1 | //! Parallel quicksort. |
2 | //! |
3 | //! This implementation is copied verbatim from `std::slice::sort_unstable` and then parallelized. |
4 | //! The only difference from the original is that calls to `recurse` are executed in parallel using |
5 | //! `rayon_core::join`. |
6 | |
7 | use std::marker::PhantomData; |
8 | use std::mem::{self, MaybeUninit}; |
9 | use std::ptr; |
10 | |
11 | /// When dropped, copies from `src` into `dest`. |
12 | #[must_use ] |
13 | struct CopyOnDrop<'a, T> { |
14 | src: *const T, |
15 | dest: *mut T, |
16 | /// `src` is often a local pointer here, make sure we have appropriate |
17 | /// PhantomData so that dropck can protect us. |
18 | marker: PhantomData<&'a mut T>, |
19 | } |
20 | |
21 | impl<'a, T> CopyOnDrop<'a, T> { |
22 | /// Construct from a source pointer and a destination |
23 | /// Assumes dest lives longer than src, since there is no easy way to |
24 | /// copy down lifetime information from another pointer |
25 | unsafe fn new(src: &'a T, dest: *mut T) -> Self { |
26 | CopyOnDrop { |
27 | src, |
28 | dest, |
29 | marker: PhantomData, |
30 | } |
31 | } |
32 | } |
33 | |
34 | impl<T> Drop for CopyOnDrop<'_, T> { |
35 | fn drop(&mut self) { |
36 | // SAFETY: This is a helper class. |
37 | // Please refer to its usage for correctness. |
38 | // Namely, one must be sure that `src` and `dst` does not overlap as required by `ptr::copy_nonoverlapping`. |
39 | unsafe { |
40 | ptr::copy_nonoverlapping(self.src, self.dest, count:1); |
41 | } |
42 | } |
43 | } |
44 | |
45 | /// Shifts the first element to the right until it encounters a greater or equal element. |
46 | fn shift_head<T, F>(v: &mut [T], is_less: &F) |
47 | where |
48 | F: Fn(&T, &T) -> bool, |
49 | { |
50 | let len = v.len(); |
51 | // SAFETY: The unsafe operations below involves indexing without a bounds check (by offsetting a |
52 | // pointer) and copying memory (`ptr::copy_nonoverlapping`). |
53 | // |
54 | // a. Indexing: |
55 | // 1. We checked the size of the array to >=2. |
56 | // 2. All the indexing that we will do is always between {0 <= index < len} at most. |
57 | // |
58 | // b. Memory copying |
59 | // 1. We are obtaining pointers to references which are guaranteed to be valid. |
60 | // 2. They cannot overlap because we obtain pointers to difference indices of the slice. |
61 | // Namely, `i` and `i-1`. |
62 | // 3. If the slice is properly aligned, the elements are properly aligned. |
63 | // It is the caller's responsibility to make sure the slice is properly aligned. |
64 | // |
65 | // See comments below for further detail. |
66 | unsafe { |
67 | // If the first two elements are out-of-order... |
68 | if len >= 2 && is_less(v.get_unchecked(1), v.get_unchecked(0)) { |
69 | // Read the first element into a stack-allocated variable. If a following comparison |
70 | // operation panics, `hole` will get dropped and automatically write the element back |
71 | // into the slice. |
72 | let tmp = mem::ManuallyDrop::new(ptr::read(v.get_unchecked(0))); |
73 | let v = v.as_mut_ptr(); |
74 | let mut hole = CopyOnDrop::new(&*tmp, v.add(1)); |
75 | ptr::copy_nonoverlapping(v.add(1), v.add(0), 1); |
76 | |
77 | for i in 2..len { |
78 | if !is_less(&*v.add(i), &*tmp) { |
79 | break; |
80 | } |
81 | |
82 | // Move `i`-th element one place to the left, thus shifting the hole to the right. |
83 | ptr::copy_nonoverlapping(v.add(i), v.add(i - 1), 1); |
84 | hole.dest = v.add(i); |
85 | } |
86 | // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`. |
87 | } |
88 | } |
89 | } |
90 | |
91 | /// Shifts the last element to the left until it encounters a smaller or equal element. |
92 | fn shift_tail<T, F>(v: &mut [T], is_less: &F) |
93 | where |
94 | F: Fn(&T, &T) -> bool, |
95 | { |
96 | let len = v.len(); |
97 | // SAFETY: The unsafe operations below involves indexing without a bound check (by offsetting a |
98 | // pointer) and copying memory (`ptr::copy_nonoverlapping`). |
99 | // |
100 | // a. Indexing: |
101 | // 1. We checked the size of the array to >= 2. |
102 | // 2. All the indexing that we will do is always between `0 <= index < len-1` at most. |
103 | // |
104 | // b. Memory copying |
105 | // 1. We are obtaining pointers to references which are guaranteed to be valid. |
106 | // 2. They cannot overlap because we obtain pointers to difference indices of the slice. |
107 | // Namely, `i` and `i+1`. |
108 | // 3. If the slice is properly aligned, the elements are properly aligned. |
109 | // It is the caller's responsibility to make sure the slice is properly aligned. |
110 | // |
111 | // See comments below for further detail. |
112 | unsafe { |
113 | // If the last two elements are out-of-order... |
114 | if len >= 2 && is_less(v.get_unchecked(len - 1), v.get_unchecked(len - 2)) { |
115 | // Read the last element into a stack-allocated variable. If a following comparison |
116 | // operation panics, `hole` will get dropped and automatically write the element back |
117 | // into the slice. |
118 | let tmp = mem::ManuallyDrop::new(ptr::read(v.get_unchecked(len - 1))); |
119 | let v = v.as_mut_ptr(); |
120 | let mut hole = CopyOnDrop::new(&*tmp, v.add(len - 2)); |
121 | ptr::copy_nonoverlapping(v.add(len - 2), v.add(len - 1), 1); |
122 | |
123 | for i in (0..len - 2).rev() { |
124 | if !is_less(&*tmp, &*v.add(i)) { |
125 | break; |
126 | } |
127 | |
128 | // Move `i`-th element one place to the right, thus shifting the hole to the left. |
129 | ptr::copy_nonoverlapping(v.add(i), v.add(i + 1), 1); |
130 | hole.dest = v.add(i); |
131 | } |
132 | // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`. |
133 | } |
134 | } |
135 | } |
136 | |
137 | /// Partially sorts a slice by shifting several out-of-order elements around. |
138 | /// |
139 | /// Returns `true` if the slice is sorted at the end. This function is *O*(*n*) worst-case. |
140 | #[cold ] |
141 | fn partial_insertion_sort<T, F>(v: &mut [T], is_less: &F) -> bool |
142 | where |
143 | F: Fn(&T, &T) -> bool, |
144 | { |
145 | // Maximum number of adjacent out-of-order pairs that will get shifted. |
146 | const MAX_STEPS: usize = 5; |
147 | // If the slice is shorter than this, don't shift any elements. |
148 | const SHORTEST_SHIFTING: usize = 50; |
149 | |
150 | let len = v.len(); |
151 | let mut i = 1; |
152 | |
153 | for _ in 0..MAX_STEPS { |
154 | // SAFETY: We already explicitly did the bound checking with `i < len`. |
155 | // All our subsequent indexing is only in the range `0 <= index < len` |
156 | unsafe { |
157 | // Find the next pair of adjacent out-of-order elements. |
158 | while i < len && !is_less(v.get_unchecked(i), v.get_unchecked(i - 1)) { |
159 | i += 1; |
160 | } |
161 | } |
162 | |
163 | // Are we done? |
164 | if i == len { |
165 | return true; |
166 | } |
167 | |
168 | // Don't shift elements on short arrays, that has a performance cost. |
169 | if len < SHORTEST_SHIFTING { |
170 | return false; |
171 | } |
172 | |
173 | // Swap the found pair of elements. This puts them in correct order. |
174 | v.swap(i - 1, i); |
175 | |
176 | // Shift the smaller element to the left. |
177 | shift_tail(&mut v[..i], is_less); |
178 | // Shift the greater element to the right. |
179 | shift_head(&mut v[i..], is_less); |
180 | } |
181 | |
182 | // Didn't manage to sort the slice in the limited number of steps. |
183 | false |
184 | } |
185 | |
186 | /// Sorts a slice using insertion sort, which is *O*(*n*^2) worst-case. |
187 | fn insertion_sort<T, F>(v: &mut [T], is_less: &F) |
188 | where |
189 | F: Fn(&T, &T) -> bool, |
190 | { |
191 | for i: usize in 1..v.len() { |
192 | shift_tail(&mut v[..i + 1], is_less); |
193 | } |
194 | } |
195 | |
196 | /// Sorts `v` using heapsort, which guarantees *O*(*n* \* log(*n*)) worst-case. |
197 | #[cold ] |
198 | fn heapsort<T, F>(v: &mut [T], is_less: &F) |
199 | where |
200 | F: Fn(&T, &T) -> bool, |
201 | { |
202 | // This binary heap respects the invariant `parent >= child`. |
203 | let sift_down = |v: &mut [T], mut node| { |
204 | loop { |
205 | // Children of `node`. |
206 | let mut child = 2 * node + 1; |
207 | if child >= v.len() { |
208 | break; |
209 | } |
210 | |
211 | // Choose the greater child. |
212 | if child + 1 < v.len() && is_less(&v[child], &v[child + 1]) { |
213 | child += 1; |
214 | } |
215 | |
216 | // Stop if the invariant holds at `node`. |
217 | if !is_less(&v[node], &v[child]) { |
218 | break; |
219 | } |
220 | |
221 | // Swap `node` with the greater child, move one step down, and continue sifting. |
222 | v.swap(node, child); |
223 | node = child; |
224 | } |
225 | }; |
226 | |
227 | // Build the heap in linear time. |
228 | for i in (0..v.len() / 2).rev() { |
229 | sift_down(v, i); |
230 | } |
231 | |
232 | // Pop maximal elements from the heap. |
233 | for i in (1..v.len()).rev() { |
234 | v.swap(0, i); |
235 | sift_down(&mut v[..i], 0); |
236 | } |
237 | } |
238 | |
239 | /// Partitions `v` into elements smaller than `pivot`, followed by elements greater than or equal |
240 | /// to `pivot`. |
241 | /// |
242 | /// Returns the number of elements smaller than `pivot`. |
243 | /// |
244 | /// Partitioning is performed block-by-block in order to minimize the cost of branching operations. |
245 | /// This idea is presented in the [BlockQuicksort][pdf] paper. |
246 | /// |
247 | /// [pdf]: https://drops.dagstuhl.de/opus/volltexte/2016/6389/pdf/LIPIcs-ESA-2016-38.pdf |
248 | fn partition_in_blocks<T, F>(v: &mut [T], pivot: &T, is_less: &F) -> usize |
249 | where |
250 | F: Fn(&T, &T) -> bool, |
251 | { |
252 | // Number of elements in a typical block. |
253 | const BLOCK: usize = 128; |
254 | |
255 | // The partitioning algorithm repeats the following steps until completion: |
256 | // |
257 | // 1. Trace a block from the left side to identify elements greater than or equal to the pivot. |
258 | // 2. Trace a block from the right side to identify elements smaller than the pivot. |
259 | // 3. Exchange the identified elements between the left and right side. |
260 | // |
261 | // We keep the following variables for a block of elements: |
262 | // |
263 | // 1. `block` - Number of elements in the block. |
264 | // 2. `start` - Start pointer into the `offsets` array. |
265 | // 3. `end` - End pointer into the `offsets` array. |
266 | // 4. `offsets - Indices of out-of-order elements within the block. |
267 | |
268 | // The current block on the left side (from `l` to `l.add(block_l)`). |
269 | let mut l = v.as_mut_ptr(); |
270 | let mut block_l = BLOCK; |
271 | let mut start_l = ptr::null_mut(); |
272 | let mut end_l = ptr::null_mut(); |
273 | let mut offsets_l = [MaybeUninit::<u8>::uninit(); BLOCK]; |
274 | |
275 | // The current block on the right side (from `r.sub(block_r)` to `r`). |
276 | // SAFETY: The documentation for .add() specifically mention that `vec.as_ptr().add(vec.len())` is always safe` |
277 | let mut r = unsafe { l.add(v.len()) }; |
278 | let mut block_r = BLOCK; |
279 | let mut start_r = ptr::null_mut(); |
280 | let mut end_r = ptr::null_mut(); |
281 | let mut offsets_r = [MaybeUninit::<u8>::uninit(); BLOCK]; |
282 | |
283 | // FIXME: When we get VLAs, try creating one array of length `min(v.len(), 2 * BLOCK)` rather |
284 | // than two fixed-size arrays of length `BLOCK`. VLAs might be more cache-efficient. |
285 | |
286 | // Returns the number of elements between pointers `l` (inclusive) and `r` (exclusive). |
287 | fn width<T>(l: *mut T, r: *mut T) -> usize { |
288 | assert!(mem::size_of::<T>() > 0); |
289 | // FIXME: this should *likely* use `offset_from`, but more |
290 | // investigation is needed (including running tests in miri). |
291 | // TODO unstable: (r.addr() - l.addr()) / mem::size_of::<T>() |
292 | (r as usize - l as usize) / mem::size_of::<T>() |
293 | } |
294 | |
295 | loop { |
296 | // We are done with partitioning block-by-block when `l` and `r` get very close. Then we do |
297 | // some patch-up work in order to partition the remaining elements in between. |
298 | let is_done = width(l, r) <= 2 * BLOCK; |
299 | |
300 | if is_done { |
301 | // Number of remaining elements (still not compared to the pivot). |
302 | let mut rem = width(l, r); |
303 | if start_l < end_l || start_r < end_r { |
304 | rem -= BLOCK; |
305 | } |
306 | |
307 | // Adjust block sizes so that the left and right block don't overlap, but get perfectly |
308 | // aligned to cover the whole remaining gap. |
309 | if start_l < end_l { |
310 | block_r = rem; |
311 | } else if start_r < end_r { |
312 | block_l = rem; |
313 | } else { |
314 | // There were the same number of elements to switch on both blocks during the last |
315 | // iteration, so there are no remaining elements on either block. Cover the remaining |
316 | // items with roughly equally-sized blocks. |
317 | block_l = rem / 2; |
318 | block_r = rem - block_l; |
319 | } |
320 | debug_assert!(block_l <= BLOCK && block_r <= BLOCK); |
321 | debug_assert!(width(l, r) == block_l + block_r); |
322 | } |
323 | |
324 | if start_l == end_l { |
325 | // Trace `block_l` elements from the left side. |
326 | // TODO unstable: start_l = MaybeUninit::slice_as_mut_ptr(&mut offsets_l); |
327 | start_l = offsets_l.as_mut_ptr() as *mut u8; |
328 | end_l = start_l; |
329 | let mut elem = l; |
330 | |
331 | for i in 0..block_l { |
332 | // SAFETY: The unsafety operations below involve the usage of the `offset`. |
333 | // According to the conditions required by the function, we satisfy them because: |
334 | // 1. `offsets_l` is stack-allocated, and thus considered separate allocated object. |
335 | // 2. The function `is_less` returns a `bool`. |
336 | // Casting a `bool` will never overflow `isize`. |
337 | // 3. We have guaranteed that `block_l` will be `<= BLOCK`. |
338 | // Plus, `end_l` was initially set to the begin pointer of `offsets_` which was declared on the stack. |
339 | // Thus, we know that even in the worst case (all invocations of `is_less` returns false) we will only be at most 1 byte pass the end. |
340 | // Another unsafety operation here is dereferencing `elem`. |
341 | // However, `elem` was initially the begin pointer to the slice which is always valid. |
342 | unsafe { |
343 | // Branchless comparison. |
344 | *end_l = i as u8; |
345 | end_l = end_l.offset(!is_less(&*elem, pivot) as isize); |
346 | elem = elem.offset(1); |
347 | } |
348 | } |
349 | } |
350 | |
351 | if start_r == end_r { |
352 | // Trace `block_r` elements from the right side. |
353 | // TODO unstable: start_r = MaybeUninit::slice_as_mut_ptr(&mut offsets_r); |
354 | start_r = offsets_r.as_mut_ptr() as *mut u8; |
355 | end_r = start_r; |
356 | let mut elem = r; |
357 | |
358 | for i in 0..block_r { |
359 | // SAFETY: The unsafety operations below involve the usage of the `offset`. |
360 | // According to the conditions required by the function, we satisfy them because: |
361 | // 1. `offsets_r` is stack-allocated, and thus considered separate allocated object. |
362 | // 2. The function `is_less` returns a `bool`. |
363 | // Casting a `bool` will never overflow `isize`. |
364 | // 3. We have guaranteed that `block_r` will be `<= BLOCK`. |
365 | // Plus, `end_r` was initially set to the begin pointer of `offsets_` which was declared on the stack. |
366 | // Thus, we know that even in the worst case (all invocations of `is_less` returns true) we will only be at most 1 byte pass the end. |
367 | // Another unsafety operation here is dereferencing `elem`. |
368 | // However, `elem` was initially `1 * sizeof(T)` past the end and we decrement it by `1 * sizeof(T)` before accessing it. |
369 | // Plus, `block_r` was asserted to be less than `BLOCK` and `elem` will therefore at most be pointing to the beginning of the slice. |
370 | unsafe { |
371 | // Branchless comparison. |
372 | elem = elem.offset(-1); |
373 | *end_r = i as u8; |
374 | end_r = end_r.offset(is_less(&*elem, pivot) as isize); |
375 | } |
376 | } |
377 | } |
378 | |
379 | // Number of out-of-order elements to swap between the left and right side. |
380 | let count = Ord::min(width(start_l, end_l), width(start_r, end_r)); |
381 | |
382 | if count > 0 { |
383 | macro_rules! left { |
384 | () => { |
385 | l.offset(*start_l as isize) |
386 | }; |
387 | } |
388 | macro_rules! right { |
389 | () => { |
390 | r.offset(-(*start_r as isize) - 1) |
391 | }; |
392 | } |
393 | |
394 | // Instead of swapping one pair at the time, it is more efficient to perform a cyclic |
395 | // permutation. This is not strictly equivalent to swapping, but produces a similar |
396 | // result using fewer memory operations. |
397 | |
398 | // SAFETY: The use of `ptr::read` is valid because there is at least one element in |
399 | // both `offsets_l` and `offsets_r`, so `left!` is a valid pointer to read from. |
400 | // |
401 | // The uses of `left!` involve calls to `offset` on `l`, which points to the |
402 | // beginning of `v`. All the offsets pointed-to by `start_l` are at most `block_l`, so |
403 | // these `offset` calls are safe as all reads are within the block. The same argument |
404 | // applies for the uses of `right!`. |
405 | // |
406 | // The calls to `start_l.offset` are valid because there are at most `count-1` of them, |
407 | // plus the final one at the end of the unsafe block, where `count` is the minimum number |
408 | // of collected offsets in `offsets_l` and `offsets_r`, so there is no risk of there not |
409 | // being enough elements. The same reasoning applies to the calls to `start_r.offset`. |
410 | // |
411 | // The calls to `copy_nonoverlapping` are safe because `left!` and `right!` are guaranteed |
412 | // not to overlap, and are valid because of the reasoning above. |
413 | unsafe { |
414 | let tmp = ptr::read(left!()); |
415 | ptr::copy_nonoverlapping(right!(), left!(), 1); |
416 | |
417 | for _ in 1..count { |
418 | start_l = start_l.offset(1); |
419 | ptr::copy_nonoverlapping(left!(), right!(), 1); |
420 | start_r = start_r.offset(1); |
421 | ptr::copy_nonoverlapping(right!(), left!(), 1); |
422 | } |
423 | |
424 | ptr::copy_nonoverlapping(&tmp, right!(), 1); |
425 | mem::forget(tmp); |
426 | start_l = start_l.offset(1); |
427 | start_r = start_r.offset(1); |
428 | } |
429 | } |
430 | |
431 | if start_l == end_l { |
432 | // All out-of-order elements in the left block were moved. Move to the next block. |
433 | |
434 | // block-width-guarantee |
435 | // SAFETY: if `!is_done` then the slice width is guaranteed to be at least `2*BLOCK` wide. There |
436 | // are at most `BLOCK` elements in `offsets_l` because of its size, so the `offset` operation is |
437 | // safe. Otherwise, the debug assertions in the `is_done` case guarantee that |
438 | // `width(l, r) == block_l + block_r`, namely, that the block sizes have been adjusted to account |
439 | // for the smaller number of remaining elements. |
440 | l = unsafe { l.add(block_l) }; |
441 | } |
442 | |
443 | if start_r == end_r { |
444 | // All out-of-order elements in the right block were moved. Move to the previous block. |
445 | |
446 | // SAFETY: Same argument as [block-width-guarantee]. Either this is a full block `2*BLOCK`-wide, |
447 | // or `block_r` has been adjusted for the last handful of elements. |
448 | r = unsafe { r.offset(-(block_r as isize)) }; |
449 | } |
450 | |
451 | if is_done { |
452 | break; |
453 | } |
454 | } |
455 | |
456 | // All that remains now is at most one block (either the left or the right) with out-of-order |
457 | // elements that need to be moved. Such remaining elements can be simply shifted to the end |
458 | // within their block. |
459 | |
460 | if start_l < end_l { |
461 | // The left block remains. |
462 | // Move its remaining out-of-order elements to the far right. |
463 | debug_assert_eq!(width(l, r), block_l); |
464 | while start_l < end_l { |
465 | // remaining-elements-safety |
466 | // SAFETY: while the loop condition holds there are still elements in `offsets_l`, so it |
467 | // is safe to point `end_l` to the previous element. |
468 | // |
469 | // The `ptr::swap` is safe if both its arguments are valid for reads and writes: |
470 | // - Per the debug assert above, the distance between `l` and `r` is `block_l` |
471 | // elements, so there can be at most `block_l` remaining offsets between `start_l` |
472 | // and `end_l`. This means `r` will be moved at most `block_l` steps back, which |
473 | // makes the `r.offset` calls valid (at that point `l == r`). |
474 | // - `offsets_l` contains valid offsets into `v` collected during the partitioning of |
475 | // the last block, so the `l.offset` calls are valid. |
476 | unsafe { |
477 | end_l = end_l.offset(-1); |
478 | ptr::swap(l.offset(*end_l as isize), r.offset(-1)); |
479 | r = r.offset(-1); |
480 | } |
481 | } |
482 | width(v.as_mut_ptr(), r) |
483 | } else if start_r < end_r { |
484 | // The right block remains. |
485 | // Move its remaining out-of-order elements to the far left. |
486 | debug_assert_eq!(width(l, r), block_r); |
487 | while start_r < end_r { |
488 | // SAFETY: See the reasoning in [remaining-elements-safety]. |
489 | unsafe { |
490 | end_r = end_r.offset(-1); |
491 | ptr::swap(l, r.offset(-(*end_r as isize) - 1)); |
492 | l = l.offset(1); |
493 | } |
494 | } |
495 | width(v.as_mut_ptr(), l) |
496 | } else { |
497 | // Nothing else to do, we're done. |
498 | width(v.as_mut_ptr(), l) |
499 | } |
500 | } |
501 | |
502 | /// Partitions `v` into elements smaller than `v[pivot]`, followed by elements greater than or |
503 | /// equal to `v[pivot]`. |
504 | /// |
505 | /// Returns a tuple of: |
506 | /// |
507 | /// 1. Number of elements smaller than `v[pivot]`. |
508 | /// 2. True if `v` was already partitioned. |
509 | fn partition<T, F>(v: &mut [T], pivot: usize, is_less: &F) -> (usize, bool) |
510 | where |
511 | F: Fn(&T, &T) -> bool, |
512 | { |
513 | let (mid, was_partitioned) = { |
514 | // Place the pivot at the beginning of slice. |
515 | v.swap(0, pivot); |
516 | let (pivot, v) = v.split_at_mut(1); |
517 | let pivot = &mut pivot[0]; |
518 | |
519 | // Read the pivot into a stack-allocated variable for efficiency. If a following comparison |
520 | // operation panics, the pivot will be automatically written back into the slice. |
521 | |
522 | // SAFETY: `pivot` is a reference to the first element of `v`, so `ptr::read` is safe. |
523 | let tmp = mem::ManuallyDrop::new(unsafe { ptr::read(pivot) }); |
524 | let _pivot_guard = unsafe { CopyOnDrop::new(&*tmp, pivot) }; |
525 | let pivot = &*tmp; |
526 | |
527 | // Find the first pair of out-of-order elements. |
528 | let mut l = 0; |
529 | let mut r = v.len(); |
530 | |
531 | // SAFETY: The unsafety below involves indexing an array. |
532 | // For the first one: We already do the bounds checking here with `l < r`. |
533 | // For the second one: We initially have `l == 0` and `r == v.len()` and we checked that `l < r` at every indexing operation. |
534 | // From here we know that `r` must be at least `r == l` which was shown to be valid from the first one. |
535 | unsafe { |
536 | // Find the first element greater than or equal to the pivot. |
537 | while l < r && is_less(v.get_unchecked(l), pivot) { |
538 | l += 1; |
539 | } |
540 | |
541 | // Find the last element smaller that the pivot. |
542 | while l < r && !is_less(v.get_unchecked(r - 1), pivot) { |
543 | r -= 1; |
544 | } |
545 | } |
546 | |
547 | ( |
548 | l + partition_in_blocks(&mut v[l..r], pivot, is_less), |
549 | l >= r, |
550 | ) |
551 | |
552 | // `_pivot_guard` goes out of scope and writes the pivot (which is a stack-allocated |
553 | // variable) back into the slice where it originally was. This step is critical in ensuring |
554 | // safety! |
555 | }; |
556 | |
557 | // Place the pivot between the two partitions. |
558 | v.swap(0, mid); |
559 | |
560 | (mid, was_partitioned) |
561 | } |
562 | |
563 | /// Partitions `v` into elements equal to `v[pivot]` followed by elements greater than `v[pivot]`. |
564 | /// |
565 | /// Returns the number of elements equal to the pivot. It is assumed that `v` does not contain |
566 | /// elements smaller than the pivot. |
567 | fn partition_equal<T, F>(v: &mut [T], pivot: usize, is_less: &F) -> usize |
568 | where |
569 | F: Fn(&T, &T) -> bool, |
570 | { |
571 | // Place the pivot at the beginning of slice. |
572 | v.swap(0, pivot); |
573 | let (pivot, v) = v.split_at_mut(1); |
574 | let pivot = &mut pivot[0]; |
575 | |
576 | // Read the pivot into a stack-allocated variable for efficiency. If a following comparison |
577 | // operation panics, the pivot will be automatically written back into the slice. |
578 | // SAFETY: The pointer here is valid because it is obtained from a reference to a slice. |
579 | let tmp = mem::ManuallyDrop::new(unsafe { ptr::read(pivot) }); |
580 | let _pivot_guard = unsafe { CopyOnDrop::new(&*tmp, pivot) }; |
581 | let pivot = &*tmp; |
582 | |
583 | // Now partition the slice. |
584 | let mut l = 0; |
585 | let mut r = v.len(); |
586 | loop { |
587 | // SAFETY: The unsafety below involves indexing an array. |
588 | // For the first one: We already do the bounds checking here with `l < r`. |
589 | // For the second one: We initially have `l == 0` and `r == v.len()` and we checked that `l < r` at every indexing operation. |
590 | // From here we know that `r` must be at least `r == l` which was shown to be valid from the first one. |
591 | unsafe { |
592 | // Find the first element greater than the pivot. |
593 | while l < r && !is_less(pivot, v.get_unchecked(l)) { |
594 | l += 1; |
595 | } |
596 | |
597 | // Find the last element equal to the pivot. |
598 | while l < r && is_less(pivot, v.get_unchecked(r - 1)) { |
599 | r -= 1; |
600 | } |
601 | |
602 | // Are we done? |
603 | if l >= r { |
604 | break; |
605 | } |
606 | |
607 | // Swap the found pair of out-of-order elements. |
608 | r -= 1; |
609 | let ptr = v.as_mut_ptr(); |
610 | ptr::swap(ptr.add(l), ptr.add(r)); |
611 | l += 1; |
612 | } |
613 | } |
614 | |
615 | // We found `l` elements equal to the pivot. Add 1 to account for the pivot itself. |
616 | l + 1 |
617 | |
618 | // `_pivot_guard` goes out of scope and writes the pivot (which is a stack-allocated variable) |
619 | // back into the slice where it originally was. This step is critical in ensuring safety! |
620 | } |
621 | |
622 | /// Scatters some elements around in an attempt to break patterns that might cause imbalanced |
623 | /// partitions in quicksort. |
624 | #[cold ] |
625 | fn break_patterns<T>(v: &mut [T]) { |
626 | let len = v.len(); |
627 | if len >= 8 { |
628 | // Pseudorandom number generator from the "Xorshift RNGs" paper by George Marsaglia. |
629 | let mut random = len as u32; |
630 | let mut gen_u32 = || { |
631 | random ^= random << 13; |
632 | random ^= random >> 17; |
633 | random ^= random << 5; |
634 | random |
635 | }; |
636 | let mut gen_usize = || { |
637 | if usize::BITS <= 32 { |
638 | gen_u32() as usize |
639 | } else { |
640 | (((gen_u32() as u64) << 32) | (gen_u32() as u64)) as usize |
641 | } |
642 | }; |
643 | |
644 | // Take random numbers modulo this number. |
645 | // The number fits into `usize` because `len` is not greater than `isize::MAX`. |
646 | let modulus = len.next_power_of_two(); |
647 | |
648 | // Some pivot candidates will be in the nearby of this index. Let's randomize them. |
649 | let pos = len / 4 * 2; |
650 | |
651 | for i in 0..3 { |
652 | // Generate a random number modulo `len`. However, in order to avoid costly operations |
653 | // we first take it modulo a power of two, and then decrease by `len` until it fits |
654 | // into the range `[0, len - 1]`. |
655 | let mut other = gen_usize() & (modulus - 1); |
656 | |
657 | // `other` is guaranteed to be less than `2 * len`. |
658 | if other >= len { |
659 | other -= len; |
660 | } |
661 | |
662 | v.swap(pos - 1 + i, other); |
663 | } |
664 | } |
665 | } |
666 | |
667 | /// Chooses a pivot in `v` and returns the index and `true` if the slice is likely already sorted. |
668 | /// |
669 | /// Elements in `v` might be reordered in the process. |
670 | fn choose_pivot<T, F>(v: &mut [T], is_less: &F) -> (usize, bool) |
671 | where |
672 | F: Fn(&T, &T) -> bool, |
673 | { |
674 | // Minimum length to choose the median-of-medians method. |
675 | // Shorter slices use the simple median-of-three method. |
676 | const SHORTEST_MEDIAN_OF_MEDIANS: usize = 50; |
677 | // Maximum number of swaps that can be performed in this function. |
678 | const MAX_SWAPS: usize = 4 * 3; |
679 | |
680 | let len = v.len(); |
681 | |
682 | // Three indices near which we are going to choose a pivot. |
683 | #[allow (clippy::identity_op)] |
684 | let mut a = len / 4 * 1; |
685 | let mut b = len / 4 * 2; |
686 | let mut c = len / 4 * 3; |
687 | |
688 | // Counts the total number of swaps we are about to perform while sorting indices. |
689 | let mut swaps = 0; |
690 | |
691 | if len >= 8 { |
692 | // Swaps indices so that `v[a] <= v[b]`. |
693 | // SAFETY: `len >= 8` so there are at least two elements in the neighborhoods of |
694 | // `a`, `b` and `c`. This means the three calls to `sort_adjacent` result in |
695 | // corresponding calls to `sort3` with valid 3-item neighborhoods around each |
696 | // pointer, which in turn means the calls to `sort2` are done with valid |
697 | // references. Thus the `v.get_unchecked` calls are safe, as is the `ptr::swap` |
698 | // call. |
699 | let mut sort2 = |a: &mut usize, b: &mut usize| unsafe { |
700 | if is_less(v.get_unchecked(*b), v.get_unchecked(*a)) { |
701 | ptr::swap(a, b); |
702 | swaps += 1; |
703 | } |
704 | }; |
705 | |
706 | // Swaps indices so that `v[a] <= v[b] <= v[c]`. |
707 | let mut sort3 = |a: &mut usize, b: &mut usize, c: &mut usize| { |
708 | sort2(a, b); |
709 | sort2(b, c); |
710 | sort2(a, b); |
711 | }; |
712 | |
713 | if len >= SHORTEST_MEDIAN_OF_MEDIANS { |
714 | // Finds the median of `v[a - 1], v[a], v[a + 1]` and stores the index into `a`. |
715 | let mut sort_adjacent = |a: &mut usize| { |
716 | let tmp = *a; |
717 | sort3(&mut (tmp - 1), a, &mut (tmp + 1)); |
718 | }; |
719 | |
720 | // Find medians in the neighborhoods of `a`, `b`, and `c`. |
721 | sort_adjacent(&mut a); |
722 | sort_adjacent(&mut b); |
723 | sort_adjacent(&mut c); |
724 | } |
725 | |
726 | // Find the median among `a`, `b`, and `c`. |
727 | sort3(&mut a, &mut b, &mut c); |
728 | } |
729 | |
730 | if swaps < MAX_SWAPS { |
731 | (b, swaps == 0) |
732 | } else { |
733 | // The maximum number of swaps was performed. Chances are the slice is descending or mostly |
734 | // descending, so reversing will probably help sort it faster. |
735 | v.reverse(); |
736 | (len - 1 - b, true) |
737 | } |
738 | } |
739 | |
740 | /// Sorts `v` recursively. |
741 | /// |
742 | /// If the slice had a predecessor in the original array, it is specified as `pred`. |
743 | /// |
744 | /// `limit` is the number of allowed imbalanced partitions before switching to `heapsort`. If zero, |
745 | /// this function will immediately switch to heapsort. |
746 | fn recurse<'a, T, F>(mut v: &'a mut [T], is_less: &F, mut pred: Option<&'a mut T>, mut limit: u32) |
747 | where |
748 | T: Send, |
749 | F: Fn(&T, &T) -> bool + Sync, |
750 | { |
751 | // Slices of up to this length get sorted using insertion sort. |
752 | const MAX_INSERTION: usize = 20; |
753 | // If both partitions are up to this length, we continue sequentially. This number is as small |
754 | // as possible but so that the overhead of Rayon's task scheduling is still negligible. |
755 | const MAX_SEQUENTIAL: usize = 2000; |
756 | |
757 | // True if the last partitioning was reasonably balanced. |
758 | let mut was_balanced = true; |
759 | // True if the last partitioning didn't shuffle elements (the slice was already partitioned). |
760 | let mut was_partitioned = true; |
761 | |
762 | loop { |
763 | let len = v.len(); |
764 | |
765 | // Very short slices get sorted using insertion sort. |
766 | if len <= MAX_INSERTION { |
767 | insertion_sort(v, is_less); |
768 | return; |
769 | } |
770 | |
771 | // If too many bad pivot choices were made, simply fall back to heapsort in order to |
772 | // guarantee `O(n * log(n))` worst-case. |
773 | if limit == 0 { |
774 | heapsort(v, is_less); |
775 | return; |
776 | } |
777 | |
778 | // If the last partitioning was imbalanced, try breaking patterns in the slice by shuffling |
779 | // some elements around. Hopefully we'll choose a better pivot this time. |
780 | if !was_balanced { |
781 | break_patterns(v); |
782 | limit -= 1; |
783 | } |
784 | |
785 | // Choose a pivot and try guessing whether the slice is already sorted. |
786 | let (pivot, likely_sorted) = choose_pivot(v, is_less); |
787 | |
788 | // If the last partitioning was decently balanced and didn't shuffle elements, and if pivot |
789 | // selection predicts the slice is likely already sorted... |
790 | if was_balanced && was_partitioned && likely_sorted { |
791 | // Try identifying several out-of-order elements and shifting them to correct |
792 | // positions. If the slice ends up being completely sorted, we're done. |
793 | if partial_insertion_sort(v, is_less) { |
794 | return; |
795 | } |
796 | } |
797 | |
798 | // If the chosen pivot is equal to the predecessor, then it's the smallest element in the |
799 | // slice. Partition the slice into elements equal to and elements greater than the pivot. |
800 | // This case is usually hit when the slice contains many duplicate elements. |
801 | if let Some(ref p) = pred { |
802 | if !is_less(p, &v[pivot]) { |
803 | let mid = partition_equal(v, pivot, is_less); |
804 | |
805 | // Continue sorting elements greater than the pivot. |
806 | v = &mut v[mid..]; |
807 | continue; |
808 | } |
809 | } |
810 | |
811 | // Partition the slice. |
812 | let (mid, was_p) = partition(v, pivot, is_less); |
813 | was_balanced = Ord::min(mid, len - mid) >= len / 8; |
814 | was_partitioned = was_p; |
815 | |
816 | // Split the slice into `left`, `pivot`, and `right`. |
817 | let (left, right) = v.split_at_mut(mid); |
818 | let (pivot, right) = right.split_at_mut(1); |
819 | let pivot = &mut pivot[0]; |
820 | |
821 | if Ord::max(left.len(), right.len()) <= MAX_SEQUENTIAL { |
822 | // Recurse into the shorter side only in order to minimize the total number of recursive |
823 | // calls and consume less stack space. Then just continue with the longer side (this is |
824 | // akin to tail recursion). |
825 | if left.len() < right.len() { |
826 | recurse(left, is_less, pred, limit); |
827 | v = right; |
828 | pred = Some(pivot); |
829 | } else { |
830 | recurse(right, is_less, Some(pivot), limit); |
831 | v = left; |
832 | } |
833 | } else { |
834 | // Sort the left and right half in parallel. |
835 | rayon_core::join( |
836 | || recurse(left, is_less, pred, limit), |
837 | || recurse(right, is_less, Some(pivot), limit), |
838 | ); |
839 | break; |
840 | } |
841 | } |
842 | } |
843 | |
844 | /// Sorts `v` using pattern-defeating quicksort in parallel. |
845 | /// |
846 | /// The algorithm is unstable, in-place, and *O*(*n* \* log(*n*)) worst-case. |
847 | pub(super) fn par_quicksort<T, F>(v: &mut [T], is_less: F) |
848 | where |
849 | T: Send, |
850 | F: Fn(&T, &T) -> bool + Sync, |
851 | { |
852 | // Sorting has no meaningful behavior on zero-sized types. |
853 | if mem::size_of::<T>() == 0 { |
854 | return; |
855 | } |
856 | |
857 | // Limit the number of imbalanced partitions to `floor(log2(len)) + 1`. |
858 | let limit: u32 = usize::BITS - v.len().leading_zeros(); |
859 | |
860 | recurse(v, &is_less, pred:None, limit); |
861 | } |
862 | |
863 | #[cfg (test)] |
864 | mod tests { |
865 | use super::heapsort; |
866 | use rand::distributions::Uniform; |
867 | use rand::{thread_rng, Rng}; |
868 | |
869 | #[test ] |
870 | fn test_heapsort() { |
871 | let rng = &mut thread_rng(); |
872 | |
873 | for len in (0..25).chain(500..501) { |
874 | for &modulus in &[5, 10, 100] { |
875 | let dist = Uniform::new(0, modulus); |
876 | for _ in 0..100 { |
877 | let v: Vec<i32> = rng.sample_iter(&dist).take(len).collect(); |
878 | |
879 | // Test heapsort using `<` operator. |
880 | let mut tmp = v.clone(); |
881 | heapsort(&mut tmp, &|a, b| a < b); |
882 | assert!(tmp.windows(2).all(|w| w[0] <= w[1])); |
883 | |
884 | // Test heapsort using `>` operator. |
885 | let mut tmp = v.clone(); |
886 | heapsort(&mut tmp, &|a, b| a > b); |
887 | assert!(tmp.windows(2).all(|w| w[0] >= w[1])); |
888 | } |
889 | } |
890 | } |
891 | |
892 | // Sort using a completely random comparison function. |
893 | // This will reorder the elements *somehow*, but won't panic. |
894 | let mut v: Vec<_> = (0..100).collect(); |
895 | heapsort(&mut v, &|_, _| thread_rng().gen()); |
896 | heapsort(&mut v, &|a, b| a < b); |
897 | |
898 | for (i, &entry) in v.iter().enumerate() { |
899 | assert_eq!(entry, i); |
900 | } |
901 | } |
902 | } |
903 | |