| 1 | use crate::iter::plumbing::{bridge_unindexed, Folder, UnindexedConsumer, UnindexedProducer}; |
| 2 | use crate::prelude::*; |
| 3 | use std::iter::once; |
| 4 | |
| 5 | #[derive (Debug)] |
| 6 | struct WalkTreePrefixProducer<'b, S, B> { |
| 7 | to_explore: Vec<S>, // nodes (and subtrees) we have to process |
| 8 | seen: Vec<S>, // nodes which have already been explored |
| 9 | children_of: &'b B, // function generating children |
| 10 | } |
| 11 | |
| 12 | impl<S, B, I> UnindexedProducer for WalkTreePrefixProducer<'_, S, B> |
| 13 | where |
| 14 | S: Send, |
| 15 | B: Fn(&S) -> I + Send + Sync, |
| 16 | I: IntoIterator<Item = S>, |
| 17 | I::IntoIter: DoubleEndedIterator, |
| 18 | { |
| 19 | type Item = S; |
| 20 | |
| 21 | fn split(mut self) -> (Self, Option<Self>) { |
| 22 | // explore while front is of size one. |
| 23 | while self.to_explore.len() == 1 { |
| 24 | let front_node = self.to_explore.pop().unwrap(); |
| 25 | self.to_explore |
| 26 | .extend((self.children_of)(&front_node).into_iter().rev()); |
| 27 | self.seen.push(front_node); |
| 28 | } |
| 29 | // now take half of the front. |
| 30 | let right_children = split_vec(&mut self.to_explore); |
| 31 | let right = right_children |
| 32 | .map(|mut c| { |
| 33 | std::mem::swap(&mut c, &mut self.to_explore); |
| 34 | WalkTreePrefixProducer { |
| 35 | to_explore: c, |
| 36 | seen: Vec::new(), |
| 37 | children_of: self.children_of, |
| 38 | } |
| 39 | }) |
| 40 | .or_else(|| { |
| 41 | // we can still try to divide 'seen' |
| 42 | let right_seen = split_vec(&mut self.seen); |
| 43 | right_seen.map(|s| WalkTreePrefixProducer { |
| 44 | to_explore: Default::default(), |
| 45 | seen: s, |
| 46 | children_of: self.children_of, |
| 47 | }) |
| 48 | }); |
| 49 | (self, right) |
| 50 | } |
| 51 | |
| 52 | fn fold_with<F>(mut self, mut folder: F) -> F |
| 53 | where |
| 54 | F: Folder<Self::Item>, |
| 55 | { |
| 56 | // start by consuming everything seen |
| 57 | folder = folder.consume_iter(self.seen); |
| 58 | if folder.full() { |
| 59 | return folder; |
| 60 | } |
| 61 | // now do all remaining explorations |
| 62 | while let Some(e) = self.to_explore.pop() { |
| 63 | self.to_explore |
| 64 | .extend((self.children_of)(&e).into_iter().rev()); |
| 65 | folder = folder.consume(e); |
| 66 | if folder.full() { |
| 67 | return folder; |
| 68 | } |
| 69 | } |
| 70 | folder |
| 71 | } |
| 72 | } |
| 73 | |
| 74 | /// ParallelIterator for arbitrary tree-shaped patterns. |
| 75 | /// Returned by the [`walk_tree_prefix()`] function. |
| 76 | #[derive (Debug)] |
| 77 | pub struct WalkTreePrefix<S, B> { |
| 78 | initial_state: S, |
| 79 | children_of: B, |
| 80 | } |
| 81 | |
| 82 | impl<S, B, I> ParallelIterator for WalkTreePrefix<S, B> |
| 83 | where |
| 84 | S: Send, |
| 85 | B: Fn(&S) -> I + Send + Sync, |
| 86 | I: IntoIterator<Item = S>, |
| 87 | I::IntoIter: DoubleEndedIterator, |
| 88 | { |
| 89 | type Item = S; |
| 90 | |
| 91 | fn drive_unindexed<C>(self, consumer: C) -> C::Result |
| 92 | where |
| 93 | C: UnindexedConsumer<Self::Item>, |
| 94 | { |
| 95 | let producer: WalkTreePrefixProducer<'_, …, …> = WalkTreePrefixProducer { |
| 96 | to_explore: once(self.initial_state).collect(), |
| 97 | seen: Vec::new(), |
| 98 | children_of: &self.children_of, |
| 99 | }; |
| 100 | bridge_unindexed(producer, consumer) |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | /// Create a tree-like prefix parallel iterator from an initial root node. |
| 105 | /// The `children_of` function should take a node and return an iterator over its child nodes. |
| 106 | /// The best parallelization is obtained when the tree is balanced |
| 107 | /// but we should also be able to handle harder cases. |
| 108 | /// |
| 109 | /// # Ordering |
| 110 | /// |
| 111 | /// This function guarantees a prefix ordering. See also [`walk_tree_postfix`], |
| 112 | /// which guarantees a postfix order. |
| 113 | /// If you don't care about ordering, you should use [`walk_tree`], |
| 114 | /// which will use whatever is believed to be fastest. |
| 115 | /// For example a perfect binary tree of 7 nodes will reduced in the following order: |
| 116 | /// |
| 117 | /// ```text |
| 118 | /// a |
| 119 | /// / \ |
| 120 | /// / \ |
| 121 | /// b c |
| 122 | /// / \ / \ |
| 123 | /// d e f g |
| 124 | /// |
| 125 | /// reduced as a,b,d,e,c,f,g |
| 126 | /// |
| 127 | /// ``` |
| 128 | /// |
| 129 | /// # Example |
| 130 | /// |
| 131 | /// ```text |
| 132 | /// 4 |
| 133 | /// / \ |
| 134 | /// / \ |
| 135 | /// 2 3 |
| 136 | /// / \ |
| 137 | /// 1 2 |
| 138 | /// ``` |
| 139 | /// |
| 140 | /// ``` |
| 141 | /// use rayon::iter::walk_tree_prefix; |
| 142 | /// use rayon::prelude::*; |
| 143 | /// |
| 144 | /// let par_iter = walk_tree_prefix(4, |&e| { |
| 145 | /// if e <= 2 { |
| 146 | /// Vec::new() |
| 147 | /// } else { |
| 148 | /// vec![e / 2, e / 2 + 1] |
| 149 | /// } |
| 150 | /// }); |
| 151 | /// assert_eq!(par_iter.sum::<u32>(), 12); |
| 152 | /// ``` |
| 153 | /// |
| 154 | /// # Example |
| 155 | /// |
| 156 | /// ``` |
| 157 | /// use rayon::prelude::*; |
| 158 | /// use rayon::iter::walk_tree_prefix; |
| 159 | /// |
| 160 | /// struct Node { |
| 161 | /// content: u32, |
| 162 | /// left: Option<Box<Node>>, |
| 163 | /// right: Option<Box<Node>>, |
| 164 | /// } |
| 165 | /// |
| 166 | /// // Here we loop on the following tree: |
| 167 | /// // |
| 168 | /// // 10 |
| 169 | /// // / \ |
| 170 | /// // / \ |
| 171 | /// // 3 14 |
| 172 | /// // \ |
| 173 | /// // \ |
| 174 | /// // 18 |
| 175 | /// |
| 176 | /// let root = Node { |
| 177 | /// content: 10, |
| 178 | /// left: Some(Box::new(Node { |
| 179 | /// content: 3, |
| 180 | /// left: None, |
| 181 | /// right: None, |
| 182 | /// })), |
| 183 | /// right: Some(Box::new(Node { |
| 184 | /// content: 14, |
| 185 | /// left: None, |
| 186 | /// right: Some(Box::new(Node { |
| 187 | /// content: 18, |
| 188 | /// left: None, |
| 189 | /// right: None, |
| 190 | /// })), |
| 191 | /// })), |
| 192 | /// }; |
| 193 | /// |
| 194 | /// let mut v: Vec<u32> = walk_tree_prefix(&root, |r| { |
| 195 | /// r.left |
| 196 | /// .as_ref() |
| 197 | /// .into_iter() |
| 198 | /// .chain(r.right.as_ref()) |
| 199 | /// .map(|n| &**n) |
| 200 | /// }) |
| 201 | /// .map(|node| node.content) |
| 202 | /// .collect(); |
| 203 | /// assert_eq!(v, vec![10, 3, 14, 18]); |
| 204 | /// ``` |
| 205 | /// |
| 206 | pub fn walk_tree_prefix<S, B, I>(root: S, children_of: B) -> WalkTreePrefix<S, B> |
| 207 | where |
| 208 | S: Send, |
| 209 | B: Fn(&S) -> I + Send + Sync, |
| 210 | I: IntoIterator<Item = S>, |
| 211 | I::IntoIter: DoubleEndedIterator, |
| 212 | { |
| 213 | WalkTreePrefix { |
| 214 | initial_state: root, |
| 215 | children_of, |
| 216 | } |
| 217 | } |
| 218 | |
| 219 | // post fix |
| 220 | |
| 221 | #[derive (Debug)] |
| 222 | struct WalkTreePostfixProducer<'b, S, B> { |
| 223 | to_explore: Vec<S>, // nodes (and subtrees) we have to process |
| 224 | seen: Vec<S>, // nodes which have already been explored |
| 225 | children_of: &'b B, // function generating children |
| 226 | } |
| 227 | |
| 228 | impl<S, B, I> UnindexedProducer for WalkTreePostfixProducer<'_, S, B> |
| 229 | where |
| 230 | S: Send, |
| 231 | B: Fn(&S) -> I + Send + Sync, |
| 232 | I: IntoIterator<Item = S>, |
| 233 | { |
| 234 | type Item = S; |
| 235 | |
| 236 | fn split(mut self) -> (Self, Option<Self>) { |
| 237 | // explore while front is of size one. |
| 238 | while self.to_explore.len() == 1 { |
| 239 | let front_node = self.to_explore.pop().unwrap(); |
| 240 | self.to_explore |
| 241 | .extend((self.children_of)(&front_node).into_iter()); |
| 242 | self.seen.push(front_node); |
| 243 | } |
| 244 | // now take half of the front. |
| 245 | let right_children = split_vec(&mut self.to_explore); |
| 246 | let right = right_children |
| 247 | .map(|c| { |
| 248 | let right_seen = std::mem::take(&mut self.seen); // postfix -> upper nodes are processed last |
| 249 | WalkTreePostfixProducer { |
| 250 | to_explore: c, |
| 251 | seen: right_seen, |
| 252 | children_of: self.children_of, |
| 253 | } |
| 254 | }) |
| 255 | .or_else(|| { |
| 256 | // we can still try to divide 'seen' |
| 257 | let right_seen = split_vec(&mut self.seen); |
| 258 | right_seen.map(|mut s| { |
| 259 | std::mem::swap(&mut self.seen, &mut s); |
| 260 | WalkTreePostfixProducer { |
| 261 | to_explore: Default::default(), |
| 262 | seen: s, |
| 263 | children_of: self.children_of, |
| 264 | } |
| 265 | }) |
| 266 | }); |
| 267 | (self, right) |
| 268 | } |
| 269 | |
| 270 | fn fold_with<F>(self, mut folder: F) -> F |
| 271 | where |
| 272 | F: Folder<Self::Item>, |
| 273 | { |
| 274 | // now do all remaining explorations |
| 275 | for e in self.to_explore { |
| 276 | folder = consume_rec_postfix(&self.children_of, e, folder); |
| 277 | if folder.full() { |
| 278 | return folder; |
| 279 | } |
| 280 | } |
| 281 | // end by consuming everything seen |
| 282 | folder.consume_iter(self.seen.into_iter().rev()) |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | fn consume_rec_postfix<F, S, B, I>(children_of: &B, s: S, mut folder: F) -> F |
| 287 | where |
| 288 | F: Folder<S>, |
| 289 | B: Fn(&S) -> I, |
| 290 | I: IntoIterator<Item = S>, |
| 291 | { |
| 292 | let children: ::IntoIter = (children_of)(&s).into_iter(); |
| 293 | for child: S in children { |
| 294 | folder = consume_rec_postfix(children_of, s:child, folder); |
| 295 | if folder.full() { |
| 296 | return folder; |
| 297 | } |
| 298 | } |
| 299 | folder.consume(item:s) |
| 300 | } |
| 301 | |
| 302 | /// ParallelIterator for arbitrary tree-shaped patterns. |
| 303 | /// Returned by the [`walk_tree_postfix()`] function. |
| 304 | #[derive (Debug)] |
| 305 | pub struct WalkTreePostfix<S, B> { |
| 306 | initial_state: S, |
| 307 | children_of: B, |
| 308 | } |
| 309 | |
| 310 | impl<S, B, I> ParallelIterator for WalkTreePostfix<S, B> |
| 311 | where |
| 312 | S: Send, |
| 313 | B: Fn(&S) -> I + Send + Sync, |
| 314 | I: IntoIterator<Item = S>, |
| 315 | { |
| 316 | type Item = S; |
| 317 | |
| 318 | fn drive_unindexed<C>(self, consumer: C) -> C::Result |
| 319 | where |
| 320 | C: UnindexedConsumer<Self::Item>, |
| 321 | { |
| 322 | let producer: WalkTreePostfixProducer<'_, …, …> = WalkTreePostfixProducer { |
| 323 | to_explore: once(self.initial_state).collect(), |
| 324 | seen: Vec::new(), |
| 325 | children_of: &self.children_of, |
| 326 | }; |
| 327 | bridge_unindexed(producer, consumer) |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | /// Divide given vector in two equally sized vectors. |
| 332 | /// Return `None` if initial size is <=1. |
| 333 | /// We return the first half and keep the last half in `v`. |
| 334 | fn split_vec<T>(v: &mut Vec<T>) -> Option<Vec<T>> { |
| 335 | if v.len() <= 1 { |
| 336 | None |
| 337 | } else { |
| 338 | let n: usize = v.len() / 2; |
| 339 | Some(v.split_off(at:n)) |
| 340 | } |
| 341 | } |
| 342 | |
| 343 | /// Create a tree like postfix parallel iterator from an initial root node. |
| 344 | /// The `children_of` function should take a node and iterate on all of its child nodes. |
| 345 | /// The best parallelization is obtained when the tree is balanced |
| 346 | /// but we should also be able to handle harder cases. |
| 347 | /// |
| 348 | /// # Ordering |
| 349 | /// |
| 350 | /// This function guarantees a postfix ordering. See also [`walk_tree_prefix`] which guarantees a |
| 351 | /// prefix order. If you don't care about ordering, you should use [`walk_tree`], which will use |
| 352 | /// whatever is believed to be fastest. |
| 353 | /// |
| 354 | /// Between siblings, children are reduced in order -- that is first children are reduced first. |
| 355 | /// |
| 356 | /// For example a perfect binary tree of 7 nodes will reduced in the following order: |
| 357 | /// |
| 358 | /// ```text |
| 359 | /// a |
| 360 | /// / \ |
| 361 | /// / \ |
| 362 | /// b c |
| 363 | /// / \ / \ |
| 364 | /// d e f g |
| 365 | /// |
| 366 | /// reduced as d,e,b,f,g,c,a |
| 367 | /// |
| 368 | /// ``` |
| 369 | /// |
| 370 | /// # Example |
| 371 | /// |
| 372 | /// ```text |
| 373 | /// 4 |
| 374 | /// / \ |
| 375 | /// / \ |
| 376 | /// 2 3 |
| 377 | /// / \ |
| 378 | /// 1 2 |
| 379 | /// ``` |
| 380 | /// |
| 381 | /// ``` |
| 382 | /// use rayon::iter::walk_tree_postfix; |
| 383 | /// use rayon::prelude::*; |
| 384 | /// |
| 385 | /// let par_iter = walk_tree_postfix(4, |&e| { |
| 386 | /// if e <= 2 { |
| 387 | /// Vec::new() |
| 388 | /// } else { |
| 389 | /// vec![e / 2, e / 2 + 1] |
| 390 | /// } |
| 391 | /// }); |
| 392 | /// assert_eq!(par_iter.sum::<u32>(), 12); |
| 393 | /// ``` |
| 394 | /// |
| 395 | /// # Example |
| 396 | /// |
| 397 | /// ``` |
| 398 | /// use rayon::prelude::*; |
| 399 | /// use rayon::iter::walk_tree_postfix; |
| 400 | /// |
| 401 | /// struct Node { |
| 402 | /// content: u32, |
| 403 | /// left: Option<Box<Node>>, |
| 404 | /// right: Option<Box<Node>>, |
| 405 | /// } |
| 406 | /// |
| 407 | /// // Here we loop on the following tree: |
| 408 | /// // |
| 409 | /// // 10 |
| 410 | /// // / \ |
| 411 | /// // / \ |
| 412 | /// // 3 14 |
| 413 | /// // \ |
| 414 | /// // \ |
| 415 | /// // 18 |
| 416 | /// |
| 417 | /// let root = Node { |
| 418 | /// content: 10, |
| 419 | /// left: Some(Box::new(Node { |
| 420 | /// content: 3, |
| 421 | /// left: None, |
| 422 | /// right: None, |
| 423 | /// })), |
| 424 | /// right: Some(Box::new(Node { |
| 425 | /// content: 14, |
| 426 | /// left: None, |
| 427 | /// right: Some(Box::new(Node { |
| 428 | /// content: 18, |
| 429 | /// left: None, |
| 430 | /// right: None, |
| 431 | /// })), |
| 432 | /// })), |
| 433 | /// }; |
| 434 | /// |
| 435 | /// let mut v: Vec<u32> = walk_tree_postfix(&root, |r| { |
| 436 | /// r.left |
| 437 | /// .as_ref() |
| 438 | /// .into_iter() |
| 439 | /// .chain(r.right.as_ref()) |
| 440 | /// .map(|n| &**n) |
| 441 | /// }) |
| 442 | /// .map(|node| node.content) |
| 443 | /// .collect(); |
| 444 | /// assert_eq!(v, vec![3, 18, 14, 10]); |
| 445 | /// ``` |
| 446 | /// |
| 447 | pub fn walk_tree_postfix<S, B, I>(root: S, children_of: B) -> WalkTreePostfix<S, B> |
| 448 | where |
| 449 | S: Send, |
| 450 | B: Fn(&S) -> I + Send + Sync, |
| 451 | I: IntoIterator<Item = S>, |
| 452 | { |
| 453 | WalkTreePostfix { |
| 454 | initial_state: root, |
| 455 | children_of, |
| 456 | } |
| 457 | } |
| 458 | |
| 459 | /// ParallelIterator for arbitrary tree-shaped patterns. |
| 460 | /// Returned by the [`walk_tree()`] function. |
| 461 | #[derive (Debug)] |
| 462 | pub struct WalkTree<S, B>(WalkTreePostfix<S, B>); |
| 463 | |
| 464 | /// Create a tree like parallel iterator from an initial root node. |
| 465 | /// The `children_of` function should take a node and iterate on all of its child nodes. |
| 466 | /// The best parallelization is obtained when the tree is balanced |
| 467 | /// but we should also be able to handle harder cases. |
| 468 | /// |
| 469 | /// # Ordering |
| 470 | /// |
| 471 | /// This function does not guarantee any ordering but will |
| 472 | /// use whatever algorithm is thought to achieve the fastest traversal. |
| 473 | /// See also [`walk_tree_prefix`] which guarantees a |
| 474 | /// prefix order and [`walk_tree_postfix`] which guarantees a postfix order. |
| 475 | /// |
| 476 | /// # Example |
| 477 | /// |
| 478 | /// ```text |
| 479 | /// 4 |
| 480 | /// / \ |
| 481 | /// / \ |
| 482 | /// 2 3 |
| 483 | /// / \ |
| 484 | /// 1 2 |
| 485 | /// ``` |
| 486 | /// |
| 487 | /// ``` |
| 488 | /// use rayon::iter::walk_tree; |
| 489 | /// use rayon::prelude::*; |
| 490 | /// |
| 491 | /// let par_iter = walk_tree(4, |&e| { |
| 492 | /// if e <= 2 { |
| 493 | /// Vec::new() |
| 494 | /// } else { |
| 495 | /// vec![e / 2, e / 2 + 1] |
| 496 | /// } |
| 497 | /// }); |
| 498 | /// assert_eq!(par_iter.sum::<u32>(), 12); |
| 499 | /// ``` |
| 500 | pub fn walk_tree<S, B, I>(root: S, children_of: B) -> WalkTree<S, B> |
| 501 | where |
| 502 | S: Send, |
| 503 | B: Fn(&S) -> I + Send + Sync, |
| 504 | I: IntoIterator<Item = S>, |
| 505 | I::IntoIter: DoubleEndedIterator, |
| 506 | { |
| 507 | let walker: WalkTreePostfix = WalkTreePostfix { |
| 508 | initial_state: root, |
| 509 | children_of, |
| 510 | }; |
| 511 | WalkTree(walker) |
| 512 | } |
| 513 | |
| 514 | impl<S, B, I> ParallelIterator for WalkTree<S, B> |
| 515 | where |
| 516 | S: Send, |
| 517 | B: Fn(&S) -> I + Send + Sync, |
| 518 | I: IntoIterator<Item = S> + Send, |
| 519 | I::IntoIter: DoubleEndedIterator, |
| 520 | { |
| 521 | type Item = S; |
| 522 | |
| 523 | fn drive_unindexed<C>(self, consumer: C) -> C::Result |
| 524 | where |
| 525 | C: UnindexedConsumer<Self::Item>, |
| 526 | { |
| 527 | self.0.drive_unindexed(consumer) |
| 528 | } |
| 529 | } |
| 530 | |