1 | #[cfg (any(feature = "std" , feature = "alloc" ))] |
2 | use alloc::{vec, vec::Vec}; |
3 | use core::convert::TryFrom; |
4 | #[cfg (feature = "std" )] |
5 | use std::io::Write; |
6 | |
7 | use bytemuck::Pod; |
8 | |
9 | use crate::consts::{QOI_HEADER_SIZE, QOI_OP_INDEX, QOI_OP_RUN, QOI_PADDING, QOI_PADDING_SIZE}; |
10 | use crate::error::{Error, Result}; |
11 | use crate::header::Header; |
12 | use crate::pixel::{Pixel, SupportedChannels}; |
13 | use crate::types::{Channels, ColorSpace}; |
14 | #[cfg (feature = "std" )] |
15 | use crate::utils::GenericWriter; |
16 | use crate::utils::{unlikely, BytesMut, Writer}; |
17 | |
18 | #[allow (clippy::cast_possible_truncation, unused_assignments, unused_variables)] |
19 | fn encode_impl<W: Writer, const N: usize>(mut buf: W, data: &[u8]) -> Result<usize> |
20 | where |
21 | Pixel<N>: SupportedChannels, |
22 | [u8; N]: Pod, |
23 | { |
24 | let cap = buf.capacity(); |
25 | |
26 | let mut index = [Pixel::new(); 256]; |
27 | let mut px_prev = Pixel::new().with_a(0xff); |
28 | let mut hash_prev = px_prev.hash_index(); |
29 | let mut run = 0_u8; |
30 | let mut px = Pixel::<N>::new().with_a(0xff); |
31 | let mut index_allowed = false; |
32 | |
33 | let n_pixels = data.len() / N; |
34 | |
35 | for (i, chunk) in data.chunks_exact(N).enumerate() { |
36 | px.read(chunk); |
37 | if px == px_prev { |
38 | run += 1; |
39 | if run == 62 || unlikely(i == n_pixels - 1) { |
40 | buf = buf.write_one(QOI_OP_RUN | (run - 1))?; |
41 | run = 0; |
42 | } |
43 | } else { |
44 | if run != 0 { |
45 | #[cfg (not(feature = "reference" ))] |
46 | { |
47 | // credits for the original idea: @zakarumych (had to be fixed though) |
48 | buf = buf.write_one(if run == 1 && index_allowed { |
49 | QOI_OP_INDEX | hash_prev |
50 | } else { |
51 | QOI_OP_RUN | (run - 1) |
52 | })?; |
53 | } |
54 | #[cfg (feature = "reference" )] |
55 | { |
56 | buf = buf.write_one(QOI_OP_RUN | (run - 1))?; |
57 | } |
58 | run = 0; |
59 | } |
60 | index_allowed = true; |
61 | let px_rgba = px.as_rgba(0xff); |
62 | hash_prev = px_rgba.hash_index(); |
63 | let index_px = &mut index[hash_prev as usize]; |
64 | if *index_px == px_rgba { |
65 | buf = buf.write_one(QOI_OP_INDEX | hash_prev)?; |
66 | } else { |
67 | *index_px = px_rgba; |
68 | buf = px.encode_into(px_prev, buf)?; |
69 | } |
70 | px_prev = px; |
71 | } |
72 | } |
73 | |
74 | buf = buf.write_many(&QOI_PADDING)?; |
75 | Ok(cap.saturating_sub(buf.capacity())) |
76 | } |
77 | |
78 | #[inline ] |
79 | fn encode_impl_all<W: Writer>(out: W, data: &[u8], channels: Channels) -> Result<usize> { |
80 | match channels { |
81 | Channels::Rgb => encode_impl::<_, 3>(buf:out, data), |
82 | Channels::Rgba => encode_impl::<_, 4>(buf:out, data), |
83 | } |
84 | } |
85 | |
86 | /// The maximum number of bytes the encoded image will take. |
87 | /// |
88 | /// Can be used to pre-allocate the buffer to encode the image into. |
89 | #[inline ] |
90 | pub fn encode_max_len(width: u32, height: u32, channels: impl Into<u8>) -> usize { |
91 | let (width: usize, height: usize) = (width as usize, height as usize); |
92 | let n_pixels: usize = width.saturating_mul(height); |
93 | QOI_HEADER_SIZE |
94 | + n_pixels.saturating_mul(channels.into() as usize) |
95 | + n_pixels |
96 | + QOI_PADDING_SIZE |
97 | } |
98 | |
99 | /// Encode the image into a pre-allocated buffer. |
100 | /// |
101 | /// Returns the total number of bytes written. |
102 | #[inline ] |
103 | pub fn encode_to_buf( |
104 | buf: impl AsMut<[u8]>, data: impl AsRef<[u8]>, width: u32, height: u32, |
105 | ) -> Result<usize> { |
106 | Encoder::new(&data, width, height)?.encode_to_buf(buf) |
107 | } |
108 | |
109 | /// Encode the image into a newly allocated vector. |
110 | #[cfg (any(feature = "alloc" , feature = "std" ))] |
111 | #[inline ] |
112 | pub fn encode_to_vec(data: impl AsRef<[u8]>, width: u32, height: u32) -> Result<Vec<u8>> { |
113 | Encoder::new(&data, width, height)?.encode_to_vec() |
114 | } |
115 | |
116 | /// Encode QOI images into buffers or into streams. |
117 | pub struct Encoder<'a> { |
118 | data: &'a [u8], |
119 | header: Header, |
120 | } |
121 | |
122 | impl<'a> Encoder<'a> { |
123 | /// Creates a new encoder from a given array of pixel data and image dimensions. |
124 | /// |
125 | /// The number of channels will be inferred automatically (the valid values |
126 | /// are 3 or 4). The color space will be set to sRGB by default. |
127 | #[inline ] |
128 | #[allow (clippy::cast_possible_truncation)] |
129 | pub fn new(data: &'a (impl AsRef<[u8]> + ?Sized), width: u32, height: u32) -> Result<Self> { |
130 | let data = data.as_ref(); |
131 | let mut header = |
132 | Header::try_new(width, height, Channels::default(), ColorSpace::default())?; |
133 | let size = data.len(); |
134 | let n_channels = size / header.n_pixels(); |
135 | if header.n_pixels() * n_channels != size { |
136 | return Err(Error::InvalidImageLength { size, width, height }); |
137 | } |
138 | header.channels = Channels::try_from(n_channels.min(0xff) as u8)?; |
139 | Ok(Self { data, header }) |
140 | } |
141 | |
142 | /// Returns a new encoder with modified color space. |
143 | /// |
144 | /// Note: the color space doesn't affect encoding or decoding in any way, it's |
145 | /// a purely informative field that's stored in the image header. |
146 | #[inline ] |
147 | pub const fn with_colorspace(mut self, colorspace: ColorSpace) -> Self { |
148 | self.header = self.header.with_colorspace(colorspace); |
149 | self |
150 | } |
151 | |
152 | /// Returns the inferred number of channels. |
153 | #[inline ] |
154 | pub const fn channels(&self) -> Channels { |
155 | self.header.channels |
156 | } |
157 | |
158 | /// Returns the header that will be stored in the encoded image. |
159 | #[inline ] |
160 | pub const fn header(&self) -> &Header { |
161 | &self.header |
162 | } |
163 | |
164 | /// The maximum number of bytes the encoded image will take. |
165 | /// |
166 | /// Can be used to pre-allocate the buffer to encode the image into. |
167 | #[inline ] |
168 | pub fn required_buf_len(&self) -> usize { |
169 | self.header.encode_max_len() |
170 | } |
171 | |
172 | /// Encodes the image to a pre-allocated buffer and returns the number of bytes written. |
173 | /// |
174 | /// The minimum size of the buffer can be found via [`Encoder::required_buf_len`]. |
175 | #[inline ] |
176 | pub fn encode_to_buf(&self, mut buf: impl AsMut<[u8]>) -> Result<usize> { |
177 | let buf = buf.as_mut(); |
178 | let size_required = self.required_buf_len(); |
179 | if unlikely(buf.len() < size_required) { |
180 | return Err(Error::OutputBufferTooSmall { size: buf.len(), required: size_required }); |
181 | } |
182 | let (head, tail) = buf.split_at_mut(QOI_HEADER_SIZE); // can't panic |
183 | head.copy_from_slice(&self.header.encode()); |
184 | let n_written = encode_impl_all(BytesMut::new(tail), self.data, self.header.channels)?; |
185 | Ok(QOI_HEADER_SIZE + n_written) |
186 | } |
187 | |
188 | /// Encodes the image into a newly allocated vector of bytes and returns it. |
189 | #[cfg (any(feature = "alloc" , feature = "std" ))] |
190 | #[inline ] |
191 | pub fn encode_to_vec(&self) -> Result<Vec<u8>> { |
192 | let mut out = vec![0_u8; self.required_buf_len()]; |
193 | let size = self.encode_to_buf(&mut out)?; |
194 | out.truncate(size); |
195 | Ok(out) |
196 | } |
197 | |
198 | /// Encodes the image directly to a generic writer that implements [`Write`](std::io::Write). |
199 | /// |
200 | /// Note: while it's possible to pass a `&mut [u8]` slice here since it implements `Write`, |
201 | /// it would more effficient to use a specialized method instead: [`Encoder::encode_to_buf`]. |
202 | #[cfg (feature = "std" )] |
203 | #[inline ] |
204 | pub fn encode_to_stream<W: Write>(&self, writer: &mut W) -> Result<usize> { |
205 | writer.write_all(&self.header.encode())?; |
206 | let n_written = |
207 | encode_impl_all(GenericWriter::new(writer), self.data, self.header.channels)?; |
208 | Ok(n_written + QOI_HEADER_SIZE) |
209 | } |
210 | } |
211 | |