| 1 | //! HAL for FMC peripheral used to access NAND Flash |
| 2 | //! |
| 3 | |
| 4 | use core::cmp; |
| 5 | use core::marker::PhantomData; |
| 6 | |
| 7 | use embedded_hal::blocking::delay::DelayUs; |
| 8 | |
| 9 | use crate::fmc::{FmcBank, FmcRegisters}; |
| 10 | use crate::FmcPeripheral; |
| 11 | |
| 12 | use crate::ral::{fmc, modify_reg}; |
| 13 | |
| 14 | pub mod device; |
| 15 | |
| 16 | /// FMC NAND Physical Interface Configuration |
| 17 | /// |
| 18 | #[cfg_attr (feature = "defmt" , derive(defmt::Format))] |
| 19 | #[derive (Clone, Copy, Debug, PartialEq)] |
| 20 | pub struct NandConfiguration { |
| 21 | /// Data path width in bits |
| 22 | pub data_width: u8, |
| 23 | /// Number of address bits used for the column address |
| 24 | pub column_bits: u8, |
| 25 | } |
| 26 | |
| 27 | /// FMC NAND Timing parameters |
| 28 | /// |
| 29 | #[cfg_attr (feature = "defmt" , derive(defmt::Format))] |
| 30 | #[derive (Clone, Copy, Debug, PartialEq)] |
| 31 | pub struct NandTiming { |
| 32 | /// nCE setup time tCS |
| 33 | pub nce_setup_time: i32, |
| 34 | /// Data setup time tDS |
| 35 | pub data_setup_time: i32, |
| 36 | /// ALE hold time |
| 37 | pub ale_hold_time: i32, |
| 38 | /// CLE hold time |
| 39 | pub cle_hold_time: i32, |
| 40 | /// ALE to nRE delay |
| 41 | pub ale_to_nre_delay: i32, |
| 42 | /// CLE to nRE delay |
| 43 | pub cle_to_nre_delay: i32, |
| 44 | /// nRE pulse width tRP |
| 45 | pub nre_pulse_width_ns: i32, |
| 46 | /// nWE pulse width tWP |
| 47 | pub nwe_pulse_width_ns: i32, |
| 48 | /// Read cycle time tRC |
| 49 | pub read_cycle_time_ns: i32, |
| 50 | /// Write cycle time tWC |
| 51 | pub write_cycle_time_ns: i32, |
| 52 | /// nWE high to busy tWB |
| 53 | pub nwe_high_to_busy_ns: i32, |
| 54 | } |
| 55 | |
| 56 | /// Respresents a model of NAND chip |
| 57 | pub trait NandChip { |
| 58 | /// NAND controller configuration |
| 59 | const CONFIG: NandConfiguration; |
| 60 | /// Timing parameters |
| 61 | const TIMING: NandTiming; |
| 62 | } |
| 63 | |
| 64 | /// FMC Peripheral specialized as a NAND Controller. Not yet initialized. |
| 65 | #[allow (missing_debug_implementations)] |
| 66 | pub struct Nand<FMC, IC> { |
| 67 | /// Parameters for the NAND IC |
| 68 | _chip: PhantomData<IC>, |
| 69 | /// FMC peripheral |
| 70 | fmc: FMC, |
| 71 | /// Register access |
| 72 | regs: FmcRegisters, |
| 73 | } |
| 74 | |
| 75 | /// Set of pins for a NAND |
| 76 | pub trait PinsNand { |
| 77 | /// Number of data bus pins |
| 78 | const N_DATA: usize; |
| 79 | } |
| 80 | |
| 81 | impl<IC: NandChip, FMC: FmcPeripheral> Nand<FMC, IC> { |
| 82 | /// New NAND instance |
| 83 | /// |
| 84 | /// `_pins` must be a set of pins connecting to an NAND on the FMC |
| 85 | /// controller |
| 86 | /// |
| 87 | /// # Panics |
| 88 | /// |
| 89 | /// * Panics if there is a mismatch between the data lines in `PINS` and the |
| 90 | /// NAND device |
| 91 | pub fn new<PINS>(fmc: FMC, _pins: PINS, _chip: IC) -> Self |
| 92 | where |
| 93 | PINS: PinsNand, |
| 94 | { |
| 95 | assert!( |
| 96 | PINS::N_DATA == IC::CONFIG.data_width as usize, |
| 97 | "NAND Data Bus Width mismatch between IC and controller" |
| 98 | ); |
| 99 | |
| 100 | Nand { |
| 101 | _chip: PhantomData, |
| 102 | fmc, |
| 103 | regs: FmcRegisters::new::<FMC>(), |
| 104 | } |
| 105 | } |
| 106 | |
| 107 | /// New NAND instance |
| 108 | /// |
| 109 | /// # Safety |
| 110 | /// |
| 111 | /// This method does not ensure that IO pins are configured |
| 112 | /// correctly. Misconfiguration may result in a bus lockup or stall when |
| 113 | /// attempting to initialise the NAND device. |
| 114 | /// |
| 115 | /// The pins are not checked against the requirements for the NAND |
| 116 | /// chip. Using this method it is possible to initialise a NAND device |
| 117 | /// without sufficient pins to access the whole memory |
| 118 | /// |
| 119 | pub unsafe fn new_unchecked(fmc: FMC, _chip: IC) -> Self { |
| 120 | Nand { |
| 121 | _chip: PhantomData, |
| 122 | fmc, |
| 123 | regs: FmcRegisters::new::<FMC>(), |
| 124 | } |
| 125 | } |
| 126 | |
| 127 | /// Initialise NAND instance. `delay` is used to wait 1µs after enabling the |
| 128 | /// memory controller. |
| 129 | /// |
| 130 | /// Returns a [`NandDevice`](device::NandDevice) instance. |
| 131 | /// |
| 132 | /// # Panics |
| 133 | /// |
| 134 | /// * Panics if any setting in `IC::CONFIG` cannot be achieved |
| 135 | /// * Panics if the FMC Kernel Clock is too fast to achieve the timing |
| 136 | /// required by the NAND device |
| 137 | pub fn init<D>(&mut self, delay: &mut D) -> device::NandDevice |
| 138 | where |
| 139 | D: DelayUs<u8>, |
| 140 | { |
| 141 | // calculate clock period, round down |
| 142 | let fmc_source_ck_hz = self.fmc.source_clock_hz(); |
| 143 | let ker_clk_period_ns = 1_000_000_000u32 / fmc_source_ck_hz; |
| 144 | |
| 145 | // enable memory controller AHB register access |
| 146 | self.fmc.enable(); |
| 147 | |
| 148 | // device features and timing |
| 149 | self.set_features_timings(IC::CONFIG, IC::TIMING, ker_clk_period_ns); |
| 150 | |
| 151 | // enable memory controller |
| 152 | self.fmc.memory_controller_enable(); |
| 153 | delay.delay_us(1u8); |
| 154 | |
| 155 | // NOTE(unsafe): FMC controller has been initialized and enabled for |
| 156 | // this bank |
| 157 | unsafe { |
| 158 | // Create device. NAND Flash is always on Bank 3 |
| 159 | let ptr = FmcBank::Bank3.ptr() as *mut u8; |
| 160 | device::NandDevice::init(ptr, IC::CONFIG.column_bits as usize) |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | /// Program memory device features and timings |
| 165 | /// |
| 166 | /// Timing calculations from AN4761 Section 4.2 |
| 167 | #[allow (non_snake_case)] |
| 168 | fn set_features_timings( |
| 169 | &mut self, |
| 170 | config: NandConfiguration, |
| 171 | timing: NandTiming, |
| 172 | period_ns: u32, |
| 173 | ) { |
| 174 | let period_ns = period_ns as i32; |
| 175 | let n_clock_periods = |time_ns: i32| { |
| 176 | (time_ns + period_ns - 1) / period_ns // round up |
| 177 | }; |
| 178 | let t_CS = timing.nce_setup_time; |
| 179 | let t_DS = timing.data_setup_time; |
| 180 | let t_ALH = timing.ale_hold_time; |
| 181 | let t_CLH = timing.cle_hold_time; |
| 182 | let t_AR = timing.ale_to_nre_delay; |
| 183 | let t_CLR = timing.cle_to_nre_delay; |
| 184 | let t_RP = timing.nre_pulse_width_ns; |
| 185 | let t_WP = timing.nwe_pulse_width_ns; |
| 186 | let t_RC = timing.read_cycle_time_ns; |
| 187 | let t_WC = timing.write_cycle_time_ns; |
| 188 | let t_WB = timing.nwe_high_to_busy_ns; |
| 189 | |
| 190 | // setup time before RE/WE assertion |
| 191 | let setup_time = cmp::max(t_CS, cmp::max(t_AR, t_CLR)); |
| 192 | let set = cmp::max(n_clock_periods(setup_time - t_WP), 1) - 1; |
| 193 | assert!(set < 255, "FMC ker clock too fast" ); // 255 = reserved |
| 194 | |
| 195 | // RE/WE assertion time (minimum = 1) |
| 196 | let wait = cmp::max(n_clock_periods(cmp::max(t_RP, t_WP)), 2) - 1; |
| 197 | assert!(wait < 255, "FMC ker clock too fast" ); // 255 = reserved |
| 198 | |
| 199 | // hold time after RE/WE deassertion (minimum = 1) |
| 200 | let mut hold = cmp::max(n_clock_periods(cmp::max(t_ALH, t_CLH)), 1); |
| 201 | // satisfy total cycle time |
| 202 | let cycle_time = n_clock_periods(cmp::max(t_RC, t_WC)); |
| 203 | while wait + 1 + hold + set + 1 < cycle_time { |
| 204 | hold += 1; |
| 205 | } |
| 206 | assert!(hold < 255, "FMC ker clock too fast" ); // 255 = reserved |
| 207 | |
| 208 | // hold time to meet t_WB timing |
| 209 | let atthold = cmp::max(n_clock_periods(t_WB), 2) - 1; |
| 210 | let atthold = cmp::max(atthold, hold); |
| 211 | assert!(atthold < 255, "FMC ker clock too fast" ); // 255 = reserved |
| 212 | |
| 213 | // CS assertion to data setup |
| 214 | let hiz = cmp::max(n_clock_periods(t_CS + t_WP - t_DS), 0); |
| 215 | assert!(hiz < 255, "FMC ker clock too fast" ); // 255 = reserved |
| 216 | |
| 217 | // ALE low to RE assert |
| 218 | let ale_to_nre = n_clock_periods(t_AR); |
| 219 | let tar = cmp::max(ale_to_nre - set - 2, 0); |
| 220 | assert!(tar < 16, "FMC ker clock too fast" ); |
| 221 | |
| 222 | // CLE low to RE assert |
| 223 | let clr_to_nre = n_clock_periods(t_CLR); |
| 224 | let tclr = cmp::max(clr_to_nre - set - 2, 0); |
| 225 | assert!(tclr < 16, "FMC ker clock too fast" ); |
| 226 | |
| 227 | let data_width = match config.data_width { |
| 228 | 8 => 0, |
| 229 | 16 => 1, |
| 230 | _ => panic!("not possible" ), |
| 231 | }; |
| 232 | |
| 233 | // PCR |
| 234 | #[rustfmt::skip] |
| 235 | modify_reg!(fmc, self.regs.global(), PCR, |
| 236 | TAR: tar as u32, |
| 237 | TCLR: tclr as u32, |
| 238 | ECCPS: 1, // 0b1: 512 bytes |
| 239 | ECCEN: 0, // 0b0: ECC computation disabled |
| 240 | PWID: data_width, |
| 241 | PTYP: 1, // 0b1: NAND Flash |
| 242 | PWAITEN: 1 // 0b1: Wait feature enabled |
| 243 | ); |
| 244 | |
| 245 | // PMEM: Common memory space timing register |
| 246 | #[rustfmt::skip] |
| 247 | modify_reg!(fmc, self.regs.global(), PMEM, |
| 248 | MEMHIZ: hiz as u32, |
| 249 | MEMHOLD: hold as u32, |
| 250 | MEMWAIT: wait as u32, |
| 251 | MEMSET: set as u32); |
| 252 | |
| 253 | // PATT: Attribute memory space timing register |
| 254 | #[rustfmt::skip] |
| 255 | modify_reg!(fmc, self.regs.global(), PATT, |
| 256 | ATTHIZ: hiz as u32, |
| 257 | ATTHOLD: atthold as u32, |
| 258 | ATTWAIT: wait as u32, |
| 259 | ATTSET: set as u32); |
| 260 | |
| 261 | // Enable |
| 262 | #[rustfmt::skip] |
| 263 | modify_reg!(fmc, self.regs.global(), PCR, |
| 264 | PBKEN: 1); |
| 265 | } |
| 266 | } |
| 267 | |