1 | // Implementation derived from `weak` in Rust's |
2 | // library/std/src/sys/unix/weak.rs at revision |
3 | // fd0cb0cdc21dd9c06025277d772108f8d42cb25f. |
4 | // |
5 | // Ideally we should update to a newer version which doesn't need `dlsym`, |
6 | // however that depends on the `extern_weak` feature which is currently |
7 | // unstable. |
8 | |
9 | #![cfg_attr (linux_raw, allow(unsafe_code))] |
10 | |
11 | //! Support for "weak linkage" to symbols on Unix |
12 | //! |
13 | //! Some I/O operations we do in libstd require newer versions of OSes but we |
14 | //! need to maintain binary compatibility with older releases for now. In order |
15 | //! to use the new functionality when available we use this module for |
16 | //! detection. |
17 | //! |
18 | //! One option to use here is weak linkage, but that is unfortunately only |
19 | //! really workable on Linux. Hence, use dlsym to get the symbol value at |
20 | //! runtime. This is also done for compatibility with older versions of glibc, |
21 | //! and to avoid creating dependencies on `GLIBC_PRIVATE` symbols. It assumes |
22 | //! that we've been dynamically linked to the library the symbol comes from, |
23 | //! but that is currently always the case for things like libpthread/libc. |
24 | //! |
25 | //! A long time ago this used weak linkage for the `__pthread_get_minstack` |
26 | //! symbol, but that caused Debian to detect an unnecessarily strict versioned |
27 | //! dependency on libc6 (#23628). |
28 | |
29 | // There are a variety of `#[cfg]`s controlling which targets are involved in |
30 | // each instance of `weak!` and `syscall!`. Rather than trying to unify all of |
31 | // that, we'll just allow that some unix targets don't use this module at all. |
32 | #![allow (dead_code, unused_macros)] |
33 | #![allow (clippy::doc_markdown)] |
34 | |
35 | use crate::ffi::CStr; |
36 | use core::ffi::c_void; |
37 | use core::ptr::null_mut; |
38 | use core::sync::atomic::{self, AtomicPtr, Ordering}; |
39 | use core::{marker, mem}; |
40 | |
41 | const NULL: *mut c_void = null_mut(); |
42 | const INVALID: *mut c_void = 1 as *mut c_void; |
43 | |
44 | macro_rules! weak { |
45 | ($vis:vis fn $name:ident($($t:ty),*) -> $ret:ty) => ( |
46 | #[allow(non_upper_case_globals)] |
47 | $vis static $name: $crate::weak::Weak<unsafe extern fn($($t),*) -> $ret> = |
48 | $crate::weak::Weak::new(concat!(stringify!($name), ' \0' )); |
49 | ) |
50 | } |
51 | |
52 | pub(crate) struct Weak<F> { |
53 | name: &'static str, |
54 | addr: AtomicPtr<c_void>, |
55 | _marker: marker::PhantomData<F>, |
56 | } |
57 | |
58 | impl<F> Weak<F> { |
59 | pub(crate) const fn new(name: &'static str) -> Self { |
60 | Self { |
61 | name, |
62 | addr: AtomicPtr::new(INVALID), |
63 | _marker: marker::PhantomData, |
64 | } |
65 | } |
66 | |
67 | pub(crate) fn get(&self) -> Option<F> { |
68 | assert_eq!(mem::size_of::<F>(), mem::size_of::<usize>()); |
69 | unsafe { |
70 | // Relaxed is fine here because we fence before reading through the |
71 | // pointer (see the comment below). |
72 | match self.addr.load(Ordering::Relaxed) { |
73 | INVALID => self.initialize(), |
74 | NULL => None, |
75 | addr => { |
76 | let func = mem::transmute_copy::<*mut c_void, F>(&addr); |
77 | // The caller is presumably going to read through this value |
78 | // (by calling the function we've dlsymed). This means we'd |
79 | // need to have loaded it with at least C11's consume |
80 | // ordering in order to be guaranteed that the data we read |
81 | // from the pointer isn't from before the pointer was |
82 | // stored. Rust has no equivalent to memory_order_consume, |
83 | // so we use an acquire fence (sorry, ARM). |
84 | // |
85 | // Now, in practice this likely isn't needed even on CPUs |
86 | // where relaxed and consume mean different things. The |
87 | // symbols we're loading are probably present (or not) at |
88 | // init, and even if they aren't the runtime dynamic loader |
89 | // is extremely likely have sufficient barriers internally |
90 | // (possibly implicitly, for example the ones provided by |
91 | // invoking `mprotect`). |
92 | // |
93 | // That said, none of that's *guaranteed*, and so we fence. |
94 | atomic::fence(Ordering::Acquire); |
95 | Some(func) |
96 | } |
97 | } |
98 | } |
99 | } |
100 | |
101 | // Cold because it should only happen during first-time initialization. |
102 | #[cold ] |
103 | unsafe fn initialize(&self) -> Option<F> { |
104 | let val = fetch(self.name); |
105 | // This synchronizes with the acquire fence in `get`. |
106 | self.addr.store(val, Ordering::Release); |
107 | |
108 | match val { |
109 | NULL => None, |
110 | addr => Some(mem::transmute_copy::<*mut c_void, F>(&addr)), |
111 | } |
112 | } |
113 | } |
114 | |
115 | // To avoid having the `linux_raw` backend depend on the libc crate, just |
116 | // declare the few things we need in a module called `libc` so that `fetch` |
117 | // uses it. |
118 | #[cfg (linux_raw)] |
119 | mod libc { |
120 | use core::ptr; |
121 | use linux_raw_sys::ctypes::{c_char, c_void}; |
122 | |
123 | #[cfg (all(target_os = "android" , target_pointer_width = "32" ))] |
124 | pub(super) const RTLD_DEFAULT: *mut c_void = -1isize as *mut c_void; |
125 | #[cfg (not(all(target_os = "android" , target_pointer_width = "32" )))] |
126 | pub(super) const RTLD_DEFAULT: *mut c_void = ptr::null_mut(); |
127 | |
128 | extern "C" { |
129 | pub(super) fn dlsym(handle: *mut c_void, symbol: *const c_char) -> *mut c_void; |
130 | } |
131 | |
132 | #[test ] |
133 | fn test_abi() { |
134 | assert_eq!(self::RTLD_DEFAULT, ::libc::RTLD_DEFAULT); |
135 | } |
136 | } |
137 | |
138 | unsafe fn fetch(name: &str) -> *mut c_void { |
139 | let name: &CStr = match CStr::from_bytes_with_nul(name.as_bytes()) { |
140 | Ok(c_str: &CStr) => c_str, |
141 | Err(..) => return null_mut(), |
142 | }; |
143 | libc::dlsym(handle:libc::RTLD_DEFAULT, symbol:name.as_ptr().cast()) |
144 | } |
145 | |
146 | #[cfg (not(linux_kernel))] |
147 | macro_rules! syscall { |
148 | (fn $name:ident($($arg_name:ident: $t:ty),*) via $_sys_name:ident -> $ret:ty) => ( |
149 | unsafe fn $name($($arg_name: $t),*) -> $ret { |
150 | weak! { fn $name($($t),*) -> $ret } |
151 | |
152 | if let Some(fun) = $name.get() { |
153 | fun($($arg_name),*) |
154 | } else { |
155 | libc_errno::set_errno(libc_errno::Errno(libc::ENOSYS)); |
156 | -1 |
157 | } |
158 | } |
159 | ) |
160 | } |
161 | |
162 | #[cfg (linux_kernel)] |
163 | macro_rules! syscall { |
164 | (fn $name:ident($($arg_name:ident: $t:ty),*) via $sys_name:ident -> $ret:ty) => ( |
165 | unsafe fn $name($($arg_name:$t),*) -> $ret { |
166 | // This looks like a hack, but `concat_idents` only accepts idents |
167 | // (not paths). |
168 | use libc::*; |
169 | |
170 | #[allow(dead_code)] |
171 | trait AsSyscallArg { |
172 | type SyscallArgType; |
173 | fn into_syscall_arg(self) -> Self::SyscallArgType; |
174 | } |
175 | |
176 | // Pass pointer types as pointers, to preserve provenance. |
177 | impl<T> AsSyscallArg for *mut T { |
178 | type SyscallArgType = *mut T; |
179 | fn into_syscall_arg(self) -> Self::SyscallArgType { self } |
180 | } |
181 | impl<T> AsSyscallArg for *const T { |
182 | type SyscallArgType = *const T; |
183 | fn into_syscall_arg(self) -> Self::SyscallArgType { self } |
184 | } |
185 | |
186 | // Pass `BorrowedFd` values as the integer value. |
187 | impl AsSyscallArg for $crate::fd::BorrowedFd<'_> { |
188 | type SyscallArgType = ::libc::c_int; |
189 | fn into_syscall_arg(self) -> Self::SyscallArgType { |
190 | $crate::fd::AsRawFd::as_raw_fd(&self) as _ |
191 | } |
192 | } |
193 | |
194 | // Coerce integer values into `c_long`. |
195 | impl AsSyscallArg for i8 { |
196 | type SyscallArgType = ::libc::c_int; |
197 | fn into_syscall_arg(self) -> Self::SyscallArgType { self.into() } |
198 | } |
199 | impl AsSyscallArg for u8 { |
200 | type SyscallArgType = ::libc::c_int; |
201 | fn into_syscall_arg(self) -> Self::SyscallArgType { self.into() } |
202 | } |
203 | impl AsSyscallArg for i16 { |
204 | type SyscallArgType = ::libc::c_int; |
205 | fn into_syscall_arg(self) -> Self::SyscallArgType { self.into() } |
206 | } |
207 | impl AsSyscallArg for u16 { |
208 | type SyscallArgType = ::libc::c_int; |
209 | fn into_syscall_arg(self) -> Self::SyscallArgType { self.into() } |
210 | } |
211 | impl AsSyscallArg for i32 { |
212 | type SyscallArgType = ::libc::c_int; |
213 | fn into_syscall_arg(self) -> Self::SyscallArgType { self } |
214 | } |
215 | impl AsSyscallArg for u32 { |
216 | type SyscallArgType = ::libc::c_uint; |
217 | fn into_syscall_arg(self) -> Self::SyscallArgType { self } |
218 | } |
219 | impl AsSyscallArg for usize { |
220 | type SyscallArgType = ::libc::c_ulong; |
221 | fn into_syscall_arg(self) -> Self::SyscallArgType { self as _ } |
222 | } |
223 | |
224 | // On 64-bit platforms, also coerce `i64` and `u64` since `c_long` |
225 | // is 64-bit and can hold those values. |
226 | #[cfg(target_pointer_width = "64" )] |
227 | impl AsSyscallArg for i64 { |
228 | type SyscallArgType = ::libc::c_long; |
229 | fn into_syscall_arg(self) -> Self::SyscallArgType { self } |
230 | } |
231 | #[cfg(target_pointer_width = "64" )] |
232 | impl AsSyscallArg for u64 { |
233 | type SyscallArgType = ::libc::c_ulong; |
234 | fn into_syscall_arg(self) -> Self::SyscallArgType { self } |
235 | } |
236 | |
237 | // `concat_idents` is [unstable], so we take an extra `sys_name` |
238 | // parameter and have our users do the concat for us for now. |
239 | // |
240 | // [unstable]: https://github.com/rust-lang/rust/issues/29599 |
241 | /* |
242 | syscall( |
243 | concat_idents!(SYS_, $name), |
244 | $($arg_name.into_syscall_arg()),* |
245 | ) as $ret |
246 | */ |
247 | |
248 | syscall($sys_name, $($arg_name.into_syscall_arg()),*) as $ret |
249 | } |
250 | ) |
251 | } |
252 | |
253 | macro_rules! weakcall { |
254 | ($vis:vis fn $name:ident($($arg_name:ident: $t:ty),*) -> $ret:ty) => ( |
255 | $vis unsafe fn $name($($arg_name: $t),*) -> $ret { |
256 | weak! { fn $name($($t),*) -> $ret } |
257 | |
258 | // Use a weak symbol from libc when possible, allowing `LD_PRELOAD` |
259 | // interposition, but if it's not found just fail. |
260 | if let Some(fun) = $name.get() { |
261 | fun($($arg_name),*) |
262 | } else { |
263 | libc_errno::set_errno(libc_errno::Errno(libc::ENOSYS)); |
264 | -1 |
265 | } |
266 | } |
267 | ) |
268 | } |
269 | |
270 | /// A combination of `weakcall` and `syscall`. Use the libc function if it's |
271 | /// available, and fall back to `libc::syscall` otherwise. |
272 | macro_rules! weak_or_syscall { |
273 | ($vis:vis fn $name:ident($($arg_name:ident: $t:ty),*) via $sys_name:ident -> $ret:ty) => ( |
274 | $vis unsafe fn $name($($arg_name: $t),*) -> $ret { |
275 | weak! { fn $name($($t),*) -> $ret } |
276 | |
277 | // Use a weak symbol from libc when possible, allowing `LD_PRELOAD` |
278 | // interposition, but if it's not found just fail. |
279 | if let Some(fun) = $name.get() { |
280 | fun($($arg_name),*) |
281 | } else { |
282 | syscall! { fn $name($($arg_name: $t),*) via $sys_name -> $ret } |
283 | $name($($arg_name),*) |
284 | } |
285 | } |
286 | ) |
287 | } |
288 | |