let b = Complex::new(1i32, 0i32); |
| 2735 | let c = Complex::new(0i32, 1i32); |
| 2736 | |
| 2737 | let set: HashSet<_> = [a, b, c].iter().cloned().collect(); |
| 2738 | assert!(set.contains(&a)); |
| 2739 | assert!(set.contains(&b)); |
| 2740 | assert!(set.contains(&c)); |
| 2741 | assert!(!set.contains(&(a + b + c))); |
| 2742 | } |
| 2743 | |
| 2744 | #[test ] |
| 2745 | fn test_is_nan() { |
| 2746 | assert!(!_1_1i.is_nan()); |
| 2747 | let a = Complex::new(f64::NAN, f64::NAN); |
| 2748 | assert!(a.is_nan()); |
| 2749 | } |
| 2750 | |
| 2751 | #[test ] |
| 2752 | fn test_is_nan_special_cases() { |
| 2753 | let a = Complex::new(0f64, f64::NAN); |
| 2754 | let b = Complex::new(f64::NAN, 0f64); |
| 2755 | assert!(a.is_nan()); |
| 2756 | assert!(b.is_nan()); |
| 2757 | } |
| 2758 | |
| 2759 | #[test ] |
| 2760 | fn test_is_infinite() { |
| 2761 | let a = Complex::new(2f64, f64::INFINITY); |
| 2762 | assert!(a.is_infinite()); |
| 2763 | } |
| 2764 | |
| 2765 | #[test ] |
| 2766 | fn test_is_finite() { |
| 2767 | assert!(_1_1i.is_finite()) |
| 2768 | } |
| 2769 | |
| 2770 | #[test ] |
| 2771 | fn test_is_normal() { |
| 2772 | let a = Complex::new(0f64, f64::NAN); |
| 2773 | let b = Complex::new(2f64, f64::INFINITY); |
| 2774 | assert!(!a.is_normal()); |
| 2775 | assert!(!b.is_normal()); |
| 2776 | assert!(_1_1i.is_normal()); |
| 2777 | } |
| 2778 | |
| 2779 | #[test ] |
| 2780 | fn test_from_str() { |
| 2781 | fn test(z: Complex64, s: &str) { |
| 2782 | assert_eq!(FromStr::from_str(s), Ok(z)); |
| 2783 | } |
| 2784 | test (_0_0i, "0 + 0i" ); |
| 2785 | test (_0_0i, "0+0j" ); |
| 2786 | test (_0_0i, "0 - 0j" ); |
| 2787 | test (_0_0i, "0-0i" ); |
| 2788 | test (_0_0i, "0i + 0" ); |
| 2789 | test (_0_0i, "0" ); |
| 2790 | test (_0_0i, "-0" ); |
| 2791 | test (_0_0i, "0i" ); |
| 2792 | test (_0_0i, "0j" ); |
| 2793 | test (_0_0i, "+0j" ); |
| 2794 | test (_0_0i, "-0i" ); |
| 2795 | |
| 2796 | test (_1_0i, "1 + 0i" ); |
| 2797 | test (_1_0i, "1+0j" ); |
| 2798 | test (_1_0i, "1 - 0j" ); |
| 2799 | test (_1_0i, "+1-0i" ); |
| 2800 | test (_1_0i, "-0j+1" ); |
| 2801 | test (_1_0i, "1" ); |
| 2802 | |
| 2803 | test (_1_1i, "1 + i" ); |
| 2804 | test (_1_1i, "1+j" ); |
| 2805 | test (_1_1i, "1 + 1j" ); |
| 2806 | test (_1_1i, "1+1i" ); |
| 2807 | test (_1_1i, "i + 1" ); |
| 2808 | test (_1_1i, "1i+1" ); |
| 2809 | test (_1_1i, "+j+1" ); |
| 2810 | |
| 2811 | test (_0_1i, "0 + i" ); |
| 2812 | test (_0_1i, "0+j" ); |
| 2813 | test (_0_1i, "-0 + j" ); |
| 2814 | test (_0_1i, "-0+i" ); |
| 2815 | test (_0_1i, "0 + 1i" ); |
| 2816 | test (_0_1i, "0+1j" ); |
| 2817 | test (_0_1i, "-0 + 1j" ); |
| 2818 | test (_0_1i, "-0+1i" ); |
| 2819 | test (_0_1i, "j + 0" ); |
| 2820 | test (_0_1i, "i" ); |
| 2821 | test (_0_1i, "j" ); |
| 2822 | test (_0_1i, "1j" ); |
| 2823 | |
| 2824 | test (_neg1_1i, "-1 + i" ); |
| 2825 | test (_neg1_1i, "-1+j" ); |
| 2826 | test (_neg1_1i, "-1 + 1j" ); |
| 2827 | test (_neg1_1i, "-1+1i" ); |
| 2828 | test (_neg1_1i, "1i-1" ); |
| 2829 | test (_neg1_1i, "j + -1" ); |
| 2830 | |
| 2831 | test (_05_05i, "0.5 + 0.5i" ); |
| 2832 | test (_05_05i, "0.5+0.5j" ); |
| 2833 | test (_05_05i, "5e-1+0.5j" ); |
| 2834 | test (_05_05i, "5E-1 + 0.5j" ); |
| 2835 | test (_05_05i, "5E-1i + 0.5" ); |
| 2836 | test (_05_05i, "0.05e+1j + 50E-2" ); |
| 2837 | } |
| 2838 | |
| 2839 | #[test ] |
| 2840 | fn test_from_str_radix() { |
| 2841 | fn test(z: Complex64, s: &str, radix: u32) { |
| 2842 | let res: Result<Complex64, <Complex64 as Num>::FromStrRadixErr> = |
| 2843 | Num::from_str_radix(s, radix); |
| 2844 | assert_eq!(res.unwrap(), z) |
| 2845 | } |
| 2846 | test (_4_2i, "4+2i" , 10); |
| 2847 | test (Complex::new(15.0, 32.0), "F+20i" , 16); |
| 2848 | test (Complex::new(15.0, 32.0), "1111+100000i" , 2); |
| 2849 | test (Complex::new(-15.0, -32.0), "-F-20i" , 16); |
| 2850 | test (Complex::new(-15.0, -32.0), "-1111-100000i" , 2); |
| 2851 | |
| 2852 | fn test_error(s: &str, radix: u32) -> ParseComplexError<<f64 as Num>::FromStrRadixErr> { |
| 2853 | let res = Complex64::from_str_radix(s, radix); |
| 2854 | |
| 2855 | res.expect_err(&format!("Expected failure on input {:?}" , s)) |
| 2856 | } |
| 2857 | |
| 2858 | let err = test_error("1ii" , 19); |
| 2859 | if let ComplexErrorKind::UnsupportedRadix = err.kind { |
| 2860 | /* pass */ |
| 2861 | } else { |
| 2862 | panic!("Expected failure on invalid radix, got {:?}" , err); |
| 2863 | } |
| 2864 | |
| 2865 | let err = test_error("1 + 0" , 16); |
| 2866 | if let ComplexErrorKind::ExprError = err.kind { |
| 2867 | /* pass */ |
| 2868 | } else { |
| 2869 | panic!("Expected failure on expr error, got {:?}" , err); |
| 2870 | } |
| 2871 | } |
| 2872 | |
| 2873 | #[test ] |
| 2874 | #[should_panic (expected = "radix is too high" )] |
| 2875 | fn test_from_str_radix_fail() { |
| 2876 | // ensure we preserve the underlying panic on radix > 36 |
| 2877 | let _complex = Complex64::from_str_radix("1" , 37); |
| 2878 | } |
| 2879 | |
| 2880 | #[test ] |
| 2881 | fn test_from_str_fail() { |
| 2882 | fn test(s: &str) { |
| 2883 | let complex: Result<Complex64, _> = FromStr::from_str(s); |
| 2884 | assert!( |
| 2885 | complex.is_err(), |
| 2886 | "complex {:?} -> {:?} should be an error" , |
| 2887 | s, |
| 2888 | complex |
| 2889 | ); |
| 2890 | } |
| 2891 | test ("foo" ); |
| 2892 | test ("6E" ); |
| 2893 | test ("0 + 2.718" ); |
| 2894 | test ("1 - -2i" ); |
| 2895 | test ("314e-2ij" ); |
| 2896 | test ("4.3j - i" ); |
| 2897 | test ("1i - 2i" ); |
| 2898 | test ("+ 1 - 3.0i" ); |
| 2899 | } |
| 2900 | |
| 2901 | #[test ] |
| 2902 | fn test_sum() { |
| 2903 | let v = vec![_0_1i, _1_0i]; |
| 2904 | assert_eq!(v.iter().sum::<Complex64>(), _1_1i); |
| 2905 | assert_eq!(v.into_iter().sum::<Complex64>(), _1_1i); |
| 2906 | } |
| 2907 | |
| 2908 | #[test ] |
| 2909 | fn test_prod() { |
| 2910 | let v = vec![_0_1i, _1_0i]; |
| 2911 | assert_eq!(v.iter().product::<Complex64>(), _0_1i); |
| 2912 | assert_eq!(v.into_iter().product::<Complex64>(), _0_1i); |
| 2913 | } |
| 2914 | |
| 2915 | #[test ] |
| 2916 | fn test_zero() { |
| 2917 | let zero = Complex64::zero(); |
| 2918 | assert!(zero.is_zero()); |
| 2919 | |
| 2920 | let mut c = Complex::new(1.23, 4.56); |
| 2921 | assert!(!c.is_zero()); |
| 2922 | assert_eq!(c + zero, c); |
| 2923 | |
| 2924 | c.set_zero(); |
| 2925 | assert!(c.is_zero()); |
| 2926 | } |
| 2927 | |
| 2928 | #[test ] |
| 2929 | fn test_one() { |
| 2930 | let one = Complex64::one(); |
| 2931 | assert!(one.is_one()); |
| 2932 | |
| 2933 | let mut c = Complex::new(1.23, 4.56); |
| 2934 | assert!(!c.is_one()); |
| 2935 | assert_eq!(c * one, c); |
| 2936 | |
| 2937 | c.set_one(); |
| 2938 | assert!(c.is_one()); |
| 2939 | } |
| 2940 | |
| 2941 | #[test ] |
| 2942 | #[allow (clippy::float_cmp)] |
| 2943 | fn test_const() { |
| 2944 | const R: f64 = 12.3; |
| 2945 | const I: f64 = -4.5; |
| 2946 | const C: Complex64 = Complex::new(R, I); |
| 2947 | |
| 2948 | assert_eq!(C.re, 12.3); |
| 2949 | assert_eq!(C.im, -4.5); |
| 2950 | } |
| 2951 | } |
| 2952 | |