| 1 | // Copyright 2006 The Android Open Source Project |
| 2 | // Copyright 2020 Yevhenii Reizner |
| 3 | // |
| 4 | // Use of this source code is governed by a BSD-style license that can be |
| 5 | // found in the LICENSE file. |
| 6 | |
| 7 | use crate::Point; |
| 8 | |
| 9 | use crate::fixed_point::{fdot16, fdot6, FDot16, FDot6}; |
| 10 | use crate::math::left_shift; |
| 11 | |
| 12 | /// We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64. |
| 13 | /// |
| 14 | /// Note that this limits the number of lines we use to approximate a curve. |
| 15 | /// If we need to increase this, we need to store curve_count in something |
| 16 | /// larger than i8. |
| 17 | const MAX_COEFF_SHIFT: i32 = 6; |
| 18 | |
| 19 | #[derive (Clone, Debug)] |
| 20 | pub enum Edge { |
| 21 | Line(LineEdge), |
| 22 | Quadratic(QuadraticEdge), |
| 23 | Cubic(CubicEdge), |
| 24 | } |
| 25 | |
| 26 | impl Edge { |
| 27 | pub fn as_line(&self) -> &LineEdge { |
| 28 | match self { |
| 29 | Edge::Line(line: &LineEdge) => line, |
| 30 | Edge::Quadratic(quad: &QuadraticEdge) => &quad.line, |
| 31 | Edge::Cubic(cubic: &CubicEdge) => &cubic.line, |
| 32 | } |
| 33 | } |
| 34 | |
| 35 | pub fn as_line_mut(&mut self) -> &mut LineEdge { |
| 36 | match self { |
| 37 | Edge::Line(line: &mut LineEdge) => line, |
| 38 | Edge::Quadratic(quad: &mut QuadraticEdge) => &mut quad.line, |
| 39 | Edge::Cubic(cubic: &mut CubicEdge) => &mut cubic.line, |
| 40 | } |
| 41 | } |
| 42 | } |
| 43 | |
| 44 | impl core::ops::Deref for Edge { |
| 45 | type Target = LineEdge; |
| 46 | |
| 47 | fn deref(&self) -> &Self::Target { |
| 48 | self.as_line() |
| 49 | } |
| 50 | } |
| 51 | |
| 52 | impl core::ops::DerefMut for Edge { |
| 53 | fn deref_mut(&mut self) -> &mut Self::Target { |
| 54 | self.as_line_mut() |
| 55 | } |
| 56 | } |
| 57 | |
| 58 | #[derive (Clone, Default, Debug)] |
| 59 | pub struct LineEdge { |
| 60 | // Imitate a linked list. |
| 61 | pub prev: Option<u32>, |
| 62 | pub next: Option<u32>, |
| 63 | |
| 64 | pub x: FDot16, |
| 65 | pub dx: FDot16, |
| 66 | pub first_y: i32, |
| 67 | pub last_y: i32, |
| 68 | pub winding: i8, // 1 or -1 |
| 69 | } |
| 70 | |
| 71 | impl LineEdge { |
| 72 | pub fn new(p0: Point, p1: Point, shift: i32) -> Option<Self> { |
| 73 | let scale = (1 << (shift + 6)) as f32; |
| 74 | let mut x0 = (p0.x * scale) as i32; |
| 75 | let mut y0 = (p0.y * scale) as i32; |
| 76 | let mut x1 = (p1.x * scale) as i32; |
| 77 | let mut y1 = (p1.y * scale) as i32; |
| 78 | |
| 79 | let mut winding = 1; |
| 80 | |
| 81 | if y0 > y1 { |
| 82 | core::mem::swap(&mut x0, &mut x1); |
| 83 | core::mem::swap(&mut y0, &mut y1); |
| 84 | winding = -1; |
| 85 | } |
| 86 | |
| 87 | let top = fdot6::round(y0); |
| 88 | let bottom = fdot6::round(y1); |
| 89 | |
| 90 | // are we a zero-height line? |
| 91 | if top == bottom { |
| 92 | return None; |
| 93 | } |
| 94 | |
| 95 | let slope = fdot6::div(x1 - x0, y1 - y0); |
| 96 | let dy = compute_dy(top, y0); |
| 97 | |
| 98 | Some(LineEdge { |
| 99 | next: None, |
| 100 | prev: None, |
| 101 | x: fdot6::to_fdot16(x0 + fdot16::mul(slope, dy)), |
| 102 | dx: slope, |
| 103 | first_y: top, |
| 104 | last_y: bottom - 1, |
| 105 | winding, |
| 106 | }) |
| 107 | } |
| 108 | |
| 109 | pub fn is_vertical(&self) -> bool { |
| 110 | self.dx == 0 |
| 111 | } |
| 112 | |
| 113 | fn update(&mut self, mut x0: FDot16, mut y0: FDot16, mut x1: FDot16, mut y1: FDot16) -> bool { |
| 114 | debug_assert!(self.winding == 1 || self.winding == -1); |
| 115 | |
| 116 | y0 >>= 10; |
| 117 | y1 >>= 10; |
| 118 | |
| 119 | debug_assert!(y0 <= y1); |
| 120 | |
| 121 | let top = fdot6::round(y0); |
| 122 | let bottom = fdot6::round(y1); |
| 123 | |
| 124 | // are we a zero-height line? |
| 125 | if top == bottom { |
| 126 | return false; |
| 127 | } |
| 128 | |
| 129 | x0 >>= 10; |
| 130 | x1 >>= 10; |
| 131 | |
| 132 | let slope = fdot6::div(x1 - x0, y1 - y0); |
| 133 | let dy = compute_dy(top, y0); |
| 134 | |
| 135 | self.x = fdot6::to_fdot16(x0 + fdot16::mul(slope, dy)); |
| 136 | self.dx = slope; |
| 137 | self.first_y = top; |
| 138 | self.last_y = bottom - 1; |
| 139 | |
| 140 | true |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | #[derive (Clone, Debug)] |
| 145 | pub struct QuadraticEdge { |
| 146 | pub line: LineEdge, |
| 147 | pub curve_count: i8, |
| 148 | curve_shift: u8, // applied to all dx/ddx/dddx |
| 149 | qx: FDot16, |
| 150 | qy: FDot16, |
| 151 | qdx: FDot16, |
| 152 | qdy: FDot16, |
| 153 | qddx: FDot16, |
| 154 | qddy: FDot16, |
| 155 | q_last_x: FDot16, |
| 156 | q_last_y: FDot16, |
| 157 | } |
| 158 | |
| 159 | impl QuadraticEdge { |
| 160 | pub fn new(points: &[Point], shift: i32) -> Option<Self> { |
| 161 | let mut quad = Self::new2(points, shift)?; |
| 162 | if quad.update() { |
| 163 | Some(quad) |
| 164 | } else { |
| 165 | None |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | fn new2(points: &[Point], mut shift: i32) -> Option<Self> { |
| 170 | let scale = (1 << (shift + 6)) as f32; |
| 171 | let mut x0 = (points[0].x * scale) as i32; |
| 172 | let mut y0 = (points[0].y * scale) as i32; |
| 173 | let x1 = (points[1].x * scale) as i32; |
| 174 | let y1 = (points[1].y * scale) as i32; |
| 175 | let mut x2 = (points[2].x * scale) as i32; |
| 176 | let mut y2 = (points[2].y * scale) as i32; |
| 177 | |
| 178 | let mut winding = 1; |
| 179 | if y0 > y2 { |
| 180 | core::mem::swap(&mut x0, &mut x2); |
| 181 | core::mem::swap(&mut y0, &mut y2); |
| 182 | winding = -1; |
| 183 | } |
| 184 | debug_assert!(y0 <= y1 && y1 <= y2); |
| 185 | |
| 186 | let top = fdot6::round(y0); |
| 187 | let bottom = fdot6::round(y2); |
| 188 | |
| 189 | // are we a zero-height quad (line)? |
| 190 | if top == bottom { |
| 191 | return None; |
| 192 | } |
| 193 | |
| 194 | // compute number of steps needed (1 << shift) |
| 195 | { |
| 196 | let dx = (left_shift(x1, 1) - x0 - x2) >> 2; |
| 197 | let dy = (left_shift(y1, 1) - y0 - y2) >> 2; |
| 198 | // This is a little confusing: |
| 199 | // before this line, shift is the scale up factor for AA; |
| 200 | // after this line, shift is the fCurveShift. |
| 201 | shift = diff_to_shift(dx, dy, shift); |
| 202 | debug_assert!(shift >= 0); |
| 203 | } |
| 204 | |
| 205 | // need at least 1 subdivision for our bias trick |
| 206 | if shift == 0 { |
| 207 | shift = 1; |
| 208 | } else if shift > MAX_COEFF_SHIFT { |
| 209 | shift = MAX_COEFF_SHIFT; |
| 210 | } |
| 211 | |
| 212 | let curve_count = (1 << shift) as i8; |
| 213 | |
| 214 | // We want to reformulate into polynomial form, to make it clear how we |
| 215 | // should forward-difference. |
| 216 | // |
| 217 | // p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C |
| 218 | // |
| 219 | // A = p0 - 2p1 + p2 |
| 220 | // B = 2(p1 - p0) |
| 221 | // C = p0 |
| 222 | // |
| 223 | // Our caller must have constrained our inputs (p0..p2) to all fit into |
| 224 | // 16.16. However, as seen above, we sometimes compute values that can be |
| 225 | // larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store |
| 226 | // A and B at 1/2 of their actual value, and just apply a 2x scale during |
| 227 | // application in updateQuadratic(). Hence we store (shift - 1) in |
| 228 | // curve_shift. |
| 229 | |
| 230 | let curve_shift = (shift - 1) as u8; |
| 231 | |
| 232 | let mut a = fdot6_to_fixed_div2(x0 - x1 - x1 + x2); // 1/2 the real value |
| 233 | let mut b = fdot6::to_fdot16(x1 - x0); // 1/2 the real value |
| 234 | |
| 235 | let qx = fdot6::to_fdot16(x0); |
| 236 | let qdx = b + (a >> shift); // biased by shift |
| 237 | let qddx = a >> (shift - 1); // biased by shift |
| 238 | |
| 239 | a = fdot6_to_fixed_div2(y0 - y1 - y1 + y2); // 1/2 the real value |
| 240 | b = fdot6::to_fdot16(y1 - y0); // 1/2 the real value |
| 241 | |
| 242 | let qy = fdot6::to_fdot16(y0); |
| 243 | let qdy = b + (a >> shift); // biased by shift |
| 244 | let qddy = a >> (shift - 1); // biased by shift |
| 245 | |
| 246 | let q_last_x = fdot6::to_fdot16(x2); |
| 247 | let q_last_y = fdot6::to_fdot16(y2); |
| 248 | |
| 249 | Some(QuadraticEdge { |
| 250 | line: LineEdge { |
| 251 | next: None, |
| 252 | prev: None, |
| 253 | x: 0, |
| 254 | dx: 0, |
| 255 | first_y: 0, |
| 256 | last_y: 0, |
| 257 | winding, |
| 258 | }, |
| 259 | curve_count, |
| 260 | curve_shift, |
| 261 | qx, |
| 262 | qy, |
| 263 | qdx, |
| 264 | qdy, |
| 265 | qddx, |
| 266 | qddy, |
| 267 | q_last_x, |
| 268 | q_last_y, |
| 269 | }) |
| 270 | } |
| 271 | |
| 272 | pub fn update(&mut self) -> bool { |
| 273 | let mut success; |
| 274 | let mut count = self.curve_count; |
| 275 | let mut oldx = self.qx; |
| 276 | let mut oldy = self.qy; |
| 277 | let mut dx = self.qdx; |
| 278 | let mut dy = self.qdy; |
| 279 | let mut newx; |
| 280 | let mut newy; |
| 281 | let shift = self.curve_shift; |
| 282 | |
| 283 | debug_assert!(count > 0); |
| 284 | |
| 285 | loop { |
| 286 | count -= 1; |
| 287 | if count > 0 { |
| 288 | newx = oldx + (dx >> shift); |
| 289 | dx += self.qddx; |
| 290 | newy = oldy + (dy >> shift); |
| 291 | dy += self.qddy; |
| 292 | } else { |
| 293 | // last segment |
| 294 | newx = self.q_last_x; |
| 295 | newy = self.q_last_y; |
| 296 | } |
| 297 | success = self.line.update(oldx, oldy, newx, newy); |
| 298 | oldx = newx; |
| 299 | oldy = newy; |
| 300 | |
| 301 | if count == 0 || success { |
| 302 | break; |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | self.qx = newx; |
| 307 | self.qy = newy; |
| 308 | self.qdx = dx; |
| 309 | self.qdy = dy; |
| 310 | self.curve_count = count; |
| 311 | |
| 312 | success |
| 313 | } |
| 314 | } |
| 315 | |
| 316 | #[derive (Clone, Debug)] |
| 317 | pub struct CubicEdge { |
| 318 | pub line: LineEdge, |
| 319 | pub curve_count: i8, |
| 320 | curve_shift: u8, // applied to all dx/ddx/dddx except for dshift exception |
| 321 | dshift: u8, // applied to cdx and cdy |
| 322 | cx: FDot16, |
| 323 | cy: FDot16, |
| 324 | cdx: FDot16, |
| 325 | cdy: FDot16, |
| 326 | cddx: FDot16, |
| 327 | cddy: FDot16, |
| 328 | cdddx: FDot16, |
| 329 | cdddy: FDot16, |
| 330 | c_last_x: FDot16, |
| 331 | c_last_y: FDot16, |
| 332 | } |
| 333 | |
| 334 | impl CubicEdge { |
| 335 | pub fn new(points: &[Point], shift: i32) -> Option<Self> { |
| 336 | let mut cubic = Self::new2(points, shift, true)?; |
| 337 | if cubic.update() { |
| 338 | Some(cubic) |
| 339 | } else { |
| 340 | None |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | fn new2(points: &[Point], mut shift: i32, sort_y: bool) -> Option<Self> { |
| 345 | let scale = (1 << (shift + 6)) as f32; |
| 346 | let mut x0 = (points[0].x * scale) as i32; |
| 347 | let mut y0 = (points[0].y * scale) as i32; |
| 348 | let mut x1 = (points[1].x * scale) as i32; |
| 349 | let mut y1 = (points[1].y * scale) as i32; |
| 350 | let mut x2 = (points[2].x * scale) as i32; |
| 351 | let mut y2 = (points[2].y * scale) as i32; |
| 352 | let mut x3 = (points[3].x * scale) as i32; |
| 353 | let mut y3 = (points[3].y * scale) as i32; |
| 354 | |
| 355 | let mut winding = 1; |
| 356 | if sort_y && y0 > y3 { |
| 357 | core::mem::swap(&mut x0, &mut x3); |
| 358 | core::mem::swap(&mut x1, &mut x2); |
| 359 | core::mem::swap(&mut y0, &mut y3); |
| 360 | core::mem::swap(&mut y1, &mut y2); |
| 361 | winding = -1; |
| 362 | } |
| 363 | |
| 364 | let top = fdot6::round(y0); |
| 365 | let bot = fdot6::round(y3); |
| 366 | |
| 367 | // are we a zero-height cubic (line)? |
| 368 | if sort_y && top == bot { |
| 369 | return None; |
| 370 | } |
| 371 | |
| 372 | // compute number of steps needed (1 << shift) |
| 373 | { |
| 374 | // Can't use (center of curve - center of baseline), since center-of-curve |
| 375 | // need not be the max delta from the baseline (it could even be coincident) |
| 376 | // so we try just looking at the two off-curve points |
| 377 | let dx = cubic_delta_from_line(x0, x1, x2, x3); |
| 378 | let dy = cubic_delta_from_line(y0, y1, y2, y3); |
| 379 | // add 1 (by observation) |
| 380 | shift = diff_to_shift(dx, dy, 2) + 1; |
| 381 | } |
| 382 | // need at least 1 subdivision for our bias trick |
| 383 | debug_assert!(shift > 0); |
| 384 | if shift > MAX_COEFF_SHIFT { |
| 385 | shift = MAX_COEFF_SHIFT; |
| 386 | } |
| 387 | |
| 388 | // Since our in coming data is initially shifted down by 10 (or 8 in |
| 389 | // antialias). That means the most we can shift up is 8. However, we |
| 390 | // compute coefficients with a 3*, so the safest upshift is really 6 |
| 391 | let mut up_shift = 6; // largest safe value |
| 392 | let mut down_shift = shift + up_shift - 10; |
| 393 | if down_shift < 0 { |
| 394 | down_shift = 0; |
| 395 | up_shift = 10 - shift; |
| 396 | } |
| 397 | |
| 398 | let curve_count = left_shift(-1, shift) as i8; |
| 399 | let curve_shift = shift as u8; |
| 400 | let dshift = down_shift as u8; |
| 401 | |
| 402 | let mut b = fdot6_up_shift(3 * (x1 - x0), up_shift); |
| 403 | let mut c = fdot6_up_shift(3 * (x0 - x1 - x1 + x2), up_shift); |
| 404 | let mut d = fdot6_up_shift(x3 + 3 * (x1 - x2) - x0, up_shift); |
| 405 | |
| 406 | let cx = fdot6::to_fdot16(x0); |
| 407 | let cdx = b + (c >> shift) + (d >> (2 * shift)); // biased by shift |
| 408 | let cddx = 2 * c + ((3 * d) >> (shift - 1)); // biased by 2*shift |
| 409 | let cdddx = (3 * d) >> (shift - 1); // biased by 2*shift |
| 410 | |
| 411 | b = fdot6_up_shift(3 * (y1 - y0), up_shift); |
| 412 | c = fdot6_up_shift(3 * (y0 - y1 - y1 + y2), up_shift); |
| 413 | d = fdot6_up_shift(y3 + 3 * (y1 - y2) - y0, up_shift); |
| 414 | |
| 415 | let cy = fdot6::to_fdot16(y0); |
| 416 | let cdy = b + (c >> shift) + (d >> (2 * shift)); // biased by shift |
| 417 | let cddy = 2 * c + ((3 * d) >> (shift - 1)); // biased by 2*shift |
| 418 | let cdddy = (3 * d) >> (shift - 1); // biased by 2*shift |
| 419 | |
| 420 | let c_last_x = fdot6::to_fdot16(x3); |
| 421 | let c_last_y = fdot6::to_fdot16(y3); |
| 422 | |
| 423 | Some(CubicEdge { |
| 424 | line: LineEdge { |
| 425 | next: None, |
| 426 | prev: None, |
| 427 | x: 0, |
| 428 | dx: 0, |
| 429 | first_y: 0, |
| 430 | last_y: 0, |
| 431 | winding, |
| 432 | }, |
| 433 | curve_count, |
| 434 | curve_shift, |
| 435 | dshift, |
| 436 | cx, |
| 437 | cy, |
| 438 | cdx, |
| 439 | cdy, |
| 440 | cddx, |
| 441 | cddy, |
| 442 | cdddx, |
| 443 | cdddy, |
| 444 | c_last_x, |
| 445 | c_last_y, |
| 446 | }) |
| 447 | } |
| 448 | |
| 449 | pub fn update(&mut self) -> bool { |
| 450 | let mut success; |
| 451 | let mut count = self.curve_count; |
| 452 | let mut oldx = self.cx; |
| 453 | let mut oldy = self.cy; |
| 454 | let mut newx; |
| 455 | let mut newy; |
| 456 | let ddshift = self.curve_shift; |
| 457 | let dshift = self.dshift; |
| 458 | |
| 459 | debug_assert!(count < 0); |
| 460 | |
| 461 | loop { |
| 462 | count += 1; |
| 463 | if count < 0 { |
| 464 | newx = oldx + (self.cdx >> dshift); |
| 465 | self.cdx += self.cddx >> ddshift; |
| 466 | self.cddx += self.cdddx; |
| 467 | |
| 468 | newy = oldy + (self.cdy >> dshift); |
| 469 | self.cdy += self.cddy >> ddshift; |
| 470 | self.cddy += self.cdddy; |
| 471 | } else { |
| 472 | // last segment |
| 473 | newx = self.c_last_x; |
| 474 | newy = self.c_last_y; |
| 475 | } |
| 476 | |
| 477 | // we want to say debug_assert(oldy <= newy), but our finite fixedpoint |
| 478 | // doesn't always achieve that, so we have to explicitly pin it here. |
| 479 | if newy < oldy { |
| 480 | newy = oldy; |
| 481 | } |
| 482 | |
| 483 | success = self.line.update(oldx, oldy, newx, newy); |
| 484 | oldx = newx; |
| 485 | oldy = newy; |
| 486 | |
| 487 | if count == 0 || success { |
| 488 | break; |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | self.cx = newx; |
| 493 | self.cy = newy; |
| 494 | self.curve_count = count; |
| 495 | |
| 496 | success |
| 497 | } |
| 498 | } |
| 499 | |
| 500 | // This correctly favors the lower-pixel when y0 is on a 1/2 pixel boundary |
| 501 | fn compute_dy(top: FDot6, y0: FDot6) -> FDot6 { |
| 502 | left_shift(value:top, shift:6) + 32 - y0 |
| 503 | } |
| 504 | |
| 505 | fn diff_to_shift(dx: FDot6, dy: FDot6, shift_aa: i32) -> i32 { |
| 506 | // cheap calc of distance from center of p0-p2 to the center of the curve |
| 507 | let mut dist: i32 = cheap_distance(dx, dy); |
| 508 | |
| 509 | // shift down dist (it is currently in dot6) |
| 510 | // down by 3 should give us 1/8 pixel accuracy (assuming our dist is accurate...) |
| 511 | // this is chosen by heuristic: make it as big as possible (to minimize segments) |
| 512 | // ... but small enough so that our curves still look smooth |
| 513 | // When shift > 0, we're using AA and everything is scaled up so we can |
| 514 | // lower the accuracy. |
| 515 | dist = (dist + (1 << 4)) >> (3 + shift_aa); |
| 516 | |
| 517 | // each subdivision (shift value) cuts this dist (error) by 1/4 |
| 518 | (32 - dist.leading_zeros() as i32) >> 1 |
| 519 | } |
| 520 | |
| 521 | fn cheap_distance(mut dx: FDot6, mut dy: FDot6) -> FDot6 { |
| 522 | dx = dx.abs(); |
| 523 | dy = dy.abs(); |
| 524 | // return max + min/2 |
| 525 | if dx > dy { |
| 526 | dx + (dy >> 1) |
| 527 | } else { |
| 528 | dy + (dx >> 1) |
| 529 | } |
| 530 | } |
| 531 | |
| 532 | // In LineEdge::new, QuadraticEdge::new, CubicEdge::new, the first thing we do is to convert |
| 533 | // the points into FDot6. This is modulated by the shift parameter, which |
| 534 | // will either be 0, or something like 2 for antialiasing. |
| 535 | // |
| 536 | // In the float case, we want to turn the float into .6 by saying pt * 64, |
| 537 | // or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6). |
| 538 | // |
| 539 | // In the fixed case, we want to turn the fixed into .6 by saying pt >> 10, |
| 540 | // or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift). |
| 541 | fn fdot6_to_fixed_div2(value: FDot6) -> FDot16 { |
| 542 | // we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw |
| 543 | // away data in value, so just perform a modify up-shift |
| 544 | left_shift(value, shift:16 - 6 - 1) |
| 545 | } |
| 546 | |
| 547 | fn fdot6_up_shift(x: FDot6, up_shift: i32) -> i32 { |
| 548 | debug_assert!((left_shift(x, up_shift) >> up_shift) == x); |
| 549 | left_shift(value:x, up_shift) |
| 550 | } |
| 551 | |
| 552 | // f(1/3) = (8a + 12b + 6c + d) / 27 |
| 553 | // f(2/3) = (a + 6b + 12c + 8d) / 27 |
| 554 | // |
| 555 | // f(1/3)-b = (8a - 15b + 6c + d) / 27 |
| 556 | // f(2/3)-c = (a + 6b - 15c + 8d) / 27 |
| 557 | // |
| 558 | // use 16/512 to approximate 1/27 |
| 559 | fn cubic_delta_from_line(a: FDot6, b: FDot6, c: FDot6, d: FDot6) -> FDot6 { |
| 560 | // since our parameters may be negative, we don't use << |
| 561 | let one_third: i32 = ((a * 8 - b * 15 + 6 * c + d) * 19) >> 9; |
| 562 | let two_third: i32 = ((a + 6 * b - c * 15 + d * 8) * 19) >> 9; |
| 563 | |
| 564 | one_third.abs().max(two_third.abs()) |
| 565 | } |
| 566 | |