1 | use alloc::vec::Vec; |
2 | use core::mem; |
3 | use core::ops::Range; |
4 | |
5 | use super::buffers::{BufferProgress, Coalescer, Delocator, Locator}; |
6 | use crate::error::InvalidMessage; |
7 | use crate::msgs::codec::{Codec, u24}; |
8 | use crate::msgs::message::InboundPlainMessage; |
9 | use crate::{ContentType, ProtocolVersion}; |
10 | |
11 | #[derive (Debug)] |
12 | pub(crate) struct HandshakeDeframer { |
13 | /// Spans covering individual handshake payloads, in order of receipt. |
14 | spans: Vec<FragmentSpan>, |
15 | |
16 | /// Discard value, tracking the rightmost extent of the last message |
17 | /// in `spans`. |
18 | outer_discard: usize, |
19 | } |
20 | |
21 | impl HandshakeDeframer { |
22 | /// Accepts a message into the deframer. |
23 | /// |
24 | /// `containing_buffer` allows mapping the message payload to its position |
25 | /// in the input buffer, and thereby avoid retaining a borrow on the input |
26 | /// buffer. |
27 | /// |
28 | /// That is required because our processing of handshake messages requires |
29 | /// them to be contiguous (and avoiding that would mean supporting gather-based |
30 | /// parsing in a large number of places, including `core`, `webpki`, and the |
31 | /// `CryptoProvider` interface). `coalesce()` arranges for that to happen, but |
32 | /// to do so it needs to move the fragments together in the original buffer. |
33 | /// This would not be possible if the messages were borrowing from that buffer. |
34 | /// |
35 | /// `outer_discard` is the rightmost extent of the original message. |
36 | pub(crate) fn input_message( |
37 | &mut self, |
38 | msg: InboundPlainMessage<'_>, |
39 | containing_buffer: &Locator, |
40 | outer_discard: usize, |
41 | ) { |
42 | debug_assert_eq!(msg.typ, ContentType::Handshake); |
43 | debug_assert!(containing_buffer.fully_contains(msg.payload)); |
44 | debug_assert!(self.outer_discard <= outer_discard); |
45 | |
46 | self.outer_discard = outer_discard; |
47 | |
48 | // if our last span is incomplete, we can blindly add this as a new span -- |
49 | // no need to attempt parsing it with `DissectHandshakeIter`. |
50 | // |
51 | // `coalesce()` will later move this new message to be contiguous with |
52 | // `_last_incomplete`, and reparse the result. |
53 | // |
54 | // we cannot merge these processes, because `coalesce` mutates the underlying |
55 | // buffer, and `msg` borrows it. |
56 | if let Some(_last_incomplete) = self |
57 | .spans |
58 | .last() |
59 | .filter(|span| !span.is_complete()) |
60 | { |
61 | self.spans.push(FragmentSpan { |
62 | version: msg.version, |
63 | size: None, |
64 | bounds: containing_buffer.locate(msg.payload), |
65 | }); |
66 | return; |
67 | } |
68 | |
69 | // otherwise, we can expect `msg` to contain a handshake header introducing |
70 | // a new message (and perhaps several of them.) |
71 | for span in DissectHandshakeIter::new(msg, containing_buffer) { |
72 | self.spans.push(span); |
73 | } |
74 | } |
75 | |
76 | /// Returns a `BufferProgress` that skips over unprocessed handshake data. |
77 | pub(crate) fn progress(&self) -> BufferProgress { |
78 | BufferProgress::new(self.outer_discard) |
79 | } |
80 | |
81 | /// Do we have a message ready? ie, would `iter().next()` return `Some`? |
82 | pub(crate) fn has_message_ready(&self) -> bool { |
83 | match self.spans.first() { |
84 | Some(span) => span.is_complete(), |
85 | None => false, |
86 | } |
87 | } |
88 | |
89 | /// Do we have any message data, partial or otherwise? |
90 | pub(crate) fn is_active(&self) -> bool { |
91 | !self.spans.is_empty() |
92 | } |
93 | |
94 | /// We are "aligned" if there is no partial fragment of a handshake |
95 | /// message. |
96 | pub(crate) fn is_aligned(&self) -> bool { |
97 | self.spans |
98 | .iter() |
99 | .all(|span| span.is_complete()) |
100 | } |
101 | |
102 | /// Iterate over the complete messages. |
103 | pub(crate) fn iter<'a, 'b>(&'a mut self, containing_buffer: &'b [u8]) -> HandshakeIter<'a, 'b> { |
104 | HandshakeIter { |
105 | deframer: self, |
106 | containing_buffer: Delocator::new(containing_buffer), |
107 | index: 0, |
108 | } |
109 | } |
110 | |
111 | /// Coalesce the handshake portions of the given buffer, |
112 | /// if needed. |
113 | /// |
114 | /// This does nothing if there is nothing to do. |
115 | /// |
116 | /// In a normal TLS stream, handshake messages need not be contiguous. |
117 | /// For example, each handshake message could be delivered in its own |
118 | /// outer TLS message. This would mean the handshake messages are |
119 | /// separated by the outer TLS message headers, and likely also |
120 | /// separated by encryption overhead (any explicit nonce in front, |
121 | /// any padding and authentication tag afterwards). |
122 | /// |
123 | /// For a toy example of one handshake message in two fragments, and: |
124 | /// |
125 | /// - the letter `h` for handshake header octets |
126 | /// - the letter `H` for handshake payload octets |
127 | /// - the letter `x` for octets in the buffer ignored by this code, |
128 | /// |
129 | /// the buffer and `spans` data structure could look like: |
130 | /// |
131 | /// ```text |
132 | /// 0 1 2 3 4 5 6 7 8 9 a b c d e f 0 1 2 3 4 5 6 7 8 9 |
133 | /// x x x x x h h h h H H H x x x x x H H H H H H x x x |
134 | /// '------------' '----------' |
135 | /// | | |
136 | /// spans = [ { bounds = (5, 12), | |
137 | /// size = Some(9), .. }, | |
138 | /// { bounds = (17, 23), .. } ] |
139 | /// ``` |
140 | /// |
141 | /// In this case, `requires_coalesce` returns `Some(0)`. Then |
142 | /// `coalesce_one` moves the second range leftwards: |
143 | /// |
144 | /// ```text |
145 | /// 0 1 2 3 4 5 6 7 8 9 a b c d e f 0 1 2 3 4 5 6 7 8 9 |
146 | /// x x x x x h h h h H H H x x x x x H H H H H H x x x |
147 | /// '----------' |
148 | /// ^ '----------' |
149 | /// | v |
150 | /// '--<---<--' |
151 | /// copy_within(from = (17, 23), |
152 | /// to = (12, 18)) |
153 | /// ``` |
154 | /// |
155 | /// Leaving the buffer and spans: |
156 | /// |
157 | /// ```text |
158 | /// 0 1 2 3 4 5 6 7 8 9 a b c d e f 0 1 2 3 4 5 6 7 8 9 |
159 | /// x x x x x h h h h H H H H H H H H H x x x x x x x x |
160 | /// '------------------------' |
161 | /// | |
162 | /// spans = [ { bounds = (5, 18), size = Some(9), .. } ] |
163 | /// ``` |
164 | pub(crate) fn coalesce(&mut self, containing_buffer: &mut [u8]) -> Result<(), InvalidMessage> { |
165 | // Strategy: while there is work to do, scan `spans` |
166 | // for a pair where the first is not complete. move |
167 | // the second down towards the first, then reparse the contents. |
168 | while let Some(i) = self.requires_coalesce() { |
169 | self.coalesce_one(i, Coalescer::new(containing_buffer)); |
170 | } |
171 | |
172 | // check resulting spans pass our imposed length limit |
173 | match self |
174 | .spans |
175 | .iter() |
176 | .any(|span| span.size.unwrap_or_default() > MAX_HANDSHAKE_SIZE) |
177 | { |
178 | true => Err(InvalidMessage::HandshakePayloadTooLarge), |
179 | false => Ok(()), |
180 | } |
181 | } |
182 | |
183 | /// Within `containing_buffer`, move `span[index+1]` to be contiguous |
184 | /// with `span[index]`. |
185 | fn coalesce_one(&mut self, index: usize, mut containing_buffer: Coalescer<'_>) { |
186 | let second = self.spans.remove(index + 1); |
187 | let mut first = self.spans.remove(index); |
188 | |
189 | // move the entirety of `second` to be contiguous with `first` |
190 | let len = second.bounds.len(); |
191 | let target = Range { |
192 | start: first.bounds.end, |
193 | end: first.bounds.end + len, |
194 | }; |
195 | |
196 | containing_buffer.copy_within(second.bounds, target); |
197 | let delocator = containing_buffer.delocator(); |
198 | |
199 | // now adjust `first` to cover both |
200 | first.bounds.end += len; |
201 | |
202 | // finally, attempt to re-dissect `first` |
203 | let msg = InboundPlainMessage { |
204 | typ: ContentType::Handshake, |
205 | version: first.version, |
206 | payload: delocator.slice_from_range(&first.bounds), |
207 | }; |
208 | |
209 | for (i, span) in DissectHandshakeIter::new(msg, &delocator.locator()).enumerate() { |
210 | self.spans.insert(index + i, span); |
211 | } |
212 | } |
213 | |
214 | /// We require coalescing if any span except the last is not complete. |
215 | /// |
216 | /// Returns an index into `spans` for the first non-complete span: |
217 | /// this will never be the last item. |
218 | fn requires_coalesce(&self) -> Option<usize> { |
219 | self.spans |
220 | .split_last() |
221 | .and_then(|(_last, elements)| { |
222 | elements |
223 | .iter() |
224 | .enumerate() |
225 | .find_map(|(i, span)| (!span.is_complete()).then_some(i)) |
226 | }) |
227 | } |
228 | } |
229 | |
230 | impl Default for HandshakeDeframer { |
231 | fn default() -> Self { |
232 | Self { |
233 | // capacity: a typical upper limit on handshake messages in |
234 | // a single flight |
235 | spans: Vec::with_capacity(16), |
236 | outer_discard: 0, |
237 | } |
238 | } |
239 | } |
240 | |
241 | struct DissectHandshakeIter<'a, 'b> { |
242 | version: ProtocolVersion, |
243 | payload: &'b [u8], |
244 | containing_buffer: &'a Locator, |
245 | } |
246 | |
247 | impl<'a, 'b> DissectHandshakeIter<'a, 'b> { |
248 | fn new(msg: InboundPlainMessage<'b>, containing_buffer: &'a Locator) -> Self { |
249 | Self { |
250 | version: msg.version, |
251 | payload: msg.payload, |
252 | containing_buffer, |
253 | } |
254 | } |
255 | } |
256 | |
257 | impl Iterator for DissectHandshakeIter<'_, '_> { |
258 | type Item = FragmentSpan; |
259 | |
260 | fn next(&mut self) -> Option<Self::Item> { |
261 | if self.payload.is_empty() { |
262 | return None; |
263 | } |
264 | |
265 | // If there is not enough data to have a header the length is unknown |
266 | if self.payload.len() < HANDSHAKE_HEADER_LEN { |
267 | let buf = mem::take(&mut self.payload); |
268 | let bounds = self.containing_buffer.locate(buf); |
269 | return Some(FragmentSpan { |
270 | version: self.version, |
271 | size: None, |
272 | bounds: bounds.clone(), |
273 | }); |
274 | } |
275 | |
276 | let (header, rest) = mem::take(&mut self.payload).split_at(HANDSHAKE_HEADER_LEN); |
277 | |
278 | // safety: header[1..] is exactly 3 bytes, so `u24::read_bytes` cannot fail |
279 | let size = u24::read_bytes(&header[1..]) |
280 | .unwrap() |
281 | .into(); |
282 | |
283 | let available = if size < rest.len() { |
284 | self.payload = &rest[size..]; |
285 | size |
286 | } else { |
287 | rest.len() |
288 | }; |
289 | |
290 | let mut bounds = self.containing_buffer.locate(header); |
291 | bounds.end += available; |
292 | Some(FragmentSpan { |
293 | version: self.version, |
294 | size: Some(size), |
295 | bounds: bounds.clone(), |
296 | }) |
297 | } |
298 | } |
299 | |
300 | pub(crate) struct HandshakeIter<'a, 'b> { |
301 | deframer: &'a mut HandshakeDeframer, |
302 | containing_buffer: Delocator<'b>, |
303 | index: usize, |
304 | } |
305 | |
306 | impl<'b> Iterator for HandshakeIter<'_, 'b> { |
307 | type Item = (InboundPlainMessage<'b>, usize); |
308 | |
309 | fn next(&mut self) -> Option<Self::Item> { |
310 | let next_span = self.deframer.spans.get(self.index)?; |
311 | |
312 | if !next_span.is_complete() { |
313 | return None; |
314 | } |
315 | |
316 | // if this is the last handshake message, then we'll end |
317 | // up with an empty `spans` and can discard the remainder |
318 | // of the input buffer. |
319 | let discard = if self.deframer.spans.len() - 1 == self.index { |
320 | mem::take(&mut self.deframer.outer_discard) |
321 | } else { |
322 | 0 |
323 | }; |
324 | |
325 | self.index += 1; |
326 | Some(( |
327 | InboundPlainMessage { |
328 | typ: ContentType::Handshake, |
329 | version: next_span.version, |
330 | payload: self |
331 | .containing_buffer |
332 | .slice_from_range(&next_span.bounds), |
333 | }, |
334 | discard, |
335 | )) |
336 | } |
337 | } |
338 | |
339 | impl Drop for HandshakeIter<'_, '_> { |
340 | fn drop(&mut self) { |
341 | self.deframer.spans.drain(..self.index); |
342 | } |
343 | } |
344 | |
345 | #[derive (Debug)] |
346 | struct FragmentSpan { |
347 | /// version taken from containing message. |
348 | version: ProtocolVersion, |
349 | |
350 | /// size of the handshake message body (excluding header) |
351 | /// |
352 | /// `None` means the size is unknown, because `bounds` is not |
353 | /// large enough to encompass a whole header. |
354 | size: Option<usize>, |
355 | |
356 | /// bounds of the handshake message, including header |
357 | bounds: Range<usize>, |
358 | } |
359 | |
360 | impl FragmentSpan { |
361 | /// A `FragmentSpan` is "complete" if its size is known, and its |
362 | /// bounds exactly encompasses one handshake message. |
363 | fn is_complete(&self) -> bool { |
364 | match self.size { |
365 | Some(sz: usize) => sz + HANDSHAKE_HEADER_LEN == self.bounds.len(), |
366 | None => false, |
367 | } |
368 | } |
369 | } |
370 | |
371 | const HANDSHAKE_HEADER_LEN: usize = 1 + 3; |
372 | |
373 | /// TLS allows for handshake messages of up to 16MB. We |
374 | /// restrict that to 64KB to limit potential for denial-of- |
375 | /// service. |
376 | const MAX_HANDSHAKE_SIZE: usize = 0xffff; |
377 | |
378 | #[cfg (test)] |
379 | mod tests { |
380 | use std::vec; |
381 | |
382 | use super::*; |
383 | use crate::msgs::deframer::DeframerIter; |
384 | |
385 | fn add_bytes(hs: &mut HandshakeDeframer, slice: &[u8], within: &[u8]) { |
386 | let msg = InboundPlainMessage { |
387 | typ: ContentType::Handshake, |
388 | version: ProtocolVersion::TLSv1_3, |
389 | payload: slice, |
390 | }; |
391 | let locator = Locator::new(within); |
392 | let discard = locator.locate(slice).end; |
393 | hs.input_message(msg, &locator, discard); |
394 | } |
395 | |
396 | #[test ] |
397 | fn coalesce() { |
398 | let mut input = vec![0, 0, 0, 0x21, 0, 0, 0, 0, 0x01, 0xff, 0x00, 0x01]; |
399 | let mut hs = HandshakeDeframer::default(); |
400 | |
401 | add_bytes(&mut hs, &input[3..4], &input); |
402 | assert_eq!(hs.requires_coalesce(), None); |
403 | add_bytes(&mut hs, &input[4..6], &input); |
404 | assert_eq!(hs.requires_coalesce(), Some(0)); |
405 | add_bytes(&mut hs, &input[8..10], &input); |
406 | assert_eq!(hs.requires_coalesce(), Some(0)); |
407 | |
408 | std::println!("before: {hs:?}" ); |
409 | hs.coalesce(&mut input).unwrap(); |
410 | std::println!("after: {hs:?}" ); |
411 | |
412 | let (msg, discard) = hs.iter(&input).next().unwrap(); |
413 | std::println!("msg {msg:?} discard {discard:?}" ); |
414 | assert_eq!(msg.typ, ContentType::Handshake); |
415 | assert_eq!(msg.version, ProtocolVersion::TLSv1_3); |
416 | assert_eq!(msg.payload, &[0x21, 0x00, 0x00, 0x01, 0xff]); |
417 | |
418 | input.drain(..discard); |
419 | assert_eq!(input, &[0, 1]); |
420 | } |
421 | |
422 | #[test ] |
423 | fn append() { |
424 | let mut input = vec![0, 0, 0, 0x21, 0, 0, 5, 0, 0, 1, 2, 3, 4, 5, 0]; |
425 | let mut hs = HandshakeDeframer::default(); |
426 | |
427 | add_bytes(&mut hs, &input[3..7], &input); |
428 | add_bytes(&mut hs, &input[9..14], &input); |
429 | assert_eq!(hs.spans.len(), 2); |
430 | |
431 | hs.coalesce(&mut input).unwrap(); |
432 | assert_eq!(hs.spans.len(), 1); |
433 | |
434 | let (msg, discard) = std::dbg!(hs.iter(&input).next().unwrap()); |
435 | assert_eq!(msg.typ, ContentType::Handshake); |
436 | assert_eq!(msg.version, ProtocolVersion::TLSv1_3); |
437 | assert_eq!(msg.payload, &[0x21, 0x00, 0x00, 0x05, 1, 2, 3, 4, 5]); |
438 | |
439 | input.drain(..discard); |
440 | assert_eq!(input, &[0]); |
441 | } |
442 | |
443 | #[test ] |
444 | fn coalesce_rejects_excess_size_message() { |
445 | const X: u8 = 0xff; |
446 | let mut input = vec![0x21, 0x01, 0x00, X, 0x00, 0xab, X]; |
447 | let mut hs = HandshakeDeframer::default(); |
448 | |
449 | // split header over multiple messages, which motivates doing |
450 | // this check in `coalesce()` |
451 | add_bytes(&mut hs, &input[0..3], &input); |
452 | add_bytes(&mut hs, &input[4..6], &input); |
453 | |
454 | assert_eq!( |
455 | hs.coalesce(&mut input), |
456 | Err(InvalidMessage::HandshakePayloadTooLarge) |
457 | ); |
458 | } |
459 | |
460 | #[test ] |
461 | fn iter_only_returns_full_messages() { |
462 | let input = [0, 0, 0, 0x21, 0, 0, 1, 0xab, 0x21, 0, 0, 1]; |
463 | |
464 | let mut hs = HandshakeDeframer::default(); |
465 | |
466 | add_bytes(&mut hs, &input[3..8], &input); |
467 | add_bytes(&mut hs, &input[8..12], &input); |
468 | |
469 | let mut iter = hs.iter(&input); |
470 | let (msg, discard) = iter.next().unwrap(); |
471 | assert!(iter.next().is_none()); |
472 | |
473 | assert_eq!(msg.typ, ContentType::Handshake); |
474 | assert_eq!(msg.version, ProtocolVersion::TLSv1_3); |
475 | assert_eq!(msg.payload, &[0x21, 0x00, 0x00, 0x01, 0xab]); |
476 | assert_eq!(discard, 0); |
477 | } |
478 | |
479 | #[test ] |
480 | fn handshake_flight() { |
481 | // intended to be a realistic example |
482 | let mut input = include_bytes!("../../testdata/handshake-test.1.bin" ).to_vec(); |
483 | let locator = Locator::new(&input); |
484 | |
485 | let mut hs = HandshakeDeframer::default(); |
486 | |
487 | let mut iter = DeframerIter::new(&mut input[..]); |
488 | |
489 | while let Some(message) = iter.next() { |
490 | let plain = message.unwrap().into_plain_message(); |
491 | std::println!("message {plain:?}" ); |
492 | |
493 | hs.input_message(plain, &locator, iter.bytes_consumed()); |
494 | } |
495 | |
496 | hs.coalesce(&mut input[..]).unwrap(); |
497 | |
498 | let mut iter = hs.iter(&input[..]); |
499 | for _ in 0..4 { |
500 | let (msg, discard) = iter.next().unwrap(); |
501 | assert!(matches!( |
502 | msg, |
503 | InboundPlainMessage { |
504 | typ: ContentType::Handshake, |
505 | .. |
506 | } |
507 | )); |
508 | assert_eq!(discard, 0); |
509 | } |
510 | |
511 | let (msg, discard) = iter.next().unwrap(); |
512 | assert!(matches!( |
513 | msg, |
514 | InboundPlainMessage { |
515 | typ: ContentType::Handshake, |
516 | .. |
517 | } |
518 | )); |
519 | assert_eq!(discard, 4280); |
520 | drop(iter); |
521 | |
522 | input.drain(0..discard); |
523 | assert!(input.is_empty()); |
524 | } |
525 | } |
526 | |