| 1 | //! Support for "weak linkage" to symbols on Unix |
| 2 | //! |
| 3 | //! Some I/O operations we do in std require newer versions of OSes but we need |
| 4 | //! to maintain binary compatibility with older releases for now. In order to |
| 5 | //! use the new functionality when available we use this module for detection. |
| 6 | //! |
| 7 | //! One option to use here is weak linkage, but that is unfortunately only |
| 8 | //! really workable with ELF. Otherwise, use dlsym to get the symbol value at |
| 9 | //! runtime. This is also done for compatibility with older versions of glibc, |
| 10 | //! and to avoid creating dependencies on GLIBC_PRIVATE symbols. It assumes that |
| 11 | //! we've been dynamically linked to the library the symbol comes from, but that |
| 12 | //! is currently always the case for things like libpthread/libc. |
| 13 | //! |
| 14 | //! A long time ago this used weak linkage for the __pthread_get_minstack |
| 15 | //! symbol, but that caused Debian to detect an unnecessarily strict versioned |
| 16 | //! dependency on libc6 (#23628) because it is GLIBC_PRIVATE. We now use `dlsym` |
| 17 | //! for a runtime lookup of that symbol to avoid the ELF versioned dependency. |
| 18 | |
| 19 | // There are a variety of `#[cfg]`s controlling which targets are involved in |
| 20 | // each instance of `weak!` and `syscall!`. Rather than trying to unify all of |
| 21 | // that, we'll just allow that some unix targets don't use this module at all. |
| 22 | #![allow (dead_code, unused_macros)] |
| 23 | |
| 24 | use crate::ffi::CStr; |
| 25 | use crate::marker::PhantomData; |
| 26 | use crate::sync::atomic::{self, AtomicPtr, Ordering}; |
| 27 | use crate::{mem, ptr}; |
| 28 | |
| 29 | // We can use true weak linkage on ELF targets. |
| 30 | #[cfg (all(unix, not(target_vendor = "apple" )))] |
| 31 | pub(crate) macro weak { |
| 32 | (fn $name:ident($($t:ty),*) -> $ret:ty) => ( |
| 33 | let ref $name: ExternWeak<unsafe extern "C" fn($($t),*) -> $ret> = { |
| 34 | unsafe extern "C" { |
| 35 | #[linkage = "extern_weak" ] |
| 36 | static $name: Option<unsafe extern "C" fn($($t),*) -> $ret>; |
| 37 | } |
| 38 | #[allow(unused_unsafe)] |
| 39 | ExternWeak::new(unsafe { $name }) |
| 40 | }; |
| 41 | ) |
| 42 | } |
| 43 | |
| 44 | // On non-ELF targets, use the dlsym approximation of weak linkage. |
| 45 | #[cfg (target_vendor = "apple" )] |
| 46 | pub(crate) use self::dlsym as weak; |
| 47 | |
| 48 | pub(crate) struct ExternWeak<F: Copy> { |
| 49 | weak_ptr: Option<F>, |
| 50 | } |
| 51 | |
| 52 | impl<F: Copy> ExternWeak<F> { |
| 53 | #[inline ] |
| 54 | pub(crate) fn new(weak_ptr: Option<F>) -> Self { |
| 55 | ExternWeak { weak_ptr } |
| 56 | } |
| 57 | |
| 58 | #[inline ] |
| 59 | pub(crate) fn get(&self) -> Option<F> { |
| 60 | self.weak_ptr |
| 61 | } |
| 62 | } |
| 63 | |
| 64 | pub(crate) macro dlsym { |
| 65 | (fn $name:ident($($t:ty),*) -> $ret:ty) => ( |
| 66 | dlsym!(fn $name($($t),*) -> $ret, stringify!($name)); |
| 67 | ), |
| 68 | (fn $name:ident($($t:ty),*) -> $ret:ty, $sym:expr) => ( |
| 69 | static DLSYM: DlsymWeak<unsafe extern "C" fn($($t),*) -> $ret> = |
| 70 | DlsymWeak::new(concat!($sym, ' \0' )); |
| 71 | let $name = &DLSYM; |
| 72 | ) |
| 73 | } |
| 74 | pub(crate) struct DlsymWeak<F> { |
| 75 | name: &'static str, |
| 76 | func: AtomicPtr<libc::c_void>, |
| 77 | _marker: PhantomData<F>, |
| 78 | } |
| 79 | |
| 80 | impl<F> DlsymWeak<F> { |
| 81 | pub(crate) const fn new(name: &'static str) -> Self { |
| 82 | DlsymWeak { |
| 83 | name, |
| 84 | func: AtomicPtr::new(ptr::without_provenance_mut(1)), |
| 85 | _marker: PhantomData, |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | #[inline ] |
| 90 | pub(crate) fn get(&self) -> Option<F> { |
| 91 | unsafe { |
| 92 | // Relaxed is fine here because we fence before reading through the |
| 93 | // pointer (see the comment below). |
| 94 | match self.func.load(Ordering::Relaxed) { |
| 95 | func if func.addr() == 1 => self.initialize(), |
| 96 | func if func.is_null() => None, |
| 97 | func => { |
| 98 | let func = mem::transmute_copy::<*mut libc::c_void, F>(&func); |
| 99 | // The caller is presumably going to read through this value |
| 100 | // (by calling the function we've dlsymed). This means we'd |
| 101 | // need to have loaded it with at least C11's consume |
| 102 | // ordering in order to be guaranteed that the data we read |
| 103 | // from the pointer isn't from before the pointer was |
| 104 | // stored. Rust has no equivalent to memory_order_consume, |
| 105 | // so we use an acquire fence (sorry, ARM). |
| 106 | // |
| 107 | // Now, in practice this likely isn't needed even on CPUs |
| 108 | // where relaxed and consume mean different things. The |
| 109 | // symbols we're loading are probably present (or not) at |
| 110 | // init, and even if they aren't the runtime dynamic loader |
| 111 | // is extremely likely have sufficient barriers internally |
| 112 | // (possibly implicitly, for example the ones provided by |
| 113 | // invoking `mprotect`). |
| 114 | // |
| 115 | // That said, none of that's *guaranteed*, and so we fence. |
| 116 | atomic::fence(Ordering::Acquire); |
| 117 | Some(func) |
| 118 | } |
| 119 | } |
| 120 | } |
| 121 | } |
| 122 | |
| 123 | // Cold because it should only happen during first-time initialization. |
| 124 | #[cold ] |
| 125 | unsafe fn initialize(&self) -> Option<F> { |
| 126 | assert_eq!(size_of::<F>(), size_of::<*mut libc::c_void>()); |
| 127 | |
| 128 | let val = fetch(self.name); |
| 129 | // This synchronizes with the acquire fence in `get`. |
| 130 | self.func.store(val, Ordering::Release); |
| 131 | |
| 132 | if val.is_null() { None } else { Some(mem::transmute_copy::<*mut libc::c_void, F>(&val)) } |
| 133 | } |
| 134 | } |
| 135 | |
| 136 | unsafe fn fetch(name: &str) -> *mut libc::c_void { |
| 137 | let name: &CStr = match CStr::from_bytes_with_nul(name.as_bytes()) { |
| 138 | Ok(cstr: &CStr) => cstr, |
| 139 | Err(..) => return ptr::null_mut(), |
| 140 | }; |
| 141 | libc::dlsym(handle:libc::RTLD_DEFAULT, symbol:name.as_ptr()) |
| 142 | } |
| 143 | |
| 144 | #[cfg (not(any(target_os = "linux" , target_os = "android" )))] |
| 145 | pub(crate) macro syscall { |
| 146 | (fn $name:ident($($arg_name:ident: $t:ty),*) -> $ret:ty) => ( |
| 147 | // FIXME(#115199): Rust currently omits weak function definitions |
| 148 | // and its metadata from LLVM IR. |
| 149 | #[no_sanitize(cfi)] |
| 150 | unsafe fn $name($($arg_name: $t),*) -> $ret { |
| 151 | weak! { fn $name($($t),*) -> $ret } |
| 152 | |
| 153 | if let Some(fun) = $name.get() { |
| 154 | fun($($arg_name),*) |
| 155 | } else { |
| 156 | super::os::set_errno(libc::ENOSYS); |
| 157 | -1 |
| 158 | } |
| 159 | } |
| 160 | ) |
| 161 | } |
| 162 | |
| 163 | #[cfg (any(target_os = "linux" , target_os = "android" ))] |
| 164 | pub(crate) macro syscall { |
| 165 | (fn $name:ident($($arg_name:ident: $t:ty),*) -> $ret:ty) => ( |
| 166 | unsafe fn $name($($arg_name:$t),*) -> $ret { |
| 167 | weak! { fn $name($($t),*) -> $ret } |
| 168 | |
| 169 | // Use a weak symbol from libc when possible, allowing `LD_PRELOAD` |
| 170 | // interposition, but if it's not found just use a raw syscall. |
| 171 | if let Some(fun) = $name.get() { |
| 172 | fun($($arg_name),*) |
| 173 | } else { |
| 174 | libc::syscall(libc::${concat(SYS_, $name)}, $($arg_name),*) as $ret |
| 175 | } |
| 176 | } |
| 177 | ) |
| 178 | } |
| 179 | |
| 180 | #[cfg (any(target_os = "linux" , target_os = "android" ))] |
| 181 | pub(crate) macro raw_syscall { |
| 182 | (fn $name:ident($($arg_name:ident: $t:ty),*) -> $ret:ty) => ( |
| 183 | unsafe fn $name($($arg_name:$t),*) -> $ret { |
| 184 | libc::syscall(libc::${concat(SYS_, $name)}, $($arg_name),*) as $ret |
| 185 | } |
| 186 | ) |
| 187 | } |
| 188 | |