1 | //! Parallel iterator types for [slices][std::slice] |
2 | //! |
3 | //! You will rarely need to interact with this module directly unless you need |
4 | //! to name one of the iterator types. |
5 | //! |
6 | //! [std::slice]: https://doc.rust-lang.org/stable/std/slice/ |
7 | |
8 | mod chunk_by; |
9 | mod chunks; |
10 | mod mergesort; |
11 | mod quicksort; |
12 | mod rchunks; |
13 | |
14 | mod test; |
15 | |
16 | use self::mergesort::par_mergesort; |
17 | use self::quicksort::par_quicksort; |
18 | use crate::iter::plumbing::*; |
19 | use crate::iter::*; |
20 | use crate::split_producer::*; |
21 | |
22 | use std::cmp::Ordering; |
23 | use std::fmt::{self, Debug}; |
24 | use std::mem; |
25 | |
26 | pub use self::chunk_by::{ChunkBy, ChunkByMut}; |
27 | pub use self::chunks::{Chunks, ChunksExact, ChunksExactMut, ChunksMut}; |
28 | pub use self::rchunks::{RChunks, RChunksExact, RChunksExactMut, RChunksMut}; |
29 | |
30 | /// Parallel extensions for slices. |
31 | pub trait ParallelSlice<T: Sync> { |
32 | /// Returns a plain slice, which is used to implement the rest of the |
33 | /// parallel methods. |
34 | fn as_parallel_slice(&self) -> &[T]; |
35 | |
36 | /// Returns a parallel iterator over subslices separated by elements that |
37 | /// match the separator. |
38 | /// |
39 | /// # Examples |
40 | /// |
41 | /// ``` |
42 | /// use rayon::prelude::*; |
43 | /// let products: Vec<_> = [1, 2, 3, 0, 2, 4, 8, 0, 3, 6, 9] |
44 | /// .par_split(|i| *i == 0) |
45 | /// .map(|numbers| numbers.iter().product::<i32>()) |
46 | /// .collect(); |
47 | /// assert_eq!(products, [6, 64, 162]); |
48 | /// ``` |
49 | fn par_split<P>(&self, separator: P) -> Split<'_, T, P> |
50 | where |
51 | P: Fn(&T) -> bool + Sync + Send, |
52 | { |
53 | Split { |
54 | slice: self.as_parallel_slice(), |
55 | separator, |
56 | } |
57 | } |
58 | |
59 | /// Returns a parallel iterator over subslices separated by elements that |
60 | /// match the separator, including the matched part as a terminator. |
61 | /// |
62 | /// # Examples |
63 | /// |
64 | /// ``` |
65 | /// use rayon::prelude::*; |
66 | /// let lengths: Vec<_> = [1, 2, 3, 0, 2, 4, 8, 0, 3, 6, 9] |
67 | /// .par_split_inclusive(|i| *i == 0) |
68 | /// .map(|numbers| numbers.len()) |
69 | /// .collect(); |
70 | /// assert_eq!(lengths, [4, 4, 3]); |
71 | /// ``` |
72 | fn par_split_inclusive<P>(&self, separator: P) -> SplitInclusive<'_, T, P> |
73 | where |
74 | P: Fn(&T) -> bool + Sync + Send, |
75 | { |
76 | SplitInclusive { |
77 | slice: self.as_parallel_slice(), |
78 | separator, |
79 | } |
80 | } |
81 | |
82 | /// Returns a parallel iterator over all contiguous windows of length |
83 | /// `window_size`. The windows overlap. |
84 | /// |
85 | /// # Examples |
86 | /// |
87 | /// ``` |
88 | /// use rayon::prelude::*; |
89 | /// let windows: Vec<_> = [1, 2, 3].par_windows(2).collect(); |
90 | /// assert_eq!(vec![[1, 2], [2, 3]], windows); |
91 | /// ``` |
92 | fn par_windows(&self, window_size: usize) -> Windows<'_, T> { |
93 | Windows { |
94 | window_size, |
95 | slice: self.as_parallel_slice(), |
96 | } |
97 | } |
98 | |
99 | /// Returns a parallel iterator over at most `chunk_size` elements of |
100 | /// `self` at a time. The chunks do not overlap. |
101 | /// |
102 | /// If the number of elements in the iterator is not divisible by |
103 | /// `chunk_size`, the last chunk may be shorter than `chunk_size`. All |
104 | /// other chunks will have that exact length. |
105 | /// |
106 | /// # Examples |
107 | /// |
108 | /// ``` |
109 | /// use rayon::prelude::*; |
110 | /// let chunks: Vec<_> = [1, 2, 3, 4, 5].par_chunks(2).collect(); |
111 | /// assert_eq!(chunks, vec![&[1, 2][..], &[3, 4], &[5]]); |
112 | /// ``` |
113 | #[track_caller ] |
114 | fn par_chunks(&self, chunk_size: usize) -> Chunks<'_, T> { |
115 | assert!(chunk_size != 0, "chunk_size must not be zero" ); |
116 | Chunks::new(chunk_size, self.as_parallel_slice()) |
117 | } |
118 | |
119 | /// Returns a parallel iterator over `chunk_size` elements of |
120 | /// `self` at a time. The chunks do not overlap. |
121 | /// |
122 | /// If `chunk_size` does not divide the length of the slice, then the |
123 | /// last up to `chunk_size-1` elements will be omitted and can be |
124 | /// retrieved from the remainder function of the iterator. |
125 | /// |
126 | /// # Examples |
127 | /// |
128 | /// ``` |
129 | /// use rayon::prelude::*; |
130 | /// let chunks: Vec<_> = [1, 2, 3, 4, 5].par_chunks_exact(2).collect(); |
131 | /// assert_eq!(chunks, vec![&[1, 2][..], &[3, 4]]); |
132 | /// ``` |
133 | #[track_caller ] |
134 | fn par_chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T> { |
135 | assert!(chunk_size != 0, "chunk_size must not be zero" ); |
136 | ChunksExact::new(chunk_size, self.as_parallel_slice()) |
137 | } |
138 | |
139 | /// Returns a parallel iterator over at most `chunk_size` elements of `self` at a time, |
140 | /// starting at the end. The chunks do not overlap. |
141 | /// |
142 | /// If the number of elements in the iterator is not divisible by |
143 | /// `chunk_size`, the last chunk may be shorter than `chunk_size`. All |
144 | /// other chunks will have that exact length. |
145 | /// |
146 | /// # Examples |
147 | /// |
148 | /// ``` |
149 | /// use rayon::prelude::*; |
150 | /// let chunks: Vec<_> = [1, 2, 3, 4, 5].par_rchunks(2).collect(); |
151 | /// assert_eq!(chunks, vec![&[4, 5][..], &[2, 3], &[1]]); |
152 | /// ``` |
153 | #[track_caller ] |
154 | fn par_rchunks(&self, chunk_size: usize) -> RChunks<'_, T> { |
155 | assert!(chunk_size != 0, "chunk_size must not be zero" ); |
156 | RChunks::new(chunk_size, self.as_parallel_slice()) |
157 | } |
158 | |
159 | /// Returns a parallel iterator over `chunk_size` elements of `self` at a time, |
160 | /// starting at the end. The chunks do not overlap. |
161 | /// |
162 | /// If `chunk_size` does not divide the length of the slice, then the |
163 | /// last up to `chunk_size-1` elements will be omitted and can be |
164 | /// retrieved from the remainder function of the iterator. |
165 | /// |
166 | /// # Examples |
167 | /// |
168 | /// ``` |
169 | /// use rayon::prelude::*; |
170 | /// let chunks: Vec<_> = [1, 2, 3, 4, 5].par_rchunks_exact(2).collect(); |
171 | /// assert_eq!(chunks, vec![&[4, 5][..], &[2, 3]]); |
172 | /// ``` |
173 | #[track_caller ] |
174 | fn par_rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T> { |
175 | assert!(chunk_size != 0, "chunk_size must not be zero" ); |
176 | RChunksExact::new(chunk_size, self.as_parallel_slice()) |
177 | } |
178 | |
179 | /// Returns a parallel iterator over the slice producing non-overlapping runs |
180 | /// of elements using the predicate to separate them. |
181 | /// |
182 | /// The predicate is called on two elements following themselves, |
183 | /// it means the predicate is called on `slice[0]` and `slice[1]` |
184 | /// then on `slice[1]` and `slice[2]` and so on. |
185 | /// |
186 | /// # Examples |
187 | /// |
188 | /// ``` |
189 | /// use rayon::prelude::*; |
190 | /// let chunks: Vec<_> = [1, 2, 2, 3, 3, 3].par_chunk_by(|&x, &y| x == y).collect(); |
191 | /// assert_eq!(chunks[0], &[1]); |
192 | /// assert_eq!(chunks[1], &[2, 2]); |
193 | /// assert_eq!(chunks[2], &[3, 3, 3]); |
194 | /// ``` |
195 | fn par_chunk_by<F>(&self, pred: F) -> ChunkBy<'_, T, F> |
196 | where |
197 | F: Fn(&T, &T) -> bool + Send + Sync, |
198 | { |
199 | ChunkBy::new(self.as_parallel_slice(), pred) |
200 | } |
201 | } |
202 | |
203 | impl<T: Sync> ParallelSlice<T> for [T] { |
204 | #[inline ] |
205 | fn as_parallel_slice(&self) -> &[T] { |
206 | self |
207 | } |
208 | } |
209 | |
210 | /// Parallel extensions for mutable slices. |
211 | pub trait ParallelSliceMut<T: Send> { |
212 | /// Returns a plain mutable slice, which is used to implement the rest of |
213 | /// the parallel methods. |
214 | fn as_parallel_slice_mut(&mut self) -> &mut [T]; |
215 | |
216 | /// Returns a parallel iterator over mutable subslices separated by |
217 | /// elements that match the separator. |
218 | /// |
219 | /// # Examples |
220 | /// |
221 | /// ``` |
222 | /// use rayon::prelude::*; |
223 | /// let mut array = [1, 2, 3, 0, 2, 4, 8, 0, 3, 6, 9]; |
224 | /// array.par_split_mut(|i| *i == 0) |
225 | /// .for_each(|slice| slice.reverse()); |
226 | /// assert_eq!(array, [3, 2, 1, 0, 8, 4, 2, 0, 9, 6, 3]); |
227 | /// ``` |
228 | fn par_split_mut<P>(&mut self, separator: P) -> SplitMut<'_, T, P> |
229 | where |
230 | P: Fn(&T) -> bool + Sync + Send, |
231 | { |
232 | SplitMut { |
233 | slice: self.as_parallel_slice_mut(), |
234 | separator, |
235 | } |
236 | } |
237 | |
238 | /// Returns a parallel iterator over mutable subslices separated by elements |
239 | /// that match the separator, including the matched part as a terminator. |
240 | /// |
241 | /// # Examples |
242 | /// |
243 | /// ``` |
244 | /// use rayon::prelude::*; |
245 | /// let mut array = [1, 2, 3, 0, 2, 4, 8, 0, 3, 6, 9]; |
246 | /// array.par_split_inclusive_mut(|i| *i == 0) |
247 | /// .for_each(|slice| slice.reverse()); |
248 | /// assert_eq!(array, [0, 3, 2, 1, 0, 8, 4, 2, 9, 6, 3]); |
249 | /// ``` |
250 | fn par_split_inclusive_mut<P>(&mut self, separator: P) -> SplitInclusiveMut<'_, T, P> |
251 | where |
252 | P: Fn(&T) -> bool + Sync + Send, |
253 | { |
254 | SplitInclusiveMut { |
255 | slice: self.as_parallel_slice_mut(), |
256 | separator, |
257 | } |
258 | } |
259 | |
260 | /// Returns a parallel iterator over at most `chunk_size` elements of |
261 | /// `self` at a time. The chunks are mutable and do not overlap. |
262 | /// |
263 | /// If the number of elements in the iterator is not divisible by |
264 | /// `chunk_size`, the last chunk may be shorter than `chunk_size`. All |
265 | /// other chunks will have that exact length. |
266 | /// |
267 | /// # Examples |
268 | /// |
269 | /// ``` |
270 | /// use rayon::prelude::*; |
271 | /// let mut array = [1, 2, 3, 4, 5]; |
272 | /// array.par_chunks_mut(2) |
273 | /// .for_each(|slice| slice.reverse()); |
274 | /// assert_eq!(array, [2, 1, 4, 3, 5]); |
275 | /// ``` |
276 | #[track_caller ] |
277 | fn par_chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T> { |
278 | assert!(chunk_size != 0, "chunk_size must not be zero" ); |
279 | ChunksMut::new(chunk_size, self.as_parallel_slice_mut()) |
280 | } |
281 | |
282 | /// Returns a parallel iterator over `chunk_size` elements of |
283 | /// `self` at a time. The chunks are mutable and do not overlap. |
284 | /// |
285 | /// If `chunk_size` does not divide the length of the slice, then the |
286 | /// last up to `chunk_size-1` elements will be omitted and can be |
287 | /// retrieved from the remainder function of the iterator. |
288 | /// |
289 | /// # Examples |
290 | /// |
291 | /// ``` |
292 | /// use rayon::prelude::*; |
293 | /// let mut array = [1, 2, 3, 4, 5]; |
294 | /// array.par_chunks_exact_mut(3) |
295 | /// .for_each(|slice| slice.reverse()); |
296 | /// assert_eq!(array, [3, 2, 1, 4, 5]); |
297 | /// ``` |
298 | #[track_caller ] |
299 | fn par_chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T> { |
300 | assert!(chunk_size != 0, "chunk_size must not be zero" ); |
301 | ChunksExactMut::new(chunk_size, self.as_parallel_slice_mut()) |
302 | } |
303 | |
304 | /// Returns a parallel iterator over at most `chunk_size` elements of `self` at a time, |
305 | /// starting at the end. The chunks are mutable and do not overlap. |
306 | /// |
307 | /// If the number of elements in the iterator is not divisible by |
308 | /// `chunk_size`, the last chunk may be shorter than `chunk_size`. All |
309 | /// other chunks will have that exact length. |
310 | /// |
311 | /// # Examples |
312 | /// |
313 | /// ``` |
314 | /// use rayon::prelude::*; |
315 | /// let mut array = [1, 2, 3, 4, 5]; |
316 | /// array.par_rchunks_mut(2) |
317 | /// .for_each(|slice| slice.reverse()); |
318 | /// assert_eq!(array, [1, 3, 2, 5, 4]); |
319 | /// ``` |
320 | #[track_caller ] |
321 | fn par_rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T> { |
322 | assert!(chunk_size != 0, "chunk_size must not be zero" ); |
323 | RChunksMut::new(chunk_size, self.as_parallel_slice_mut()) |
324 | } |
325 | |
326 | /// Returns a parallel iterator over `chunk_size` elements of `self` at a time, |
327 | /// starting at the end. The chunks are mutable and do not overlap. |
328 | /// |
329 | /// If `chunk_size` does not divide the length of the slice, then the |
330 | /// last up to `chunk_size-1` elements will be omitted and can be |
331 | /// retrieved from the remainder function of the iterator. |
332 | /// |
333 | /// # Examples |
334 | /// |
335 | /// ``` |
336 | /// use rayon::prelude::*; |
337 | /// let mut array = [1, 2, 3, 4, 5]; |
338 | /// array.par_rchunks_exact_mut(3) |
339 | /// .for_each(|slice| slice.reverse()); |
340 | /// assert_eq!(array, [1, 2, 5, 4, 3]); |
341 | /// ``` |
342 | #[track_caller ] |
343 | fn par_rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T> { |
344 | assert!(chunk_size != 0, "chunk_size must not be zero" ); |
345 | RChunksExactMut::new(chunk_size, self.as_parallel_slice_mut()) |
346 | } |
347 | |
348 | /// Sorts the slice in parallel. |
349 | /// |
350 | /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case. |
351 | /// |
352 | /// When applicable, unstable sorting is preferred because it is generally faster than stable |
353 | /// sorting and it doesn't allocate auxiliary memory. |
354 | /// See [`par_sort_unstable`](#method.par_sort_unstable). |
355 | /// |
356 | /// # Current implementation |
357 | /// |
358 | /// The current algorithm is an adaptive merge sort inspired by |
359 | /// [timsort](https://en.wikipedia.org/wiki/Timsort). |
360 | /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of |
361 | /// two or more sorted sequences concatenated one after another. |
362 | /// |
363 | /// Also, it allocates temporary storage the same size as `self`, but for very short slices a |
364 | /// non-allocating insertion sort is used instead. |
365 | /// |
366 | /// In order to sort the slice in parallel, the slice is first divided into smaller chunks and |
367 | /// all chunks are sorted in parallel. Then, adjacent chunks that together form non-descending |
368 | /// or descending runs are concatenated. Finally, the remaining chunks are merged together using |
369 | /// parallel subdivision of chunks and parallel merge operation. |
370 | /// |
371 | /// # Examples |
372 | /// |
373 | /// ``` |
374 | /// use rayon::prelude::*; |
375 | /// |
376 | /// let mut v = [-5, 4, 1, -3, 2]; |
377 | /// |
378 | /// v.par_sort(); |
379 | /// assert_eq!(v, [-5, -3, 1, 2, 4]); |
380 | /// ``` |
381 | fn par_sort(&mut self) |
382 | where |
383 | T: Ord, |
384 | { |
385 | par_mergesort(self.as_parallel_slice_mut(), T::lt); |
386 | } |
387 | |
388 | /// Sorts the slice in parallel with a comparator function. |
389 | /// |
390 | /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case. |
391 | /// |
392 | /// The comparator function must define a total ordering for the elements in the slice. If |
393 | /// the ordering is not total, the order of the elements is unspecified. An order is a |
394 | /// total order if it is (for all `a`, `b` and `c`): |
395 | /// |
396 | /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and |
397 | /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`. |
398 | /// |
399 | /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use |
400 | /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`. |
401 | /// |
402 | /// ``` |
403 | /// use rayon::prelude::*; |
404 | /// |
405 | /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0]; |
406 | /// floats.par_sort_by(|a, b| a.partial_cmp(b).unwrap()); |
407 | /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]); |
408 | /// ``` |
409 | /// |
410 | /// When applicable, unstable sorting is preferred because it is generally faster than stable |
411 | /// sorting and it doesn't allocate auxiliary memory. |
412 | /// See [`par_sort_unstable_by`](#method.par_sort_unstable_by). |
413 | /// |
414 | /// # Current implementation |
415 | /// |
416 | /// The current algorithm is an adaptive merge sort inspired by |
417 | /// [timsort](https://en.wikipedia.org/wiki/Timsort). |
418 | /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of |
419 | /// two or more sorted sequences concatenated one after another. |
420 | /// |
421 | /// Also, it allocates temporary storage the same size as `self`, but for very short slices a |
422 | /// non-allocating insertion sort is used instead. |
423 | /// |
424 | /// In order to sort the slice in parallel, the slice is first divided into smaller chunks and |
425 | /// all chunks are sorted in parallel. Then, adjacent chunks that together form non-descending |
426 | /// or descending runs are concatenated. Finally, the remaining chunks are merged together using |
427 | /// parallel subdivision of chunks and parallel merge operation. |
428 | /// |
429 | /// # Examples |
430 | /// |
431 | /// ``` |
432 | /// use rayon::prelude::*; |
433 | /// |
434 | /// let mut v = [5, 4, 1, 3, 2]; |
435 | /// v.par_sort_by(|a, b| a.cmp(b)); |
436 | /// assert_eq!(v, [1, 2, 3, 4, 5]); |
437 | /// |
438 | /// // reverse sorting |
439 | /// v.par_sort_by(|a, b| b.cmp(a)); |
440 | /// assert_eq!(v, [5, 4, 3, 2, 1]); |
441 | /// ``` |
442 | fn par_sort_by<F>(&mut self, compare: F) |
443 | where |
444 | F: Fn(&T, &T) -> Ordering + Sync, |
445 | { |
446 | par_mergesort(self.as_parallel_slice_mut(), |a, b| { |
447 | compare(a, b) == Ordering::Less |
448 | }); |
449 | } |
450 | |
451 | /// Sorts the slice in parallel with a key extraction function. |
452 | /// |
453 | /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* \* log(*n*)) |
454 | /// worst-case, where the key function is *O*(*m*). |
455 | /// |
456 | /// For expensive key functions (e.g. functions that are not simple property accesses or |
457 | /// basic operations), [`par_sort_by_cached_key`](#method.par_sort_by_cached_key) is likely to |
458 | /// be significantly faster, as it does not recompute element keys. |
459 | /// |
460 | /// When applicable, unstable sorting is preferred because it is generally faster than stable |
461 | /// sorting and it doesn't allocate auxiliary memory. |
462 | /// See [`par_sort_unstable_by_key`](#method.par_sort_unstable_by_key). |
463 | /// |
464 | /// # Current implementation |
465 | /// |
466 | /// The current algorithm is an adaptive merge sort inspired by |
467 | /// [timsort](https://en.wikipedia.org/wiki/Timsort). |
468 | /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of |
469 | /// two or more sorted sequences concatenated one after another. |
470 | /// |
471 | /// Also, it allocates temporary storage the same size as `self`, but for very short slices a |
472 | /// non-allocating insertion sort is used instead. |
473 | /// |
474 | /// In order to sort the slice in parallel, the slice is first divided into smaller chunks and |
475 | /// all chunks are sorted in parallel. Then, adjacent chunks that together form non-descending |
476 | /// or descending runs are concatenated. Finally, the remaining chunks are merged together using |
477 | /// parallel subdivision of chunks and parallel merge operation. |
478 | /// |
479 | /// # Examples |
480 | /// |
481 | /// ``` |
482 | /// use rayon::prelude::*; |
483 | /// |
484 | /// let mut v = [-5i32, 4, 1, -3, 2]; |
485 | /// |
486 | /// v.par_sort_by_key(|k| k.abs()); |
487 | /// assert_eq!(v, [1, 2, -3, 4, -5]); |
488 | /// ``` |
489 | fn par_sort_by_key<K, F>(&mut self, f: F) |
490 | where |
491 | K: Ord, |
492 | F: Fn(&T) -> K + Sync, |
493 | { |
494 | par_mergesort(self.as_parallel_slice_mut(), |a, b| f(a).lt(&f(b))); |
495 | } |
496 | |
497 | /// Sorts the slice in parallel with a key extraction function. |
498 | /// |
499 | /// During sorting, the key function is called at most once per element, by using |
500 | /// temporary storage to remember the results of key evaluation. |
501 | /// The key function is called in parallel, so the order of calls is completely unspecified. |
502 | /// |
503 | /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* + *n* \* log(*n*)) |
504 | /// worst-case, where the key function is *O*(*m*). |
505 | /// |
506 | /// For simple key functions (e.g., functions that are property accesses or |
507 | /// basic operations), [`par_sort_by_key`](#method.par_sort_by_key) is likely to be |
508 | /// faster. |
509 | /// |
510 | /// # Current implementation |
511 | /// |
512 | /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters, |
513 | /// which combines the fast average case of randomized quicksort with the fast worst case of |
514 | /// heapsort, while achieving linear time on slices with certain patterns. It uses some |
515 | /// randomization to avoid degenerate cases, but with a fixed seed to always provide |
516 | /// deterministic behavior. |
517 | /// |
518 | /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the |
519 | /// length of the slice. |
520 | /// |
521 | /// All quicksorts work in two stages: partitioning into two halves followed by recursive |
522 | /// calls. The partitioning phase is sequential, but the two recursive calls are performed in |
523 | /// parallel. Finally, after sorting the cached keys, the item positions are updated sequentially. |
524 | /// |
525 | /// [pdqsort]: https://github.com/orlp/pdqsort |
526 | /// |
527 | /// # Examples |
528 | /// |
529 | /// ``` |
530 | /// use rayon::prelude::*; |
531 | /// |
532 | /// let mut v = [-5i32, 4, 32, -3, 2]; |
533 | /// |
534 | /// v.par_sort_by_cached_key(|k| k.to_string()); |
535 | /// assert!(v == [-3, -5, 2, 32, 4]); |
536 | /// ``` |
537 | fn par_sort_by_cached_key<K, F>(&mut self, f: F) |
538 | where |
539 | F: Fn(&T) -> K + Sync, |
540 | K: Ord + Send, |
541 | { |
542 | let slice = self.as_parallel_slice_mut(); |
543 | let len = slice.len(); |
544 | if len < 2 { |
545 | return; |
546 | } |
547 | |
548 | // Helper macro for indexing our vector by the smallest possible type, to reduce allocation. |
549 | macro_rules! sort_by_key { |
550 | ($t:ty) => {{ |
551 | let mut indices: Vec<_> = slice |
552 | .par_iter_mut() |
553 | .enumerate() |
554 | .map(|(i, x)| (f(&*x), i as $t)) |
555 | .collect(); |
556 | // The elements of `indices` are unique, as they are indexed, so any sort will be |
557 | // stable with respect to the original slice. We use `sort_unstable` here because |
558 | // it requires less memory allocation. |
559 | indices.par_sort_unstable(); |
560 | for i in 0..len { |
561 | let mut index = indices[i].1; |
562 | while (index as usize) < i { |
563 | index = indices[index as usize].1; |
564 | } |
565 | indices[i].1 = index; |
566 | slice.swap(i, index as usize); |
567 | } |
568 | }}; |
569 | } |
570 | |
571 | let sz_u8 = mem::size_of::<(K, u8)>(); |
572 | let sz_u16 = mem::size_of::<(K, u16)>(); |
573 | let sz_u32 = mem::size_of::<(K, u32)>(); |
574 | let sz_usize = mem::size_of::<(K, usize)>(); |
575 | |
576 | if sz_u8 < sz_u16 && len <= (std::u8::MAX as usize) { |
577 | return sort_by_key!(u8); |
578 | } |
579 | if sz_u16 < sz_u32 && len <= (std::u16::MAX as usize) { |
580 | return sort_by_key!(u16); |
581 | } |
582 | if sz_u32 < sz_usize && len <= (std::u32::MAX as usize) { |
583 | return sort_by_key!(u32); |
584 | } |
585 | sort_by_key!(usize) |
586 | } |
587 | |
588 | /// Sorts the slice in parallel, but might not preserve the order of equal elements. |
589 | /// |
590 | /// This sort is unstable (i.e., may reorder equal elements), in-place |
591 | /// (i.e., does not allocate), and *O*(*n* \* log(*n*)) worst-case. |
592 | /// |
593 | /// # Current implementation |
594 | /// |
595 | /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters, |
596 | /// which combines the fast average case of randomized quicksort with the fast worst case of |
597 | /// heapsort, while achieving linear time on slices with certain patterns. It uses some |
598 | /// randomization to avoid degenerate cases, but with a fixed seed to always provide |
599 | /// deterministic behavior. |
600 | /// |
601 | /// It is typically faster than stable sorting, except in a few special cases, e.g., when the |
602 | /// slice consists of several concatenated sorted sequences. |
603 | /// |
604 | /// All quicksorts work in two stages: partitioning into two halves followed by recursive |
605 | /// calls. The partitioning phase is sequential, but the two recursive calls are performed in |
606 | /// parallel. |
607 | /// |
608 | /// [pdqsort]: https://github.com/orlp/pdqsort |
609 | /// |
610 | /// # Examples |
611 | /// |
612 | /// ``` |
613 | /// use rayon::prelude::*; |
614 | /// |
615 | /// let mut v = [-5, 4, 1, -3, 2]; |
616 | /// |
617 | /// v.par_sort_unstable(); |
618 | /// assert_eq!(v, [-5, -3, 1, 2, 4]); |
619 | /// ``` |
620 | fn par_sort_unstable(&mut self) |
621 | where |
622 | T: Ord, |
623 | { |
624 | par_quicksort(self.as_parallel_slice_mut(), T::lt); |
625 | } |
626 | |
627 | /// Sorts the slice in parallel with a comparator function, but might not preserve the order of |
628 | /// equal elements. |
629 | /// |
630 | /// This sort is unstable (i.e., may reorder equal elements), in-place |
631 | /// (i.e., does not allocate), and *O*(*n* \* log(*n*)) worst-case. |
632 | /// |
633 | /// The comparator function must define a total ordering for the elements in the slice. If |
634 | /// the ordering is not total, the order of the elements is unspecified. An order is a |
635 | /// total order if it is (for all `a`, `b` and `c`): |
636 | /// |
637 | /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and |
638 | /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`. |
639 | /// |
640 | /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use |
641 | /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`. |
642 | /// |
643 | /// ``` |
644 | /// use rayon::prelude::*; |
645 | /// |
646 | /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0]; |
647 | /// floats.par_sort_unstable_by(|a, b| a.partial_cmp(b).unwrap()); |
648 | /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]); |
649 | /// ``` |
650 | /// |
651 | /// # Current implementation |
652 | /// |
653 | /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters, |
654 | /// which combines the fast average case of randomized quicksort with the fast worst case of |
655 | /// heapsort, while achieving linear time on slices with certain patterns. It uses some |
656 | /// randomization to avoid degenerate cases, but with a fixed seed to always provide |
657 | /// deterministic behavior. |
658 | /// |
659 | /// It is typically faster than stable sorting, except in a few special cases, e.g., when the |
660 | /// slice consists of several concatenated sorted sequences. |
661 | /// |
662 | /// All quicksorts work in two stages: partitioning into two halves followed by recursive |
663 | /// calls. The partitioning phase is sequential, but the two recursive calls are performed in |
664 | /// parallel. |
665 | /// |
666 | /// [pdqsort]: https://github.com/orlp/pdqsort |
667 | /// |
668 | /// # Examples |
669 | /// |
670 | /// ``` |
671 | /// use rayon::prelude::*; |
672 | /// |
673 | /// let mut v = [5, 4, 1, 3, 2]; |
674 | /// v.par_sort_unstable_by(|a, b| a.cmp(b)); |
675 | /// assert_eq!(v, [1, 2, 3, 4, 5]); |
676 | /// |
677 | /// // reverse sorting |
678 | /// v.par_sort_unstable_by(|a, b| b.cmp(a)); |
679 | /// assert_eq!(v, [5, 4, 3, 2, 1]); |
680 | /// ``` |
681 | fn par_sort_unstable_by<F>(&mut self, compare: F) |
682 | where |
683 | F: Fn(&T, &T) -> Ordering + Sync, |
684 | { |
685 | par_quicksort(self.as_parallel_slice_mut(), |a, b| { |
686 | compare(a, b) == Ordering::Less |
687 | }); |
688 | } |
689 | |
690 | /// Sorts the slice in parallel with a key extraction function, but might not preserve the order |
691 | /// of equal elements. |
692 | /// |
693 | /// This sort is unstable (i.e., may reorder equal elements), in-place |
694 | /// (i.e., does not allocate), and *O*(m \* *n* \* log(*n*)) worst-case, |
695 | /// where the key function is *O*(*m*). |
696 | /// |
697 | /// # Current implementation |
698 | /// |
699 | /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters, |
700 | /// which combines the fast average case of randomized quicksort with the fast worst case of |
701 | /// heapsort, while achieving linear time on slices with certain patterns. It uses some |
702 | /// randomization to avoid degenerate cases, but with a fixed seed to always provide |
703 | /// deterministic behavior. |
704 | /// |
705 | /// Due to its key calling strategy, `par_sort_unstable_by_key` is likely to be slower than |
706 | /// [`par_sort_by_cached_key`](#method.par_sort_by_cached_key) in cases where the key function |
707 | /// is expensive. |
708 | /// |
709 | /// All quicksorts work in two stages: partitioning into two halves followed by recursive |
710 | /// calls. The partitioning phase is sequential, but the two recursive calls are performed in |
711 | /// parallel. |
712 | /// |
713 | /// [pdqsort]: https://github.com/orlp/pdqsort |
714 | /// |
715 | /// # Examples |
716 | /// |
717 | /// ``` |
718 | /// use rayon::prelude::*; |
719 | /// |
720 | /// let mut v = [-5i32, 4, 1, -3, 2]; |
721 | /// |
722 | /// v.par_sort_unstable_by_key(|k| k.abs()); |
723 | /// assert_eq!(v, [1, 2, -3, 4, -5]); |
724 | /// ``` |
725 | fn par_sort_unstable_by_key<K, F>(&mut self, f: F) |
726 | where |
727 | K: Ord, |
728 | F: Fn(&T) -> K + Sync, |
729 | { |
730 | par_quicksort(self.as_parallel_slice_mut(), |a, b| f(a).lt(&f(b))); |
731 | } |
732 | |
733 | /// Returns a parallel iterator over the slice producing non-overlapping mutable |
734 | /// runs of elements using the predicate to separate them. |
735 | /// |
736 | /// The predicate is called on two elements following themselves, |
737 | /// it means the predicate is called on `slice[0]` and `slice[1]` |
738 | /// then on `slice[1]` and `slice[2]` and so on. |
739 | /// |
740 | /// # Examples |
741 | /// |
742 | /// ``` |
743 | /// use rayon::prelude::*; |
744 | /// let mut xs = [1, 2, 2, 3, 3, 3]; |
745 | /// let chunks: Vec<_> = xs.par_chunk_by_mut(|&x, &y| x == y).collect(); |
746 | /// assert_eq!(chunks[0], &mut [1]); |
747 | /// assert_eq!(chunks[1], &mut [2, 2]); |
748 | /// assert_eq!(chunks[2], &mut [3, 3, 3]); |
749 | /// ``` |
750 | fn par_chunk_by_mut<F>(&mut self, pred: F) -> ChunkByMut<'_, T, F> |
751 | where |
752 | F: Fn(&T, &T) -> bool + Send + Sync, |
753 | { |
754 | ChunkByMut::new(self.as_parallel_slice_mut(), pred) |
755 | } |
756 | } |
757 | |
758 | impl<T: Send> ParallelSliceMut<T> for [T] { |
759 | #[inline ] |
760 | fn as_parallel_slice_mut(&mut self) -> &mut [T] { |
761 | self |
762 | } |
763 | } |
764 | |
765 | impl<'data, T: Sync + 'data> IntoParallelIterator for &'data [T] { |
766 | type Item = &'data T; |
767 | type Iter = Iter<'data, T>; |
768 | |
769 | fn into_par_iter(self) -> Self::Iter { |
770 | Iter { slice: self } |
771 | } |
772 | } |
773 | |
774 | impl<'data, T: Send + 'data> IntoParallelIterator for &'data mut [T] { |
775 | type Item = &'data mut T; |
776 | type Iter = IterMut<'data, T>; |
777 | |
778 | fn into_par_iter(self) -> Self::Iter { |
779 | IterMut { slice: self } |
780 | } |
781 | } |
782 | |
783 | /// Parallel iterator over immutable items in a slice |
784 | #[derive (Debug)] |
785 | pub struct Iter<'data, T: Sync> { |
786 | slice: &'data [T], |
787 | } |
788 | |
789 | impl<'data, T: Sync> Clone for Iter<'data, T> { |
790 | fn clone(&self) -> Self { |
791 | Iter { ..*self } |
792 | } |
793 | } |
794 | |
795 | impl<'data, T: Sync + 'data> ParallelIterator for Iter<'data, T> { |
796 | type Item = &'data T; |
797 | |
798 | fn drive_unindexed<C>(self, consumer: C) -> C::Result |
799 | where |
800 | C: UnindexedConsumer<Self::Item>, |
801 | { |
802 | bridge(self, consumer) |
803 | } |
804 | |
805 | fn opt_len(&self) -> Option<usize> { |
806 | Some(self.len()) |
807 | } |
808 | } |
809 | |
810 | impl<'data, T: Sync + 'data> IndexedParallelIterator for Iter<'data, T> { |
811 | fn drive<C>(self, consumer: C) -> C::Result |
812 | where |
813 | C: Consumer<Self::Item>, |
814 | { |
815 | bridge(self, consumer) |
816 | } |
817 | |
818 | fn len(&self) -> usize { |
819 | self.slice.len() |
820 | } |
821 | |
822 | fn with_producer<CB>(self, callback: CB) -> CB::Output |
823 | where |
824 | CB: ProducerCallback<Self::Item>, |
825 | { |
826 | callback.callback(producer:IterProducer { slice: self.slice }) |
827 | } |
828 | } |
829 | |
830 | struct IterProducer<'data, T: Sync> { |
831 | slice: &'data [T], |
832 | } |
833 | |
834 | impl<'data, T: 'data + Sync> Producer for IterProducer<'data, T> { |
835 | type Item = &'data T; |
836 | type IntoIter = ::std::slice::Iter<'data, T>; |
837 | |
838 | fn into_iter(self) -> Self::IntoIter { |
839 | self.slice.iter() |
840 | } |
841 | |
842 | fn split_at(self, index: usize) -> (Self, Self) { |
843 | let (left: &[T], right: &[T]) = self.slice.split_at(mid:index); |
844 | (IterProducer { slice: left }, IterProducer { slice: right }) |
845 | } |
846 | } |
847 | |
848 | /// Parallel iterator over immutable overlapping windows of a slice |
849 | #[derive (Debug)] |
850 | pub struct Windows<'data, T: Sync> { |
851 | window_size: usize, |
852 | slice: &'data [T], |
853 | } |
854 | |
855 | impl<'data, T: Sync> Clone for Windows<'data, T> { |
856 | fn clone(&self) -> Self { |
857 | Windows { ..*self } |
858 | } |
859 | } |
860 | |
861 | impl<'data, T: Sync + 'data> ParallelIterator for Windows<'data, T> { |
862 | type Item = &'data [T]; |
863 | |
864 | fn drive_unindexed<C>(self, consumer: C) -> C::Result |
865 | where |
866 | C: UnindexedConsumer<Self::Item>, |
867 | { |
868 | bridge(self, consumer) |
869 | } |
870 | |
871 | fn opt_len(&self) -> Option<usize> { |
872 | Some(self.len()) |
873 | } |
874 | } |
875 | |
876 | impl<'data, T: Sync + 'data> IndexedParallelIterator for Windows<'data, T> { |
877 | fn drive<C>(self, consumer: C) -> C::Result |
878 | where |
879 | C: Consumer<Self::Item>, |
880 | { |
881 | bridge(self, consumer) |
882 | } |
883 | |
884 | fn len(&self) -> usize { |
885 | assert!(self.window_size >= 1); |
886 | self.slice.len().saturating_sub(self.window_size - 1) |
887 | } |
888 | |
889 | fn with_producer<CB>(self, callback: CB) -> CB::Output |
890 | where |
891 | CB: ProducerCallback<Self::Item>, |
892 | { |
893 | callback.callback(producer:WindowsProducer { |
894 | window_size: self.window_size, |
895 | slice: self.slice, |
896 | }) |
897 | } |
898 | } |
899 | |
900 | struct WindowsProducer<'data, T: Sync> { |
901 | window_size: usize, |
902 | slice: &'data [T], |
903 | } |
904 | |
905 | impl<'data, T: 'data + Sync> Producer for WindowsProducer<'data, T> { |
906 | type Item = &'data [T]; |
907 | type IntoIter = ::std::slice::Windows<'data, T>; |
908 | |
909 | fn into_iter(self) -> Self::IntoIter { |
910 | self.slice.windows(self.window_size) |
911 | } |
912 | |
913 | fn split_at(self, index: usize) -> (Self, Self) { |
914 | let left_index: usize = Ord::min(self.slice.len(), other:index + (self.window_size - 1)); |
915 | let left: &[T] = &self.slice[..left_index]; |
916 | let right: &[T] = &self.slice[index..]; |
917 | ( |
918 | WindowsProducer { |
919 | window_size: self.window_size, |
920 | slice: left, |
921 | }, |
922 | WindowsProducer { |
923 | window_size: self.window_size, |
924 | slice: right, |
925 | }, |
926 | ) |
927 | } |
928 | } |
929 | |
930 | /// Parallel iterator over mutable items in a slice |
931 | #[derive (Debug)] |
932 | pub struct IterMut<'data, T: Send> { |
933 | slice: &'data mut [T], |
934 | } |
935 | |
936 | impl<'data, T: Send + 'data> ParallelIterator for IterMut<'data, T> { |
937 | type Item = &'data mut T; |
938 | |
939 | fn drive_unindexed<C>(self, consumer: C) -> C::Result |
940 | where |
941 | C: UnindexedConsumer<Self::Item>, |
942 | { |
943 | bridge(self, consumer) |
944 | } |
945 | |
946 | fn opt_len(&self) -> Option<usize> { |
947 | Some(self.len()) |
948 | } |
949 | } |
950 | |
951 | impl<'data, T: Send + 'data> IndexedParallelIterator for IterMut<'data, T> { |
952 | fn drive<C>(self, consumer: C) -> C::Result |
953 | where |
954 | C: Consumer<Self::Item>, |
955 | { |
956 | bridge(self, consumer) |
957 | } |
958 | |
959 | fn len(&self) -> usize { |
960 | self.slice.len() |
961 | } |
962 | |
963 | fn with_producer<CB>(self, callback: CB) -> CB::Output |
964 | where |
965 | CB: ProducerCallback<Self::Item>, |
966 | { |
967 | callback.callback(producer:IterMutProducer { slice: self.slice }) |
968 | } |
969 | } |
970 | |
971 | struct IterMutProducer<'data, T: Send> { |
972 | slice: &'data mut [T], |
973 | } |
974 | |
975 | impl<'data, T: 'data + Send> Producer for IterMutProducer<'data, T> { |
976 | type Item = &'data mut T; |
977 | type IntoIter = ::std::slice::IterMut<'data, T>; |
978 | |
979 | fn into_iter(self) -> Self::IntoIter { |
980 | self.slice.iter_mut() |
981 | } |
982 | |
983 | fn split_at(self, index: usize) -> (Self, Self) { |
984 | let (left: &mut [T], right: &mut [T]) = self.slice.split_at_mut(mid:index); |
985 | ( |
986 | IterMutProducer { slice: left }, |
987 | IterMutProducer { slice: right }, |
988 | ) |
989 | } |
990 | } |
991 | |
992 | /// Parallel iterator over slices separated by a predicate |
993 | pub struct Split<'data, T, P> { |
994 | slice: &'data [T], |
995 | separator: P, |
996 | } |
997 | |
998 | impl<'data, T, P: Clone> Clone for Split<'data, T, P> { |
999 | fn clone(&self) -> Self { |
1000 | Split { |
1001 | separator: self.separator.clone(), |
1002 | ..*self |
1003 | } |
1004 | } |
1005 | } |
1006 | |
1007 | impl<'data, T: Debug, P> Debug for Split<'data, T, P> { |
1008 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1009 | f.debug_struct("Split" ).field(name:"slice" , &self.slice).finish() |
1010 | } |
1011 | } |
1012 | |
1013 | impl<'data, T, P> ParallelIterator for Split<'data, T, P> |
1014 | where |
1015 | P: Fn(&T) -> bool + Sync + Send, |
1016 | T: Sync, |
1017 | { |
1018 | type Item = &'data [T]; |
1019 | |
1020 | fn drive_unindexed<C>(self, consumer: C) -> C::Result |
1021 | where |
1022 | C: UnindexedConsumer<Self::Item>, |
1023 | { |
1024 | let producer: SplitProducer<'_, P, &'data …> = SplitProducer::new(self.slice, &self.separator); |
1025 | bridge_unindexed(producer, consumer) |
1026 | } |
1027 | } |
1028 | |
1029 | /// Parallel iterator over slices separated by a predicate, |
1030 | /// including the matched part as a terminator. |
1031 | pub struct SplitInclusive<'data, T, P> { |
1032 | slice: &'data [T], |
1033 | separator: P, |
1034 | } |
1035 | |
1036 | impl<'data, T, P: Clone> Clone for SplitInclusive<'data, T, P> { |
1037 | fn clone(&self) -> Self { |
1038 | SplitInclusive { |
1039 | separator: self.separator.clone(), |
1040 | ..*self |
1041 | } |
1042 | } |
1043 | } |
1044 | |
1045 | impl<'data, T: Debug, P> Debug for SplitInclusive<'data, T, P> { |
1046 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1047 | f&mut DebugStruct<'_, '_>.debug_struct("SplitInclusive" ) |
1048 | .field(name:"slice" , &self.slice) |
1049 | .finish() |
1050 | } |
1051 | } |
1052 | |
1053 | impl<'data, T, P> ParallelIterator for SplitInclusive<'data, T, P> |
1054 | where |
1055 | P: Fn(&T) -> bool + Sync + Send, |
1056 | T: Sync, |
1057 | { |
1058 | type Item = &'data [T]; |
1059 | |
1060 | fn drive_unindexed<C>(self, consumer: C) -> C::Result |
1061 | where |
1062 | C: UnindexedConsumer<Self::Item>, |
1063 | { |
1064 | let producer: SplitProducer<'_, P, &'data …, true> = SplitInclusiveProducer::new_incl(self.slice, &self.separator); |
1065 | bridge_unindexed(producer, consumer) |
1066 | } |
1067 | } |
1068 | |
1069 | /// Implement support for `SplitProducer`. |
1070 | impl<'data, T, P> Fissile<P> for &'data [T] |
1071 | where |
1072 | P: Fn(&T) -> bool, |
1073 | { |
1074 | fn length(&self) -> usize { |
1075 | self.len() |
1076 | } |
1077 | |
1078 | fn midpoint(&self, end: usize) -> usize { |
1079 | end / 2 |
1080 | } |
1081 | |
1082 | fn find(&self, separator: &P, start: usize, end: usize) -> Option<usize> { |
1083 | self[start..end].iter().position(separator) |
1084 | } |
1085 | |
1086 | fn rfind(&self, separator: &P, end: usize) -> Option<usize> { |
1087 | self[..end].iter().rposition(separator) |
1088 | } |
1089 | |
1090 | fn split_once<const INCL: bool>(self, index: usize) -> (Self, Self) { |
1091 | if INCL { |
1092 | // include the separator in the left side |
1093 | self.split_at(index + 1) |
1094 | } else { |
1095 | let (left, right) = self.split_at(index); |
1096 | (left, &right[1..]) // skip the separator |
1097 | } |
1098 | } |
1099 | |
1100 | fn fold_splits<F, const INCL: bool>(self, separator: &P, folder: F, skip_last: bool) -> F |
1101 | where |
1102 | F: Folder<Self>, |
1103 | Self: Send, |
1104 | { |
1105 | if INCL { |
1106 | debug_assert!(!skip_last); |
1107 | folder.consume_iter(self.split_inclusive(separator)) |
1108 | } else { |
1109 | let mut split = self.split(separator); |
1110 | if skip_last { |
1111 | split.next_back(); |
1112 | } |
1113 | folder.consume_iter(split) |
1114 | } |
1115 | } |
1116 | } |
1117 | |
1118 | /// Parallel iterator over mutable slices separated by a predicate |
1119 | pub struct SplitMut<'data, T, P> { |
1120 | slice: &'data mut [T], |
1121 | separator: P, |
1122 | } |
1123 | |
1124 | impl<'data, T: Debug, P> Debug for SplitMut<'data, T, P> { |
1125 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1126 | f&mut DebugStruct<'_, '_>.debug_struct("SplitMut" ) |
1127 | .field(name:"slice" , &self.slice) |
1128 | .finish() |
1129 | } |
1130 | } |
1131 | |
1132 | impl<'data, T, P> ParallelIterator for SplitMut<'data, T, P> |
1133 | where |
1134 | P: Fn(&T) -> bool + Sync + Send, |
1135 | T: Send, |
1136 | { |
1137 | type Item = &'data mut [T]; |
1138 | |
1139 | fn drive_unindexed<C>(self, consumer: C) -> C::Result |
1140 | where |
1141 | C: UnindexedConsumer<Self::Item>, |
1142 | { |
1143 | let producer: SplitProducer<'_, P, &'data mut …> = SplitProducer::new(self.slice, &self.separator); |
1144 | bridge_unindexed(producer, consumer) |
1145 | } |
1146 | } |
1147 | |
1148 | /// Parallel iterator over mutable slices separated by a predicate, |
1149 | /// including the matched part as a terminator. |
1150 | pub struct SplitInclusiveMut<'data, T, P> { |
1151 | slice: &'data mut [T], |
1152 | separator: P, |
1153 | } |
1154 | |
1155 | impl<'data, T: Debug, P> Debug for SplitInclusiveMut<'data, T, P> { |
1156 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1157 | f&mut DebugStruct<'_, '_>.debug_struct("SplitInclusiveMut" ) |
1158 | .field(name:"slice" , &self.slice) |
1159 | .finish() |
1160 | } |
1161 | } |
1162 | |
1163 | impl<'data, T, P> ParallelIterator for SplitInclusiveMut<'data, T, P> |
1164 | where |
1165 | P: Fn(&T) -> bool + Sync + Send, |
1166 | T: Send, |
1167 | { |
1168 | type Item = &'data mut [T]; |
1169 | |
1170 | fn drive_unindexed<C>(self, consumer: C) -> C::Result |
1171 | where |
1172 | C: UnindexedConsumer<Self::Item>, |
1173 | { |
1174 | let producer: SplitProducer<'_, P, &'data mut …, true> = SplitInclusiveProducer::new_incl(self.slice, &self.separator); |
1175 | bridge_unindexed(producer, consumer) |
1176 | } |
1177 | } |
1178 | |
1179 | /// Implement support for `SplitProducer`. |
1180 | impl<'data, T, P> Fissile<P> for &'data mut [T] |
1181 | where |
1182 | P: Fn(&T) -> bool, |
1183 | { |
1184 | fn length(&self) -> usize { |
1185 | self.len() |
1186 | } |
1187 | |
1188 | fn midpoint(&self, end: usize) -> usize { |
1189 | end / 2 |
1190 | } |
1191 | |
1192 | fn find(&self, separator: &P, start: usize, end: usize) -> Option<usize> { |
1193 | self[start..end].iter().position(separator) |
1194 | } |
1195 | |
1196 | fn rfind(&self, separator: &P, end: usize) -> Option<usize> { |
1197 | self[..end].iter().rposition(separator) |
1198 | } |
1199 | |
1200 | fn split_once<const INCL: bool>(self, index: usize) -> (Self, Self) { |
1201 | if INCL { |
1202 | // include the separator in the left side |
1203 | self.split_at_mut(index + 1) |
1204 | } else { |
1205 | let (left, right) = self.split_at_mut(index); |
1206 | (left, &mut right[1..]) // skip the separator |
1207 | } |
1208 | } |
1209 | |
1210 | fn fold_splits<F, const INCL: bool>(self, separator: &P, folder: F, skip_last: bool) -> F |
1211 | where |
1212 | F: Folder<Self>, |
1213 | Self: Send, |
1214 | { |
1215 | if INCL { |
1216 | debug_assert!(!skip_last); |
1217 | folder.consume_iter(self.split_inclusive_mut(separator)) |
1218 | } else { |
1219 | let mut split = self.split_mut(separator); |
1220 | if skip_last { |
1221 | split.next_back(); |
1222 | } |
1223 | folder.consume_iter(split) |
1224 | } |
1225 | } |
1226 | } |
1227 | |