| 1 | // Copyright 2006 The Android Open Source Project |
| 2 | // Copyright 2020 Yevhenii Reizner |
| 3 | // |
| 4 | // Use of this source code is governed by a BSD-style license that can be |
| 5 | // found in the LICENSE file. |
| 6 | |
| 7 | //! A [tiny-skia](https://github.com/RazrFalcon/tiny-skia) Bezier path implementation. |
| 8 | //! |
| 9 | //! Provides a memory-efficient Bezier path container, path builder, path stroker and path dasher. |
| 10 | //! |
| 11 | //! Also provides some basic geometry types, but they will be moved to an external crate eventually. |
| 12 | //! |
| 13 | //! Note that all types use single precision floats (`f32`), just like [Skia](https://skia.org/). |
| 14 | |
| 15 | #![no_std ] |
| 16 | #![warn (missing_docs)] |
| 17 | #![warn (missing_copy_implementations)] |
| 18 | #![warn (missing_debug_implementations)] |
| 19 | #![allow (clippy::approx_constant)] |
| 20 | #![allow (clippy::collapsible_if)] |
| 21 | #![allow (clippy::eq_op)] |
| 22 | #![allow (clippy::excessive_precision)] |
| 23 | #![allow (clippy::identity_op)] |
| 24 | #![allow (clippy::manual_range_contains)] |
| 25 | #![allow (clippy::neg_cmp_op_on_partial_ord)] |
| 26 | #![allow (clippy::too_many_arguments)] |
| 27 | #![allow (clippy::upper_case_acronyms)] |
| 28 | #![allow (clippy::wrong_self_convention)] |
| 29 | |
| 30 | #[cfg (not(any(feature = "std" , feature = "no-std-float" )))] |
| 31 | compile_error!("You have to activate either the `std` or the `no-std-float` feature." ); |
| 32 | |
| 33 | #[cfg (feature = "std" )] |
| 34 | extern crate std; |
| 35 | |
| 36 | extern crate alloc; |
| 37 | |
| 38 | mod dash; |
| 39 | mod f32x2_t; |
| 40 | mod f32x4_t; |
| 41 | mod floating_point; |
| 42 | mod path; |
| 43 | mod path_builder; |
| 44 | pub mod path_geometry; |
| 45 | mod rect; |
| 46 | mod scalar; |
| 47 | mod size; |
| 48 | mod stroker; |
| 49 | mod transform; |
| 50 | |
| 51 | pub use dash::StrokeDash; |
| 52 | pub use f32x2_t::f32x2; |
| 53 | pub use floating_point::*; |
| 54 | pub use path::*; |
| 55 | pub use path_builder::*; |
| 56 | pub use rect::*; |
| 57 | pub use scalar::*; |
| 58 | pub use size::*; |
| 59 | pub use stroker::*; |
| 60 | pub use transform::*; |
| 61 | |
| 62 | /// An integer length that is guarantee to be > 0 |
| 63 | type LengthU32 = core::num::NonZeroU32; |
| 64 | |
| 65 | /// A point. |
| 66 | /// |
| 67 | /// Doesn't guarantee to be finite. |
| 68 | #[allow (missing_docs)] |
| 69 | #[repr (C)] |
| 70 | #[derive (Copy, Clone, PartialEq, Default, Debug)] |
| 71 | pub struct Point { |
| 72 | pub x: f32, |
| 73 | pub y: f32, |
| 74 | } |
| 75 | |
| 76 | impl From<(f32, f32)> for Point { |
| 77 | #[inline ] |
| 78 | fn from(v: (f32, f32)) -> Self { |
| 79 | Point { x: v.0, y: v.1 } |
| 80 | } |
| 81 | } |
| 82 | |
| 83 | impl Point { |
| 84 | /// Creates a new `Point`. |
| 85 | pub fn from_xy(x: f32, y: f32) -> Self { |
| 86 | Point { x, y } |
| 87 | } |
| 88 | |
| 89 | /// Creates a new `Point` from `f32x2`. |
| 90 | pub fn from_f32x2(r: f32x2) -> Self { |
| 91 | Point::from_xy(r.x(), r.y()) |
| 92 | } |
| 93 | |
| 94 | /// Converts a `Point` into a `f32x2`. |
| 95 | pub fn to_f32x2(&self) -> f32x2 { |
| 96 | f32x2::new(self.x, self.y) |
| 97 | } |
| 98 | |
| 99 | /// Creates a point at 0x0 position. |
| 100 | pub fn zero() -> Self { |
| 101 | Point { x: 0.0, y: 0.0 } |
| 102 | } |
| 103 | |
| 104 | /// Returns true if x and y are both zero. |
| 105 | pub fn is_zero(&self) -> bool { |
| 106 | self.x == 0.0 && self.y == 0.0 |
| 107 | } |
| 108 | |
| 109 | /// Returns true if both x and y are measurable values. |
| 110 | /// |
| 111 | /// Both values are other than infinities and NaN. |
| 112 | pub fn is_finite(&self) -> bool { |
| 113 | (self.x * self.y).is_finite() |
| 114 | } |
| 115 | |
| 116 | /// Checks that two `Point`s are almost equal. |
| 117 | pub(crate) fn almost_equal(&self, other: Point) -> bool { |
| 118 | !(*self - other).can_normalize() |
| 119 | } |
| 120 | |
| 121 | /// Checks that two `Point`s are almost equal using the specified tolerance. |
| 122 | pub(crate) fn equals_within_tolerance(&self, other: Point, tolerance: f32) -> bool { |
| 123 | (self.x - other.x).is_nearly_zero_within_tolerance(tolerance) |
| 124 | && (self.y - other.y).is_nearly_zero_within_tolerance(tolerance) |
| 125 | } |
| 126 | |
| 127 | /// Scales (fX, fY) so that length() returns one, while preserving ratio of fX to fY, |
| 128 | /// if possible. |
| 129 | /// |
| 130 | /// If prior length is nearly zero, sets vector to (0, 0) and returns |
| 131 | /// false; otherwise returns true. |
| 132 | pub fn normalize(&mut self) -> bool { |
| 133 | self.set_length_from(self.x, self.y, 1.0) |
| 134 | } |
| 135 | |
| 136 | /// Sets vector to (x, y) scaled so length() returns one, and so that (x, y) |
| 137 | /// is proportional to (x, y). |
| 138 | /// |
| 139 | /// If (x, y) length is nearly zero, sets vector to (0, 0) and returns false; |
| 140 | /// otherwise returns true. |
| 141 | pub fn set_normalize(&mut self, x: f32, y: f32) -> bool { |
| 142 | self.set_length_from(x, y, 1.0) |
| 143 | } |
| 144 | |
| 145 | pub(crate) fn can_normalize(&self) -> bool { |
| 146 | self.x.is_finite() && self.y.is_finite() && (self.x != 0.0 || self.y != 0.0) |
| 147 | } |
| 148 | |
| 149 | /// Returns the Euclidean distance from origin. |
| 150 | pub fn length(&self) -> f32 { |
| 151 | let mag2 = self.x * self.x + self.y * self.y; |
| 152 | if mag2.is_finite() { |
| 153 | mag2.sqrt() |
| 154 | } else { |
| 155 | let xx = f64::from(self.x); |
| 156 | let yy = f64::from(self.y); |
| 157 | (xx * xx + yy * yy).sqrt() as f32 |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | /// Scales vector so that distanceToOrigin() returns length, if possible. |
| 162 | /// |
| 163 | /// If former length is nearly zero, sets vector to (0, 0) and return false; |
| 164 | /// otherwise returns true. |
| 165 | pub fn set_length(&mut self, length: f32) -> bool { |
| 166 | self.set_length_from(self.x, self.y, length) |
| 167 | } |
| 168 | |
| 169 | /// Sets vector to (x, y) scaled to length, if possible. |
| 170 | /// |
| 171 | /// If former length is nearly zero, sets vector to (0, 0) and return false; |
| 172 | /// otherwise returns true. |
| 173 | pub fn set_length_from(&mut self, x: f32, y: f32, length: f32) -> bool { |
| 174 | set_point_length(self, x, y, length, &mut None) |
| 175 | } |
| 176 | |
| 177 | /// Returns the Euclidean distance from origin. |
| 178 | pub fn distance(&self, other: Point) -> f32 { |
| 179 | (*self - other).length() |
| 180 | } |
| 181 | |
| 182 | /// Returns the dot product of two points. |
| 183 | pub fn dot(&self, other: Point) -> f32 { |
| 184 | self.x * other.x + self.y * other.y |
| 185 | } |
| 186 | |
| 187 | /// Returns the cross product of vector and vec. |
| 188 | /// |
| 189 | /// Vector and vec form three-dimensional vectors with z-axis value equal to zero. |
| 190 | /// The cross product is a three-dimensional vector with x-axis and y-axis values |
| 191 | /// equal to zero. The cross product z-axis component is returned. |
| 192 | pub fn cross(&self, other: Point) -> f32 { |
| 193 | self.x * other.y - self.y * other.x |
| 194 | } |
| 195 | |
| 196 | pub(crate) fn distance_to_sqd(&self, pt: Point) -> f32 { |
| 197 | let dx = self.x - pt.x; |
| 198 | let dy = self.y - pt.y; |
| 199 | dx * dx + dy * dy |
| 200 | } |
| 201 | |
| 202 | pub(crate) fn length_sqd(&self) -> f32 { |
| 203 | self.dot(*self) |
| 204 | } |
| 205 | |
| 206 | /// Scales Point in-place by scale. |
| 207 | pub fn scale(&mut self, scale: f32) { |
| 208 | self.x *= scale; |
| 209 | self.y *= scale; |
| 210 | } |
| 211 | |
| 212 | pub(crate) fn scaled(&self, scale: f32) -> Self { |
| 213 | Point::from_xy(self.x * scale, self.y * scale) |
| 214 | } |
| 215 | |
| 216 | pub(crate) fn swap_coords(&mut self) { |
| 217 | core::mem::swap(&mut self.x, &mut self.y); |
| 218 | } |
| 219 | |
| 220 | pub(crate) fn rotate_cw(&mut self) { |
| 221 | self.swap_coords(); |
| 222 | self.x = -self.x; |
| 223 | } |
| 224 | |
| 225 | pub(crate) fn rotate_ccw(&mut self) { |
| 226 | self.swap_coords(); |
| 227 | self.y = -self.y; |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | // We have to worry about 2 tricky conditions: |
| 232 | // 1. underflow of mag2 (compared against nearlyzero^2) |
| 233 | // 2. overflow of mag2 (compared w/ isfinite) |
| 234 | // |
| 235 | // If we underflow, we return false. If we overflow, we compute again using |
| 236 | // doubles, which is much slower (3x in a desktop test) but will not overflow. |
| 237 | fn set_point_length( |
| 238 | pt: &mut Point, |
| 239 | mut x: f32, |
| 240 | mut y: f32, |
| 241 | length: f32, |
| 242 | orig_length: &mut Option<f32>, |
| 243 | ) -> bool { |
| 244 | // our mag2 step overflowed to infinity, so use doubles instead. |
| 245 | // much slower, but needed when x or y are very large, other wise we |
| 246 | // divide by inf. and return (0,0) vector. |
| 247 | let xx = x as f64; |
| 248 | let yy = y as f64; |
| 249 | let dmag = (xx * xx + yy * yy).sqrt(); |
| 250 | let dscale = length as f64 / dmag; |
| 251 | x *= dscale as f32; |
| 252 | y *= dscale as f32; |
| 253 | |
| 254 | // check if we're not finite, or we're zero-length |
| 255 | if !x.is_finite() || !y.is_finite() || (x == 0.0 && y == 0.0) { |
| 256 | *pt = Point::zero(); |
| 257 | return false; |
| 258 | } |
| 259 | |
| 260 | let mut mag = 0.0; |
| 261 | if orig_length.is_some() { |
| 262 | mag = dmag as f32; |
| 263 | } |
| 264 | |
| 265 | *pt = Point::from_xy(x, y); |
| 266 | |
| 267 | if orig_length.is_some() { |
| 268 | *orig_length = Some(mag); |
| 269 | } |
| 270 | |
| 271 | true |
| 272 | } |
| 273 | |
| 274 | impl core::ops::Neg for Point { |
| 275 | type Output = Point; |
| 276 | |
| 277 | fn neg(self) -> Self::Output { |
| 278 | Point { |
| 279 | x: -self.x, |
| 280 | y: -self.y, |
| 281 | } |
| 282 | } |
| 283 | } |
| 284 | |
| 285 | impl core::ops::Add for Point { |
| 286 | type Output = Point; |
| 287 | |
| 288 | fn add(self, other: Point) -> Self::Output { |
| 289 | Point::from_xy(self.x + other.x, self.y + other.y) |
| 290 | } |
| 291 | } |
| 292 | |
| 293 | impl core::ops::AddAssign for Point { |
| 294 | fn add_assign(&mut self, other: Point) { |
| 295 | self.x += other.x; |
| 296 | self.y += other.y; |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | impl core::ops::Sub for Point { |
| 301 | type Output = Point; |
| 302 | |
| 303 | fn sub(self, other: Point) -> Self::Output { |
| 304 | Point::from_xy(self.x - other.x, self.y - other.y) |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | impl core::ops::SubAssign for Point { |
| 309 | fn sub_assign(&mut self, other: Point) { |
| 310 | self.x -= other.x; |
| 311 | self.y -= other.y; |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | impl core::ops::Mul for Point { |
| 316 | type Output = Point; |
| 317 | |
| 318 | fn mul(self, other: Point) -> Self::Output { |
| 319 | Point::from_xy(self.x * other.x, self.y * other.y) |
| 320 | } |
| 321 | } |
| 322 | |
| 323 | impl core::ops::MulAssign for Point { |
| 324 | fn mul_assign(&mut self, other: Point) { |
| 325 | self.x *= other.x; |
| 326 | self.y *= other.y; |
| 327 | } |
| 328 | } |
| 329 | |