1 | use borrow::Cow; |
2 | use io::{Read, Write}; |
3 | use ops::{Deref, DerefMut}; |
4 | use std::{borrow, error, fmt, io, mem, ops, result}; |
5 | |
6 | use crc32fast::Hasher as Crc32; |
7 | use flate2::write::ZlibEncoder; |
8 | |
9 | use crate::chunk::{self, ChunkType}; |
10 | use crate::common::{ |
11 | AnimationControl, BitDepth, BlendOp, BytesPerPixel, ColorType, Compression, DisposeOp, |
12 | FrameControl, Info, ParameterError, ParameterErrorKind, PixelDimensions, ScaledFloat, |
13 | }; |
14 | use crate::filter::{filter, AdaptiveFilterType, FilterType}; |
15 | use crate::text_metadata::{ |
16 | encode_iso_8859_1, EncodableTextChunk, ITXtChunk, TEXtChunk, TextEncodingError, ZTXtChunk, |
17 | }; |
18 | use crate::traits::WriteBytesExt; |
19 | |
20 | pub type Result<T> = result::Result<T, EncodingError>; |
21 | |
22 | #[derive (Debug)] |
23 | pub enum EncodingError { |
24 | IoError(io::Error), |
25 | Format(FormatError), |
26 | Parameter(ParameterError), |
27 | LimitsExceeded, |
28 | } |
29 | |
30 | #[derive (Debug)] |
31 | pub struct FormatError { |
32 | inner: FormatErrorKind, |
33 | } |
34 | |
35 | #[derive (Debug)] |
36 | enum FormatErrorKind { |
37 | ZeroWidth, |
38 | ZeroHeight, |
39 | InvalidColorCombination(BitDepth, ColorType), |
40 | NoPalette, |
41 | // TODO: wait, what? |
42 | WrittenTooMuch(usize), |
43 | NotAnimated, |
44 | OutOfBounds, |
45 | EndReached, |
46 | ZeroFrames, |
47 | MissingFrames, |
48 | MissingData(usize), |
49 | Unrecoverable, |
50 | BadTextEncoding(TextEncodingError), |
51 | } |
52 | |
53 | impl error::Error for EncodingError { |
54 | fn cause(&self) -> Option<&(dyn error::Error + 'static)> { |
55 | match self { |
56 | EncodingError::IoError(err: &Error) => Some(err), |
57 | _ => None, |
58 | } |
59 | } |
60 | } |
61 | |
62 | impl fmt::Display for EncodingError { |
63 | fn fmt(&self, fmt: &mut fmt::Formatter) -> result::Result<(), fmt::Error> { |
64 | use self::EncodingError::*; |
65 | match self { |
66 | IoError(err: &Error) => write!(fmt, " {}" , err), |
67 | Format(desc: &FormatError) => write!(fmt, " {}" , desc), |
68 | Parameter(desc: &ParameterError) => write!(fmt, " {}" , desc), |
69 | LimitsExceeded => write!(fmt, "Limits are exceeded." ), |
70 | } |
71 | } |
72 | } |
73 | |
74 | impl fmt::Display for FormatError { |
75 | fn fmt(&self, fmt: &mut fmt::Formatter) -> result::Result<(), fmt::Error> { |
76 | use FormatErrorKind::*; |
77 | match self.inner { |
78 | ZeroWidth => write!(fmt, "Zero width not allowed" ), |
79 | ZeroHeight => write!(fmt, "Zero height not allowed" ), |
80 | ZeroFrames => write!(fmt, "Zero frames not allowed" ), |
81 | InvalidColorCombination(depth, color) => write!( |
82 | fmt, |
83 | "Invalid combination of bit-depth ' {:?}' and color-type ' {:?}'" , |
84 | depth, color |
85 | ), |
86 | NoPalette => write!(fmt, "can't write indexed image without palette" ), |
87 | WrittenTooMuch(index) => write!(fmt, "wrong data size, got {} bytes too many" , index), |
88 | NotAnimated => write!(fmt, "not an animation" ), |
89 | OutOfBounds => write!( |
90 | fmt, |
91 | "the dimension and position go over the frame boundaries" |
92 | ), |
93 | EndReached => write!(fmt, "all the frames have been already written" ), |
94 | MissingFrames => write!(fmt, "there are still frames to be written" ), |
95 | MissingData(n) => write!(fmt, "there are still {} bytes to be written" , n), |
96 | Unrecoverable => write!( |
97 | fmt, |
98 | "a previous error put the writer into an unrecoverable state" |
99 | ), |
100 | BadTextEncoding(tee) => match tee { |
101 | TextEncodingError::Unrepresentable => write!( |
102 | fmt, |
103 | "The text metadata cannot be encoded into valid ISO 8859-1" |
104 | ), |
105 | TextEncodingError::InvalidKeywordSize => write!(fmt, "Invalid keyword size" ), |
106 | TextEncodingError::CompressionError => { |
107 | write!(fmt, "Unable to compress text metadata" ) |
108 | } |
109 | }, |
110 | } |
111 | } |
112 | } |
113 | |
114 | impl From<io::Error> for EncodingError { |
115 | fn from(err: io::Error) -> EncodingError { |
116 | EncodingError::IoError(err) |
117 | } |
118 | } |
119 | |
120 | impl From<EncodingError> for io::Error { |
121 | fn from(err: EncodingError) -> io::Error { |
122 | io::Error::new(kind:io::ErrorKind::Other, error:err.to_string()) |
123 | } |
124 | } |
125 | |
126 | // Private impl. |
127 | impl From<FormatErrorKind> for FormatError { |
128 | fn from(kind: FormatErrorKind) -> Self { |
129 | FormatError { inner: kind } |
130 | } |
131 | } |
132 | |
133 | impl From<TextEncodingError> for EncodingError { |
134 | fn from(tee: TextEncodingError) -> Self { |
135 | EncodingError::Format(FormatError { |
136 | inner: FormatErrorKind::BadTextEncoding(tee), |
137 | }) |
138 | } |
139 | } |
140 | |
141 | /// PNG Encoder. |
142 | /// |
143 | /// This configures the PNG format options such as animation chunks, palette use, color types, |
144 | /// auxiliary chunks etc. |
145 | /// |
146 | /// FIXME: Configuring APNG might be easier (less individual errors) if we had an _adapter_ which |
147 | /// borrows this mutably but guarantees that `info.frame_control` is not `None`. |
148 | pub struct Encoder<'a, W: Write> { |
149 | w: W, |
150 | info: Info<'a>, |
151 | options: Options, |
152 | } |
153 | |
154 | /// Decoding options, internal type, forwarded to the Writer. |
155 | #[derive (Default)] |
156 | struct Options { |
157 | filter: FilterType, |
158 | adaptive_filter: AdaptiveFilterType, |
159 | sep_def_img: bool, |
160 | validate_sequence: bool, |
161 | } |
162 | |
163 | impl<'a, W: Write> Encoder<'a, W> { |
164 | pub fn new(w: W, width: u32, height: u32) -> Encoder<'static, W> { |
165 | Encoder { |
166 | w, |
167 | info: Info::with_size(width, height), |
168 | options: Options::default(), |
169 | } |
170 | } |
171 | |
172 | pub fn with_info(w: W, info: Info<'a>) -> Result<Encoder<'a, W>> { |
173 | if info.animation_control.is_some() != info.frame_control.is_some() { |
174 | return Err(EncodingError::Format(FormatErrorKind::NotAnimated.into())); |
175 | } |
176 | |
177 | if let Some(actl) = info.animation_control { |
178 | if actl.num_frames == 0 { |
179 | return Err(EncodingError::Format(FormatErrorKind::ZeroFrames.into())); |
180 | } |
181 | } |
182 | |
183 | Ok(Encoder { |
184 | w, |
185 | info, |
186 | options: Options::default(), |
187 | }) |
188 | } |
189 | |
190 | /// Specify that the image is animated. |
191 | /// |
192 | /// `num_frames` controls how many frames the animation has, while |
193 | /// `num_plays` controls how many times the animation should be |
194 | /// repeated until it stops, if it's zero then it will repeat |
195 | /// infinitely. |
196 | /// |
197 | /// When this method is returns successfully then the images written will be encoded as fdAT |
198 | /// chunks, except for the first image that is still encoded as `IDAT`. You can control if the |
199 | /// first frame should be treated as an animation frame with [`Encoder::set_sep_def_img()`]. |
200 | /// |
201 | /// This method returns an error if `num_frames` is 0. |
202 | pub fn set_animated(&mut self, num_frames: u32, num_plays: u32) -> Result<()> { |
203 | if num_frames == 0 { |
204 | return Err(EncodingError::Format(FormatErrorKind::ZeroFrames.into())); |
205 | } |
206 | |
207 | let actl = AnimationControl { |
208 | num_frames, |
209 | num_plays, |
210 | }; |
211 | |
212 | let fctl = FrameControl { |
213 | sequence_number: 0, |
214 | width: self.info.width, |
215 | height: self.info.height, |
216 | ..Default::default() |
217 | }; |
218 | |
219 | self.info.animation_control = Some(actl); |
220 | self.info.frame_control = Some(fctl); |
221 | Ok(()) |
222 | } |
223 | |
224 | /// Mark the first animated frame as a 'separate default image'. |
225 | /// |
226 | /// In APNG each animated frame is preceded by a special control chunk, `fcTL`. It's up to the |
227 | /// encoder to decide if the first image, the standard `IDAT` data, should be part of the |
228 | /// animation by emitting this chunk or by not doing so. A default image that is _not_ part of |
229 | /// the animation is often interpreted as a thumbnail. |
230 | /// |
231 | /// This method will return an error when animation control was not configured |
232 | /// (which is done by calling [`Encoder::set_animated`]). |
233 | pub fn set_sep_def_img(&mut self, sep_def_img: bool) -> Result<()> { |
234 | if self.info.animation_control.is_some() { |
235 | self.options.sep_def_img = sep_def_img; |
236 | Ok(()) |
237 | } else { |
238 | Err(EncodingError::Format(FormatErrorKind::NotAnimated.into())) |
239 | } |
240 | } |
241 | |
242 | /// Sets the raw byte contents of the PLTE chunk. This method accepts |
243 | /// both borrowed and owned byte data. |
244 | pub fn set_palette<T: Into<Cow<'a, [u8]>>>(&mut self, palette: T) { |
245 | self.info.palette = Some(palette.into()); |
246 | } |
247 | |
248 | /// Sets the raw byte contents of the tRNS chunk. This method accepts |
249 | /// both borrowed and owned byte data. |
250 | pub fn set_trns<T: Into<Cow<'a, [u8]>>>(&mut self, trns: T) { |
251 | self.info.trns = Some(trns.into()); |
252 | } |
253 | |
254 | /// Set the display gamma of the source system on which the image was generated or last edited. |
255 | pub fn set_source_gamma(&mut self, source_gamma: ScaledFloat) { |
256 | self.info.source_gamma = Some(source_gamma); |
257 | } |
258 | |
259 | /// Set the chromaticities for the source system's display channels (red, green, blue) and the whitepoint |
260 | /// of the source system on which the image was generated or last edited. |
261 | pub fn set_source_chromaticities( |
262 | &mut self, |
263 | source_chromaticities: super::SourceChromaticities, |
264 | ) { |
265 | self.info.source_chromaticities = Some(source_chromaticities); |
266 | } |
267 | |
268 | /// Mark the image data as conforming to the SRGB color space with the specified rendering intent. |
269 | /// |
270 | /// Matching source gamma and chromaticities chunks are added automatically. |
271 | /// Any manually specified source gamma, chromaticities, or ICC profiles will be ignored. |
272 | #[doc (hidden)] |
273 | #[deprecated (note = "use set_source_srgb" )] |
274 | pub fn set_srgb(&mut self, rendering_intent: super::SrgbRenderingIntent) { |
275 | self.info.set_source_srgb(rendering_intent); |
276 | self.info.source_gamma = Some(crate::srgb::substitute_gamma()); |
277 | self.info.source_chromaticities = Some(crate::srgb::substitute_chromaticities()); |
278 | } |
279 | |
280 | /// Mark the image data as conforming to the SRGB color space with the specified rendering intent. |
281 | /// |
282 | /// Any ICC profiles will be ignored. |
283 | /// |
284 | /// Source gamma and chromaticities will be written only if they're set to fallback |
285 | /// values specified in [11.3.2.5](https://www.w3.org/TR/png-3/#sRGB-gAMA-cHRM). |
286 | pub fn set_source_srgb(&mut self, rendering_intent: super::SrgbRenderingIntent) { |
287 | self.info.set_source_srgb(rendering_intent); |
288 | } |
289 | |
290 | /// Start encoding by writing the header data. |
291 | /// |
292 | /// The remaining data can be supplied by methods on the returned [`Writer`]. |
293 | pub fn write_header(self) -> Result<Writer<W>> { |
294 | Writer::new(self.w, PartialInfo::new(&self.info), self.options).init(&self.info) |
295 | } |
296 | |
297 | /// Set the color of the encoded image. |
298 | /// |
299 | /// These correspond to the color types in the png IHDR data that will be written. The length |
300 | /// of the image data that is later supplied must match the color type, otherwise an error will |
301 | /// be emitted. |
302 | pub fn set_color(&mut self, color: ColorType) { |
303 | self.info.color_type = color; |
304 | } |
305 | |
306 | /// Set the indicated depth of the image data. |
307 | pub fn set_depth(&mut self, depth: BitDepth) { |
308 | self.info.bit_depth = depth; |
309 | } |
310 | |
311 | /// Set compression parameters. |
312 | /// |
313 | /// Accepts a `Compression` or any type that can transform into a `Compression`. Notably `deflate::Compression` and |
314 | /// `deflate::CompressionOptions` which "just work". |
315 | pub fn set_compression(&mut self, compression: Compression) { |
316 | self.info.compression = compression; |
317 | } |
318 | |
319 | /// Set the used filter type. |
320 | /// |
321 | /// The default filter is [`FilterType::Sub`] which provides a basic prediction algorithm for |
322 | /// sample values based on the previous. For a potentially better compression ratio, at the |
323 | /// cost of more complex processing, try out [`FilterType::Paeth`]. |
324 | pub fn set_filter(&mut self, filter: FilterType) { |
325 | self.options.filter = filter; |
326 | } |
327 | |
328 | /// Set the adaptive filter type. |
329 | /// |
330 | /// Adaptive filtering attempts to select the best filter for each line |
331 | /// based on heuristics which minimize the file size for compression rather |
332 | /// than use a single filter for the entire image. The default method is |
333 | /// [`AdaptiveFilterType::NonAdaptive`]. |
334 | pub fn set_adaptive_filter(&mut self, adaptive_filter: AdaptiveFilterType) { |
335 | self.options.adaptive_filter = adaptive_filter; |
336 | } |
337 | |
338 | /// Set the fraction of time every frame is going to be displayed, in seconds. |
339 | /// |
340 | /// *Note that this parameter can be set for each individual frame after |
341 | /// [`Encoder::write_header`] is called. (see [`Writer::set_frame_delay`])* |
342 | /// |
343 | /// If the denominator is 0, it is to be treated as if it were 100 |
344 | /// (that is, the numerator then specifies 1/100ths of a second). |
345 | /// If the value of the numerator is 0 the decoder should render the next frame |
346 | /// as quickly as possible, though viewers may impose a reasonable lower bound. |
347 | /// |
348 | /// The default value is 0 for both the numerator and denominator. |
349 | /// |
350 | /// This method will return an error if the image is not animated. |
351 | /// (see [`set_animated`]) |
352 | /// |
353 | /// [`write_header`]: Self::write_header |
354 | /// [`set_animated`]: Self::set_animated |
355 | pub fn set_frame_delay(&mut self, numerator: u16, denominator: u16) -> Result<()> { |
356 | if let Some(ref mut fctl) = self.info.frame_control { |
357 | fctl.delay_den = denominator; |
358 | fctl.delay_num = numerator; |
359 | Ok(()) |
360 | } else { |
361 | Err(EncodingError::Format(FormatErrorKind::NotAnimated.into())) |
362 | } |
363 | } |
364 | |
365 | /// Set the blend operation for every frame. |
366 | /// |
367 | /// The blend operation specifies whether the frame is to be alpha blended |
368 | /// into the current output buffer content, or whether it should completely |
369 | /// replace its region in the output buffer. |
370 | /// |
371 | /// *Note that this parameter can be set for each individual frame after |
372 | /// [`write_header`] is called. (see [`Writer::set_blend_op`])* |
373 | /// |
374 | /// See the [`BlendOp`] documentation for the possible values and their effects. |
375 | /// |
376 | /// *Note that for the first frame the two blend modes are functionally |
377 | /// equivalent due to the clearing of the output buffer at the beginning |
378 | /// of each play.* |
379 | /// |
380 | /// The default value is [`BlendOp::Source`]. |
381 | /// |
382 | /// This method will return an error if the image is not animated. |
383 | /// (see [`set_animated`]) |
384 | /// |
385 | /// [`write_header`]: Self::write_header |
386 | /// [`set_animated`]: Self::set_animated |
387 | pub fn set_blend_op(&mut self, op: BlendOp) -> Result<()> { |
388 | if let Some(ref mut fctl) = self.info.frame_control { |
389 | fctl.blend_op = op; |
390 | Ok(()) |
391 | } else { |
392 | Err(EncodingError::Format(FormatErrorKind::NotAnimated.into())) |
393 | } |
394 | } |
395 | |
396 | /// Set the dispose operation for every frame. |
397 | /// |
398 | /// The dispose operation specifies how the output buffer should be changed |
399 | /// at the end of the delay (before rendering the next frame) |
400 | /// |
401 | /// *Note that this parameter can be set for each individual frame after |
402 | /// [`write_header`] is called (see [`Writer::set_dispose_op`])* |
403 | /// |
404 | /// See the [`DisposeOp`] documentation for the possible values and their effects. |
405 | /// |
406 | /// *Note that if the first frame uses [`DisposeOp::Previous`] |
407 | /// it will be treated as [`DisposeOp::Background`].* |
408 | /// |
409 | /// The default value is [`DisposeOp::None`]. |
410 | /// |
411 | /// This method will return an error if the image is not animated. |
412 | /// (see [`set_animated`]) |
413 | /// |
414 | /// [`set_animated`]: Self::set_animated |
415 | /// [`write_header`]: Self::write_header |
416 | pub fn set_dispose_op(&mut self, op: DisposeOp) -> Result<()> { |
417 | if let Some(ref mut fctl) = self.info.frame_control { |
418 | fctl.dispose_op = op; |
419 | Ok(()) |
420 | } else { |
421 | Err(EncodingError::Format(FormatErrorKind::NotAnimated.into())) |
422 | } |
423 | } |
424 | pub fn set_pixel_dims(&mut self, pixel_dims: Option<PixelDimensions>) { |
425 | self.info.pixel_dims = pixel_dims |
426 | } |
427 | /// Convenience function to add tEXt chunks to [`Info`] struct |
428 | pub fn add_text_chunk(&mut self, keyword: String, text: String) -> Result<()> { |
429 | let text_chunk = TEXtChunk::new(keyword, text); |
430 | self.info.uncompressed_latin1_text.push(text_chunk); |
431 | Ok(()) |
432 | } |
433 | |
434 | /// Convenience function to add zTXt chunks to [`Info`] struct |
435 | pub fn add_ztxt_chunk(&mut self, keyword: String, text: String) -> Result<()> { |
436 | let text_chunk = ZTXtChunk::new(keyword, text); |
437 | self.info.compressed_latin1_text.push(text_chunk); |
438 | Ok(()) |
439 | } |
440 | |
441 | /// Convenience function to add iTXt chunks to [`Info`] struct |
442 | /// |
443 | /// This function only sets the `keyword` and `text` field of the iTXt chunk. |
444 | /// To set the other fields, create a [`ITXtChunk`] directly, and then encode it to the output stream. |
445 | pub fn add_itxt_chunk(&mut self, keyword: String, text: String) -> Result<()> { |
446 | let text_chunk = ITXtChunk::new(keyword, text); |
447 | self.info.utf8_text.push(text_chunk); |
448 | Ok(()) |
449 | } |
450 | |
451 | /// Validate the written image sequence. |
452 | /// |
453 | /// When validation is turned on (it's turned off by default) then attempts to write more than |
454 | /// one `IDAT` image or images beyond the number of frames indicated in the animation control |
455 | /// chunk will fail and return an error result instead. Attempts to [finish][finish] the image |
456 | /// with missing frames will also return an error. |
457 | /// |
458 | /// [finish]: StreamWriter::finish |
459 | /// |
460 | /// (It's possible to circumvent these checks by writing raw chunks instead.) |
461 | pub fn validate_sequence(&mut self, validate: bool) { |
462 | self.options.validate_sequence = validate; |
463 | } |
464 | } |
465 | |
466 | /// PNG writer |
467 | /// |
468 | /// Progresses through the image by writing images, frames, or raw individual chunks. This is |
469 | /// constructed through [`Encoder::write_header()`]. |
470 | /// |
471 | /// FIXME: Writing of animated chunks might be clearer if we had an _adapter_ that you would call |
472 | /// to guarantee the next image to be prefaced with a fcTL-chunk, and all other chunks would be |
473 | /// guaranteed to be `IDAT`/not affected by APNG's frame control. |
474 | pub struct Writer<W: Write> { |
475 | /// The underlying writer. |
476 | w: W, |
477 | /// The local version of the `Info` struct. |
478 | info: PartialInfo, |
479 | /// Global encoding options. |
480 | options: Options, |
481 | /// The total number of image frames, counting all consecutive IDAT and fdAT chunks. |
482 | images_written: u64, |
483 | /// The total number of animation frames, that is equivalent to counting fcTL chunks. |
484 | animation_written: u32, |
485 | /// A flag to note when the IEND chunk was already added. |
486 | /// This is only set on code paths that drop `Self` to control the destructor. |
487 | iend_written: bool, |
488 | } |
489 | |
490 | /// Contains the subset of attributes of [Info] needed for [Writer] to function |
491 | struct PartialInfo { |
492 | width: u32, |
493 | height: u32, |
494 | bit_depth: BitDepth, |
495 | color_type: ColorType, |
496 | frame_control: Option<FrameControl>, |
497 | animation_control: Option<AnimationControl>, |
498 | compression: Compression, |
499 | has_palette: bool, |
500 | } |
501 | |
502 | impl PartialInfo { |
503 | fn new(info: &Info) -> Self { |
504 | PartialInfo { |
505 | width: info.width, |
506 | height: info.height, |
507 | bit_depth: info.bit_depth, |
508 | color_type: info.color_type, |
509 | frame_control: info.frame_control, |
510 | animation_control: info.animation_control, |
511 | compression: info.compression, |
512 | has_palette: info.palette.is_some(), |
513 | } |
514 | } |
515 | |
516 | fn bpp_in_prediction(&self) -> BytesPerPixel { |
517 | // Passthrough |
518 | self.to_info().bpp_in_prediction() |
519 | } |
520 | |
521 | fn raw_row_length(&self) -> usize { |
522 | // Passthrough |
523 | self.to_info().raw_row_length() |
524 | } |
525 | |
526 | fn raw_row_length_from_width(&self, width: u32) -> usize { |
527 | // Passthrough |
528 | self.to_info().raw_row_length_from_width(width) |
529 | } |
530 | |
531 | /// Converts this partial info to an owned Info struct, |
532 | /// setting missing values to their defaults |
533 | fn to_info(&self) -> Info<'static> { |
534 | Info { |
535 | width: self.width, |
536 | height: self.height, |
537 | bit_depth: self.bit_depth, |
538 | color_type: self.color_type, |
539 | frame_control: self.frame_control, |
540 | animation_control: self.animation_control, |
541 | compression: self.compression, |
542 | ..Default::default() |
543 | } |
544 | } |
545 | } |
546 | |
547 | const DEFAULT_BUFFER_LENGTH: usize = 4 * 1024; |
548 | |
549 | pub(crate) fn write_chunk<W: Write>(mut w: W, name: chunk::ChunkType, data: &[u8]) -> Result<()> { |
550 | w.write_be(data.len() as u32)?; |
551 | w.write_all(&name.0)?; |
552 | w.write_all(buf:data)?; |
553 | let mut crc: Hasher = Crc32::new(); |
554 | crc.update(&name.0); |
555 | crc.update(buf:data); |
556 | w.write_be(crc.finalize())?; |
557 | Ok(()) |
558 | } |
559 | |
560 | impl<W: Write> Writer<W> { |
561 | fn new(w: W, info: PartialInfo, options: Options) -> Writer<W> { |
562 | Writer { |
563 | w, |
564 | info, |
565 | options, |
566 | images_written: 0, |
567 | animation_written: 0, |
568 | iend_written: false, |
569 | } |
570 | } |
571 | |
572 | fn init(mut self, info: &Info<'_>) -> Result<Self> { |
573 | if self.info.width == 0 { |
574 | return Err(EncodingError::Format(FormatErrorKind::ZeroWidth.into())); |
575 | } |
576 | |
577 | if self.info.height == 0 { |
578 | return Err(EncodingError::Format(FormatErrorKind::ZeroHeight.into())); |
579 | } |
580 | |
581 | if self |
582 | .info |
583 | .color_type |
584 | .is_combination_invalid(self.info.bit_depth) |
585 | { |
586 | return Err(EncodingError::Format( |
587 | FormatErrorKind::InvalidColorCombination(self.info.bit_depth, self.info.color_type) |
588 | .into(), |
589 | )); |
590 | } |
591 | |
592 | self.w.write_all(&[137, 80, 78, 71, 13, 10, 26, 10])?; // PNG signature |
593 | #[allow (deprecated)] |
594 | info.encode(&mut self.w)?; |
595 | |
596 | Ok(self) |
597 | } |
598 | |
599 | /// Write a raw chunk of PNG data. |
600 | /// |
601 | /// The chunk will have its CRC calculated and correctly. The data is not filtered in any way, |
602 | /// but the chunk needs to be short enough to have its length encoded correctly. |
603 | pub fn write_chunk(&mut self, name: ChunkType, data: &[u8]) -> Result<()> { |
604 | use std::convert::TryFrom; |
605 | |
606 | if u32::try_from(data.len()).map_or(true, |length| length > i32::MAX as u32) { |
607 | let kind = FormatErrorKind::WrittenTooMuch(data.len() - i32::MAX as usize); |
608 | return Err(EncodingError::Format(kind.into())); |
609 | } |
610 | |
611 | write_chunk(&mut self.w, name, data) |
612 | } |
613 | |
614 | pub fn write_text_chunk<T: EncodableTextChunk>(&mut self, text_chunk: &T) -> Result<()> { |
615 | text_chunk.encode(&mut self.w) |
616 | } |
617 | |
618 | /// Check if we should allow writing another image. |
619 | fn validate_new_image(&self) -> Result<()> { |
620 | if !self.options.validate_sequence { |
621 | return Ok(()); |
622 | } |
623 | |
624 | match self.info.animation_control { |
625 | None => { |
626 | if self.images_written == 0 { |
627 | Ok(()) |
628 | } else { |
629 | Err(EncodingError::Format(FormatErrorKind::EndReached.into())) |
630 | } |
631 | } |
632 | Some(_) => { |
633 | if self.info.frame_control.is_some() { |
634 | Ok(()) |
635 | } else { |
636 | Err(EncodingError::Format(FormatErrorKind::EndReached.into())) |
637 | } |
638 | } |
639 | } |
640 | } |
641 | |
642 | fn validate_sequence_done(&self) -> Result<()> { |
643 | if !self.options.validate_sequence { |
644 | return Ok(()); |
645 | } |
646 | |
647 | if (self.info.animation_control.is_some() && self.info.frame_control.is_some()) |
648 | || self.images_written == 0 |
649 | { |
650 | Err(EncodingError::Format(FormatErrorKind::MissingFrames.into())) |
651 | } else { |
652 | Ok(()) |
653 | } |
654 | } |
655 | |
656 | const MAX_IDAT_CHUNK_LEN: u32 = u32::MAX >> 1; |
657 | #[allow (non_upper_case_globals)] |
658 | const MAX_fdAT_CHUNK_LEN: u32 = (u32::MAX >> 1) - 4; |
659 | |
660 | /// Writes the next image data. |
661 | pub fn write_image_data(&mut self, data: &[u8]) -> Result<()> { |
662 | if self.info.color_type == ColorType::Indexed && !self.info.has_palette { |
663 | return Err(EncodingError::Format(FormatErrorKind::NoPalette.into())); |
664 | } |
665 | |
666 | self.validate_new_image()?; |
667 | |
668 | let width: usize; |
669 | let height: usize; |
670 | if let Some(ref mut fctl) = self.info.frame_control { |
671 | width = fctl.width as usize; |
672 | height = fctl.height as usize; |
673 | } else { |
674 | width = self.info.width as usize; |
675 | height = self.info.height as usize; |
676 | } |
677 | |
678 | let in_len = self.info.raw_row_length_from_width(width as u32) - 1; |
679 | let data_size = in_len * height; |
680 | if data_size != data.len() { |
681 | return Err(EncodingError::Parameter( |
682 | ParameterErrorKind::ImageBufferSize { |
683 | expected: data_size, |
684 | actual: data.len(), |
685 | } |
686 | .into(), |
687 | )); |
688 | } |
689 | |
690 | let prev = vec![0; in_len]; |
691 | let mut prev = prev.as_slice(); |
692 | |
693 | let bpp = self.info.bpp_in_prediction(); |
694 | let filter_method = self.options.filter; |
695 | let adaptive_method = self.options.adaptive_filter; |
696 | |
697 | let zlib_encoded = match self.info.compression { |
698 | Compression::Fast => { |
699 | let mut compressor = fdeflate::Compressor::new(std::io::Cursor::new(Vec::new()))?; |
700 | |
701 | let mut current = vec![0; in_len + 1]; |
702 | for line in data.chunks(in_len) { |
703 | let filter_type = filter( |
704 | filter_method, |
705 | adaptive_method, |
706 | bpp, |
707 | prev, |
708 | line, |
709 | &mut current[1..], |
710 | ); |
711 | |
712 | current[0] = filter_type as u8; |
713 | compressor.write_data(¤t)?; |
714 | prev = line; |
715 | } |
716 | |
717 | let compressed = compressor.finish()?.into_inner(); |
718 | if compressed.len() |
719 | > fdeflate::StoredOnlyCompressor::<()>::compressed_size((in_len + 1) * height) |
720 | { |
721 | // Write uncompressed data since the result from fast compression would take |
722 | // more space than that. |
723 | // |
724 | // We always use FilterType::NoFilter here regardless of the filter method |
725 | // requested by the user. Doing filtering again would only add performance |
726 | // cost for both encoding and subsequent decoding, without improving the |
727 | // compression ratio. |
728 | let mut compressor = |
729 | fdeflate::StoredOnlyCompressor::new(std::io::Cursor::new(Vec::new()))?; |
730 | for line in data.chunks(in_len) { |
731 | compressor.write_data(&[0])?; |
732 | compressor.write_data(line)?; |
733 | } |
734 | compressor.finish()?.into_inner() |
735 | } else { |
736 | compressed |
737 | } |
738 | } |
739 | _ => { |
740 | let mut current = vec![0; in_len]; |
741 | |
742 | let mut zlib = ZlibEncoder::new(Vec::new(), self.info.compression.to_options()); |
743 | for line in data.chunks(in_len) { |
744 | let filter_type = filter( |
745 | filter_method, |
746 | adaptive_method, |
747 | bpp, |
748 | prev, |
749 | line, |
750 | &mut current, |
751 | ); |
752 | |
753 | zlib.write_all(&[filter_type as u8])?; |
754 | zlib.write_all(¤t)?; |
755 | prev = line; |
756 | } |
757 | zlib.finish()? |
758 | } |
759 | }; |
760 | |
761 | match self.info.frame_control { |
762 | None => { |
763 | self.write_zlib_encoded_idat(&zlib_encoded)?; |
764 | } |
765 | Some(_) if self.should_skip_frame_control_on_default_image() => { |
766 | self.write_zlib_encoded_idat(&zlib_encoded)?; |
767 | } |
768 | Some(ref mut fctl) => { |
769 | fctl.encode(&mut self.w)?; |
770 | fctl.sequence_number = fctl.sequence_number.wrapping_add(1); |
771 | self.animation_written += 1; |
772 | |
773 | // If the default image is the first frame of an animation, it's still an IDAT. |
774 | if self.images_written == 0 { |
775 | self.write_zlib_encoded_idat(&zlib_encoded)?; |
776 | } else { |
777 | let buff_size = zlib_encoded.len().min(Self::MAX_fdAT_CHUNK_LEN as usize); |
778 | let mut alldata = vec![0u8; 4 + buff_size]; |
779 | for chunk in zlib_encoded.chunks(Self::MAX_fdAT_CHUNK_LEN as usize) { |
780 | alldata[..4].copy_from_slice(&fctl.sequence_number.to_be_bytes()); |
781 | alldata[4..][..chunk.len()].copy_from_slice(chunk); |
782 | write_chunk(&mut self.w, chunk::fdAT, &alldata[..4 + chunk.len()])?; |
783 | fctl.sequence_number = fctl.sequence_number.wrapping_add(1); |
784 | } |
785 | } |
786 | } |
787 | } |
788 | |
789 | self.increment_images_written(); |
790 | |
791 | Ok(()) |
792 | } |
793 | |
794 | fn increment_images_written(&mut self) { |
795 | self.images_written = self.images_written.saturating_add(1); |
796 | |
797 | if let Some(actl) = self.info.animation_control { |
798 | if actl.num_frames <= self.animation_written { |
799 | // If we've written all animation frames, all following will be normal image chunks. |
800 | self.info.frame_control = None; |
801 | } |
802 | } |
803 | } |
804 | |
805 | fn write_iend(&mut self) -> Result<()> { |
806 | self.iend_written = true; |
807 | self.write_chunk(chunk::IEND, &[]) |
808 | } |
809 | |
810 | fn should_skip_frame_control_on_default_image(&self) -> bool { |
811 | self.options.sep_def_img && self.images_written == 0 |
812 | } |
813 | |
814 | fn write_zlib_encoded_idat(&mut self, zlib_encoded: &[u8]) -> Result<()> { |
815 | for chunk in zlib_encoded.chunks(Self::MAX_IDAT_CHUNK_LEN as usize) { |
816 | self.write_chunk(chunk::IDAT, chunk)?; |
817 | } |
818 | Ok(()) |
819 | } |
820 | |
821 | /// Set the used filter type for the following frames. |
822 | /// |
823 | /// The default filter is [`FilterType::Sub`] which provides a basic prediction algorithm for |
824 | /// sample values based on the previous. For a potentially better compression ratio, at the |
825 | /// cost of more complex processing, try out [`FilterType::Paeth`]. |
826 | pub fn set_filter(&mut self, filter: FilterType) { |
827 | self.options.filter = filter; |
828 | } |
829 | |
830 | /// Set the adaptive filter type for the following frames. |
831 | /// |
832 | /// Adaptive filtering attempts to select the best filter for each line |
833 | /// based on heuristics which minimize the file size for compression rather |
834 | /// than use a single filter for the entire image. The default method is |
835 | /// [`AdaptiveFilterType::NonAdaptive`]. |
836 | pub fn set_adaptive_filter(&mut self, adaptive_filter: AdaptiveFilterType) { |
837 | self.options.adaptive_filter = adaptive_filter; |
838 | } |
839 | |
840 | /// Set the fraction of time the following frames are going to be displayed, |
841 | /// in seconds |
842 | /// |
843 | /// If the denominator is 0, it is to be treated as if it were 100 |
844 | /// (that is, the numerator then specifies 1/100ths of a second). |
845 | /// If the value of the numerator is 0 the decoder should render the next frame |
846 | /// as quickly as possible, though viewers may impose a reasonable lower bound. |
847 | /// |
848 | /// This method will return an error if the image is not animated. |
849 | pub fn set_frame_delay(&mut self, numerator: u16, denominator: u16) -> Result<()> { |
850 | if let Some(ref mut fctl) = self.info.frame_control { |
851 | fctl.delay_den = denominator; |
852 | fctl.delay_num = numerator; |
853 | Ok(()) |
854 | } else { |
855 | Err(EncodingError::Format(FormatErrorKind::NotAnimated.into())) |
856 | } |
857 | } |
858 | |
859 | /// Set the dimension of the following frames. |
860 | /// |
861 | /// This function will return an error when: |
862 | /// - The image is not an animated; |
863 | /// |
864 | /// - The selected dimension, considering also the current frame position, |
865 | /// goes outside the image boundaries; |
866 | /// |
867 | /// - One or both the width and height are 0; |
868 | /// |
869 | // ??? TODO ??? |
870 | // - The next frame is the default image |
871 | pub fn set_frame_dimension(&mut self, width: u32, height: u32) -> Result<()> { |
872 | if let Some(ref mut fctl) = self.info.frame_control { |
873 | if Some(width) > self.info.width.checked_sub(fctl.x_offset) |
874 | || Some(height) > self.info.height.checked_sub(fctl.y_offset) |
875 | { |
876 | return Err(EncodingError::Format(FormatErrorKind::OutOfBounds.into())); |
877 | } else if width == 0 { |
878 | return Err(EncodingError::Format(FormatErrorKind::ZeroWidth.into())); |
879 | } else if height == 0 { |
880 | return Err(EncodingError::Format(FormatErrorKind::ZeroHeight.into())); |
881 | } |
882 | fctl.width = width; |
883 | fctl.height = height; |
884 | Ok(()) |
885 | } else { |
886 | Err(EncodingError::Format(FormatErrorKind::NotAnimated.into())) |
887 | } |
888 | } |
889 | |
890 | /// Set the position of the following frames. |
891 | /// |
892 | /// An error will be returned if: |
893 | /// - The image is not animated; |
894 | /// |
895 | /// - The selected position, considering also the current frame dimension, |
896 | /// goes outside the image boundaries; |
897 | /// |
898 | // ??? TODO ??? |
899 | // - The next frame is the default image |
900 | pub fn set_frame_position(&mut self, x: u32, y: u32) -> Result<()> { |
901 | if let Some(ref mut fctl) = self.info.frame_control { |
902 | if Some(x) > self.info.width.checked_sub(fctl.width) |
903 | || Some(y) > self.info.height.checked_sub(fctl.height) |
904 | { |
905 | return Err(EncodingError::Format(FormatErrorKind::OutOfBounds.into())); |
906 | } |
907 | fctl.x_offset = x; |
908 | fctl.y_offset = y; |
909 | Ok(()) |
910 | } else { |
911 | Err(EncodingError::Format(FormatErrorKind::NotAnimated.into())) |
912 | } |
913 | } |
914 | |
915 | /// Set the frame dimension to occupy all the image, starting from |
916 | /// the current position. |
917 | /// |
918 | /// To reset the frame to the full image size [`reset_frame_position`] |
919 | /// should be called first. |
920 | /// |
921 | /// This method will return an error if the image is not animated. |
922 | /// |
923 | /// [`reset_frame_position`]: Writer::reset_frame_position |
924 | pub fn reset_frame_dimension(&mut self) -> Result<()> { |
925 | if let Some(ref mut fctl) = self.info.frame_control { |
926 | fctl.width = self.info.width - fctl.x_offset; |
927 | fctl.height = self.info.height - fctl.y_offset; |
928 | Ok(()) |
929 | } else { |
930 | Err(EncodingError::Format(FormatErrorKind::NotAnimated.into())) |
931 | } |
932 | } |
933 | |
934 | /// Set the frame position to (0, 0). |
935 | /// |
936 | /// Equivalent to calling [`set_frame_position(0, 0)`]. |
937 | /// |
938 | /// This method will return an error if the image is not animated. |
939 | /// |
940 | /// [`set_frame_position(0, 0)`]: Writer::set_frame_position |
941 | pub fn reset_frame_position(&mut self) -> Result<()> { |
942 | if let Some(ref mut fctl) = self.info.frame_control { |
943 | fctl.x_offset = 0; |
944 | fctl.y_offset = 0; |
945 | Ok(()) |
946 | } else { |
947 | Err(EncodingError::Format(FormatErrorKind::NotAnimated.into())) |
948 | } |
949 | } |
950 | |
951 | /// Set the blend operation for the following frames. |
952 | /// |
953 | /// The blend operation specifies whether the frame is to be alpha blended |
954 | /// into the current output buffer content, or whether it should completely |
955 | /// replace its region in the output buffer. |
956 | /// |
957 | /// See the [`BlendOp`] documentation for the possible values and their effects. |
958 | /// |
959 | /// *Note that for the first frame the two blend modes are functionally |
960 | /// equivalent due to the clearing of the output buffer at the beginning |
961 | /// of each play.* |
962 | /// |
963 | /// This method will return an error if the image is not animated. |
964 | pub fn set_blend_op(&mut self, op: BlendOp) -> Result<()> { |
965 | if let Some(ref mut fctl) = self.info.frame_control { |
966 | fctl.blend_op = op; |
967 | Ok(()) |
968 | } else { |
969 | Err(EncodingError::Format(FormatErrorKind::NotAnimated.into())) |
970 | } |
971 | } |
972 | |
973 | /// Set the dispose operation for the following frames. |
974 | /// |
975 | /// The dispose operation specifies how the output buffer should be changed |
976 | /// at the end of the delay (before rendering the next frame) |
977 | /// |
978 | /// See the [`DisposeOp`] documentation for the possible values and their effects. |
979 | /// |
980 | /// *Note that if the first frame uses [`DisposeOp::Previous`] |
981 | /// it will be treated as [`DisposeOp::Background`].* |
982 | /// |
983 | /// This method will return an error if the image is not animated. |
984 | pub fn set_dispose_op(&mut self, op: DisposeOp) -> Result<()> { |
985 | if let Some(ref mut fctl) = self.info.frame_control { |
986 | fctl.dispose_op = op; |
987 | Ok(()) |
988 | } else { |
989 | Err(EncodingError::Format(FormatErrorKind::NotAnimated.into())) |
990 | } |
991 | } |
992 | |
993 | /// Create a stream writer. |
994 | /// |
995 | /// This allows you to create images that do not fit in memory. The default |
996 | /// chunk size is 4K, use `stream_writer_with_size` to set another chunk |
997 | /// size. |
998 | /// |
999 | /// This borrows the writer which allows for manually appending additional |
1000 | /// chunks after the image data has been written. |
1001 | pub fn stream_writer(&mut self) -> Result<StreamWriter<W>> { |
1002 | self.stream_writer_with_size(DEFAULT_BUFFER_LENGTH) |
1003 | } |
1004 | |
1005 | /// Create a stream writer with custom buffer size. |
1006 | /// |
1007 | /// See [`stream_writer`]. |
1008 | /// |
1009 | /// [`stream_writer`]: Self::stream_writer |
1010 | pub fn stream_writer_with_size(&mut self, size: usize) -> Result<StreamWriter<W>> { |
1011 | StreamWriter::new(ChunkOutput::Borrowed(self), size) |
1012 | } |
1013 | |
1014 | /// Turn this into a stream writer for image data. |
1015 | /// |
1016 | /// This allows you to create images that do not fit in memory. The default |
1017 | /// chunk size is 4K, use [`stream_writer_with_size`] to set another chunk |
1018 | /// size. |
1019 | /// |
1020 | /// [`stream_writer_with_size`]: Self::stream_writer_with_size |
1021 | pub fn into_stream_writer(self) -> Result<StreamWriter<'static, W>> { |
1022 | self.into_stream_writer_with_size(DEFAULT_BUFFER_LENGTH) |
1023 | } |
1024 | |
1025 | /// Turn this into a stream writer with custom buffer size. |
1026 | /// |
1027 | /// See [`into_stream_writer`]. |
1028 | /// |
1029 | /// [`into_stream_writer`]: Self::into_stream_writer |
1030 | pub fn into_stream_writer_with_size(self, size: usize) -> Result<StreamWriter<'static, W>> { |
1031 | StreamWriter::new(ChunkOutput::Owned(self), size) |
1032 | } |
1033 | |
1034 | /// Consume the stream writer with validation. |
1035 | /// |
1036 | /// Unlike a simple drop this ensures that the final chunk was written correctly. When other |
1037 | /// validation options (chunk sequencing) had been turned on in the configuration then it will |
1038 | /// also do a check on their correctness _before_ writing the final chunk. |
1039 | pub fn finish(mut self) -> Result<()> { |
1040 | self.validate_sequence_done()?; |
1041 | self.write_iend()?; |
1042 | self.w.flush()?; |
1043 | |
1044 | // Explicitly drop `self` just for clarity. |
1045 | drop(self); |
1046 | Ok(()) |
1047 | } |
1048 | } |
1049 | |
1050 | impl<W: Write> Drop for Writer<W> { |
1051 | fn drop(&mut self) { |
1052 | if !self.iend_written { |
1053 | let _ = self.write_iend(); |
1054 | } |
1055 | } |
1056 | } |
1057 | |
1058 | // This should be moved to Writer after `Info::encoding` is gone |
1059 | pub(crate) fn write_iccp_chunk<W: Write>( |
1060 | w: &mut W, |
1061 | profile_name: &str, |
1062 | icc_profile: &[u8], |
1063 | ) -> Result<()> { |
1064 | let profile_name: Vec = encode_iso_8859_1(text:profile_name)?; |
1065 | if profile_name.len() < 1 || profile_name.len() > 79 { |
1066 | return Err(TextEncodingError::InvalidKeywordSize.into()); |
1067 | } |
1068 | |
1069 | let estimated_compressed_size: usize = icc_profile.len() * 3 / 4; |
1070 | let chunk_size: usize = profile_name |
1071 | .len() |
1072 | .checked_add(2) // string NUL + compression type. Checked add optimizes out later Vec reallocations. |
1073 | .and_then(|s| s.checked_add(estimated_compressed_size)) |
1074 | .ok_or(err:EncodingError::LimitsExceeded)?; |
1075 | |
1076 | let mut data: Vec = Vec::new(); |
1077 | data.try_reserve_exact(chunk_size) |
1078 | .map_err(|_| EncodingError::LimitsExceeded)?; |
1079 | |
1080 | data.extend(iter:profile_name.into_iter().chain([0, 0])); |
1081 | |
1082 | let mut encoder: ZlibEncoder> = ZlibEncoder::new(w:data, level:flate2::Compression::default()); |
1083 | encoder.write_all(buf:icc_profile)?; |
1084 | |
1085 | write_chunk(w, name:chunk::iCCP, &encoder.finish()?) |
1086 | } |
1087 | |
1088 | enum ChunkOutput<'a, W: Write> { |
1089 | Borrowed(&'a mut Writer<W>), |
1090 | Owned(Writer<W>), |
1091 | } |
1092 | |
1093 | // opted for deref for practical reasons |
1094 | impl<'a, W: Write> Deref for ChunkOutput<'a, W> { |
1095 | type Target = Writer<W>; |
1096 | |
1097 | fn deref(&self) -> &Self::Target { |
1098 | match self { |
1099 | ChunkOutput::Borrowed(writer: &&mut Writer) => writer, |
1100 | ChunkOutput::Owned(writer: &Writer) => writer, |
1101 | } |
1102 | } |
1103 | } |
1104 | |
1105 | impl<'a, W: Write> DerefMut for ChunkOutput<'a, W> { |
1106 | fn deref_mut(&mut self) -> &mut Self::Target { |
1107 | match self { |
1108 | ChunkOutput::Borrowed(writer: &mut &mut Writer) => writer, |
1109 | ChunkOutput::Owned(writer: &mut Writer) => writer, |
1110 | } |
1111 | } |
1112 | } |
1113 | |
1114 | /// This writer is used between the actual writer and the |
1115 | /// ZlibEncoder and has the job of packaging the compressed |
1116 | /// data into a PNG chunk, based on the image metadata |
1117 | /// |
1118 | /// Currently the way it works is that the specified buffer |
1119 | /// will hold one chunk at the time and buffer the incoming |
1120 | /// data until `flush` is called or the maximum chunk size |
1121 | /// is reached. |
1122 | /// |
1123 | /// The maximum chunk is the smallest between the selected buffer size |
1124 | /// and `u32::MAX >> 1` (`0x7fffffff` or `2147483647` dec) |
1125 | /// |
1126 | /// When a chunk has to be flushed the length (that is now known) |
1127 | /// and the CRC will be written at the correct locations in the chunk. |
1128 | struct ChunkWriter<'a, W: Write> { |
1129 | writer: ChunkOutput<'a, W>, |
1130 | buffer: Vec<u8>, |
1131 | /// keeps track of where the last byte was written |
1132 | index: usize, |
1133 | curr_chunk: ChunkType, |
1134 | } |
1135 | |
1136 | impl<'a, W: Write> ChunkWriter<'a, W> { |
1137 | fn new(writer: ChunkOutput<'a, W>, buf_len: usize) -> ChunkWriter<'a, W> { |
1138 | // currently buf_len will determine the size of each chunk |
1139 | // the len is capped to the maximum size every chunk can hold |
1140 | // (this wont ever overflow an u32) |
1141 | // |
1142 | // TODO (maybe): find a way to hold two chunks at a time if `usize` |
1143 | // is 64 bits. |
1144 | const CAP: usize = u32::MAX as usize >> 1; |
1145 | let curr_chunk = if writer.images_written == 0 { |
1146 | chunk::IDAT |
1147 | } else { |
1148 | chunk::fdAT |
1149 | }; |
1150 | ChunkWriter { |
1151 | writer, |
1152 | buffer: vec![0; CAP.min(buf_len)], |
1153 | index: 0, |
1154 | curr_chunk, |
1155 | } |
1156 | } |
1157 | |
1158 | /// Returns the size of each scanline for the next frame |
1159 | /// paired with the size of the whole frame |
1160 | /// |
1161 | /// This is used by the `StreamWriter` to know when the scanline ends |
1162 | /// so it can filter compress it and also to know when to start |
1163 | /// the next one |
1164 | fn next_frame_info(&self) -> (usize, usize) { |
1165 | let wrt = self.writer.deref(); |
1166 | |
1167 | let width: usize; |
1168 | let height: usize; |
1169 | if let Some(fctl) = wrt.info.frame_control { |
1170 | width = fctl.width as usize; |
1171 | height = fctl.height as usize; |
1172 | } else { |
1173 | width = wrt.info.width as usize; |
1174 | height = wrt.info.height as usize; |
1175 | } |
1176 | |
1177 | let in_len = wrt.info.raw_row_length_from_width(width as u32) - 1; |
1178 | let data_size = in_len * height; |
1179 | |
1180 | (in_len, data_size) |
1181 | } |
1182 | |
1183 | /// NOTE: this bypasses the internal buffer so the flush method should be called before this |
1184 | /// in the case there is some data left in the buffer when this is called, it will panic |
1185 | fn write_header(&mut self) -> Result<()> { |
1186 | assert_eq!(self.index, 0, "Called when not flushed" ); |
1187 | let wrt = self.writer.deref_mut(); |
1188 | |
1189 | self.curr_chunk = if wrt.images_written == 0 { |
1190 | chunk::IDAT |
1191 | } else { |
1192 | chunk::fdAT |
1193 | }; |
1194 | |
1195 | match wrt.info.frame_control { |
1196 | Some(_) if wrt.should_skip_frame_control_on_default_image() => {} |
1197 | Some(ref mut fctl) => { |
1198 | fctl.encode(&mut wrt.w)?; |
1199 | fctl.sequence_number += 1; |
1200 | } |
1201 | _ => {} |
1202 | } |
1203 | |
1204 | Ok(()) |
1205 | } |
1206 | |
1207 | /// Set the [`FrameControl`] for the following frame |
1208 | /// |
1209 | /// It will ignore the `sequence_number` of the parameter |
1210 | /// as it is updated internally. |
1211 | fn set_fctl(&mut self, f: FrameControl) { |
1212 | if let Some(ref mut fctl) = self.writer.info.frame_control { |
1213 | // Ignore the sequence number |
1214 | *fctl = FrameControl { |
1215 | sequence_number: fctl.sequence_number, |
1216 | ..f |
1217 | }; |
1218 | } else { |
1219 | panic!("This function must be called on an animated PNG" ) |
1220 | } |
1221 | } |
1222 | |
1223 | /// Flushes the current chunk |
1224 | fn flush_inner(&mut self) -> io::Result<()> { |
1225 | if self.index > 0 { |
1226 | // flush the chunk and reset everything |
1227 | write_chunk( |
1228 | &mut self.writer.w, |
1229 | self.curr_chunk, |
1230 | &self.buffer[..self.index], |
1231 | )?; |
1232 | |
1233 | self.index = 0; |
1234 | } |
1235 | Ok(()) |
1236 | } |
1237 | } |
1238 | |
1239 | impl<'a, W: Write> Write for ChunkWriter<'a, W> { |
1240 | fn write(&mut self, mut data: &[u8]) -> io::Result<usize> { |
1241 | if data.is_empty() { |
1242 | return Ok(0); |
1243 | } |
1244 | |
1245 | // index == 0 means a chunk has been flushed out |
1246 | if self.index == 0 { |
1247 | let wrt = self.writer.deref_mut(); |
1248 | |
1249 | // Prepare the next animated frame, if any. |
1250 | let no_fctl = wrt.should_skip_frame_control_on_default_image(); |
1251 | if wrt.info.frame_control.is_some() && !no_fctl { |
1252 | let fctl = wrt.info.frame_control.as_mut().unwrap(); |
1253 | self.buffer[0..4].copy_from_slice(&fctl.sequence_number.to_be_bytes()); |
1254 | fctl.sequence_number += 1; |
1255 | self.index = 4; |
1256 | } |
1257 | } |
1258 | |
1259 | // Cap the buffer length to the maximum number of bytes that can't still |
1260 | // be added to the current chunk |
1261 | let written = data.len().min(self.buffer.len() - self.index); |
1262 | data = &data[..written]; |
1263 | |
1264 | self.buffer[self.index..][..written].copy_from_slice(data); |
1265 | self.index += written; |
1266 | |
1267 | // if the maximum data for this chunk as been reached it needs to be flushed |
1268 | if self.index == self.buffer.len() { |
1269 | self.flush_inner()?; |
1270 | } |
1271 | |
1272 | Ok(written) |
1273 | } |
1274 | |
1275 | fn flush(&mut self) -> io::Result<()> { |
1276 | self.flush_inner() |
1277 | } |
1278 | } |
1279 | |
1280 | impl<W: Write> Drop for ChunkWriter<'_, W> { |
1281 | fn drop(&mut self) { |
1282 | let _ = self.flush(); |
1283 | } |
1284 | } |
1285 | |
1286 | // TODO: find a better name |
1287 | // |
1288 | /// This enum is used to be allow the `StreamWriter` to keep |
1289 | /// its inner `ChunkWriter` without wrapping it inside a |
1290 | /// `ZlibEncoder`. This is used in the case that between the |
1291 | /// change of state that happens when the last write of a frame |
1292 | /// is performed an error occurs, which obviously has to be returned. |
1293 | /// This creates the problem of where to store the writer before |
1294 | /// exiting the function, and this is where `Wrapper` comes in. |
1295 | /// |
1296 | /// Unfortunately the `ZlibWriter` can't be used because on the |
1297 | /// write following the error, `finish` would be called and that |
1298 | /// would write some data even if 0 bytes where compressed. |
1299 | /// |
1300 | /// If the `finish` function fails then there is nothing much to |
1301 | /// do as the `ChunkWriter` would get lost so the `Unrecoverable` |
1302 | /// variant is used to signal that. |
1303 | enum Wrapper<'a, W: Write> { |
1304 | Chunk(ChunkWriter<'a, W>), |
1305 | Zlib(ZlibEncoder<ChunkWriter<'a, W>>), |
1306 | Unrecoverable, |
1307 | /// This is used in-between, should never be matched |
1308 | None, |
1309 | } |
1310 | |
1311 | impl<'a, W: Write> Wrapper<'a, W> { |
1312 | /// Like `Option::take` this returns the `Wrapper` contained |
1313 | /// in `self` and replaces it with `Wrapper::None` |
1314 | fn take(&mut self) -> Wrapper<'a, W> { |
1315 | let mut swap: Wrapper<'_, W> = Wrapper::None; |
1316 | mem::swap(self, &mut swap); |
1317 | swap |
1318 | } |
1319 | } |
1320 | |
1321 | /// Streaming PNG writer |
1322 | /// |
1323 | /// This may silently fail in the destructor, so it is a good idea to call |
1324 | /// [`finish`] or [`flush`] before dropping. |
1325 | /// |
1326 | /// [`finish`]: Self::finish |
1327 | /// [`flush`]: Write::flush |
1328 | pub struct StreamWriter<'a, W: Write> { |
1329 | /// The option here is needed in order to access the inner `ChunkWriter` in-between |
1330 | /// each frame, which is needed for writing the fcTL chunks between each frame |
1331 | writer: Wrapper<'a, W>, |
1332 | prev_buf: Vec<u8>, |
1333 | curr_buf: Vec<u8>, |
1334 | /// Amount of data already written |
1335 | index: usize, |
1336 | /// length of the current scanline |
1337 | line_len: usize, |
1338 | /// size of the frame (width * height * sample_size) |
1339 | to_write: usize, |
1340 | |
1341 | width: u32, |
1342 | height: u32, |
1343 | |
1344 | bpp: BytesPerPixel, |
1345 | filter: FilterType, |
1346 | adaptive_filter: AdaptiveFilterType, |
1347 | fctl: Option<FrameControl>, |
1348 | compression: Compression, |
1349 | } |
1350 | |
1351 | impl<'a, W: Write> StreamWriter<'a, W> { |
1352 | fn new(writer: ChunkOutput<'a, W>, buf_len: usize) -> Result<StreamWriter<'a, W>> { |
1353 | let PartialInfo { |
1354 | width, |
1355 | height, |
1356 | frame_control: fctl, |
1357 | compression, |
1358 | .. |
1359 | } = writer.info; |
1360 | |
1361 | let bpp = writer.info.bpp_in_prediction(); |
1362 | let in_len = writer.info.raw_row_length() - 1; |
1363 | let filter = writer.options.filter; |
1364 | let adaptive_filter = writer.options.adaptive_filter; |
1365 | let prev_buf = vec![0; in_len]; |
1366 | let curr_buf = vec![0; in_len]; |
1367 | |
1368 | let mut chunk_writer = ChunkWriter::new(writer, buf_len); |
1369 | let (line_len, to_write) = chunk_writer.next_frame_info(); |
1370 | chunk_writer.write_header()?; |
1371 | let zlib = ZlibEncoder::new(chunk_writer, compression.to_options()); |
1372 | |
1373 | Ok(StreamWriter { |
1374 | writer: Wrapper::Zlib(zlib), |
1375 | index: 0, |
1376 | prev_buf, |
1377 | curr_buf, |
1378 | bpp, |
1379 | filter, |
1380 | width, |
1381 | height, |
1382 | adaptive_filter, |
1383 | line_len, |
1384 | to_write, |
1385 | fctl, |
1386 | compression, |
1387 | }) |
1388 | } |
1389 | |
1390 | /// Set the used filter type for the next frame. |
1391 | /// |
1392 | /// The default filter is [`FilterType::Sub`] which provides a basic prediction algorithm for |
1393 | /// sample values based on the previous. |
1394 | /// |
1395 | /// For optimal compression ratio you should enable adaptive filtering |
1396 | /// instead of setting a single filter for the entire image, see |
1397 | /// [set_adaptive_filter](Self::set_adaptive_filter). |
1398 | pub fn set_filter(&mut self, filter: FilterType) { |
1399 | self.filter = filter; |
1400 | } |
1401 | |
1402 | /// Set the adaptive filter type for the next frame. |
1403 | /// |
1404 | /// Adaptive filtering attempts to select the best filter for each line |
1405 | /// based on heuristics which minimize the file size for compression rather |
1406 | /// than use a single filter for the entire image. |
1407 | /// |
1408 | /// The default method is [`AdaptiveFilterType::NonAdaptive`]. |
1409 | pub fn set_adaptive_filter(&mut self, adaptive_filter: AdaptiveFilterType) { |
1410 | self.adaptive_filter = adaptive_filter; |
1411 | } |
1412 | |
1413 | /// Set the fraction of time the following frames are going to be displayed, |
1414 | /// in seconds |
1415 | /// |
1416 | /// If the denominator is 0, it is to be treated as if it were 100 |
1417 | /// (that is, the numerator then specifies 1/100ths of a second). |
1418 | /// If the value of the numerator is 0 the decoder should render the next frame |
1419 | /// as quickly as possible, though viewers may impose a reasonable lower bound. |
1420 | /// |
1421 | /// This method will return an error if the image is not animated. |
1422 | pub fn set_frame_delay(&mut self, numerator: u16, denominator: u16) -> Result<()> { |
1423 | if let Some(ref mut fctl) = self.fctl { |
1424 | fctl.delay_den = denominator; |
1425 | fctl.delay_num = numerator; |
1426 | Ok(()) |
1427 | } else { |
1428 | Err(EncodingError::Format(FormatErrorKind::NotAnimated.into())) |
1429 | } |
1430 | } |
1431 | |
1432 | /// Set the dimension of the following frames. |
1433 | /// |
1434 | /// This function will return an error when: |
1435 | /// - The image is not an animated; |
1436 | /// |
1437 | /// - The selected dimension, considering also the current frame position, |
1438 | /// goes outside the image boundaries; |
1439 | /// |
1440 | /// - One or both the width and height are 0; |
1441 | /// |
1442 | pub fn set_frame_dimension(&mut self, width: u32, height: u32) -> Result<()> { |
1443 | if let Some(ref mut fctl) = self.fctl { |
1444 | if Some(width) > self.width.checked_sub(fctl.x_offset) |
1445 | || Some(height) > self.height.checked_sub(fctl.y_offset) |
1446 | { |
1447 | return Err(EncodingError::Format(FormatErrorKind::OutOfBounds.into())); |
1448 | } else if width == 0 { |
1449 | return Err(EncodingError::Format(FormatErrorKind::ZeroWidth.into())); |
1450 | } else if height == 0 { |
1451 | return Err(EncodingError::Format(FormatErrorKind::ZeroHeight.into())); |
1452 | } |
1453 | fctl.width = width; |
1454 | fctl.height = height; |
1455 | Ok(()) |
1456 | } else { |
1457 | Err(EncodingError::Format(FormatErrorKind::NotAnimated.into())) |
1458 | } |
1459 | } |
1460 | |
1461 | /// Set the position of the following frames. |
1462 | /// |
1463 | /// An error will be returned if: |
1464 | /// - The image is not animated; |
1465 | /// |
1466 | /// - The selected position, considering also the current frame dimension, |
1467 | /// goes outside the image boundaries; |
1468 | /// |
1469 | pub fn set_frame_position(&mut self, x: u32, y: u32) -> Result<()> { |
1470 | if let Some(ref mut fctl) = self.fctl { |
1471 | if Some(x) > self.width.checked_sub(fctl.width) |
1472 | || Some(y) > self.height.checked_sub(fctl.height) |
1473 | { |
1474 | return Err(EncodingError::Format(FormatErrorKind::OutOfBounds.into())); |
1475 | } |
1476 | fctl.x_offset = x; |
1477 | fctl.y_offset = y; |
1478 | Ok(()) |
1479 | } else { |
1480 | Err(EncodingError::Format(FormatErrorKind::NotAnimated.into())) |
1481 | } |
1482 | } |
1483 | |
1484 | /// Set the frame dimension to occupy all the image, starting from |
1485 | /// the current position. |
1486 | /// |
1487 | /// To reset the frame to the full image size [`reset_frame_position`] |
1488 | /// should be called first. |
1489 | /// |
1490 | /// This method will return an error if the image is not animated. |
1491 | /// |
1492 | /// [`reset_frame_position`]: Writer::reset_frame_position |
1493 | pub fn reset_frame_dimension(&mut self) -> Result<()> { |
1494 | if let Some(ref mut fctl) = self.fctl { |
1495 | fctl.width = self.width - fctl.x_offset; |
1496 | fctl.height = self.height - fctl.y_offset; |
1497 | Ok(()) |
1498 | } else { |
1499 | Err(EncodingError::Format(FormatErrorKind::NotAnimated.into())) |
1500 | } |
1501 | } |
1502 | |
1503 | /// Set the frame position to (0, 0). |
1504 | /// |
1505 | /// Equivalent to calling [`set_frame_position(0, 0)`]. |
1506 | /// |
1507 | /// This method will return an error if the image is not animated. |
1508 | /// |
1509 | /// [`set_frame_position(0, 0)`]: Writer::set_frame_position |
1510 | pub fn reset_frame_position(&mut self) -> Result<()> { |
1511 | if let Some(ref mut fctl) = self.fctl { |
1512 | fctl.x_offset = 0; |
1513 | fctl.y_offset = 0; |
1514 | Ok(()) |
1515 | } else { |
1516 | Err(EncodingError::Format(FormatErrorKind::NotAnimated.into())) |
1517 | } |
1518 | } |
1519 | |
1520 | /// Set the blend operation for the following frames. |
1521 | /// |
1522 | /// The blend operation specifies whether the frame is to be alpha blended |
1523 | /// into the current output buffer content, or whether it should completely |
1524 | /// replace its region in the output buffer. |
1525 | /// |
1526 | /// See the [`BlendOp`] documentation for the possible values and their effects. |
1527 | /// |
1528 | /// *Note that for the first frame the two blend modes are functionally |
1529 | /// equivalent due to the clearing of the output buffer at the beginning |
1530 | /// of each play.* |
1531 | /// |
1532 | /// This method will return an error if the image is not animated. |
1533 | pub fn set_blend_op(&mut self, op: BlendOp) -> Result<()> { |
1534 | if let Some(ref mut fctl) = self.fctl { |
1535 | fctl.blend_op = op; |
1536 | Ok(()) |
1537 | } else { |
1538 | Err(EncodingError::Format(FormatErrorKind::NotAnimated.into())) |
1539 | } |
1540 | } |
1541 | |
1542 | /// Set the dispose operation for the following frames. |
1543 | /// |
1544 | /// The dispose operation specifies how the output buffer should be changed |
1545 | /// at the end of the delay (before rendering the next frame) |
1546 | /// |
1547 | /// See the [`DisposeOp`] documentation for the possible values and their effects. |
1548 | /// |
1549 | /// *Note that if the first frame uses [`DisposeOp::Previous`] |
1550 | /// it will be treated as [`DisposeOp::Background`].* |
1551 | /// |
1552 | /// This method will return an error if the image is not animated. |
1553 | pub fn set_dispose_op(&mut self, op: DisposeOp) -> Result<()> { |
1554 | if let Some(ref mut fctl) = self.fctl { |
1555 | fctl.dispose_op = op; |
1556 | Ok(()) |
1557 | } else { |
1558 | Err(EncodingError::Format(FormatErrorKind::NotAnimated.into())) |
1559 | } |
1560 | } |
1561 | |
1562 | /// Consume the stream writer with validation. |
1563 | /// |
1564 | /// Unlike a simple drop this ensures that the all data was written correctly. When other |
1565 | /// validation options (chunk sequencing) had been turned on in the configuration of inner |
1566 | /// [`Writer`], then it will also do a check on their correctness. Differently from |
1567 | /// [`Writer::finish`], this just `flush`es, returns error if some data is abandoned. |
1568 | pub fn finish(mut self) -> Result<()> { |
1569 | if self.to_write > 0 { |
1570 | let err = FormatErrorKind::MissingData(self.to_write).into(); |
1571 | return Err(EncodingError::Format(err)); |
1572 | } |
1573 | |
1574 | // TODO: call `writer.finish` somehow? |
1575 | self.flush()?; |
1576 | |
1577 | if let Wrapper::Chunk(wrt) = self.writer.take() { |
1578 | wrt.writer.validate_sequence_done()?; |
1579 | } |
1580 | |
1581 | Ok(()) |
1582 | } |
1583 | |
1584 | /// Flushes the buffered chunk, checks if it was the last frame, |
1585 | /// writes the next frame header and gets the next frame scanline size |
1586 | /// and image size. |
1587 | /// NOTE: This method must only be called when the writer is the variant Chunk(_) |
1588 | fn new_frame(&mut self) -> Result<()> { |
1589 | let wrt = match &mut self.writer { |
1590 | Wrapper::Chunk(wrt) => wrt, |
1591 | Wrapper::Unrecoverable => { |
1592 | let err = FormatErrorKind::Unrecoverable.into(); |
1593 | return Err(EncodingError::Format(err)); |
1594 | } |
1595 | Wrapper::Zlib(_) => unreachable!("never called on a half-finished frame" ), |
1596 | Wrapper::None => unreachable!(), |
1597 | }; |
1598 | wrt.flush()?; |
1599 | wrt.writer.validate_new_image()?; |
1600 | |
1601 | if let Some(fctl) = self.fctl { |
1602 | wrt.set_fctl(fctl); |
1603 | } |
1604 | let (scansize, size) = wrt.next_frame_info(); |
1605 | self.line_len = scansize; |
1606 | self.to_write = size; |
1607 | |
1608 | wrt.write_header()?; |
1609 | wrt.writer.increment_images_written(); |
1610 | |
1611 | // now it can be taken because the next statements cannot cause any errors |
1612 | match self.writer.take() { |
1613 | Wrapper::Chunk(wrt) => { |
1614 | let encoder = ZlibEncoder::new(wrt, self.compression.to_options()); |
1615 | self.writer = Wrapper::Zlib(encoder); |
1616 | } |
1617 | _ => unreachable!(), |
1618 | }; |
1619 | |
1620 | Ok(()) |
1621 | } |
1622 | } |
1623 | |
1624 | impl<'a, W: Write> Write for StreamWriter<'a, W> { |
1625 | fn write(&mut self, mut data: &[u8]) -> io::Result<usize> { |
1626 | if let Wrapper::Unrecoverable = self.writer { |
1627 | let err = FormatErrorKind::Unrecoverable.into(); |
1628 | return Err(EncodingError::Format(err).into()); |
1629 | } |
1630 | |
1631 | if data.is_empty() { |
1632 | return Ok(0); |
1633 | } |
1634 | |
1635 | if self.to_write == 0 { |
1636 | match self.writer.take() { |
1637 | Wrapper::Zlib(wrt) => match wrt.finish() { |
1638 | Ok(chunk) => self.writer = Wrapper::Chunk(chunk), |
1639 | Err(err) => { |
1640 | self.writer = Wrapper::Unrecoverable; |
1641 | return Err(err); |
1642 | } |
1643 | }, |
1644 | chunk @ Wrapper::Chunk(_) => self.writer = chunk, |
1645 | Wrapper::Unrecoverable => unreachable!(), |
1646 | Wrapper::None => unreachable!(), |
1647 | }; |
1648 | |
1649 | // Transition Wrapper::Chunk to Wrapper::Zlib. |
1650 | self.new_frame()?; |
1651 | } |
1652 | |
1653 | let written = data.read(&mut self.curr_buf[..self.line_len][self.index..])?; |
1654 | self.index += written; |
1655 | self.to_write -= written; |
1656 | |
1657 | if self.index == self.line_len { |
1658 | // TODO: reuse this buffer between rows. |
1659 | let mut filtered = vec![0; self.curr_buf.len()]; |
1660 | let filter_type = filter( |
1661 | self.filter, |
1662 | self.adaptive_filter, |
1663 | self.bpp, |
1664 | &self.prev_buf, |
1665 | &self.curr_buf, |
1666 | &mut filtered, |
1667 | ); |
1668 | // This can't fail as the other variant is used only to allow the zlib encoder to finish |
1669 | let wrt = match &mut self.writer { |
1670 | Wrapper::Zlib(wrt) => wrt, |
1671 | _ => unreachable!(), |
1672 | }; |
1673 | |
1674 | wrt.write_all(&[filter_type as u8])?; |
1675 | wrt.write_all(&filtered)?; |
1676 | mem::swap(&mut self.prev_buf, &mut self.curr_buf); |
1677 | self.index = 0; |
1678 | } |
1679 | |
1680 | Ok(written) |
1681 | } |
1682 | |
1683 | fn flush(&mut self) -> io::Result<()> { |
1684 | match &mut self.writer { |
1685 | Wrapper::Zlib(wrt) => wrt.flush()?, |
1686 | Wrapper::Chunk(wrt) => wrt.flush()?, |
1687 | // This handles both the case where we entered an unrecoverable state after zlib |
1688 | // decoding failure and after a panic while we had taken the chunk/zlib reader. |
1689 | Wrapper::Unrecoverable | Wrapper::None => { |
1690 | let err = FormatErrorKind::Unrecoverable.into(); |
1691 | return Err(EncodingError::Format(err).into()); |
1692 | } |
1693 | } |
1694 | |
1695 | if self.index > 0 { |
1696 | let err = FormatErrorKind::WrittenTooMuch(self.index).into(); |
1697 | return Err(EncodingError::Format(err).into()); |
1698 | } |
1699 | |
1700 | Ok(()) |
1701 | } |
1702 | } |
1703 | |
1704 | impl<W: Write> Drop for StreamWriter<'_, W> { |
1705 | fn drop(&mut self) { |
1706 | let _ = self.flush(); |
1707 | } |
1708 | } |
1709 | |
1710 | /// Mod to encapsulate the converters depending on the `deflate` crate. |
1711 | /// |
1712 | /// Since this only contains trait impls, there is no need to make this public, they are simply |
1713 | /// available when the mod is compiled as well. |
1714 | impl Compression { |
1715 | fn to_options(self) -> flate2::Compression { |
1716 | #[allow (deprecated)] |
1717 | match self { |
1718 | Compression::Default => flate2::Compression::default(), |
1719 | Compression::Fast => flate2::Compression::fast(), |
1720 | Compression::Best => flate2::Compression::best(), |
1721 | #[allow (deprecated)] |
1722 | Compression::Huffman => flate2::Compression::none(), |
1723 | #[allow (deprecated)] |
1724 | Compression::Rle => flate2::Compression::none(), |
1725 | } |
1726 | } |
1727 | } |
1728 | |
1729 | #[cfg (test)] |
1730 | mod tests { |
1731 | use super::*; |
1732 | use crate::Decoder; |
1733 | |
1734 | use rand::{thread_rng, Rng}; |
1735 | use std::cmp; |
1736 | use std::fs::File; |
1737 | use std::io::Cursor; |
1738 | |
1739 | #[test ] |
1740 | fn roundtrip() { |
1741 | // More loops = more random testing, but also more test wait time |
1742 | for _ in 0..10 { |
1743 | for path in glob::glob("tests/pngsuite/*.png" ) |
1744 | .unwrap() |
1745 | .map(|r| r.unwrap()) |
1746 | { |
1747 | if path.file_name().unwrap().to_str().unwrap().starts_with('x' ) { |
1748 | // x* files are expected to fail to decode |
1749 | continue; |
1750 | } |
1751 | eprintln!("{}" , path.display()); |
1752 | // Decode image |
1753 | let decoder = Decoder::new(File::open(path).unwrap()); |
1754 | let mut reader = decoder.read_info().unwrap(); |
1755 | let mut buf = vec![0; reader.output_buffer_size()]; |
1756 | let info = reader.next_frame(&mut buf).unwrap(); |
1757 | // Encode decoded image |
1758 | let mut out = Vec::new(); |
1759 | { |
1760 | let mut wrapper = RandomChunkWriter { |
1761 | rng: thread_rng(), |
1762 | w: &mut out, |
1763 | }; |
1764 | |
1765 | let mut encoder = Encoder::new(&mut wrapper, info.width, info.height); |
1766 | encoder.set_color(info.color_type); |
1767 | encoder.set_depth(info.bit_depth); |
1768 | if let Some(palette) = &reader.info().palette { |
1769 | encoder.set_palette(palette.clone()); |
1770 | } |
1771 | let mut encoder = encoder.write_header().unwrap(); |
1772 | encoder.write_image_data(&buf).unwrap(); |
1773 | } |
1774 | // Decode encoded decoded image |
1775 | let decoder = Decoder::new(&*out); |
1776 | let mut reader = decoder.read_info().unwrap(); |
1777 | let mut buf2 = vec![0; reader.output_buffer_size()]; |
1778 | reader.next_frame(&mut buf2).unwrap(); |
1779 | // check if the encoded image is ok: |
1780 | assert_eq!(buf, buf2); |
1781 | } |
1782 | } |
1783 | } |
1784 | |
1785 | #[test ] |
1786 | fn roundtrip_stream() { |
1787 | // More loops = more random testing, but also more test wait time |
1788 | for _ in 0..10 { |
1789 | for path in glob::glob("tests/pngsuite/*.png" ) |
1790 | .unwrap() |
1791 | .map(|r| r.unwrap()) |
1792 | { |
1793 | if path.file_name().unwrap().to_str().unwrap().starts_with('x' ) { |
1794 | // x* files are expected to fail to decode |
1795 | continue; |
1796 | } |
1797 | // Decode image |
1798 | let decoder = Decoder::new(File::open(path).unwrap()); |
1799 | let mut reader = decoder.read_info().unwrap(); |
1800 | let mut buf = vec![0; reader.output_buffer_size()]; |
1801 | let info = reader.next_frame(&mut buf).unwrap(); |
1802 | // Encode decoded image |
1803 | let mut out = Vec::new(); |
1804 | { |
1805 | let mut wrapper = RandomChunkWriter { |
1806 | rng: thread_rng(), |
1807 | w: &mut out, |
1808 | }; |
1809 | |
1810 | let mut encoder = Encoder::new(&mut wrapper, info.width, info.height); |
1811 | encoder.set_color(info.color_type); |
1812 | encoder.set_depth(info.bit_depth); |
1813 | if let Some(palette) = &reader.info().palette { |
1814 | encoder.set_palette(palette.clone()); |
1815 | } |
1816 | let mut encoder = encoder.write_header().unwrap(); |
1817 | let mut stream_writer = encoder.stream_writer().unwrap(); |
1818 | |
1819 | let mut outer_wrapper = RandomChunkWriter { |
1820 | rng: thread_rng(), |
1821 | w: &mut stream_writer, |
1822 | }; |
1823 | |
1824 | outer_wrapper.write_all(&buf).unwrap(); |
1825 | } |
1826 | // Decode encoded decoded image |
1827 | let decoder = Decoder::new(&*out); |
1828 | let mut reader = decoder.read_info().unwrap(); |
1829 | let mut buf2 = vec![0; reader.output_buffer_size()]; |
1830 | reader.next_frame(&mut buf2).unwrap(); |
1831 | // check if the encoded image is ok: |
1832 | assert_eq!(buf, buf2); |
1833 | } |
1834 | } |
1835 | } |
1836 | |
1837 | #[test ] |
1838 | fn image_palette() -> Result<()> { |
1839 | for &bit_depth in &[1u8, 2, 4, 8] { |
1840 | // Do a reference decoding, choose a fitting palette image from pngsuite |
1841 | let path = format!("tests/pngsuite/basn3p0{}.png" , bit_depth); |
1842 | let decoder = Decoder::new(File::open(&path).unwrap()); |
1843 | let mut reader = decoder.read_info().unwrap(); |
1844 | |
1845 | let mut decoded_pixels = vec![0; reader.output_buffer_size()]; |
1846 | let info = reader.info(); |
1847 | assert_eq!( |
1848 | info.width as usize * info.height as usize * usize::from(bit_depth), |
1849 | decoded_pixels.len() * 8 |
1850 | ); |
1851 | let info = reader.next_frame(&mut decoded_pixels).unwrap(); |
1852 | let indexed_data = decoded_pixels; |
1853 | |
1854 | let palette = reader.info().palette.as_ref().unwrap(); |
1855 | let mut out = Vec::new(); |
1856 | { |
1857 | let mut encoder = Encoder::new(&mut out, info.width, info.height); |
1858 | encoder.set_depth(BitDepth::from_u8(bit_depth).unwrap()); |
1859 | encoder.set_color(ColorType::Indexed); |
1860 | encoder.set_palette(palette.as_ref()); |
1861 | |
1862 | let mut writer = encoder.write_header().unwrap(); |
1863 | writer.write_image_data(&indexed_data).unwrap(); |
1864 | } |
1865 | |
1866 | // Decode re-encoded image |
1867 | let decoder = Decoder::new(&*out); |
1868 | let mut reader = decoder.read_info().unwrap(); |
1869 | let mut redecoded = vec![0; reader.output_buffer_size()]; |
1870 | reader.next_frame(&mut redecoded).unwrap(); |
1871 | // check if the encoded image is ok: |
1872 | assert_eq!(indexed_data, redecoded); |
1873 | } |
1874 | Ok(()) |
1875 | } |
1876 | |
1877 | #[test ] |
1878 | fn expect_error_on_wrong_image_len() -> Result<()> { |
1879 | let width = 10; |
1880 | let height = 10; |
1881 | |
1882 | let output = vec![0u8; 1024]; |
1883 | let writer = Cursor::new(output); |
1884 | let mut encoder = Encoder::new(writer, width as u32, height as u32); |
1885 | encoder.set_depth(BitDepth::Eight); |
1886 | encoder.set_color(ColorType::Rgb); |
1887 | let mut png_writer = encoder.write_header()?; |
1888 | |
1889 | let correct_image_size = width * height * 3; |
1890 | let image = vec![0u8; correct_image_size + 1]; |
1891 | let result = png_writer.write_image_data(image.as_ref()); |
1892 | assert!(result.is_err()); |
1893 | |
1894 | Ok(()) |
1895 | } |
1896 | |
1897 | #[test ] |
1898 | fn expect_error_on_empty_image() -> Result<()> { |
1899 | let output = vec![0u8; 1024]; |
1900 | let mut writer = Cursor::new(output); |
1901 | |
1902 | let encoder = Encoder::new(&mut writer, 0, 0); |
1903 | assert!(encoder.write_header().is_err()); |
1904 | |
1905 | let encoder = Encoder::new(&mut writer, 100, 0); |
1906 | assert!(encoder.write_header().is_err()); |
1907 | |
1908 | let encoder = Encoder::new(&mut writer, 0, 100); |
1909 | assert!(encoder.write_header().is_err()); |
1910 | |
1911 | Ok(()) |
1912 | } |
1913 | |
1914 | #[test ] |
1915 | fn expect_error_on_invalid_bit_depth_color_type_combination() -> Result<()> { |
1916 | let output = vec![0u8; 1024]; |
1917 | let mut writer = Cursor::new(output); |
1918 | |
1919 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
1920 | encoder.set_depth(BitDepth::One); |
1921 | encoder.set_color(ColorType::Rgb); |
1922 | assert!(encoder.write_header().is_err()); |
1923 | |
1924 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
1925 | encoder.set_depth(BitDepth::One); |
1926 | encoder.set_color(ColorType::GrayscaleAlpha); |
1927 | assert!(encoder.write_header().is_err()); |
1928 | |
1929 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
1930 | encoder.set_depth(BitDepth::One); |
1931 | encoder.set_color(ColorType::Rgba); |
1932 | assert!(encoder.write_header().is_err()); |
1933 | |
1934 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
1935 | encoder.set_depth(BitDepth::Two); |
1936 | encoder.set_color(ColorType::Rgb); |
1937 | assert!(encoder.write_header().is_err()); |
1938 | |
1939 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
1940 | encoder.set_depth(BitDepth::Two); |
1941 | encoder.set_color(ColorType::GrayscaleAlpha); |
1942 | assert!(encoder.write_header().is_err()); |
1943 | |
1944 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
1945 | encoder.set_depth(BitDepth::Two); |
1946 | encoder.set_color(ColorType::Rgba); |
1947 | assert!(encoder.write_header().is_err()); |
1948 | |
1949 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
1950 | encoder.set_depth(BitDepth::Four); |
1951 | encoder.set_color(ColorType::Rgb); |
1952 | assert!(encoder.write_header().is_err()); |
1953 | |
1954 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
1955 | encoder.set_depth(BitDepth::Four); |
1956 | encoder.set_color(ColorType::GrayscaleAlpha); |
1957 | assert!(encoder.write_header().is_err()); |
1958 | |
1959 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
1960 | encoder.set_depth(BitDepth::Four); |
1961 | encoder.set_color(ColorType::Rgba); |
1962 | assert!(encoder.write_header().is_err()); |
1963 | |
1964 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
1965 | encoder.set_depth(BitDepth::Sixteen); |
1966 | encoder.set_color(ColorType::Indexed); |
1967 | assert!(encoder.write_header().is_err()); |
1968 | |
1969 | Ok(()) |
1970 | } |
1971 | |
1972 | #[test ] |
1973 | fn can_write_header_with_valid_bit_depth_color_type_combination() -> Result<()> { |
1974 | let output = vec![0u8; 1024]; |
1975 | let mut writer = Cursor::new(output); |
1976 | |
1977 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
1978 | encoder.set_depth(BitDepth::One); |
1979 | encoder.set_color(ColorType::Grayscale); |
1980 | assert!(encoder.write_header().is_ok()); |
1981 | |
1982 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
1983 | encoder.set_depth(BitDepth::One); |
1984 | encoder.set_color(ColorType::Indexed); |
1985 | assert!(encoder.write_header().is_ok()); |
1986 | |
1987 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
1988 | encoder.set_depth(BitDepth::Two); |
1989 | encoder.set_color(ColorType::Grayscale); |
1990 | assert!(encoder.write_header().is_ok()); |
1991 | |
1992 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
1993 | encoder.set_depth(BitDepth::Two); |
1994 | encoder.set_color(ColorType::Indexed); |
1995 | assert!(encoder.write_header().is_ok()); |
1996 | |
1997 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
1998 | encoder.set_depth(BitDepth::Four); |
1999 | encoder.set_color(ColorType::Grayscale); |
2000 | assert!(encoder.write_header().is_ok()); |
2001 | |
2002 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
2003 | encoder.set_depth(BitDepth::Four); |
2004 | encoder.set_color(ColorType::Indexed); |
2005 | assert!(encoder.write_header().is_ok()); |
2006 | |
2007 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
2008 | encoder.set_depth(BitDepth::Eight); |
2009 | encoder.set_color(ColorType::Grayscale); |
2010 | assert!(encoder.write_header().is_ok()); |
2011 | |
2012 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
2013 | encoder.set_depth(BitDepth::Eight); |
2014 | encoder.set_color(ColorType::Rgb); |
2015 | assert!(encoder.write_header().is_ok()); |
2016 | |
2017 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
2018 | encoder.set_depth(BitDepth::Eight); |
2019 | encoder.set_color(ColorType::Indexed); |
2020 | assert!(encoder.write_header().is_ok()); |
2021 | |
2022 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
2023 | encoder.set_depth(BitDepth::Eight); |
2024 | encoder.set_color(ColorType::GrayscaleAlpha); |
2025 | assert!(encoder.write_header().is_ok()); |
2026 | |
2027 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
2028 | encoder.set_depth(BitDepth::Eight); |
2029 | encoder.set_color(ColorType::Rgba); |
2030 | assert!(encoder.write_header().is_ok()); |
2031 | |
2032 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
2033 | encoder.set_depth(BitDepth::Sixteen); |
2034 | encoder.set_color(ColorType::Grayscale); |
2035 | assert!(encoder.write_header().is_ok()); |
2036 | |
2037 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
2038 | encoder.set_depth(BitDepth::Sixteen); |
2039 | encoder.set_color(ColorType::Rgb); |
2040 | assert!(encoder.write_header().is_ok()); |
2041 | |
2042 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
2043 | encoder.set_depth(BitDepth::Sixteen); |
2044 | encoder.set_color(ColorType::GrayscaleAlpha); |
2045 | assert!(encoder.write_header().is_ok()); |
2046 | |
2047 | let mut encoder = Encoder::new(&mut writer, 1, 1); |
2048 | encoder.set_depth(BitDepth::Sixteen); |
2049 | encoder.set_color(ColorType::Rgba); |
2050 | assert!(encoder.write_header().is_ok()); |
2051 | |
2052 | Ok(()) |
2053 | } |
2054 | |
2055 | #[test ] |
2056 | fn all_filters_roundtrip() -> io::Result<()> { |
2057 | let pixel: Vec<_> = (0..48).collect(); |
2058 | |
2059 | let roundtrip = |filter: FilterType| -> io::Result<()> { |
2060 | let mut buffer = vec![]; |
2061 | let mut encoder = Encoder::new(&mut buffer, 4, 4); |
2062 | encoder.set_depth(BitDepth::Eight); |
2063 | encoder.set_color(ColorType::Rgb); |
2064 | encoder.set_filter(filter); |
2065 | encoder.write_header()?.write_image_data(&pixel)?; |
2066 | |
2067 | let decoder = crate::Decoder::new(Cursor::new(buffer)); |
2068 | let mut reader = decoder.read_info()?; |
2069 | let info = reader.info(); |
2070 | assert_eq!(info.width, 4); |
2071 | assert_eq!(info.height, 4); |
2072 | let mut dest = vec![0; pixel.len()]; |
2073 | reader.next_frame(&mut dest)?; |
2074 | assert_eq!(dest, pixel, "Deviation with filter type {:?}" , filter); |
2075 | |
2076 | Ok(()) |
2077 | }; |
2078 | |
2079 | roundtrip(FilterType::NoFilter)?; |
2080 | roundtrip(FilterType::Sub)?; |
2081 | roundtrip(FilterType::Up)?; |
2082 | roundtrip(FilterType::Avg)?; |
2083 | roundtrip(FilterType::Paeth)?; |
2084 | |
2085 | Ok(()) |
2086 | } |
2087 | |
2088 | #[test ] |
2089 | fn some_gamma_roundtrip() -> io::Result<()> { |
2090 | let pixel: Vec<_> = (0..48).collect(); |
2091 | |
2092 | let roundtrip = |gamma: Option<ScaledFloat>| -> io::Result<()> { |
2093 | let mut buffer = vec![]; |
2094 | let mut encoder = Encoder::new(&mut buffer, 4, 4); |
2095 | encoder.set_depth(BitDepth::Eight); |
2096 | encoder.set_color(ColorType::Rgb); |
2097 | encoder.set_filter(FilterType::Avg); |
2098 | if let Some(gamma) = gamma { |
2099 | encoder.set_source_gamma(gamma); |
2100 | } |
2101 | encoder.write_header()?.write_image_data(&pixel)?; |
2102 | |
2103 | let decoder = crate::Decoder::new(Cursor::new(buffer)); |
2104 | let mut reader = decoder.read_info()?; |
2105 | assert_eq!( |
2106 | reader.info().source_gamma, |
2107 | gamma, |
2108 | "Deviation with gamma {:?}" , |
2109 | gamma |
2110 | ); |
2111 | let mut dest = vec![0; pixel.len()]; |
2112 | let info = reader.next_frame(&mut dest)?; |
2113 | assert_eq!(info.width, 4); |
2114 | assert_eq!(info.height, 4); |
2115 | |
2116 | Ok(()) |
2117 | }; |
2118 | |
2119 | roundtrip(None)?; |
2120 | roundtrip(Some(ScaledFloat::new(0.35)))?; |
2121 | roundtrip(Some(ScaledFloat::new(0.45)))?; |
2122 | roundtrip(Some(ScaledFloat::new(0.55)))?; |
2123 | roundtrip(Some(ScaledFloat::new(0.7)))?; |
2124 | roundtrip(Some(ScaledFloat::new(1.0)))?; |
2125 | roundtrip(Some(ScaledFloat::new(2.5)))?; |
2126 | |
2127 | Ok(()) |
2128 | } |
2129 | |
2130 | #[test ] |
2131 | fn write_image_chunks_beyond_first() -> Result<()> { |
2132 | let width = 10; |
2133 | let height = 10; |
2134 | |
2135 | let output = vec![0u8; 1024]; |
2136 | let writer = Cursor::new(output); |
2137 | |
2138 | // Not an animation but we should still be able to write multiple images |
2139 | // See issue: <https://github.com/image-rs/image-png/issues/301> |
2140 | // This is technically all valid png so there is no issue with correctness. |
2141 | let mut encoder = Encoder::new(writer, width, height); |
2142 | encoder.set_depth(BitDepth::Eight); |
2143 | encoder.set_color(ColorType::Grayscale); |
2144 | let mut png_writer = encoder.write_header()?; |
2145 | |
2146 | for _ in 0..3 { |
2147 | let correct_image_size = (width * height) as usize; |
2148 | let image = vec![0u8; correct_image_size]; |
2149 | png_writer.write_image_data(image.as_ref())?; |
2150 | } |
2151 | |
2152 | Ok(()) |
2153 | } |
2154 | |
2155 | #[test ] |
2156 | fn image_validate_sequence_without_animation() -> Result<()> { |
2157 | let width = 10; |
2158 | let height = 10; |
2159 | |
2160 | let output = vec![0u8; 1024]; |
2161 | let writer = Cursor::new(output); |
2162 | |
2163 | let mut encoder = Encoder::new(writer, width, height); |
2164 | encoder.set_depth(BitDepth::Eight); |
2165 | encoder.set_color(ColorType::Grayscale); |
2166 | encoder.validate_sequence(true); |
2167 | let mut png_writer = encoder.write_header()?; |
2168 | |
2169 | let correct_image_size = (width * height) as usize; |
2170 | let image = vec![0u8; correct_image_size]; |
2171 | png_writer.write_image_data(image.as_ref())?; |
2172 | |
2173 | assert!(png_writer.write_image_data(image.as_ref()).is_err()); |
2174 | Ok(()) |
2175 | } |
2176 | |
2177 | #[test ] |
2178 | fn image_validate_animation() -> Result<()> { |
2179 | let width = 10; |
2180 | let height = 10; |
2181 | |
2182 | let output = vec![0u8; 1024]; |
2183 | let writer = Cursor::new(output); |
2184 | let correct_image_size = (width * height) as usize; |
2185 | let image = vec![0u8; correct_image_size]; |
2186 | |
2187 | let mut encoder = Encoder::new(writer, width, height); |
2188 | encoder.set_depth(BitDepth::Eight); |
2189 | encoder.set_color(ColorType::Grayscale); |
2190 | encoder.set_animated(1, 0)?; |
2191 | encoder.validate_sequence(true); |
2192 | let mut png_writer = encoder.write_header()?; |
2193 | |
2194 | png_writer.write_image_data(image.as_ref())?; |
2195 | |
2196 | Ok(()) |
2197 | } |
2198 | |
2199 | #[test ] |
2200 | fn image_validate_animation2() -> Result<()> { |
2201 | let width = 10; |
2202 | let height = 10; |
2203 | |
2204 | let output = vec![0u8; 1024]; |
2205 | let writer = Cursor::new(output); |
2206 | let correct_image_size = (width * height) as usize; |
2207 | let image = vec![0u8; correct_image_size]; |
2208 | |
2209 | let mut encoder = Encoder::new(writer, width, height); |
2210 | encoder.set_depth(BitDepth::Eight); |
2211 | encoder.set_color(ColorType::Grayscale); |
2212 | encoder.set_animated(2, 0)?; |
2213 | encoder.validate_sequence(true); |
2214 | let mut png_writer = encoder.write_header()?; |
2215 | |
2216 | png_writer.write_image_data(image.as_ref())?; |
2217 | png_writer.write_image_data(image.as_ref())?; |
2218 | png_writer.finish()?; |
2219 | |
2220 | Ok(()) |
2221 | } |
2222 | |
2223 | #[test ] |
2224 | fn image_validate_animation_sep_def_image() -> Result<()> { |
2225 | let width = 10; |
2226 | let height = 10; |
2227 | |
2228 | let output = vec![0u8; 1024]; |
2229 | let writer = Cursor::new(output); |
2230 | let correct_image_size = (width * height) as usize; |
2231 | let image = vec![0u8; correct_image_size]; |
2232 | |
2233 | let mut encoder = Encoder::new(writer, width, height); |
2234 | encoder.set_depth(BitDepth::Eight); |
2235 | encoder.set_color(ColorType::Grayscale); |
2236 | encoder.set_animated(1, 0)?; |
2237 | encoder.set_sep_def_img(true)?; |
2238 | encoder.validate_sequence(true); |
2239 | let mut png_writer = encoder.write_header()?; |
2240 | |
2241 | png_writer.write_image_data(image.as_ref())?; |
2242 | png_writer.write_image_data(image.as_ref())?; |
2243 | png_writer.finish()?; |
2244 | |
2245 | Ok(()) |
2246 | } |
2247 | |
2248 | #[test ] |
2249 | fn image_validate_missing_image() -> Result<()> { |
2250 | let width = 10; |
2251 | let height = 10; |
2252 | |
2253 | let output = vec![0u8; 1024]; |
2254 | let writer = Cursor::new(output); |
2255 | |
2256 | let mut encoder = Encoder::new(writer, width, height); |
2257 | encoder.set_depth(BitDepth::Eight); |
2258 | encoder.set_color(ColorType::Grayscale); |
2259 | encoder.validate_sequence(true); |
2260 | let png_writer = encoder.write_header()?; |
2261 | |
2262 | assert!(png_writer.finish().is_err()); |
2263 | Ok(()) |
2264 | } |
2265 | |
2266 | #[test ] |
2267 | fn image_validate_missing_animated_frame() -> Result<()> { |
2268 | let width = 10; |
2269 | let height = 10; |
2270 | |
2271 | let output = vec![0u8; 1024]; |
2272 | let writer = Cursor::new(output); |
2273 | let correct_image_size = (width * height) as usize; |
2274 | let image = vec![0u8; correct_image_size]; |
2275 | |
2276 | let mut encoder = Encoder::new(writer, width, height); |
2277 | encoder.set_depth(BitDepth::Eight); |
2278 | encoder.set_color(ColorType::Grayscale); |
2279 | encoder.set_animated(2, 0)?; |
2280 | encoder.validate_sequence(true); |
2281 | let mut png_writer = encoder.write_header()?; |
2282 | |
2283 | png_writer.write_image_data(image.as_ref())?; |
2284 | assert!(png_writer.finish().is_err()); |
2285 | |
2286 | Ok(()) |
2287 | } |
2288 | |
2289 | #[test ] |
2290 | fn issue_307_stream_validation() -> Result<()> { |
2291 | let output = vec![0u8; 1024]; |
2292 | let mut cursor = Cursor::new(output); |
2293 | |
2294 | let encoder = Encoder::new(&mut cursor, 1, 1); // Create a 1-pixel image |
2295 | let mut writer = encoder.write_header()?; |
2296 | let mut stream = writer.stream_writer()?; |
2297 | |
2298 | let written = stream.write(&[1, 2, 3, 4])?; |
2299 | assert_eq!(written, 1); |
2300 | stream.finish()?; |
2301 | drop(writer); |
2302 | |
2303 | { |
2304 | cursor.set_position(0); |
2305 | let mut decoder = Decoder::new(cursor).read_info().expect("A valid image" ); |
2306 | let mut buffer = [0u8; 1]; |
2307 | decoder.next_frame(&mut buffer[..]).expect("Valid read" ); |
2308 | assert_eq!(buffer, [1]); |
2309 | } |
2310 | |
2311 | Ok(()) |
2312 | } |
2313 | |
2314 | #[test ] |
2315 | fn stream_filtering() -> Result<()> { |
2316 | let output = vec![0u8; 1024]; |
2317 | let mut cursor = Cursor::new(output); |
2318 | |
2319 | let mut encoder = Encoder::new(&mut cursor, 8, 8); |
2320 | encoder.set_color(ColorType::Rgba); |
2321 | encoder.set_filter(FilterType::Paeth); |
2322 | let mut writer = encoder.write_header()?; |
2323 | let mut stream = writer.stream_writer()?; |
2324 | |
2325 | for _ in 0..8 { |
2326 | let written = stream.write(&[1; 32])?; |
2327 | assert_eq!(written, 32); |
2328 | } |
2329 | stream.finish()?; |
2330 | drop(writer); |
2331 | |
2332 | { |
2333 | cursor.set_position(0); |
2334 | let mut decoder = Decoder::new(cursor).read_info().expect("A valid image" ); |
2335 | let mut buffer = [0u8; 256]; |
2336 | decoder.next_frame(&mut buffer[..]).expect("Valid read" ); |
2337 | assert_eq!(buffer, [1; 256]); |
2338 | } |
2339 | |
2340 | Ok(()) |
2341 | } |
2342 | |
2343 | #[test ] |
2344 | #[cfg (all(unix, not(target_pointer_width = "32" )))] |
2345 | fn exper_error_on_huge_chunk() -> Result<()> { |
2346 | // Okay, so we want a proper 4 GB chunk but not actually spend the memory for reserving it. |
2347 | // Let's rely on overcommit? Otherwise we got the rather dumb option of mmap-ing /dev/zero. |
2348 | let empty = vec![0; 1usize << 31]; |
2349 | let writer = Cursor::new(vec![0u8; 1024]); |
2350 | |
2351 | let mut encoder = Encoder::new(writer, 10, 10); |
2352 | encoder.set_depth(BitDepth::Eight); |
2353 | encoder.set_color(ColorType::Grayscale); |
2354 | let mut png_writer = encoder.write_header()?; |
2355 | |
2356 | assert!(png_writer.write_chunk(chunk::fdAT, &empty).is_err()); |
2357 | Ok(()) |
2358 | } |
2359 | |
2360 | #[test ] |
2361 | #[cfg (all(unix, not(target_pointer_width = "32" )))] |
2362 | fn exper_error_on_non_u32_chunk() -> Result<()> { |
2363 | // Okay, so we want a proper 4 GB chunk but not actually spend the memory for reserving it. |
2364 | // Let's rely on overcommit? Otherwise we got the rather dumb option of mmap-ing /dev/zero. |
2365 | let empty = vec![0; 1usize << 32]; |
2366 | let writer = Cursor::new(vec![0u8; 1024]); |
2367 | |
2368 | let mut encoder = Encoder::new(writer, 10, 10); |
2369 | encoder.set_depth(BitDepth::Eight); |
2370 | encoder.set_color(ColorType::Grayscale); |
2371 | let mut png_writer = encoder.write_header()?; |
2372 | |
2373 | assert!(png_writer.write_chunk(chunk::fdAT, &empty).is_err()); |
2374 | Ok(()) |
2375 | } |
2376 | |
2377 | #[test ] |
2378 | fn finish_drops_inner_writer() -> Result<()> { |
2379 | struct NoWriter<'flag>(&'flag mut bool); |
2380 | |
2381 | impl Write for NoWriter<'_> { |
2382 | fn write(&mut self, buf: &[u8]) -> io::Result<usize> { |
2383 | Ok(buf.len()) |
2384 | } |
2385 | fn flush(&mut self) -> io::Result<()> { |
2386 | Ok(()) |
2387 | } |
2388 | } |
2389 | impl Drop for NoWriter<'_> { |
2390 | fn drop(&mut self) { |
2391 | *self.0 = true; |
2392 | } |
2393 | } |
2394 | |
2395 | let mut flag = false; |
2396 | |
2397 | { |
2398 | let mut encoder = Encoder::new(NoWriter(&mut flag), 10, 10); |
2399 | encoder.set_depth(BitDepth::Eight); |
2400 | encoder.set_color(ColorType::Grayscale); |
2401 | |
2402 | let mut writer = encoder.write_header()?; |
2403 | writer.write_image_data(&[0; 100])?; |
2404 | writer.finish()?; |
2405 | } |
2406 | |
2407 | assert!(flag, "PNG finished but writer was not dropped" ); |
2408 | Ok(()) |
2409 | } |
2410 | |
2411 | /// A Writer that only writes a few bytes at a time |
2412 | struct RandomChunkWriter<R: Rng, W: Write> { |
2413 | rng: R, |
2414 | w: W, |
2415 | } |
2416 | |
2417 | impl<R: Rng, W: Write> Write for RandomChunkWriter<R, W> { |
2418 | fn write(&mut self, buf: &[u8]) -> io::Result<usize> { |
2419 | // choose a random length to write |
2420 | let len = cmp::min(self.rng.gen_range(1..50), buf.len()); |
2421 | |
2422 | self.w.write(&buf[0..len]) |
2423 | } |
2424 | |
2425 | fn flush(&mut self) -> io::Result<()> { |
2426 | self.w.flush() |
2427 | } |
2428 | } |
2429 | } |
2430 | |