| 1 | // Copyright (c) 2017-2022, The rav1e contributors. All rights reserved |
| 2 | // |
| 3 | // This source code is subject to the terms of the BSD 2 Clause License and |
| 4 | // the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| 5 | // was not distributed with this source code in the LICENSE file, you can |
| 6 | // obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| 7 | // Media Patent License 1.0 was not distributed with this source code in the |
| 8 | // PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| 9 | |
| 10 | use crate::color::ChromaSampling::Cs400; |
| 11 | use crate::context::*; |
| 12 | use crate::encoder::FrameInvariants; |
| 13 | use crate::frame::*; |
| 14 | use crate::tiling::*; |
| 15 | use crate::util::{clamp, msb, CastFromPrimitive, Pixel}; |
| 16 | |
| 17 | use crate::cpu_features::CpuFeatureLevel; |
| 18 | use std::cmp; |
| 19 | |
| 20 | cfg_if::cfg_if! { |
| 21 | if #[cfg(nasm_x86_64)] { |
| 22 | pub(crate) use crate::asm::x86::cdef::*; |
| 23 | } else if #[cfg(asm_neon)] { |
| 24 | pub(crate) use crate::asm::aarch64::cdef::*; |
| 25 | } else { |
| 26 | pub(crate) use self::rust::*; |
| 27 | } |
| 28 | } |
| 29 | |
| 30 | pub const CDEF_VERY_LARGE: u16 = 0x8000; |
| 31 | // These values match dav1d; flags indicating where padding exists |
| 32 | pub const CDEF_HAVE_LEFT: u8 = 1 << 0; |
| 33 | pub const CDEF_HAVE_RIGHT: u8 = 1 << 1; |
| 34 | pub const CDEF_HAVE_TOP: u8 = 1 << 2; |
| 35 | pub const CDEF_HAVE_BOTTOM: u8 = 1 << 3; |
| 36 | pub const CDEF_HAVE_ALL: u8 = |
| 37 | CDEF_HAVE_LEFT | CDEF_HAVE_RIGHT | CDEF_HAVE_TOP | CDEF_HAVE_BOTTOM; |
| 38 | |
| 39 | pub(crate) const CDEF_SEC_STRENGTHS: u8 = 4; |
| 40 | |
| 41 | pub struct CdefDirections { |
| 42 | dir: [[u8; 8]; 8], |
| 43 | var: [[i32; 8]; 8], |
| 44 | } |
| 45 | |
| 46 | pub(crate) mod rust { |
| 47 | use super::*; |
| 48 | |
| 49 | use simd_helpers::cold_for_target_arch; |
| 50 | |
| 51 | // Instead of dividing by n between 2 and 8, we multiply by 3*5*7*8/n. |
| 52 | // The output is then 840 times larger, but we don't care for finding |
| 53 | // the max. |
| 54 | const CDEF_DIV_TABLE: [i32; 9] = [0, 840, 420, 280, 210, 168, 140, 120, 105]; |
| 55 | |
| 56 | /// Returns the position and value of the first instance of the max element in |
| 57 | /// a slice as a tuple. |
| 58 | /// |
| 59 | /// # Arguments |
| 60 | /// |
| 61 | /// * `elems` - A non-empty slice of integers |
| 62 | /// |
| 63 | /// # Panics |
| 64 | /// |
| 65 | /// Panics if `elems` is empty |
| 66 | #[inline ] |
| 67 | fn first_max_element(elems: &[i32]) -> (usize, i32) { |
| 68 | // In case of a tie, the first element must be selected. |
| 69 | let (max_idx, max_value) = elems |
| 70 | .iter() |
| 71 | .enumerate() |
| 72 | .max_by_key(|&(i, v)| (v, -(i as isize))) |
| 73 | .unwrap(); |
| 74 | (max_idx, *max_value) |
| 75 | } |
| 76 | |
| 77 | // Detect direction. 0 means 45-degree up-right, 2 is horizontal, and so on. |
| 78 | // The search minimizes the weighted variance along all the lines in a |
| 79 | // particular direction, i.e. the squared error between the input and a |
| 80 | // "predicted" block where each pixel is replaced by the average along a line |
| 81 | // in a particular direction. Since each direction have the same sum(x^2) term, |
| 82 | // that term is never computed. See Section 2, step 2, of: |
| 83 | // http://jmvalin.ca/notes/intra_paint.pdf |
| 84 | pub fn cdef_find_dir<T: Pixel>( |
| 85 | img: &PlaneSlice<'_, T>, var: &mut u32, coeff_shift: usize, |
| 86 | _cpu: CpuFeatureLevel, |
| 87 | ) -> i32 { |
| 88 | let mut cost: [i32; 8] = [0; 8]; |
| 89 | let mut partial: [[i32; 15]; 8] = [[0; 15]; 8]; |
| 90 | for i in 0..8 { |
| 91 | for j in 0..8 { |
| 92 | let p: i32 = i32::cast_from(img[i][j]); |
| 93 | // We subtract 128 here to reduce the maximum range of the squared |
| 94 | // partial sums. |
| 95 | debug_assert!(p >> coeff_shift <= 255); |
| 96 | let x = (p >> coeff_shift) - 128; |
| 97 | partial[0][i + j] += x; |
| 98 | partial[1][i + j / 2] += x; |
| 99 | partial[2][i] += x; |
| 100 | partial[3][3 + i - j / 2] += x; |
| 101 | partial[4][7 + i - j] += x; |
| 102 | partial[5][3 - i / 2 + j] += x; |
| 103 | partial[6][j] += x; |
| 104 | partial[7][i / 2 + j] += x; |
| 105 | } |
| 106 | } |
| 107 | for i in 0..8 { |
| 108 | cost[2] += partial[2][i] * partial[2][i]; |
| 109 | cost[6] += partial[6][i] * partial[6][i]; |
| 110 | } |
| 111 | cost[2] *= CDEF_DIV_TABLE[8]; |
| 112 | cost[6] *= CDEF_DIV_TABLE[8]; |
| 113 | for i in 0..7 { |
| 114 | cost[0] += (partial[0][i] * partial[0][i] |
| 115 | + partial[0][14 - i] * partial[0][14 - i]) |
| 116 | * CDEF_DIV_TABLE[i + 1]; |
| 117 | cost[4] += (partial[4][i] * partial[4][i] |
| 118 | + partial[4][14 - i] * partial[4][14 - i]) |
| 119 | * CDEF_DIV_TABLE[i + 1]; |
| 120 | } |
| 121 | cost[0] += partial[0][7] * partial[0][7] * CDEF_DIV_TABLE[8]; |
| 122 | cost[4] += partial[4][7] * partial[4][7] * CDEF_DIV_TABLE[8]; |
| 123 | for i in (1..8).step_by(2) { |
| 124 | for j in 0..5 { |
| 125 | cost[i] += partial[i][3 + j] * partial[i][3 + j]; |
| 126 | } |
| 127 | cost[i] *= CDEF_DIV_TABLE[8]; |
| 128 | for j in 0..3 { |
| 129 | cost[i] += (partial[i][j] * partial[i][j] |
| 130 | + partial[i][10 - j] * partial[i][10 - j]) |
| 131 | * CDEF_DIV_TABLE[2 * j + 2]; |
| 132 | } |
| 133 | } |
| 134 | |
| 135 | let (best_dir, best_cost) = first_max_element(&cost); |
| 136 | // Difference between the optimal variance and the variance along the |
| 137 | // orthogonal direction. Again, the sum(x^2) terms cancel out. |
| 138 | // We'd normally divide by 840, but dividing by 1024 is close enough |
| 139 | // for what we're going to do with this. */ |
| 140 | *var = ((best_cost - cost[(best_dir + 4) & 7]) >> 10) as u32; |
| 141 | |
| 142 | best_dir as i32 |
| 143 | } |
| 144 | |
| 145 | #[inline (always)] |
| 146 | fn constrain(diff: i32, threshold: i32, damping: i32) -> i32 { |
| 147 | if threshold != 0 { |
| 148 | let shift = cmp::max(0, damping - msb(threshold)); |
| 149 | let magnitude = (threshold - (diff.abs() >> shift)).clamp(0, diff.abs()); |
| 150 | |
| 151 | if diff < 0 { |
| 152 | -magnitude |
| 153 | } else { |
| 154 | magnitude |
| 155 | } |
| 156 | } else { |
| 157 | 0 |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | pub unsafe fn pad_into_tmp16<T: Pixel>( |
| 162 | dst: *mut u16, dst_stride: isize, src: *const T, src_stride: isize, |
| 163 | block_width: usize, block_height: usize, edges: u8, |
| 164 | ) { |
| 165 | let mut w = block_width; |
| 166 | let mut h = block_height; |
| 167 | let (dst_col, src_col) = if (edges & CDEF_HAVE_LEFT) != 0 { |
| 168 | w += 2; |
| 169 | (dst, src.offset(-2)) |
| 170 | } else { |
| 171 | (dst.offset(2), src) |
| 172 | }; |
| 173 | if (edges & CDEF_HAVE_RIGHT) != 0 { |
| 174 | w += 2; |
| 175 | }; |
| 176 | |
| 177 | let (mut dst_ptr, mut src_ptr) = if (edges & CDEF_HAVE_TOP) != 0 { |
| 178 | h += 2; |
| 179 | (dst_col, src_col.offset(-2 * src_stride)) |
| 180 | } else { |
| 181 | (dst_col.offset(2 * dst_stride), src_col) |
| 182 | }; |
| 183 | if (edges & CDEF_HAVE_BOTTOM) != 0 { |
| 184 | h += 2; |
| 185 | }; |
| 186 | |
| 187 | for _y in 0..h { |
| 188 | for x in 0..w { |
| 189 | *dst_ptr.add(x) = u16::cast_from(*src_ptr.add(x)); |
| 190 | } |
| 191 | src_ptr = src_ptr.offset(src_stride); |
| 192 | dst_ptr = dst_ptr.offset(dst_stride); |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | #[cold_for_target_arch ("x86_64" )] |
| 197 | #[allow (clippy::erasing_op, clippy::identity_op, clippy::neg_multiply)] |
| 198 | pub(crate) unsafe fn cdef_filter_block<T: Pixel, U: Pixel>( |
| 199 | dst: &mut PlaneRegionMut<'_, T>, input: *const U, istride: isize, |
| 200 | pri_strength: i32, sec_strength: i32, dir: usize, damping: i32, |
| 201 | bit_depth: usize, xdec: usize, ydec: usize, edges: u8, |
| 202 | _cpu: CpuFeatureLevel, |
| 203 | ) { |
| 204 | if edges != CDEF_HAVE_ALL { |
| 205 | // slowpath for unpadded border[s] |
| 206 | let tmpstride = 2 + (8 >> xdec) + 2; |
| 207 | let mut tmp = [CDEF_VERY_LARGE; (2 + 8 + 2) * (2 + 8 + 2)]; |
| 208 | // copy in what pixels we have/are allowed to use |
| 209 | pad_into_tmp16( |
| 210 | tmp.as_mut_ptr(), // points to *padding* upper left |
| 211 | tmpstride, |
| 212 | input, // points to *block* upper left |
| 213 | istride, |
| 214 | 8 >> xdec, |
| 215 | 8 >> ydec, |
| 216 | edges, |
| 217 | ); |
| 218 | cdef_filter_block( |
| 219 | dst, |
| 220 | tmp.as_ptr().offset(2 * tmpstride + 2), |
| 221 | tmpstride, |
| 222 | pri_strength, |
| 223 | sec_strength, |
| 224 | dir, |
| 225 | damping, |
| 226 | bit_depth, |
| 227 | xdec, |
| 228 | ydec, |
| 229 | CDEF_HAVE_ALL, |
| 230 | _cpu, |
| 231 | ); |
| 232 | } else { |
| 233 | let xsize = (8 >> xdec) as isize; |
| 234 | let ysize = (8 >> ydec) as isize; |
| 235 | let coeff_shift = bit_depth - 8; |
| 236 | let cdef_pri_taps = [[4, 2], [3, 3]]; |
| 237 | let cdef_sec_taps = [[2, 1], [2, 1]]; |
| 238 | let pri_taps = |
| 239 | cdef_pri_taps[((pri_strength >> coeff_shift) & 1) as usize]; |
| 240 | let sec_taps = |
| 241 | cdef_sec_taps[((pri_strength >> coeff_shift) & 1) as usize]; |
| 242 | let cdef_directions = [ |
| 243 | [-1 * istride + 1, -2 * istride + 2], |
| 244 | [0 * istride + 1, -1 * istride + 2], |
| 245 | [0 * istride + 1, 0 * istride + 2], |
| 246 | [0 * istride + 1, 1 * istride + 2], |
| 247 | [1 * istride + 1, 2 * istride + 2], |
| 248 | [1 * istride + 0, 2 * istride + 1], |
| 249 | [1 * istride + 0, 2 * istride + 0], |
| 250 | [1 * istride + 0, 2 * istride - 1], |
| 251 | ]; |
| 252 | for i in 0..ysize { |
| 253 | for j in 0..xsize { |
| 254 | let ptr_in = input.offset(i * istride + j); |
| 255 | let x = i32::cast_from(*ptr_in); |
| 256 | let mut sum: i32 = 0; |
| 257 | let mut max = x; |
| 258 | let mut min = x; |
| 259 | for k in 0..2usize { |
| 260 | let cdef_dirs = [ |
| 261 | cdef_directions[dir][k], |
| 262 | cdef_directions[(dir + 2) & 7][k], |
| 263 | cdef_directions[(dir + 6) & 7][k], |
| 264 | ]; |
| 265 | let pri_tap = pri_taps[k]; |
| 266 | let p = [ |
| 267 | i32::cast_from(*ptr_in.offset(cdef_dirs[0])), |
| 268 | i32::cast_from(*ptr_in.offset(-cdef_dirs[0])), |
| 269 | ]; |
| 270 | for p_elem in p.iter() { |
| 271 | sum += pri_tap * constrain(*p_elem - x, pri_strength, damping); |
| 272 | if *p_elem != CDEF_VERY_LARGE as i32 { |
| 273 | max = cmp::max(*p_elem, max); |
| 274 | } |
| 275 | min = cmp::min(*p_elem, min); |
| 276 | } |
| 277 | |
| 278 | let s = [ |
| 279 | i32::cast_from(*ptr_in.offset(cdef_dirs[1])), |
| 280 | i32::cast_from(*ptr_in.offset(-cdef_dirs[1])), |
| 281 | i32::cast_from(*ptr_in.offset(cdef_dirs[2])), |
| 282 | i32::cast_from(*ptr_in.offset(-cdef_dirs[2])), |
| 283 | ]; |
| 284 | let sec_tap = sec_taps[k]; |
| 285 | for s_elem in s.iter() { |
| 286 | if *s_elem != CDEF_VERY_LARGE as i32 { |
| 287 | max = cmp::max(*s_elem, max); |
| 288 | } |
| 289 | min = cmp::min(*s_elem, min); |
| 290 | sum += sec_tap * constrain(*s_elem - x, sec_strength, damping); |
| 291 | } |
| 292 | } |
| 293 | let v = x + ((8 + sum - (sum < 0) as i32) >> 4); |
| 294 | dst[i as usize][j as usize] = T::cast_from(clamp(v, min, max)); |
| 295 | } |
| 296 | } |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | #[cfg (test)] |
| 301 | mod test { |
| 302 | use super::*; |
| 303 | |
| 304 | #[test ] |
| 305 | fn check_max_element() { |
| 306 | assert_eq!(first_max_element(&[-1, -1, 1, 2, 3, 4, 6, 6]), (6, 6)); |
| 307 | assert_eq!(first_max_element(&[-1, -1, 1, 2, 3, 4, 7, 6]), (6, 7)); |
| 308 | assert_eq!(first_max_element(&[0, 0]), (0, 0)); |
| 309 | } |
| 310 | } |
| 311 | } |
| 312 | |
| 313 | // We use the variance of an 8x8 block to adjust the effective filter strength. |
| 314 | #[inline ] |
| 315 | fn adjust_strength(strength: i32, var: i32) -> i32 { |
| 316 | let i: i32 = if (var >> 6) != 0 { cmp::min(v1:msb(var >> 6), v2:12) } else { 0 }; |
| 317 | if var != 0 { |
| 318 | (strength * (4 + i) + 8) >> 4 |
| 319 | } else { |
| 320 | 0 |
| 321 | } |
| 322 | } |
| 323 | |
| 324 | #[profiling::function ] |
| 325 | pub fn cdef_analyze_superblock_range<T: Pixel>( |
| 326 | fi: &FrameInvariants<T>, in_frame: &Frame<T>, blocks: &TileBlocks<'_>, |
| 327 | sb_w: usize, sb_h: usize, |
| 328 | ) -> Vec<CdefDirections> { |
| 329 | let mut ret: Vec = Vec::<CdefDirections>::with_capacity(sb_h * sb_w); |
| 330 | for sby: usize in 0..sb_h { |
| 331 | for sbx: usize in 0..sb_w { |
| 332 | let sbo: TileSuperBlockOffset = TileSuperBlockOffset(SuperBlockOffset { x: sbx, y: sby }); |
| 333 | ret.push(cdef_analyze_superblock(fi, in_frame, blocks, sbo)); |
| 334 | } |
| 335 | } |
| 336 | ret |
| 337 | } |
| 338 | |
| 339 | #[profiling::function ] |
| 340 | pub fn cdef_analyze_superblock<T: Pixel>( |
| 341 | fi: &FrameInvariants<T>, in_frame: &Frame<T>, blocks: &TileBlocks<'_>, |
| 342 | sbo: TileSuperBlockOffset, |
| 343 | ) -> CdefDirections { |
| 344 | let coeff_shift = fi.sequence.bit_depth - 8; |
| 345 | let mut dir: CdefDirections = |
| 346 | CdefDirections { dir: [[0; 8]; 8], var: [[0; 8]; 8] }; |
| 347 | // Each direction block is 8x8 in y, and direction computation only looks at y |
| 348 | for by in 0..8 { |
| 349 | for bx in 0..8 { |
| 350 | let block_offset = sbo.block_offset(bx << 1, by << 1); |
| 351 | if block_offset.0.x < blocks.cols() && block_offset.0.y < blocks.rows() { |
| 352 | let skip = blocks[block_offset].skip |
| 353 | & blocks[sbo.block_offset(2 * bx + 1, 2 * by)].skip |
| 354 | & blocks[sbo.block_offset(2 * bx, 2 * by + 1)].skip |
| 355 | & blocks[sbo.block_offset(2 * bx + 1, 2 * by + 1)].skip; |
| 356 | |
| 357 | if !skip { |
| 358 | let mut var: u32 = 0; |
| 359 | let in_plane = &in_frame.planes[0]; |
| 360 | let in_po = sbo.plane_offset(&in_plane.cfg); |
| 361 | let in_slice = in_plane.slice(in_po); |
| 362 | dir.dir[bx][by] = cdef_find_dir::<T>( |
| 363 | &in_slice.reslice(8 * bx as isize, 8 * by as isize), |
| 364 | &mut var, |
| 365 | coeff_shift, |
| 366 | fi.cpu_feature_level, |
| 367 | ) as u8; |
| 368 | dir.var[bx][by] = var as i32; |
| 369 | } |
| 370 | } |
| 371 | } |
| 372 | } |
| 373 | dir |
| 374 | } |
| 375 | |
| 376 | // input: A Frame of reconstructed/deblocked pixels prepared to |
| 377 | // undergo CDEF. Note that the input is a Frame and not a Tile due to |
| 378 | // Tiles not allowing [supervised] out-of-rect access for padding |
| 379 | // pixels. This will be corrected at some point in the future. |
| 380 | |
| 381 | // tile_sbo: specifies an offset into the output Tile, not an |
| 382 | // absolute offset in the visible frame. The Tile's own offset is |
| 383 | // added to this in order to address into the input Frame. |
| 384 | |
| 385 | // tb: the TileBlocks associated with the filtered region; the |
| 386 | // provided blocks co-locate with the output region. The TileBlocks |
| 387 | // provide by-[super]qblock CDEF parameters. |
| 388 | |
| 389 | // output: TileMut destination for filtered pixels. The output's |
| 390 | // rect specifies the region of the input to be processed (x and y |
| 391 | // are relative to the input Frame's origin). Note that an |
| 392 | // additional area of 2 pixels of padding is used for CDEF. When |
| 393 | // these pixels are unavailable (beyond the visible frame or at a |
| 394 | // tile boundary), the filtering process ignores input pixels that |
| 395 | // don't exist. |
| 396 | |
| 397 | /// # Panics |
| 398 | /// |
| 399 | /// - If called with invalid parameters |
| 400 | #[profiling::function ] |
| 401 | pub fn cdef_filter_superblock<T: Pixel>( |
| 402 | fi: &FrameInvariants<T>, input: &Frame<T>, output: &mut TileMut<'_, T>, |
| 403 | blocks: &TileBlocks<'_>, tile_sbo: TileSuperBlockOffset, cdef_index: u8, |
| 404 | cdef_dirs: &CdefDirections, |
| 405 | ) { |
| 406 | let bit_depth = fi.sequence.bit_depth; |
| 407 | let coeff_shift = fi.sequence.bit_depth as i32 - 8; |
| 408 | let cdef_damping = fi.cdef_damping as i32; |
| 409 | let cdef_y_strength = fi.cdef_y_strengths[cdef_index as usize]; |
| 410 | let cdef_uv_strength = fi.cdef_uv_strengths[cdef_index as usize]; |
| 411 | let cdef_pri_y_strength = (cdef_y_strength / CDEF_SEC_STRENGTHS) as i32; |
| 412 | let mut cdef_sec_y_strength = (cdef_y_strength % CDEF_SEC_STRENGTHS) as i32; |
| 413 | let cdef_pri_uv_strength = (cdef_uv_strength / CDEF_SEC_STRENGTHS) as i32; |
| 414 | let planes = if fi.sequence.chroma_sampling == Cs400 { 1 } else { 3 }; |
| 415 | let mut cdef_sec_uv_strength = |
| 416 | (cdef_uv_strength % CDEF_SEC_STRENGTHS) as i32; |
| 417 | if cdef_sec_y_strength == 3 { |
| 418 | cdef_sec_y_strength += 1; |
| 419 | } |
| 420 | if cdef_sec_uv_strength == 3 { |
| 421 | cdef_sec_uv_strength += 1; |
| 422 | } |
| 423 | |
| 424 | let tile_rect = *output.planes[0].rect(); |
| 425 | let input_xoffset = |
| 426 | tile_rect.x + tile_sbo.plane_offset(&input.planes[0].cfg).x; |
| 427 | let input_yoffset = |
| 428 | tile_rect.y + tile_sbo.plane_offset(&input.planes[0].cfg).y; |
| 429 | let input_xavail = input.planes[0].cfg.width as isize - input_xoffset; |
| 430 | let input_yavail = input.planes[0].cfg.height as isize - input_yoffset; |
| 431 | |
| 432 | /* determine what edge padding we have, and what padding we don't. |
| 433 | * We don't pad here, but rather tell the filter_block call what it |
| 434 | * needs to do, then let it handle the specifics (following dav1d's |
| 435 | * lead). We make one assumption that's not obvious: Because the |
| 436 | * cdef clipping area is rounded up to an even 8x8 luma block, we |
| 437 | * don't need to guard against having only one (as opposed to two) |
| 438 | * pixels of padding past the current block boundary. The padding |
| 439 | * is all-or-nothing. */ |
| 440 | |
| 441 | // Slightly harder than in dav1d; we're not always doing full-frame. |
| 442 | let have_top_p = |
| 443 | if tile_sbo.0.y as isize + tile_rect.y > 0 { CDEF_HAVE_TOP } else { 0 }; |
| 444 | let have_left_p = |
| 445 | if tile_sbo.0.x as isize + tile_rect.x > 0 { CDEF_HAVE_LEFT } else { 0 }; |
| 446 | let mut edges = have_top_p | CDEF_HAVE_BOTTOM; |
| 447 | |
| 448 | // Each direction block is 8x8 in y, potentially smaller if subsampled in chroma |
| 449 | for by in 0..8usize { |
| 450 | if by + 1 >= (input_yavail as usize >> 3) { |
| 451 | edges &= !CDEF_HAVE_BOTTOM |
| 452 | }; |
| 453 | edges &= !CDEF_HAVE_LEFT; |
| 454 | edges |= have_left_p; |
| 455 | edges |= CDEF_HAVE_RIGHT; |
| 456 | for bx in 0..8usize { |
| 457 | if bx + 1 >= (input_xavail as usize >> 3) { |
| 458 | edges &= !CDEF_HAVE_RIGHT |
| 459 | }; |
| 460 | let block_offset = tile_sbo.block_offset(bx << 1, by << 1); |
| 461 | if block_offset.0.x < blocks.cols() && block_offset.0.y < blocks.rows() { |
| 462 | let skip = blocks[block_offset].skip |
| 463 | & blocks[tile_sbo.block_offset(2 * bx + 1, 2 * by)].skip |
| 464 | & blocks[tile_sbo.block_offset(2 * bx, 2 * by + 1)].skip |
| 465 | & blocks[tile_sbo.block_offset(2 * bx + 1, 2 * by + 1)].skip; |
| 466 | let dir = cdef_dirs.dir[bx][by]; |
| 467 | let var = cdef_dirs.var[bx][by]; |
| 468 | for p in 0..planes { |
| 469 | let out_plane = &mut output.planes[p]; |
| 470 | let in_plane = &input.planes[p]; |
| 471 | let xdec = in_plane.cfg.xdec; |
| 472 | let ydec = in_plane.cfg.ydec; |
| 473 | let xsize = 8 >> xdec; |
| 474 | let ysize = 8 >> ydec; |
| 475 | let in_po = PlaneOffset { |
| 476 | x: (input_xoffset >> xdec) + (bx * xsize) as isize, |
| 477 | y: (input_yoffset >> ydec) + (by * ysize) as isize, |
| 478 | }; |
| 479 | let in_stride = in_plane.cfg.stride; |
| 480 | let in_slice = &in_plane.slice(in_po); |
| 481 | |
| 482 | let out_block = &mut out_plane.subregion_mut(Area::BlockRect { |
| 483 | bo: tile_sbo.block_offset(2 * bx, 2 * by).0, |
| 484 | width: xsize, |
| 485 | height: ysize, |
| 486 | }); |
| 487 | |
| 488 | if !skip { |
| 489 | let local_pri_strength; |
| 490 | let local_sec_strength; |
| 491 | let mut local_damping: i32 = cdef_damping + coeff_shift; |
| 492 | // See `Cdef_Uv_Dir` constant lookup table in Section 7.15.1 |
| 493 | // <https://aomediacodec.github.io/av1-spec/#cdef-block-process> |
| 494 | let local_dir = if p == 0 { |
| 495 | local_pri_strength = |
| 496 | adjust_strength(cdef_pri_y_strength << coeff_shift, var); |
| 497 | local_sec_strength = cdef_sec_y_strength << coeff_shift; |
| 498 | if cdef_pri_y_strength != 0 { |
| 499 | dir as usize |
| 500 | } else { |
| 501 | 0 |
| 502 | } |
| 503 | } else { |
| 504 | local_pri_strength = cdef_pri_uv_strength << coeff_shift; |
| 505 | local_sec_strength = cdef_sec_uv_strength << coeff_shift; |
| 506 | local_damping -= 1; |
| 507 | if cdef_pri_uv_strength != 0 { |
| 508 | if xdec != ydec { |
| 509 | [7, 0, 2, 4, 5, 6, 6, 6][dir as usize] |
| 510 | } else { |
| 511 | dir as usize |
| 512 | } |
| 513 | } else { |
| 514 | 0 |
| 515 | } |
| 516 | }; |
| 517 | |
| 518 | // SAFETY: `cdef_filter_block` may call Assembly code. |
| 519 | // The asserts here verify that we are not calling it |
| 520 | // with invalid parameters. |
| 521 | unsafe { |
| 522 | assert!( |
| 523 | input.planes[p].cfg.width as isize |
| 524 | >= in_po.x |
| 525 | + xsize as isize |
| 526 | + if edges & CDEF_HAVE_RIGHT > 0 { 2 } else { 0 } |
| 527 | ); |
| 528 | assert!( |
| 529 | 0 <= in_po.x - if edges & CDEF_HAVE_LEFT > 0 { 2 } else { 0 } |
| 530 | ); |
| 531 | assert!( |
| 532 | input.planes[p].cfg.height as isize |
| 533 | >= in_po.y |
| 534 | + ysize as isize |
| 535 | + if edges & CDEF_HAVE_BOTTOM > 0 { 2 } else { 0 } |
| 536 | ); |
| 537 | assert!( |
| 538 | 0 <= in_po.y - if edges & CDEF_HAVE_TOP > 0 { 2 } else { 0 } |
| 539 | ); |
| 540 | |
| 541 | cdef_filter_block( |
| 542 | out_block, |
| 543 | in_slice.as_ptr(), |
| 544 | in_stride as isize, |
| 545 | local_pri_strength, |
| 546 | local_sec_strength, |
| 547 | local_dir, |
| 548 | local_damping, |
| 549 | bit_depth, |
| 550 | xdec, |
| 551 | ydec, |
| 552 | edges, |
| 553 | fi.cpu_feature_level, |
| 554 | ); |
| 555 | } |
| 556 | } else { |
| 557 | // no filtering, but we need to copy input to output |
| 558 | for i in 0..ysize { |
| 559 | for j in 0..xsize { |
| 560 | out_block[i][j] = in_slice[i][j]; |
| 561 | } |
| 562 | } |
| 563 | } |
| 564 | } |
| 565 | } |
| 566 | edges |= CDEF_HAVE_LEFT; |
| 567 | } |
| 568 | edges |= CDEF_HAVE_TOP; |
| 569 | } |
| 570 | } |
| 571 | |
| 572 | // The purpose of CDEF is to perform deringing based on the detected |
| 573 | // direction of blocks. CDEF parameters are stored for each 64 by 64 |
| 574 | // block of pixels. The CDEF filter is applied on each 8 by 8 block |
| 575 | // of pixels. Reference: |
| 576 | // http://av1-spec.argondesign.com/av1-spec/av1-spec.html#cdef-process |
| 577 | |
| 578 | // input: A Frame of reconstructed/deblocked pixels prepared to |
| 579 | // undergo CDEF. cdef_filter_tile acts on a subset of these input |
| 580 | // pixels, as specified by the PlaneRegion rect of the output. Note |
| 581 | // that the input is a Frame and not a Tile due to Tiles not |
| 582 | // allowing [supervised] out-of-rect access for padding pixels. |
| 583 | // This will be corrected at some point in the future. |
| 584 | |
| 585 | // tb: the TileBlocks associated with the filtered region; the |
| 586 | // provided blocks co-locate with the output region. |
| 587 | |
| 588 | // output: TileMut destination for filtered pixels. The output's |
| 589 | // rect specifies the region of the input to be processed (x and y |
| 590 | // are relative to the input Frame's origin). Note that an |
| 591 | // additional area of 2 pixels of padding is used for CDEF. When |
| 592 | // these pixels are unavailable (beyond the visible frame or at a |
| 593 | // tile boundary), the filtering process ignores input pixels that |
| 594 | // don't exist. |
| 595 | |
| 596 | #[profiling::function ] |
| 597 | pub fn cdef_filter_tile<T: Pixel>( |
| 598 | fi: &FrameInvariants<T>, input: &Frame<T>, tb: &TileBlocks, |
| 599 | output: &mut TileMut<'_, T>, |
| 600 | ) { |
| 601 | // Each filter block is 64x64, except right and/or bottom for non-multiple-of-64 sizes. |
| 602 | // FIXME: 128x128 SB support will break this, we need FilterBlockOffset etc. |
| 603 | |
| 604 | // No need to guard against having fewer actual coded blocks than |
| 605 | // the output.rect() area. Inner code already guards this case. |
| 606 | let fb_width = (output.planes[0].rect().width + 63) / 64; |
| 607 | let fb_height = (output.planes[0].rect().height + 63) / 64; |
| 608 | |
| 609 | // should parallelize this |
| 610 | for fby in 0..fb_height { |
| 611 | for fbx in 0..fb_width { |
| 612 | // tile_sbo is treated as an offset into the Tiles' plane |
| 613 | // regions, not as an absolute offset in the visible frame. The |
| 614 | // Tile's own offset is added to this in order to address into |
| 615 | // the input Frame. |
| 616 | let tile_sbo = TileSuperBlockOffset(SuperBlockOffset { x: fbx, y: fby }); |
| 617 | let cdef_index = tb.get_cdef(tile_sbo); |
| 618 | let cdef_dirs = cdef_analyze_superblock(fi, input, tb, tile_sbo); |
| 619 | |
| 620 | cdef_filter_superblock( |
| 621 | fi, input, output, tb, tile_sbo, cdef_index, &cdef_dirs, |
| 622 | ); |
| 623 | } |
| 624 | } |
| 625 | } |
| 626 | |