1 | use crate::runtime::handle::Handle; |
2 | use crate::runtime::{blocking, driver, Callback, HistogramBuilder, Runtime}; |
3 | use crate::util::rand::{RngSeed, RngSeedGenerator}; |
4 | |
5 | use std::fmt; |
6 | use std::io; |
7 | use std::time::Duration; |
8 | |
9 | /// Builds Tokio Runtime with custom configuration values. |
10 | /// |
11 | /// Methods can be chained in order to set the configuration values. The |
12 | /// Runtime is constructed by calling [`build`]. |
13 | /// |
14 | /// New instances of `Builder` are obtained via [`Builder::new_multi_thread`] |
15 | /// or [`Builder::new_current_thread`]. |
16 | /// |
17 | /// See function level documentation for details on the various configuration |
18 | /// settings. |
19 | /// |
20 | /// [`build`]: method@Self::build |
21 | /// [`Builder::new_multi_thread`]: method@Self::new_multi_thread |
22 | /// [`Builder::new_current_thread`]: method@Self::new_current_thread |
23 | /// |
24 | /// # Examples |
25 | /// |
26 | /// ``` |
27 | /// use tokio::runtime::Builder; |
28 | /// |
29 | /// fn main() { |
30 | /// // build runtime |
31 | /// let runtime = Builder::new_multi_thread() |
32 | /// .worker_threads(4) |
33 | /// .thread_name("my-custom-name" ) |
34 | /// .thread_stack_size(3 * 1024 * 1024) |
35 | /// .build() |
36 | /// .unwrap(); |
37 | /// |
38 | /// // use runtime ... |
39 | /// } |
40 | /// ``` |
41 | pub struct Builder { |
42 | /// Runtime type |
43 | kind: Kind, |
44 | |
45 | /// Whether or not to enable the I/O driver |
46 | enable_io: bool, |
47 | nevents: usize, |
48 | |
49 | /// Whether or not to enable the time driver |
50 | enable_time: bool, |
51 | |
52 | /// Whether or not the clock should start paused. |
53 | start_paused: bool, |
54 | |
55 | /// The number of worker threads, used by Runtime. |
56 | /// |
57 | /// Only used when not using the current-thread executor. |
58 | worker_threads: Option<usize>, |
59 | |
60 | /// Cap on thread usage. |
61 | max_blocking_threads: usize, |
62 | |
63 | /// Name fn used for threads spawned by the runtime. |
64 | pub(super) thread_name: ThreadNameFn, |
65 | |
66 | /// Stack size used for threads spawned by the runtime. |
67 | pub(super) thread_stack_size: Option<usize>, |
68 | |
69 | /// Callback to run after each thread starts. |
70 | pub(super) after_start: Option<Callback>, |
71 | |
72 | /// To run before each worker thread stops |
73 | pub(super) before_stop: Option<Callback>, |
74 | |
75 | /// To run before each worker thread is parked. |
76 | pub(super) before_park: Option<Callback>, |
77 | |
78 | /// To run after each thread is unparked. |
79 | pub(super) after_unpark: Option<Callback>, |
80 | |
81 | /// Customizable keep alive timeout for `BlockingPool` |
82 | pub(super) keep_alive: Option<Duration>, |
83 | |
84 | /// How many ticks before pulling a task from the global/remote queue? |
85 | /// |
86 | /// When `None`, the value is unspecified and behavior details are left to |
87 | /// the scheduler. Each scheduler flavor could choose to either pick its own |
88 | /// default value or use some other strategy to decide when to poll from the |
89 | /// global queue. For example, the multi-threaded scheduler uses a |
90 | /// self-tuning strategy based on mean task poll times. |
91 | pub(super) global_queue_interval: Option<u32>, |
92 | |
93 | /// How many ticks before yielding to the driver for timer and I/O events? |
94 | pub(super) event_interval: u32, |
95 | |
96 | pub(super) local_queue_capacity: usize, |
97 | |
98 | /// When true, the multi-threade scheduler LIFO slot should not be used. |
99 | /// |
100 | /// This option should only be exposed as unstable. |
101 | pub(super) disable_lifo_slot: bool, |
102 | |
103 | /// Specify a random number generator seed to provide deterministic results |
104 | pub(super) seed_generator: RngSeedGenerator, |
105 | |
106 | /// When true, enables task poll count histogram instrumentation. |
107 | pub(super) metrics_poll_count_histogram_enable: bool, |
108 | |
109 | /// Configures the task poll count histogram |
110 | pub(super) metrics_poll_count_histogram: HistogramBuilder, |
111 | |
112 | #[cfg (tokio_unstable)] |
113 | pub(super) unhandled_panic: UnhandledPanic, |
114 | } |
115 | |
116 | cfg_unstable! { |
117 | /// How the runtime should respond to unhandled panics. |
118 | /// |
119 | /// Instances of `UnhandledPanic` are passed to `Builder::unhandled_panic` |
120 | /// to configure the runtime behavior when a spawned task panics. |
121 | /// |
122 | /// See [`Builder::unhandled_panic`] for more details. |
123 | #[derive (Debug, Clone)] |
124 | #[non_exhaustive ] |
125 | pub enum UnhandledPanic { |
126 | /// The runtime should ignore panics on spawned tasks. |
127 | /// |
128 | /// The panic is forwarded to the task's [`JoinHandle`] and all spawned |
129 | /// tasks continue running normally. |
130 | /// |
131 | /// This is the default behavior. |
132 | /// |
133 | /// # Examples |
134 | /// |
135 | /// ``` |
136 | /// use tokio::runtime::{self, UnhandledPanic}; |
137 | /// |
138 | /// # pub fn main() { |
139 | /// let rt = runtime::Builder::new_current_thread() |
140 | /// .unhandled_panic(UnhandledPanic::Ignore) |
141 | /// .build() |
142 | /// .unwrap(); |
143 | /// |
144 | /// let task1 = rt.spawn(async { panic!("boom"); }); |
145 | /// let task2 = rt.spawn(async { |
146 | /// // This task completes normally |
147 | /// "done" |
148 | /// }); |
149 | /// |
150 | /// rt.block_on(async { |
151 | /// // The panic on the first task is forwarded to the `JoinHandle` |
152 | /// assert!(task1.await.is_err()); |
153 | /// |
154 | /// // The second task completes normally |
155 | /// assert!(task2.await.is_ok()); |
156 | /// }) |
157 | /// # } |
158 | /// ``` |
159 | /// |
160 | /// [`JoinHandle`]: struct@crate::task::JoinHandle |
161 | Ignore, |
162 | |
163 | /// The runtime should immediately shutdown if a spawned task panics. |
164 | /// |
165 | /// The runtime will immediately shutdown even if the panicked task's |
166 | /// [`JoinHandle`] is still available. All further spawned tasks will be |
167 | /// immediately dropped and call to [`Runtime::block_on`] will panic. |
168 | /// |
169 | /// # Examples |
170 | /// |
171 | /// ```should_panic |
172 | /// use tokio::runtime::{self, UnhandledPanic}; |
173 | /// |
174 | /// # pub fn main() { |
175 | /// let rt = runtime::Builder::new_current_thread() |
176 | /// .unhandled_panic(UnhandledPanic::ShutdownRuntime) |
177 | /// .build() |
178 | /// .unwrap(); |
179 | /// |
180 | /// rt.spawn(async { panic!("boom"); }); |
181 | /// rt.spawn(async { |
182 | /// // This task never completes. |
183 | /// }); |
184 | /// |
185 | /// rt.block_on(async { |
186 | /// // Do some work |
187 | /// # loop { tokio::task::yield_now().await; } |
188 | /// }) |
189 | /// # } |
190 | /// ``` |
191 | /// |
192 | /// [`JoinHandle`]: struct@crate::task::JoinHandle |
193 | ShutdownRuntime, |
194 | } |
195 | } |
196 | |
197 | pub(crate) type ThreadNameFn = std::sync::Arc<dyn Fn() -> String + Send + Sync + 'static>; |
198 | |
199 | #[derive (Clone, Copy)] |
200 | pub(crate) enum Kind { |
201 | CurrentThread, |
202 | #[cfg (all(feature = "rt-multi-thread" , not(target_os = "wasi" )))] |
203 | MultiThread, |
204 | #[cfg (all(tokio_unstable, feature = "rt-multi-thread" , not(target_os = "wasi" )))] |
205 | MultiThreadAlt, |
206 | } |
207 | |
208 | impl Builder { |
209 | /// Returns a new builder with the current thread scheduler selected. |
210 | /// |
211 | /// Configuration methods can be chained on the return value. |
212 | /// |
213 | /// To spawn non-`Send` tasks on the resulting runtime, combine it with a |
214 | /// [`LocalSet`]. |
215 | /// |
216 | /// [`LocalSet`]: crate::task::LocalSet |
217 | pub fn new_current_thread() -> Builder { |
218 | #[cfg (loom)] |
219 | const EVENT_INTERVAL: u32 = 4; |
220 | // The number `61` is fairly arbitrary. I believe this value was copied from golang. |
221 | #[cfg (not(loom))] |
222 | const EVENT_INTERVAL: u32 = 61; |
223 | |
224 | Builder::new(Kind::CurrentThread, EVENT_INTERVAL) |
225 | } |
226 | |
227 | cfg_not_wasi! { |
228 | /// Returns a new builder with the multi thread scheduler selected. |
229 | /// |
230 | /// Configuration methods can be chained on the return value. |
231 | #[cfg (feature = "rt-multi-thread" )] |
232 | #[cfg_attr (docsrs, doc(cfg(feature = "rt-multi-thread" )))] |
233 | pub fn new_multi_thread() -> Builder { |
234 | // The number `61` is fairly arbitrary. I believe this value was copied from golang. |
235 | Builder::new(Kind::MultiThread, 61) |
236 | } |
237 | |
238 | cfg_unstable! { |
239 | /// Returns a new builder with the alternate multi thread scheduler |
240 | /// selected. |
241 | /// |
242 | /// The alternate multi threaded scheduler is an in-progress |
243 | /// candidate to replace the existing multi threaded scheduler. It |
244 | /// currently does not scale as well to 16+ processors. |
245 | /// |
246 | /// This runtime flavor is currently **not considered production |
247 | /// ready**. |
248 | /// |
249 | /// Configuration methods can be chained on the return value. |
250 | #[cfg (feature = "rt-multi-thread" )] |
251 | #[cfg_attr (docsrs, doc(cfg(feature = "rt-multi-thread" )))] |
252 | pub fn new_multi_thread_alt() -> Builder { |
253 | // The number `61` is fairly arbitrary. I believe this value was copied from golang. |
254 | Builder::new(Kind::MultiThreadAlt, 61) |
255 | } |
256 | } |
257 | } |
258 | |
259 | /// Returns a new runtime builder initialized with default configuration |
260 | /// values. |
261 | /// |
262 | /// Configuration methods can be chained on the return value. |
263 | pub(crate) fn new(kind: Kind, event_interval: u32) -> Builder { |
264 | Builder { |
265 | kind, |
266 | |
267 | // I/O defaults to "off" |
268 | enable_io: false, |
269 | nevents: 1024, |
270 | |
271 | // Time defaults to "off" |
272 | enable_time: false, |
273 | |
274 | // The clock starts not-paused |
275 | start_paused: false, |
276 | |
277 | // Read from environment variable first in multi-threaded mode. |
278 | // Default to lazy auto-detection (one thread per CPU core) |
279 | worker_threads: None, |
280 | |
281 | max_blocking_threads: 512, |
282 | |
283 | // Default thread name |
284 | thread_name: std::sync::Arc::new(|| "tokio-runtime-worker" .into()), |
285 | |
286 | // Do not set a stack size by default |
287 | thread_stack_size: None, |
288 | |
289 | // No worker thread callbacks |
290 | after_start: None, |
291 | before_stop: None, |
292 | before_park: None, |
293 | after_unpark: None, |
294 | |
295 | keep_alive: None, |
296 | |
297 | // Defaults for these values depend on the scheduler kind, so we get them |
298 | // as parameters. |
299 | global_queue_interval: None, |
300 | event_interval, |
301 | |
302 | #[cfg (not(loom))] |
303 | local_queue_capacity: 256, |
304 | |
305 | #[cfg (loom)] |
306 | local_queue_capacity: 4, |
307 | |
308 | seed_generator: RngSeedGenerator::new(RngSeed::new()), |
309 | |
310 | #[cfg (tokio_unstable)] |
311 | unhandled_panic: UnhandledPanic::Ignore, |
312 | |
313 | metrics_poll_count_histogram_enable: false, |
314 | |
315 | metrics_poll_count_histogram: HistogramBuilder::default(), |
316 | |
317 | disable_lifo_slot: false, |
318 | } |
319 | } |
320 | |
321 | /// Enables both I/O and time drivers. |
322 | /// |
323 | /// Doing this is a shorthand for calling `enable_io` and `enable_time` |
324 | /// individually. If additional components are added to Tokio in the future, |
325 | /// `enable_all` will include these future components. |
326 | /// |
327 | /// # Examples |
328 | /// |
329 | /// ``` |
330 | /// use tokio::runtime; |
331 | /// |
332 | /// let rt = runtime::Builder::new_multi_thread() |
333 | /// .enable_all() |
334 | /// .build() |
335 | /// .unwrap(); |
336 | /// ``` |
337 | pub fn enable_all(&mut self) -> &mut Self { |
338 | #[cfg (any( |
339 | feature = "net" , |
340 | all(unix, feature = "process" ), |
341 | all(unix, feature = "signal" ) |
342 | ))] |
343 | self.enable_io(); |
344 | #[cfg (feature = "time" )] |
345 | self.enable_time(); |
346 | |
347 | self |
348 | } |
349 | |
350 | /// Sets the number of worker threads the `Runtime` will use. |
351 | /// |
352 | /// This can be any number above 0 though it is advised to keep this value |
353 | /// on the smaller side. |
354 | /// |
355 | /// This will override the value read from environment variable `TOKIO_WORKER_THREADS`. |
356 | /// |
357 | /// # Default |
358 | /// |
359 | /// The default value is the number of cores available to the system. |
360 | /// |
361 | /// When using the `current_thread` runtime this method has no effect. |
362 | /// |
363 | /// # Examples |
364 | /// |
365 | /// ## Multi threaded runtime with 4 threads |
366 | /// |
367 | /// ``` |
368 | /// use tokio::runtime; |
369 | /// |
370 | /// // This will spawn a work-stealing runtime with 4 worker threads. |
371 | /// let rt = runtime::Builder::new_multi_thread() |
372 | /// .worker_threads(4) |
373 | /// .build() |
374 | /// .unwrap(); |
375 | /// |
376 | /// rt.spawn(async move {}); |
377 | /// ``` |
378 | /// |
379 | /// ## Current thread runtime (will only run on the current thread via `Runtime::block_on`) |
380 | /// |
381 | /// ``` |
382 | /// use tokio::runtime; |
383 | /// |
384 | /// // Create a runtime that _must_ be driven from a call |
385 | /// // to `Runtime::block_on`. |
386 | /// let rt = runtime::Builder::new_current_thread() |
387 | /// .build() |
388 | /// .unwrap(); |
389 | /// |
390 | /// // This will run the runtime and future on the current thread |
391 | /// rt.block_on(async move {}); |
392 | /// ``` |
393 | /// |
394 | /// # Panics |
395 | /// |
396 | /// This will panic if `val` is not larger than `0`. |
397 | #[track_caller ] |
398 | pub fn worker_threads(&mut self, val: usize) -> &mut Self { |
399 | assert!(val > 0, "Worker threads cannot be set to 0" ); |
400 | self.worker_threads = Some(val); |
401 | self |
402 | } |
403 | |
404 | /// Specifies the limit for additional threads spawned by the Runtime. |
405 | /// |
406 | /// These threads are used for blocking operations like tasks spawned |
407 | /// through [`spawn_blocking`], this includes but is not limited to: |
408 | /// - [`fs`] operations |
409 | /// - dns resolution through [`ToSocketAddrs`] |
410 | /// - writing to [`Stdout`] or [`Stderr`] |
411 | /// - reading from [`Stdin`] |
412 | /// |
413 | /// Unlike the [`worker_threads`], they are not always active and will exit |
414 | /// if left idle for too long. You can change this timeout duration with [`thread_keep_alive`]. |
415 | /// |
416 | /// It's recommended to not set this limit too low in order to avoid hanging on operations |
417 | /// requiring [`spawn_blocking`]. |
418 | /// |
419 | /// The default value is 512. |
420 | /// |
421 | /// # Panics |
422 | /// |
423 | /// This will panic if `val` is not larger than `0`. |
424 | /// |
425 | /// # Upgrading from 0.x |
426 | /// |
427 | /// In old versions `max_threads` limited both blocking and worker threads, but the |
428 | /// current `max_blocking_threads` does not include async worker threads in the count. |
429 | /// |
430 | /// [`spawn_blocking`]: fn@crate::task::spawn_blocking |
431 | /// [`fs`]: mod@crate::fs |
432 | /// [`ToSocketAddrs`]: trait@crate::net::ToSocketAddrs |
433 | /// [`Stdout`]: struct@crate::io::Stdout |
434 | /// [`Stdin`]: struct@crate::io::Stdin |
435 | /// [`Stderr`]: struct@crate::io::Stderr |
436 | /// [`worker_threads`]: Self::worker_threads |
437 | /// [`thread_keep_alive`]: Self::thread_keep_alive |
438 | #[track_caller ] |
439 | #[cfg_attr (docsrs, doc(alias = "max_threads" ))] |
440 | pub fn max_blocking_threads(&mut self, val: usize) -> &mut Self { |
441 | assert!(val > 0, "Max blocking threads cannot be set to 0" ); |
442 | self.max_blocking_threads = val; |
443 | self |
444 | } |
445 | |
446 | /// Sets name of threads spawned by the `Runtime`'s thread pool. |
447 | /// |
448 | /// The default name is "tokio-runtime-worker". |
449 | /// |
450 | /// # Examples |
451 | /// |
452 | /// ``` |
453 | /// # use tokio::runtime; |
454 | /// |
455 | /// # pub fn main() { |
456 | /// let rt = runtime::Builder::new_multi_thread() |
457 | /// .thread_name("my-pool" ) |
458 | /// .build(); |
459 | /// # } |
460 | /// ``` |
461 | pub fn thread_name(&mut self, val: impl Into<String>) -> &mut Self { |
462 | let val = val.into(); |
463 | self.thread_name = std::sync::Arc::new(move || val.clone()); |
464 | self |
465 | } |
466 | |
467 | /// Sets a function used to generate the name of threads spawned by the `Runtime`'s thread pool. |
468 | /// |
469 | /// The default name fn is `|| "tokio-runtime-worker".into()`. |
470 | /// |
471 | /// # Examples |
472 | /// |
473 | /// ``` |
474 | /// # use tokio::runtime; |
475 | /// # use std::sync::atomic::{AtomicUsize, Ordering}; |
476 | /// # pub fn main() { |
477 | /// let rt = runtime::Builder::new_multi_thread() |
478 | /// .thread_name_fn(|| { |
479 | /// static ATOMIC_ID: AtomicUsize = AtomicUsize::new(0); |
480 | /// let id = ATOMIC_ID.fetch_add(1, Ordering::SeqCst); |
481 | /// format!("my-pool-{}" , id) |
482 | /// }) |
483 | /// .build(); |
484 | /// # } |
485 | /// ``` |
486 | pub fn thread_name_fn<F>(&mut self, f: F) -> &mut Self |
487 | where |
488 | F: Fn() -> String + Send + Sync + 'static, |
489 | { |
490 | self.thread_name = std::sync::Arc::new(f); |
491 | self |
492 | } |
493 | |
494 | /// Sets the stack size (in bytes) for worker threads. |
495 | /// |
496 | /// The actual stack size may be greater than this value if the platform |
497 | /// specifies minimal stack size. |
498 | /// |
499 | /// The default stack size for spawned threads is 2 MiB, though this |
500 | /// particular stack size is subject to change in the future. |
501 | /// |
502 | /// # Examples |
503 | /// |
504 | /// ``` |
505 | /// # use tokio::runtime; |
506 | /// |
507 | /// # pub fn main() { |
508 | /// let rt = runtime::Builder::new_multi_thread() |
509 | /// .thread_stack_size(32 * 1024) |
510 | /// .build(); |
511 | /// # } |
512 | /// ``` |
513 | pub fn thread_stack_size(&mut self, val: usize) -> &mut Self { |
514 | self.thread_stack_size = Some(val); |
515 | self |
516 | } |
517 | |
518 | /// Executes function `f` after each thread is started but before it starts |
519 | /// doing work. |
520 | /// |
521 | /// This is intended for bookkeeping and monitoring use cases. |
522 | /// |
523 | /// # Examples |
524 | /// |
525 | /// ``` |
526 | /// # use tokio::runtime; |
527 | /// # pub fn main() { |
528 | /// let runtime = runtime::Builder::new_multi_thread() |
529 | /// .on_thread_start(|| { |
530 | /// println!("thread started" ); |
531 | /// }) |
532 | /// .build(); |
533 | /// # } |
534 | /// ``` |
535 | #[cfg (not(loom))] |
536 | pub fn on_thread_start<F>(&mut self, f: F) -> &mut Self |
537 | where |
538 | F: Fn() + Send + Sync + 'static, |
539 | { |
540 | self.after_start = Some(std::sync::Arc::new(f)); |
541 | self |
542 | } |
543 | |
544 | /// Executes function `f` before each thread stops. |
545 | /// |
546 | /// This is intended for bookkeeping and monitoring use cases. |
547 | /// |
548 | /// # Examples |
549 | /// |
550 | /// ``` |
551 | /// # use tokio::runtime; |
552 | /// # pub fn main() { |
553 | /// let runtime = runtime::Builder::new_multi_thread() |
554 | /// .on_thread_stop(|| { |
555 | /// println!("thread stopping" ); |
556 | /// }) |
557 | /// .build(); |
558 | /// # } |
559 | /// ``` |
560 | #[cfg (not(loom))] |
561 | pub fn on_thread_stop<F>(&mut self, f: F) -> &mut Self |
562 | where |
563 | F: Fn() + Send + Sync + 'static, |
564 | { |
565 | self.before_stop = Some(std::sync::Arc::new(f)); |
566 | self |
567 | } |
568 | |
569 | /// Executes function `f` just before a thread is parked (goes idle). |
570 | /// `f` is called within the Tokio context, so functions like [`tokio::spawn`](crate::spawn) |
571 | /// can be called, and may result in this thread being unparked immediately. |
572 | /// |
573 | /// This can be used to start work only when the executor is idle, or for bookkeeping |
574 | /// and monitoring purposes. |
575 | /// |
576 | /// Note: There can only be one park callback for a runtime; calling this function |
577 | /// more than once replaces the last callback defined, rather than adding to it. |
578 | /// |
579 | /// # Examples |
580 | /// |
581 | /// ## Multithreaded executor |
582 | /// ``` |
583 | /// # use std::sync::Arc; |
584 | /// # use std::sync::atomic::{AtomicBool, Ordering}; |
585 | /// # use tokio::runtime; |
586 | /// # use tokio::sync::Barrier; |
587 | /// # pub fn main() { |
588 | /// let once = AtomicBool::new(true); |
589 | /// let barrier = Arc::new(Barrier::new(2)); |
590 | /// |
591 | /// let runtime = runtime::Builder::new_multi_thread() |
592 | /// .worker_threads(1) |
593 | /// .on_thread_park({ |
594 | /// let barrier = barrier.clone(); |
595 | /// move || { |
596 | /// let barrier = barrier.clone(); |
597 | /// if once.swap(false, Ordering::Relaxed) { |
598 | /// tokio::spawn(async move { barrier.wait().await; }); |
599 | /// } |
600 | /// } |
601 | /// }) |
602 | /// .build() |
603 | /// .unwrap(); |
604 | /// |
605 | /// runtime.block_on(async { |
606 | /// barrier.wait().await; |
607 | /// }) |
608 | /// # } |
609 | /// ``` |
610 | /// ## Current thread executor |
611 | /// ``` |
612 | /// # use std::sync::Arc; |
613 | /// # use std::sync::atomic::{AtomicBool, Ordering}; |
614 | /// # use tokio::runtime; |
615 | /// # use tokio::sync::Barrier; |
616 | /// # pub fn main() { |
617 | /// let once = AtomicBool::new(true); |
618 | /// let barrier = Arc::new(Barrier::new(2)); |
619 | /// |
620 | /// let runtime = runtime::Builder::new_current_thread() |
621 | /// .on_thread_park({ |
622 | /// let barrier = barrier.clone(); |
623 | /// move || { |
624 | /// let barrier = barrier.clone(); |
625 | /// if once.swap(false, Ordering::Relaxed) { |
626 | /// tokio::spawn(async move { barrier.wait().await; }); |
627 | /// } |
628 | /// } |
629 | /// }) |
630 | /// .build() |
631 | /// .unwrap(); |
632 | /// |
633 | /// runtime.block_on(async { |
634 | /// barrier.wait().await; |
635 | /// }) |
636 | /// # } |
637 | /// ``` |
638 | #[cfg (not(loom))] |
639 | pub fn on_thread_park<F>(&mut self, f: F) -> &mut Self |
640 | where |
641 | F: Fn() + Send + Sync + 'static, |
642 | { |
643 | self.before_park = Some(std::sync::Arc::new(f)); |
644 | self |
645 | } |
646 | |
647 | /// Executes function `f` just after a thread unparks (starts executing tasks). |
648 | /// |
649 | /// This is intended for bookkeeping and monitoring use cases; note that work |
650 | /// in this callback will increase latencies when the application has allowed one or |
651 | /// more runtime threads to go idle. |
652 | /// |
653 | /// Note: There can only be one unpark callback for a runtime; calling this function |
654 | /// more than once replaces the last callback defined, rather than adding to it. |
655 | /// |
656 | /// # Examples |
657 | /// |
658 | /// ``` |
659 | /// # use tokio::runtime; |
660 | /// # pub fn main() { |
661 | /// let runtime = runtime::Builder::new_multi_thread() |
662 | /// .on_thread_unpark(|| { |
663 | /// println!("thread unparking" ); |
664 | /// }) |
665 | /// .build(); |
666 | /// |
667 | /// runtime.unwrap().block_on(async { |
668 | /// tokio::task::yield_now().await; |
669 | /// println!("Hello from Tokio!" ); |
670 | /// }) |
671 | /// # } |
672 | /// ``` |
673 | #[cfg (not(loom))] |
674 | pub fn on_thread_unpark<F>(&mut self, f: F) -> &mut Self |
675 | where |
676 | F: Fn() + Send + Sync + 'static, |
677 | { |
678 | self.after_unpark = Some(std::sync::Arc::new(f)); |
679 | self |
680 | } |
681 | |
682 | /// Creates the configured `Runtime`. |
683 | /// |
684 | /// The returned `Runtime` instance is ready to spawn tasks. |
685 | /// |
686 | /// # Examples |
687 | /// |
688 | /// ``` |
689 | /// use tokio::runtime::Builder; |
690 | /// |
691 | /// let rt = Builder::new_multi_thread().build().unwrap(); |
692 | /// |
693 | /// rt.block_on(async { |
694 | /// println!("Hello from the Tokio runtime" ); |
695 | /// }); |
696 | /// ``` |
697 | pub fn build(&mut self) -> io::Result<Runtime> { |
698 | match &self.kind { |
699 | Kind::CurrentThread => self.build_current_thread_runtime(), |
700 | #[cfg (all(feature = "rt-multi-thread" , not(target_os = "wasi" )))] |
701 | Kind::MultiThread => self.build_threaded_runtime(), |
702 | #[cfg (all(tokio_unstable, feature = "rt-multi-thread" , not(target_os = "wasi" )))] |
703 | Kind::MultiThreadAlt => self.build_alt_threaded_runtime(), |
704 | } |
705 | } |
706 | |
707 | fn get_cfg(&self) -> driver::Cfg { |
708 | driver::Cfg { |
709 | enable_pause_time: match self.kind { |
710 | Kind::CurrentThread => true, |
711 | #[cfg (all(feature = "rt-multi-thread" , not(target_os = "wasi" )))] |
712 | Kind::MultiThread => false, |
713 | #[cfg (all(tokio_unstable, feature = "rt-multi-thread" , not(target_os = "wasi" )))] |
714 | Kind::MultiThreadAlt => false, |
715 | }, |
716 | enable_io: self.enable_io, |
717 | enable_time: self.enable_time, |
718 | start_paused: self.start_paused, |
719 | nevents: self.nevents, |
720 | } |
721 | } |
722 | |
723 | /// Sets a custom timeout for a thread in the blocking pool. |
724 | /// |
725 | /// By default, the timeout for a thread is set to 10 seconds. This can |
726 | /// be overridden using `.thread_keep_alive()`. |
727 | /// |
728 | /// # Example |
729 | /// |
730 | /// ``` |
731 | /// # use tokio::runtime; |
732 | /// # use std::time::Duration; |
733 | /// # pub fn main() { |
734 | /// let rt = runtime::Builder::new_multi_thread() |
735 | /// .thread_keep_alive(Duration::from_millis(100)) |
736 | /// .build(); |
737 | /// # } |
738 | /// ``` |
739 | pub fn thread_keep_alive(&mut self, duration: Duration) -> &mut Self { |
740 | self.keep_alive = Some(duration); |
741 | self |
742 | } |
743 | |
744 | /// Sets the number of scheduler ticks after which the scheduler will poll the global |
745 | /// task queue. |
746 | /// |
747 | /// A scheduler "tick" roughly corresponds to one `poll` invocation on a task. |
748 | /// |
749 | /// By default the global queue interval is 31 for the current-thread scheduler. Please see |
750 | /// [the module documentation] for the default behavior of the multi-thread scheduler. |
751 | /// |
752 | /// Schedulers have a local queue of already-claimed tasks, and a global queue of incoming |
753 | /// tasks. Setting the interval to a smaller value increases the fairness of the scheduler, |
754 | /// at the cost of more synchronization overhead. That can be beneficial for prioritizing |
755 | /// getting started on new work, especially if tasks frequently yield rather than complete |
756 | /// or await on further I/O. Conversely, a higher value prioritizes existing work, and |
757 | /// is a good choice when most tasks quickly complete polling. |
758 | /// |
759 | /// [the module documentation]: crate::runtime#multi-threaded-runtime-behavior-at-the-time-of-writing |
760 | /// |
761 | /// # Examples |
762 | /// |
763 | /// ``` |
764 | /// # use tokio::runtime; |
765 | /// # pub fn main() { |
766 | /// let rt = runtime::Builder::new_multi_thread() |
767 | /// .global_queue_interval(31) |
768 | /// .build(); |
769 | /// # } |
770 | /// ``` |
771 | pub fn global_queue_interval(&mut self, val: u32) -> &mut Self { |
772 | self.global_queue_interval = Some(val); |
773 | self |
774 | } |
775 | |
776 | /// Sets the number of scheduler ticks after which the scheduler will poll for |
777 | /// external events (timers, I/O, and so on). |
778 | /// |
779 | /// A scheduler "tick" roughly corresponds to one `poll` invocation on a task. |
780 | /// |
781 | /// By default, the event interval is `61` for all scheduler types. |
782 | /// |
783 | /// Setting the event interval determines the effective "priority" of delivering |
784 | /// these external events (which may wake up additional tasks), compared to |
785 | /// executing tasks that are currently ready to run. A smaller value is useful |
786 | /// when tasks frequently spend a long time in polling, or frequently yield, |
787 | /// which can result in overly long delays picking up I/O events. Conversely, |
788 | /// picking up new events requires extra synchronization and syscall overhead, |
789 | /// so if tasks generally complete their polling quickly, a higher event interval |
790 | /// will minimize that overhead while still keeping the scheduler responsive to |
791 | /// events. |
792 | /// |
793 | /// # Examples |
794 | /// |
795 | /// ``` |
796 | /// # use tokio::runtime; |
797 | /// # pub fn main() { |
798 | /// let rt = runtime::Builder::new_multi_thread() |
799 | /// .event_interval(31) |
800 | /// .build(); |
801 | /// # } |
802 | /// ``` |
803 | pub fn event_interval(&mut self, val: u32) -> &mut Self { |
804 | self.event_interval = val; |
805 | self |
806 | } |
807 | |
808 | cfg_unstable! { |
809 | /// Configure how the runtime responds to an unhandled panic on a |
810 | /// spawned task. |
811 | /// |
812 | /// By default, an unhandled panic (i.e. a panic not caught by |
813 | /// [`std::panic::catch_unwind`]) has no impact on the runtime's |
814 | /// execution. The panic is error value is forwarded to the task's |
815 | /// [`JoinHandle`] and all other spawned tasks continue running. |
816 | /// |
817 | /// The `unhandled_panic` option enables configuring this behavior. |
818 | /// |
819 | /// * `UnhandledPanic::Ignore` is the default behavior. Panics on |
820 | /// spawned tasks have no impact on the runtime's execution. |
821 | /// * `UnhandledPanic::ShutdownRuntime` will force the runtime to |
822 | /// shutdown immediately when a spawned task panics even if that |
823 | /// task's `JoinHandle` has not been dropped. All other spawned tasks |
824 | /// will immediately terminate and further calls to |
825 | /// [`Runtime::block_on`] will panic. |
826 | /// |
827 | /// # Unstable |
828 | /// |
829 | /// This option is currently unstable and its implementation is |
830 | /// incomplete. The API may change or be removed in the future. See |
831 | /// tokio-rs/tokio#4516 for more details. |
832 | /// |
833 | /// # Examples |
834 | /// |
835 | /// The following demonstrates a runtime configured to shutdown on |
836 | /// panic. The first spawned task panics and results in the runtime |
837 | /// shutting down. The second spawned task never has a chance to |
838 | /// execute. The call to `block_on` will panic due to the runtime being |
839 | /// forcibly shutdown. |
840 | /// |
841 | /// ```should_panic |
842 | /// use tokio::runtime::{self, UnhandledPanic}; |
843 | /// |
844 | /// # pub fn main() { |
845 | /// let rt = runtime::Builder::new_current_thread() |
846 | /// .unhandled_panic(UnhandledPanic::ShutdownRuntime) |
847 | /// .build() |
848 | /// .unwrap(); |
849 | /// |
850 | /// rt.spawn(async { panic!("boom"); }); |
851 | /// rt.spawn(async { |
852 | /// // This task never completes. |
853 | /// }); |
854 | /// |
855 | /// rt.block_on(async { |
856 | /// // Do some work |
857 | /// # loop { tokio::task::yield_now().await; } |
858 | /// }) |
859 | /// # } |
860 | /// ``` |
861 | /// |
862 | /// [`JoinHandle`]: struct@crate::task::JoinHandle |
863 | pub fn unhandled_panic(&mut self, behavior: UnhandledPanic) -> &mut Self { |
864 | self.unhandled_panic = behavior; |
865 | self |
866 | } |
867 | |
868 | /// Disables the LIFO task scheduler heuristic. |
869 | /// |
870 | /// The multi-threaded scheduler includes a heuristic for optimizing |
871 | /// message-passing patterns. This heuristic results in the **last** |
872 | /// scheduled task being polled first. |
873 | /// |
874 | /// To implement this heuristic, each worker thread has a slot which |
875 | /// holds the task that should be polled next. However, this slot cannot |
876 | /// be stolen by other worker threads, which can result in lower total |
877 | /// throughput when tasks tend to have longer poll times. |
878 | /// |
879 | /// This configuration option will disable this heuristic resulting in |
880 | /// all scheduled tasks being pushed into the worker-local queue, which |
881 | /// is stealable. |
882 | /// |
883 | /// Consider trying this option when the task "scheduled" time is high |
884 | /// but the runtime is underutilized. Use tokio-rs/tokio-metrics to |
885 | /// collect this data. |
886 | /// |
887 | /// # Unstable |
888 | /// |
889 | /// This configuration option is considered a workaround for the LIFO |
890 | /// slot not being stealable. When the slot becomes stealable, we will |
891 | /// revisit whether or not this option is necessary. See |
892 | /// tokio-rs/tokio#4941. |
893 | /// |
894 | /// # Examples |
895 | /// |
896 | /// ``` |
897 | /// use tokio::runtime; |
898 | /// |
899 | /// let rt = runtime::Builder::new_multi_thread() |
900 | /// .disable_lifo_slot() |
901 | /// .build() |
902 | /// .unwrap(); |
903 | /// ``` |
904 | pub fn disable_lifo_slot(&mut self) -> &mut Self { |
905 | self.disable_lifo_slot = true; |
906 | self |
907 | } |
908 | |
909 | /// Specifies the random number generation seed to use within all |
910 | /// threads associated with the runtime being built. |
911 | /// |
912 | /// This option is intended to make certain parts of the runtime |
913 | /// deterministic (e.g. the [`tokio::select!`] macro). In the case of |
914 | /// [`tokio::select!`] it will ensure that the order that branches are |
915 | /// polled is deterministic. |
916 | /// |
917 | /// In addition to the code specifying `rng_seed` and interacting with |
918 | /// the runtime, the internals of Tokio and the Rust compiler may affect |
919 | /// the sequences of random numbers. In order to ensure repeatable |
920 | /// results, the version of Tokio, the versions of all other |
921 | /// dependencies that interact with Tokio, and the Rust compiler version |
922 | /// should also all remain constant. |
923 | /// |
924 | /// # Examples |
925 | /// |
926 | /// ``` |
927 | /// # use tokio::runtime::{self, RngSeed}; |
928 | /// # pub fn main() { |
929 | /// let seed = RngSeed::from_bytes(b"place your seed here"); |
930 | /// let rt = runtime::Builder::new_current_thread() |
931 | /// .rng_seed(seed) |
932 | /// .build(); |
933 | /// # } |
934 | /// ``` |
935 | /// |
936 | /// [`tokio::select!`]: crate::select |
937 | pub fn rng_seed(&mut self, seed: RngSeed) -> &mut Self { |
938 | self.seed_generator = RngSeedGenerator::new(seed); |
939 | self |
940 | } |
941 | } |
942 | |
943 | cfg_metrics! { |
944 | /// Enables tracking the distribution of task poll times. |
945 | /// |
946 | /// Task poll times are not instrumented by default as doing so requires |
947 | /// calling [`Instant::now()`] twice per task poll, which could add |
948 | /// measurable overhead. Use the [`Handle::metrics()`] to access the |
949 | /// metrics data. |
950 | /// |
951 | /// The histogram uses fixed bucket sizes. In other words, the histogram |
952 | /// buckets are not dynamic based on input values. Use the |
953 | /// `metrics_poll_count_histogram_` builder methods to configure the |
954 | /// histogram details. |
955 | /// |
956 | /// # Examples |
957 | /// |
958 | /// ``` |
959 | /// use tokio::runtime; |
960 | /// |
961 | /// let rt = runtime::Builder::new_multi_thread() |
962 | /// .enable_metrics_poll_count_histogram() |
963 | /// .build() |
964 | /// .unwrap(); |
965 | /// # // Test default values here |
966 | /// # fn us(n: u64) -> std::time::Duration { std::time::Duration::from_micros(n) } |
967 | /// # let m = rt.handle().metrics(); |
968 | /// # assert_eq!(m.poll_count_histogram_num_buckets(), 10); |
969 | /// # assert_eq!(m.poll_count_histogram_bucket_range(0), us(0)..us(100)); |
970 | /// # assert_eq!(m.poll_count_histogram_bucket_range(1), us(100)..us(200)); |
971 | /// ``` |
972 | /// |
973 | /// [`Handle::metrics()`]: crate::runtime::Handle::metrics |
974 | /// [`Instant::now()`]: std::time::Instant::now |
975 | pub fn enable_metrics_poll_count_histogram(&mut self) -> &mut Self { |
976 | self.metrics_poll_count_histogram_enable = true; |
977 | self |
978 | } |
979 | |
980 | /// Sets the histogram scale for tracking the distribution of task poll |
981 | /// times. |
982 | /// |
983 | /// Tracking the distribution of task poll times can be done using a |
984 | /// linear or log scale. When using linear scale, each histogram bucket |
985 | /// will represent the same range of poll times. When using log scale, |
986 | /// each histogram bucket will cover a range twice as big as the |
987 | /// previous bucket. |
988 | /// |
989 | /// **Default:** linear scale. |
990 | /// |
991 | /// # Examples |
992 | /// |
993 | /// ``` |
994 | /// use tokio::runtime::{self, HistogramScale}; |
995 | /// |
996 | /// let rt = runtime::Builder::new_multi_thread() |
997 | /// .enable_metrics_poll_count_histogram() |
998 | /// .metrics_poll_count_histogram_scale(HistogramScale::Log) |
999 | /// .build() |
1000 | /// .unwrap(); |
1001 | /// ``` |
1002 | pub fn metrics_poll_count_histogram_scale(&mut self, histogram_scale: crate::runtime::HistogramScale) -> &mut Self { |
1003 | self.metrics_poll_count_histogram.scale = histogram_scale; |
1004 | self |
1005 | } |
1006 | |
1007 | /// Sets the histogram resolution for tracking the distribution of task |
1008 | /// poll times. |
1009 | /// |
1010 | /// The resolution is the histogram's first bucket's range. When using a |
1011 | /// linear histogram scale, each bucket will cover the same range. When |
1012 | /// using a log scale, each bucket will cover a range twice as big as |
1013 | /// the previous bucket. In the log case, the resolution represents the |
1014 | /// smallest bucket range. |
1015 | /// |
1016 | /// Note that, when using log scale, the resolution is rounded up to the |
1017 | /// nearest power of 2 in nanoseconds. |
1018 | /// |
1019 | /// **Default:** 100 microseconds. |
1020 | /// |
1021 | /// # Examples |
1022 | /// |
1023 | /// ``` |
1024 | /// use tokio::runtime; |
1025 | /// use std::time::Duration; |
1026 | /// |
1027 | /// let rt = runtime::Builder::new_multi_thread() |
1028 | /// .enable_metrics_poll_count_histogram() |
1029 | /// .metrics_poll_count_histogram_resolution(Duration::from_micros(100)) |
1030 | /// .build() |
1031 | /// .unwrap(); |
1032 | /// ``` |
1033 | pub fn metrics_poll_count_histogram_resolution(&mut self, resolution: Duration) -> &mut Self { |
1034 | assert!(resolution > Duration::from_secs(0)); |
1035 | // Sanity check the argument and also make the cast below safe. |
1036 | assert!(resolution <= Duration::from_secs(1)); |
1037 | |
1038 | let resolution = resolution.as_nanos() as u64; |
1039 | self.metrics_poll_count_histogram.resolution = resolution; |
1040 | self |
1041 | } |
1042 | |
1043 | /// Sets the number of buckets for the histogram tracking the |
1044 | /// distribution of task poll times. |
1045 | /// |
1046 | /// The last bucket tracks all greater values that fall out of other |
1047 | /// ranges. So, configuring the histogram using a linear scale, |
1048 | /// resolution of 50ms, and 10 buckets, the 10th bucket will track task |
1049 | /// polls that take more than 450ms to complete. |
1050 | /// |
1051 | /// **Default:** 10 |
1052 | /// |
1053 | /// # Examples |
1054 | /// |
1055 | /// ``` |
1056 | /// use tokio::runtime; |
1057 | /// |
1058 | /// let rt = runtime::Builder::new_multi_thread() |
1059 | /// .enable_metrics_poll_count_histogram() |
1060 | /// .metrics_poll_count_histogram_buckets(15) |
1061 | /// .build() |
1062 | /// .unwrap(); |
1063 | /// ``` |
1064 | pub fn metrics_poll_count_histogram_buckets(&mut self, buckets: usize) -> &mut Self { |
1065 | self.metrics_poll_count_histogram.num_buckets = buckets; |
1066 | self |
1067 | } |
1068 | } |
1069 | |
1070 | cfg_loom! { |
1071 | pub(crate) fn local_queue_capacity(&mut self, value: usize) -> &mut Self { |
1072 | assert!(value.is_power_of_two()); |
1073 | self.local_queue_capacity = value; |
1074 | self |
1075 | } |
1076 | } |
1077 | |
1078 | fn build_current_thread_runtime(&mut self) -> io::Result<Runtime> { |
1079 | use crate::runtime::scheduler::{self, CurrentThread}; |
1080 | use crate::runtime::{runtime::Scheduler, Config}; |
1081 | |
1082 | let (driver, driver_handle) = driver::Driver::new(self.get_cfg())?; |
1083 | |
1084 | // Blocking pool |
1085 | let blocking_pool = blocking::create_blocking_pool(self, self.max_blocking_threads); |
1086 | let blocking_spawner = blocking_pool.spawner().clone(); |
1087 | |
1088 | // Generate a rng seed for this runtime. |
1089 | let seed_generator_1 = self.seed_generator.next_generator(); |
1090 | let seed_generator_2 = self.seed_generator.next_generator(); |
1091 | |
1092 | // And now put a single-threaded scheduler on top of the timer. When |
1093 | // there are no futures ready to do something, it'll let the timer or |
1094 | // the reactor to generate some new stimuli for the futures to continue |
1095 | // in their life. |
1096 | let (scheduler, handle) = CurrentThread::new( |
1097 | driver, |
1098 | driver_handle, |
1099 | blocking_spawner, |
1100 | seed_generator_2, |
1101 | Config { |
1102 | before_park: self.before_park.clone(), |
1103 | after_unpark: self.after_unpark.clone(), |
1104 | global_queue_interval: self.global_queue_interval, |
1105 | event_interval: self.event_interval, |
1106 | local_queue_capacity: self.local_queue_capacity, |
1107 | #[cfg (tokio_unstable)] |
1108 | unhandled_panic: self.unhandled_panic.clone(), |
1109 | disable_lifo_slot: self.disable_lifo_slot, |
1110 | seed_generator: seed_generator_1, |
1111 | metrics_poll_count_histogram: self.metrics_poll_count_histogram_builder(), |
1112 | }, |
1113 | ); |
1114 | |
1115 | let handle = Handle { |
1116 | inner: scheduler::Handle::CurrentThread(handle), |
1117 | }; |
1118 | |
1119 | Ok(Runtime::from_parts( |
1120 | Scheduler::CurrentThread(scheduler), |
1121 | handle, |
1122 | blocking_pool, |
1123 | )) |
1124 | } |
1125 | |
1126 | fn metrics_poll_count_histogram_builder(&self) -> Option<HistogramBuilder> { |
1127 | if self.metrics_poll_count_histogram_enable { |
1128 | Some(self.metrics_poll_count_histogram.clone()) |
1129 | } else { |
1130 | None |
1131 | } |
1132 | } |
1133 | } |
1134 | |
1135 | cfg_io_driver! { |
1136 | impl Builder { |
1137 | /// Enables the I/O driver. |
1138 | /// |
1139 | /// Doing this enables using net, process, signal, and some I/O types on |
1140 | /// the runtime. |
1141 | /// |
1142 | /// # Examples |
1143 | /// |
1144 | /// ``` |
1145 | /// use tokio::runtime; |
1146 | /// |
1147 | /// let rt = runtime::Builder::new_multi_thread() |
1148 | /// .enable_io() |
1149 | /// .build() |
1150 | /// .unwrap(); |
1151 | /// ``` |
1152 | pub fn enable_io(&mut self) -> &mut Self { |
1153 | self.enable_io = true; |
1154 | self |
1155 | } |
1156 | |
1157 | /// Enables the I/O driver and configures the max number of events to be |
1158 | /// processed per tick. |
1159 | /// |
1160 | /// # Examples |
1161 | /// |
1162 | /// ``` |
1163 | /// use tokio::runtime; |
1164 | /// |
1165 | /// let rt = runtime::Builder::new_current_thread() |
1166 | /// .enable_io() |
1167 | /// .max_io_events_per_tick(1024) |
1168 | /// .build() |
1169 | /// .unwrap(); |
1170 | /// ``` |
1171 | pub fn max_io_events_per_tick(&mut self, capacity: usize) -> &mut Self { |
1172 | self.nevents = capacity; |
1173 | self |
1174 | } |
1175 | } |
1176 | } |
1177 | |
1178 | cfg_time! { |
1179 | impl Builder { |
1180 | /// Enables the time driver. |
1181 | /// |
1182 | /// Doing this enables using `tokio::time` on the runtime. |
1183 | /// |
1184 | /// # Examples |
1185 | /// |
1186 | /// ``` |
1187 | /// use tokio::runtime; |
1188 | /// |
1189 | /// let rt = runtime::Builder::new_multi_thread() |
1190 | /// .enable_time() |
1191 | /// .build() |
1192 | /// .unwrap(); |
1193 | /// ``` |
1194 | pub fn enable_time(&mut self) -> &mut Self { |
1195 | self.enable_time = true; |
1196 | self |
1197 | } |
1198 | } |
1199 | } |
1200 | |
1201 | cfg_test_util! { |
1202 | impl Builder { |
1203 | /// Controls if the runtime's clock starts paused or advancing. |
1204 | /// |
1205 | /// Pausing time requires the current-thread runtime; construction of |
1206 | /// the runtime will panic otherwise. |
1207 | /// |
1208 | /// # Examples |
1209 | /// |
1210 | /// ``` |
1211 | /// use tokio::runtime; |
1212 | /// |
1213 | /// let rt = runtime::Builder::new_current_thread() |
1214 | /// .enable_time() |
1215 | /// .start_paused(true) |
1216 | /// .build() |
1217 | /// .unwrap(); |
1218 | /// ``` |
1219 | pub fn start_paused(&mut self, start_paused: bool) -> &mut Self { |
1220 | self.start_paused = start_paused; |
1221 | self |
1222 | } |
1223 | } |
1224 | } |
1225 | |
1226 | cfg_rt_multi_thread! { |
1227 | impl Builder { |
1228 | fn build_threaded_runtime(&mut self) -> io::Result<Runtime> { |
1229 | use crate::loom::sys::num_cpus; |
1230 | use crate::runtime::{Config, runtime::Scheduler}; |
1231 | use crate::runtime::scheduler::{self, MultiThread}; |
1232 | |
1233 | let core_threads = self.worker_threads.unwrap_or_else(num_cpus); |
1234 | |
1235 | let (driver, driver_handle) = driver::Driver::new(self.get_cfg())?; |
1236 | |
1237 | // Create the blocking pool |
1238 | let blocking_pool = |
1239 | blocking::create_blocking_pool(self, self.max_blocking_threads + core_threads); |
1240 | let blocking_spawner = blocking_pool.spawner().clone(); |
1241 | |
1242 | // Generate a rng seed for this runtime. |
1243 | let seed_generator_1 = self.seed_generator.next_generator(); |
1244 | let seed_generator_2 = self.seed_generator.next_generator(); |
1245 | |
1246 | let (scheduler, handle, launch) = MultiThread::new( |
1247 | core_threads, |
1248 | driver, |
1249 | driver_handle, |
1250 | blocking_spawner, |
1251 | seed_generator_2, |
1252 | Config { |
1253 | before_park: self.before_park.clone(), |
1254 | after_unpark: self.after_unpark.clone(), |
1255 | global_queue_interval: self.global_queue_interval, |
1256 | event_interval: self.event_interval, |
1257 | local_queue_capacity: self.local_queue_capacity, |
1258 | #[cfg (tokio_unstable)] |
1259 | unhandled_panic: self.unhandled_panic.clone(), |
1260 | disable_lifo_slot: self.disable_lifo_slot, |
1261 | seed_generator: seed_generator_1, |
1262 | metrics_poll_count_histogram: self.metrics_poll_count_histogram_builder(), |
1263 | }, |
1264 | ); |
1265 | |
1266 | let handle = Handle { inner: scheduler::Handle::MultiThread(handle) }; |
1267 | |
1268 | // Spawn the thread pool workers |
1269 | let _enter = handle.enter(); |
1270 | launch.launch(); |
1271 | |
1272 | Ok(Runtime::from_parts(Scheduler::MultiThread(scheduler), handle, blocking_pool)) |
1273 | } |
1274 | |
1275 | cfg_unstable! { |
1276 | fn build_alt_threaded_runtime(&mut self) -> io::Result<Runtime> { |
1277 | use crate::loom::sys::num_cpus; |
1278 | use crate::runtime::{Config, runtime::Scheduler}; |
1279 | use crate::runtime::scheduler::MultiThreadAlt; |
1280 | |
1281 | let core_threads = self.worker_threads.unwrap_or_else(num_cpus); |
1282 | let (driver, driver_handle) = driver::Driver::new(self.get_cfg())?; |
1283 | |
1284 | // Create the blocking pool |
1285 | let blocking_pool = |
1286 | blocking::create_blocking_pool(self, self.max_blocking_threads + core_threads); |
1287 | let blocking_spawner = blocking_pool.spawner().clone(); |
1288 | |
1289 | // Generate a rng seed for this runtime. |
1290 | let seed_generator_1 = self.seed_generator.next_generator(); |
1291 | let seed_generator_2 = self.seed_generator.next_generator(); |
1292 | |
1293 | let (scheduler, handle) = MultiThreadAlt::new( |
1294 | core_threads, |
1295 | driver, |
1296 | driver_handle, |
1297 | blocking_spawner, |
1298 | seed_generator_2, |
1299 | Config { |
1300 | before_park: self.before_park.clone(), |
1301 | after_unpark: self.after_unpark.clone(), |
1302 | global_queue_interval: self.global_queue_interval, |
1303 | event_interval: self.event_interval, |
1304 | local_queue_capacity: self.local_queue_capacity, |
1305 | #[cfg (tokio_unstable)] |
1306 | unhandled_panic: self.unhandled_panic.clone(), |
1307 | disable_lifo_slot: self.disable_lifo_slot, |
1308 | seed_generator: seed_generator_1, |
1309 | metrics_poll_count_histogram: self.metrics_poll_count_histogram_builder(), |
1310 | }, |
1311 | ); |
1312 | |
1313 | Ok(Runtime::from_parts(Scheduler::MultiThreadAlt(scheduler), handle, blocking_pool)) |
1314 | } |
1315 | } |
1316 | } |
1317 | } |
1318 | |
1319 | impl fmt::Debug for Builder { |
1320 | fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
1321 | fmt&mut DebugStruct<'_, '_>.debug_struct("Builder" ) |
1322 | .field("worker_threads" , &self.worker_threads) |
1323 | .field("max_blocking_threads" , &self.max_blocking_threads) |
1324 | .field( |
1325 | "thread_name" , |
1326 | &"<dyn Fn() -> String + Send + Sync + 'static>" , |
1327 | ) |
1328 | .field("thread_stack_size" , &self.thread_stack_size) |
1329 | .field("after_start" , &self.after_start.as_ref().map(|_| "..." )) |
1330 | .field("before_stop" , &self.before_stop.as_ref().map(|_| "..." )) |
1331 | .field("before_park" , &self.before_park.as_ref().map(|_| "..." )) |
1332 | .field(name:"after_unpark" , &self.after_unpark.as_ref().map(|_| "..." )) |
1333 | .finish() |
1334 | } |
1335 | } |
1336 | |