1 | // Copyright (c) 2017-2022, The rav1e contributors. All rights reserved |
2 | // |
3 | // This source code is subject to the terms of the BSD 2 Clause License and |
4 | // the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
5 | // was not distributed with this source code in the LICENSE file, you can |
6 | // obtain it at www.aomedia.org/license/software. If the Alliance for Open |
7 | // Media Patent License 1.0 was not distributed with this source code in the |
8 | // PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
9 | |
10 | use crate::color::ChromaSampling::Cs400; |
11 | use crate::context::*; |
12 | use crate::encoder::FrameInvariants; |
13 | use crate::frame::*; |
14 | use crate::tiling::*; |
15 | use crate::util::{clamp, msb, CastFromPrimitive, Pixel}; |
16 | |
17 | use crate::cpu_features::CpuFeatureLevel; |
18 | use std::cmp; |
19 | |
20 | cfg_if::cfg_if! { |
21 | if #[cfg(nasm_x86_64)] { |
22 | pub(crate) use crate::asm::x86::cdef::*; |
23 | } else if #[cfg(asm_neon)] { |
24 | pub(crate) use crate::asm::aarch64::cdef::*; |
25 | } else { |
26 | pub(crate) use self::rust::*; |
27 | } |
28 | } |
29 | |
30 | pub const CDEF_VERY_LARGE: u16 = 0x8000; |
31 | // These values match dav1d; flags indicating where padding exists |
32 | pub const CDEF_HAVE_LEFT: u8 = 1 << 0; |
33 | pub const CDEF_HAVE_RIGHT: u8 = 1 << 1; |
34 | pub const CDEF_HAVE_TOP: u8 = 1 << 2; |
35 | pub const CDEF_HAVE_BOTTOM: u8 = 1 << 3; |
36 | pub const CDEF_HAVE_ALL: u8 = |
37 | CDEF_HAVE_LEFT | CDEF_HAVE_RIGHT | CDEF_HAVE_TOP | CDEF_HAVE_BOTTOM; |
38 | |
39 | pub(crate) const CDEF_SEC_STRENGTHS: u8 = 4; |
40 | |
41 | pub struct CdefDirections { |
42 | dir: [[u8; 8]; 8], |
43 | var: [[i32; 8]; 8], |
44 | } |
45 | |
46 | pub(crate) mod rust { |
47 | use super::*; |
48 | |
49 | use simd_helpers::cold_for_target_arch; |
50 | |
51 | // Instead of dividing by n between 2 and 8, we multiply by 3*5*7*8/n. |
52 | // The output is then 840 times larger, but we don't care for finding |
53 | // the max. |
54 | const CDEF_DIV_TABLE: [i32; 9] = [0, 840, 420, 280, 210, 168, 140, 120, 105]; |
55 | |
56 | /// Returns the position and value of the first instance of the max element in |
57 | /// a slice as a tuple. |
58 | /// |
59 | /// # Arguments |
60 | /// |
61 | /// * `elems` - A non-empty slice of integers |
62 | /// |
63 | /// # Panics |
64 | /// |
65 | /// Panics if `elems` is empty |
66 | #[inline ] |
67 | fn first_max_element(elems: &[i32]) -> (usize, i32) { |
68 | // In case of a tie, the first element must be selected. |
69 | let (max_idx, max_value) = elems |
70 | .iter() |
71 | .enumerate() |
72 | .max_by_key(|&(i, v)| (v, -(i as isize))) |
73 | .unwrap(); |
74 | (max_idx, *max_value) |
75 | } |
76 | |
77 | // Detect direction. 0 means 45-degree up-right, 2 is horizontal, and so on. |
78 | // The search minimizes the weighted variance along all the lines in a |
79 | // particular direction, i.e. the squared error between the input and a |
80 | // "predicted" block where each pixel is replaced by the average along a line |
81 | // in a particular direction. Since each direction have the same sum(x^2) term, |
82 | // that term is never computed. See Section 2, step 2, of: |
83 | // http://jmvalin.ca/notes/intra_paint.pdf |
84 | pub fn cdef_find_dir<T: Pixel>( |
85 | img: &PlaneSlice<'_, T>, var: &mut u32, coeff_shift: usize, |
86 | _cpu: CpuFeatureLevel, |
87 | ) -> i32 { |
88 | let mut cost: [i32; 8] = [0; 8]; |
89 | let mut partial: [[i32; 15]; 8] = [[0; 15]; 8]; |
90 | for i in 0..8 { |
91 | for j in 0..8 { |
92 | let p: i32 = i32::cast_from(img[i][j]); |
93 | // We subtract 128 here to reduce the maximum range of the squared |
94 | // partial sums. |
95 | debug_assert!(p >> coeff_shift <= 255); |
96 | let x = (p >> coeff_shift) - 128; |
97 | partial[0][i + j] += x; |
98 | partial[1][i + j / 2] += x; |
99 | partial[2][i] += x; |
100 | partial[3][3 + i - j / 2] += x; |
101 | partial[4][7 + i - j] += x; |
102 | partial[5][3 - i / 2 + j] += x; |
103 | partial[6][j] += x; |
104 | partial[7][i / 2 + j] += x; |
105 | } |
106 | } |
107 | for i in 0..8 { |
108 | cost[2] += partial[2][i] * partial[2][i]; |
109 | cost[6] += partial[6][i] * partial[6][i]; |
110 | } |
111 | cost[2] *= CDEF_DIV_TABLE[8]; |
112 | cost[6] *= CDEF_DIV_TABLE[8]; |
113 | for i in 0..7 { |
114 | cost[0] += (partial[0][i] * partial[0][i] |
115 | + partial[0][14 - i] * partial[0][14 - i]) |
116 | * CDEF_DIV_TABLE[i + 1]; |
117 | cost[4] += (partial[4][i] * partial[4][i] |
118 | + partial[4][14 - i] * partial[4][14 - i]) |
119 | * CDEF_DIV_TABLE[i + 1]; |
120 | } |
121 | cost[0] += partial[0][7] * partial[0][7] * CDEF_DIV_TABLE[8]; |
122 | cost[4] += partial[4][7] * partial[4][7] * CDEF_DIV_TABLE[8]; |
123 | for i in (1..8).step_by(2) { |
124 | for j in 0..5 { |
125 | cost[i] += partial[i][3 + j] * partial[i][3 + j]; |
126 | } |
127 | cost[i] *= CDEF_DIV_TABLE[8]; |
128 | for j in 0..3 { |
129 | cost[i] += (partial[i][j] * partial[i][j] |
130 | + partial[i][10 - j] * partial[i][10 - j]) |
131 | * CDEF_DIV_TABLE[2 * j + 2]; |
132 | } |
133 | } |
134 | |
135 | let (best_dir, best_cost) = first_max_element(&cost); |
136 | // Difference between the optimal variance and the variance along the |
137 | // orthogonal direction. Again, the sum(x^2) terms cancel out. |
138 | // We'd normally divide by 840, but dividing by 1024 is close enough |
139 | // for what we're going to do with this. */ |
140 | *var = ((best_cost - cost[(best_dir + 4) & 7]) >> 10) as u32; |
141 | |
142 | best_dir as i32 |
143 | } |
144 | |
145 | #[inline (always)] |
146 | fn constrain(diff: i32, threshold: i32, damping: i32) -> i32 { |
147 | if threshold != 0 { |
148 | let shift = cmp::max(0, damping - msb(threshold)); |
149 | let magnitude = (threshold - (diff.abs() >> shift)).clamp(0, diff.abs()); |
150 | |
151 | if diff < 0 { |
152 | -magnitude |
153 | } else { |
154 | magnitude |
155 | } |
156 | } else { |
157 | 0 |
158 | } |
159 | } |
160 | |
161 | pub unsafe fn pad_into_tmp16<T: Pixel>( |
162 | dst: *mut u16, dst_stride: isize, src: *const T, src_stride: isize, |
163 | block_width: usize, block_height: usize, edges: u8, |
164 | ) { |
165 | let mut w = block_width; |
166 | let mut h = block_height; |
167 | let (dst_col, src_col) = if (edges & CDEF_HAVE_LEFT) != 0 { |
168 | w += 2; |
169 | (dst, src.offset(-2)) |
170 | } else { |
171 | (dst.offset(2), src) |
172 | }; |
173 | if (edges & CDEF_HAVE_RIGHT) != 0 { |
174 | w += 2; |
175 | }; |
176 | |
177 | let (mut dst_ptr, mut src_ptr) = if (edges & CDEF_HAVE_TOP) != 0 { |
178 | h += 2; |
179 | (dst_col, src_col.offset(-2 * src_stride)) |
180 | } else { |
181 | (dst_col.offset(2 * dst_stride), src_col) |
182 | }; |
183 | if (edges & CDEF_HAVE_BOTTOM) != 0 { |
184 | h += 2; |
185 | }; |
186 | |
187 | for _y in 0..h { |
188 | for x in 0..w { |
189 | *dst_ptr.add(x) = u16::cast_from(*src_ptr.add(x)); |
190 | } |
191 | src_ptr = src_ptr.offset(src_stride); |
192 | dst_ptr = dst_ptr.offset(dst_stride); |
193 | } |
194 | } |
195 | |
196 | #[cold_for_target_arch ("x86_64" )] |
197 | #[allow (clippy::erasing_op, clippy::identity_op, clippy::neg_multiply)] |
198 | pub(crate) unsafe fn cdef_filter_block<T: Pixel, U: Pixel>( |
199 | dst: &mut PlaneRegionMut<'_, T>, input: *const U, istride: isize, |
200 | pri_strength: i32, sec_strength: i32, dir: usize, damping: i32, |
201 | bit_depth: usize, xdec: usize, ydec: usize, edges: u8, |
202 | _cpu: CpuFeatureLevel, |
203 | ) { |
204 | if edges != CDEF_HAVE_ALL { |
205 | // slowpath for unpadded border[s] |
206 | let tmpstride = 2 + (8 >> xdec) + 2; |
207 | let mut tmp = [CDEF_VERY_LARGE; (2 + 8 + 2) * (2 + 8 + 2)]; |
208 | // copy in what pixels we have/are allowed to use |
209 | pad_into_tmp16( |
210 | tmp.as_mut_ptr(), // points to *padding* upper left |
211 | tmpstride, |
212 | input, // points to *block* upper left |
213 | istride, |
214 | 8 >> xdec, |
215 | 8 >> ydec, |
216 | edges, |
217 | ); |
218 | cdef_filter_block( |
219 | dst, |
220 | tmp.as_ptr().offset(2 * tmpstride + 2), |
221 | tmpstride, |
222 | pri_strength, |
223 | sec_strength, |
224 | dir, |
225 | damping, |
226 | bit_depth, |
227 | xdec, |
228 | ydec, |
229 | CDEF_HAVE_ALL, |
230 | _cpu, |
231 | ); |
232 | } else { |
233 | let xsize = (8 >> xdec) as isize; |
234 | let ysize = (8 >> ydec) as isize; |
235 | let coeff_shift = bit_depth - 8; |
236 | let cdef_pri_taps = [[4, 2], [3, 3]]; |
237 | let cdef_sec_taps = [[2, 1], [2, 1]]; |
238 | let pri_taps = |
239 | cdef_pri_taps[((pri_strength >> coeff_shift) & 1) as usize]; |
240 | let sec_taps = |
241 | cdef_sec_taps[((pri_strength >> coeff_shift) & 1) as usize]; |
242 | let cdef_directions = [ |
243 | [-1 * istride + 1, -2 * istride + 2], |
244 | [0 * istride + 1, -1 * istride + 2], |
245 | [0 * istride + 1, 0 * istride + 2], |
246 | [0 * istride + 1, 1 * istride + 2], |
247 | [1 * istride + 1, 2 * istride + 2], |
248 | [1 * istride + 0, 2 * istride + 1], |
249 | [1 * istride + 0, 2 * istride + 0], |
250 | [1 * istride + 0, 2 * istride - 1], |
251 | ]; |
252 | for i in 0..ysize { |
253 | for j in 0..xsize { |
254 | let ptr_in = input.offset(i * istride + j); |
255 | let x = i32::cast_from(*ptr_in); |
256 | let mut sum: i32 = 0; |
257 | let mut max = x; |
258 | let mut min = x; |
259 | for k in 0..2usize { |
260 | let cdef_dirs = [ |
261 | cdef_directions[dir][k], |
262 | cdef_directions[(dir + 2) & 7][k], |
263 | cdef_directions[(dir + 6) & 7][k], |
264 | ]; |
265 | let pri_tap = pri_taps[k]; |
266 | let p = [ |
267 | i32::cast_from(*ptr_in.offset(cdef_dirs[0])), |
268 | i32::cast_from(*ptr_in.offset(-cdef_dirs[0])), |
269 | ]; |
270 | for p_elem in p.iter() { |
271 | sum += pri_tap * constrain(*p_elem - x, pri_strength, damping); |
272 | if *p_elem != CDEF_VERY_LARGE as i32 { |
273 | max = cmp::max(*p_elem, max); |
274 | } |
275 | min = cmp::min(*p_elem, min); |
276 | } |
277 | |
278 | let s = [ |
279 | i32::cast_from(*ptr_in.offset(cdef_dirs[1])), |
280 | i32::cast_from(*ptr_in.offset(-cdef_dirs[1])), |
281 | i32::cast_from(*ptr_in.offset(cdef_dirs[2])), |
282 | i32::cast_from(*ptr_in.offset(-cdef_dirs[2])), |
283 | ]; |
284 | let sec_tap = sec_taps[k]; |
285 | for s_elem in s.iter() { |
286 | if *s_elem != CDEF_VERY_LARGE as i32 { |
287 | max = cmp::max(*s_elem, max); |
288 | } |
289 | min = cmp::min(*s_elem, min); |
290 | sum += sec_tap * constrain(*s_elem - x, sec_strength, damping); |
291 | } |
292 | } |
293 | let v = x + ((8 + sum - (sum < 0) as i32) >> 4); |
294 | dst[i as usize][j as usize] = T::cast_from(clamp(v, min, max)); |
295 | } |
296 | } |
297 | } |
298 | } |
299 | |
300 | #[cfg (test)] |
301 | mod test { |
302 | use super::*; |
303 | |
304 | #[test ] |
305 | fn check_max_element() { |
306 | assert_eq!(first_max_element(&[-1, -1, 1, 2, 3, 4, 6, 6]), (6, 6)); |
307 | assert_eq!(first_max_element(&[-1, -1, 1, 2, 3, 4, 7, 6]), (6, 7)); |
308 | assert_eq!(first_max_element(&[0, 0]), (0, 0)); |
309 | } |
310 | } |
311 | } |
312 | |
313 | // We use the variance of an 8x8 block to adjust the effective filter strength. |
314 | #[inline ] |
315 | fn adjust_strength(strength: i32, var: i32) -> i32 { |
316 | let i: i32 = if (var >> 6) != 0 { cmp::min(v1:msb(var >> 6), v2:12) } else { 0 }; |
317 | if var != 0 { |
318 | (strength * (4 + i) + 8) >> 4 |
319 | } else { |
320 | 0 |
321 | } |
322 | } |
323 | |
324 | #[profiling::function ] |
325 | pub fn cdef_analyze_superblock_range<T: Pixel>( |
326 | fi: &FrameInvariants<T>, in_frame: &Frame<T>, blocks: &TileBlocks<'_>, |
327 | sb_w: usize, sb_h: usize, |
328 | ) -> Vec<CdefDirections> { |
329 | let mut ret: Vec = Vec::<CdefDirections>::with_capacity(sb_h * sb_w); |
330 | for sby: usize in 0..sb_h { |
331 | for sbx: usize in 0..sb_w { |
332 | let sbo: TileSuperBlockOffset = TileSuperBlockOffset(SuperBlockOffset { x: sbx, y: sby }); |
333 | ret.push(cdef_analyze_superblock(fi, in_frame, blocks, sbo)); |
334 | } |
335 | } |
336 | ret |
337 | } |
338 | |
339 | #[profiling::function ] |
340 | pub fn cdef_analyze_superblock<T: Pixel>( |
341 | fi: &FrameInvariants<T>, in_frame: &Frame<T>, blocks: &TileBlocks<'_>, |
342 | sbo: TileSuperBlockOffset, |
343 | ) -> CdefDirections { |
344 | let coeff_shift = fi.sequence.bit_depth - 8; |
345 | let mut dir: CdefDirections = |
346 | CdefDirections { dir: [[0; 8]; 8], var: [[0; 8]; 8] }; |
347 | // Each direction block is 8x8 in y, and direction computation only looks at y |
348 | for by in 0..8 { |
349 | for bx in 0..8 { |
350 | let block_offset = sbo.block_offset(bx << 1, by << 1); |
351 | if block_offset.0.x < blocks.cols() && block_offset.0.y < blocks.rows() { |
352 | let skip = blocks[block_offset].skip |
353 | & blocks[sbo.block_offset(2 * bx + 1, 2 * by)].skip |
354 | & blocks[sbo.block_offset(2 * bx, 2 * by + 1)].skip |
355 | & blocks[sbo.block_offset(2 * bx + 1, 2 * by + 1)].skip; |
356 | |
357 | if !skip { |
358 | let mut var: u32 = 0; |
359 | let in_plane = &in_frame.planes[0]; |
360 | let in_po = sbo.plane_offset(&in_plane.cfg); |
361 | let in_slice = in_plane.slice(in_po); |
362 | dir.dir[bx][by] = cdef_find_dir::<T>( |
363 | &in_slice.reslice(8 * bx as isize, 8 * by as isize), |
364 | &mut var, |
365 | coeff_shift, |
366 | fi.cpu_feature_level, |
367 | ) as u8; |
368 | dir.var[bx][by] = var as i32; |
369 | } |
370 | } |
371 | } |
372 | } |
373 | dir |
374 | } |
375 | |
376 | // input: A Frame of reconstructed/deblocked pixels prepared to |
377 | // undergo CDEF. Note that the input is a Frame and not a Tile due to |
378 | // Tiles not allowing [supervised] out-of-rect access for padding |
379 | // pixels. This will be corrected at some point in the future. |
380 | |
381 | // tile_sbo: specifies an offset into the output Tile, not an |
382 | // absolute offset in the visible frame. The Tile's own offset is |
383 | // added to this in order to address into the input Frame. |
384 | |
385 | // tb: the TileBlocks associated with the filtered region; the |
386 | // provided blocks co-locate with the output region. The TileBlocks |
387 | // provide by-[super]qblock CDEF parameters. |
388 | |
389 | // output: TileMut destination for filtered pixels. The output's |
390 | // rect specifies the region of the input to be processed (x and y |
391 | // are relative to the input Frame's origin). Note that an |
392 | // additional area of 2 pixels of padding is used for CDEF. When |
393 | // these pixels are unavailable (beyond the visible frame or at a |
394 | // tile boundary), the filtering process ignores input pixels that |
395 | // don't exist. |
396 | |
397 | /// # Panics |
398 | /// |
399 | /// - If called with invalid parameters |
400 | #[profiling::function ] |
401 | pub fn cdef_filter_superblock<T: Pixel>( |
402 | fi: &FrameInvariants<T>, input: &Frame<T>, output: &mut TileMut<'_, T>, |
403 | blocks: &TileBlocks<'_>, tile_sbo: TileSuperBlockOffset, cdef_index: u8, |
404 | cdef_dirs: &CdefDirections, |
405 | ) { |
406 | let bit_depth = fi.sequence.bit_depth; |
407 | let coeff_shift = fi.sequence.bit_depth as i32 - 8; |
408 | let cdef_damping = fi.cdef_damping as i32; |
409 | let cdef_y_strength = fi.cdef_y_strengths[cdef_index as usize]; |
410 | let cdef_uv_strength = fi.cdef_uv_strengths[cdef_index as usize]; |
411 | let cdef_pri_y_strength = (cdef_y_strength / CDEF_SEC_STRENGTHS) as i32; |
412 | let mut cdef_sec_y_strength = (cdef_y_strength % CDEF_SEC_STRENGTHS) as i32; |
413 | let cdef_pri_uv_strength = (cdef_uv_strength / CDEF_SEC_STRENGTHS) as i32; |
414 | let planes = if fi.sequence.chroma_sampling == Cs400 { 1 } else { 3 }; |
415 | let mut cdef_sec_uv_strength = |
416 | (cdef_uv_strength % CDEF_SEC_STRENGTHS) as i32; |
417 | if cdef_sec_y_strength == 3 { |
418 | cdef_sec_y_strength += 1; |
419 | } |
420 | if cdef_sec_uv_strength == 3 { |
421 | cdef_sec_uv_strength += 1; |
422 | } |
423 | |
424 | let tile_rect = *output.planes[0].rect(); |
425 | let input_xoffset = |
426 | tile_rect.x + tile_sbo.plane_offset(&input.planes[0].cfg).x; |
427 | let input_yoffset = |
428 | tile_rect.y + tile_sbo.plane_offset(&input.planes[0].cfg).y; |
429 | let input_xavail = input.planes[0].cfg.width as isize - input_xoffset; |
430 | let input_yavail = input.planes[0].cfg.height as isize - input_yoffset; |
431 | |
432 | /* determine what edge padding we have, and what padding we don't. |
433 | * We don't pad here, but rather tell the filter_block call what it |
434 | * needs to do, then let it handle the specifics (following dav1d's |
435 | * lead). We make one assumption that's not obvious: Because the |
436 | * cdef clipping area is rounded up to an even 8x8 luma block, we |
437 | * don't need to guard against having only one (as opposed to two) |
438 | * pixels of padding past the current block boundary. The padding |
439 | * is all-or-nothing. */ |
440 | |
441 | // Slightly harder than in dav1d; we're not always doing full-frame. |
442 | let have_top_p = |
443 | if tile_sbo.0.y as isize + tile_rect.y > 0 { CDEF_HAVE_TOP } else { 0 }; |
444 | let have_left_p = |
445 | if tile_sbo.0.x as isize + tile_rect.x > 0 { CDEF_HAVE_LEFT } else { 0 }; |
446 | let mut edges = have_top_p | CDEF_HAVE_BOTTOM; |
447 | |
448 | // Each direction block is 8x8 in y, potentially smaller if subsampled in chroma |
449 | for by in 0..8usize { |
450 | if by + 1 >= (input_yavail as usize >> 3) { |
451 | edges &= !CDEF_HAVE_BOTTOM |
452 | }; |
453 | edges &= !CDEF_HAVE_LEFT; |
454 | edges |= have_left_p; |
455 | edges |= CDEF_HAVE_RIGHT; |
456 | for bx in 0..8usize { |
457 | if bx + 1 >= (input_xavail as usize >> 3) { |
458 | edges &= !CDEF_HAVE_RIGHT |
459 | }; |
460 | let block_offset = tile_sbo.block_offset(bx << 1, by << 1); |
461 | if block_offset.0.x < blocks.cols() && block_offset.0.y < blocks.rows() { |
462 | let skip = blocks[block_offset].skip |
463 | & blocks[tile_sbo.block_offset(2 * bx + 1, 2 * by)].skip |
464 | & blocks[tile_sbo.block_offset(2 * bx, 2 * by + 1)].skip |
465 | & blocks[tile_sbo.block_offset(2 * bx + 1, 2 * by + 1)].skip; |
466 | let dir = cdef_dirs.dir[bx][by]; |
467 | let var = cdef_dirs.var[bx][by]; |
468 | for p in 0..planes { |
469 | let out_plane = &mut output.planes[p]; |
470 | let in_plane = &input.planes[p]; |
471 | let xdec = in_plane.cfg.xdec; |
472 | let ydec = in_plane.cfg.ydec; |
473 | let xsize = 8 >> xdec; |
474 | let ysize = 8 >> ydec; |
475 | let in_po = PlaneOffset { |
476 | x: (input_xoffset >> xdec) + (bx * xsize) as isize, |
477 | y: (input_yoffset >> ydec) + (by * ysize) as isize, |
478 | }; |
479 | let in_stride = in_plane.cfg.stride; |
480 | let in_slice = &in_plane.slice(in_po); |
481 | |
482 | let out_block = &mut out_plane.subregion_mut(Area::BlockRect { |
483 | bo: tile_sbo.block_offset(2 * bx, 2 * by).0, |
484 | width: xsize, |
485 | height: ysize, |
486 | }); |
487 | |
488 | if !skip { |
489 | let local_pri_strength; |
490 | let local_sec_strength; |
491 | let mut local_damping: i32 = cdef_damping + coeff_shift; |
492 | // See `Cdef_Uv_Dir` constant lookup table in Section 7.15.1 |
493 | // <https://aomediacodec.github.io/av1-spec/#cdef-block-process> |
494 | let local_dir = if p == 0 { |
495 | local_pri_strength = |
496 | adjust_strength(cdef_pri_y_strength << coeff_shift, var); |
497 | local_sec_strength = cdef_sec_y_strength << coeff_shift; |
498 | if cdef_pri_y_strength != 0 { |
499 | dir as usize |
500 | } else { |
501 | 0 |
502 | } |
503 | } else { |
504 | local_pri_strength = cdef_pri_uv_strength << coeff_shift; |
505 | local_sec_strength = cdef_sec_uv_strength << coeff_shift; |
506 | local_damping -= 1; |
507 | if cdef_pri_uv_strength != 0 { |
508 | if xdec != ydec { |
509 | [7, 0, 2, 4, 5, 6, 6, 6][dir as usize] |
510 | } else { |
511 | dir as usize |
512 | } |
513 | } else { |
514 | 0 |
515 | } |
516 | }; |
517 | |
518 | // SAFETY: `cdef_filter_block` may call Assembly code. |
519 | // The asserts here verify that we are not calling it |
520 | // with invalid parameters. |
521 | unsafe { |
522 | assert!( |
523 | input.planes[p].cfg.width as isize |
524 | >= in_po.x |
525 | + xsize as isize |
526 | + if edges & CDEF_HAVE_RIGHT > 0 { 2 } else { 0 } |
527 | ); |
528 | assert!( |
529 | 0 <= in_po.x - if edges & CDEF_HAVE_LEFT > 0 { 2 } else { 0 } |
530 | ); |
531 | assert!( |
532 | input.planes[p].cfg.height as isize |
533 | >= in_po.y |
534 | + ysize as isize |
535 | + if edges & CDEF_HAVE_BOTTOM > 0 { 2 } else { 0 } |
536 | ); |
537 | assert!( |
538 | 0 <= in_po.y - if edges & CDEF_HAVE_TOP > 0 { 2 } else { 0 } |
539 | ); |
540 | |
541 | cdef_filter_block( |
542 | out_block, |
543 | in_slice.as_ptr(), |
544 | in_stride as isize, |
545 | local_pri_strength, |
546 | local_sec_strength, |
547 | local_dir, |
548 | local_damping, |
549 | bit_depth, |
550 | xdec, |
551 | ydec, |
552 | edges, |
553 | fi.cpu_feature_level, |
554 | ); |
555 | } |
556 | } else { |
557 | // no filtering, but we need to copy input to output |
558 | for i in 0..ysize { |
559 | for j in 0..xsize { |
560 | out_block[i][j] = in_slice[i][j]; |
561 | } |
562 | } |
563 | } |
564 | } |
565 | } |
566 | edges |= CDEF_HAVE_LEFT; |
567 | } |
568 | edges |= CDEF_HAVE_TOP; |
569 | } |
570 | } |
571 | |
572 | // The purpose of CDEF is to perform deringing based on the detected |
573 | // direction of blocks. CDEF parameters are stored for each 64 by 64 |
574 | // block of pixels. The CDEF filter is applied on each 8 by 8 block |
575 | // of pixels. Reference: |
576 | // http://av1-spec.argondesign.com/av1-spec/av1-spec.html#cdef-process |
577 | |
578 | // input: A Frame of reconstructed/deblocked pixels prepared to |
579 | // undergo CDEF. cdef_filter_tile acts on a subset of these input |
580 | // pixels, as specified by the PlaneRegion rect of the output. Note |
581 | // that the input is a Frame and not a Tile due to Tiles not |
582 | // allowing [supervised] out-of-rect access for padding pixels. |
583 | // This will be corrected at some point in the future. |
584 | |
585 | // tb: the TileBlocks associated with the filtered region; the |
586 | // provided blocks co-locate with the output region. |
587 | |
588 | // output: TileMut destination for filtered pixels. The output's |
589 | // rect specifies the region of the input to be processed (x and y |
590 | // are relative to the input Frame's origin). Note that an |
591 | // additional area of 2 pixels of padding is used for CDEF. When |
592 | // these pixels are unavailable (beyond the visible frame or at a |
593 | // tile boundary), the filtering process ignores input pixels that |
594 | // don't exist. |
595 | |
596 | #[profiling::function ] |
597 | pub fn cdef_filter_tile<T: Pixel>( |
598 | fi: &FrameInvariants<T>, input: &Frame<T>, tb: &TileBlocks, |
599 | output: &mut TileMut<'_, T>, |
600 | ) { |
601 | // Each filter block is 64x64, except right and/or bottom for non-multiple-of-64 sizes. |
602 | // FIXME: 128x128 SB support will break this, we need FilterBlockOffset etc. |
603 | |
604 | // No need to guard against having fewer actual coded blocks than |
605 | // the output.rect() area. Inner code already guards this case. |
606 | let fb_width = (output.planes[0].rect().width + 63) / 64; |
607 | let fb_height = (output.planes[0].rect().height + 63) / 64; |
608 | |
609 | // should parallelize this |
610 | for fby in 0..fb_height { |
611 | for fbx in 0..fb_width { |
612 | // tile_sbo is treated as an offset into the Tiles' plane |
613 | // regions, not as an absolute offset in the visible frame. The |
614 | // Tile's own offset is added to this in order to address into |
615 | // the input Frame. |
616 | let tile_sbo = TileSuperBlockOffset(SuperBlockOffset { x: fbx, y: fby }); |
617 | let cdef_index = tb.get_cdef(tile_sbo); |
618 | let cdef_dirs = cdef_analyze_superblock(fi, input, tb, tile_sbo); |
619 | |
620 | cdef_filter_superblock( |
621 | fi, input, output, tb, tile_sbo, cdef_index, &cdef_dirs, |
622 | ); |
623 | } |
624 | } |
625 | } |
626 | |