1 | use crate::io::{Interest, PollEvented, ReadBuf, Ready}; |
2 | use crate::net::{to_socket_addrs, ToSocketAddrs}; |
3 | use crate::util::check_socket_for_blocking; |
4 | |
5 | use std::fmt; |
6 | use std::io; |
7 | use std::net::{self, Ipv4Addr, Ipv6Addr, SocketAddr}; |
8 | use std::task::{ready, Context, Poll}; |
9 | |
10 | cfg_io_util! { |
11 | use bytes::BufMut; |
12 | } |
13 | |
14 | cfg_net! { |
15 | /// A UDP socket. |
16 | /// |
17 | /// UDP is "connectionless", unlike TCP. Meaning, regardless of what address you've bound to, a `UdpSocket` |
18 | /// is free to communicate with many different remotes. In tokio there are basically two main ways to use `UdpSocket`: |
19 | /// |
20 | /// * one to many: [`bind`](`UdpSocket::bind`) and use [`send_to`](`UdpSocket::send_to`) |
21 | /// and [`recv_from`](`UdpSocket::recv_from`) to communicate with many different addresses |
22 | /// * one to one: [`connect`](`UdpSocket::connect`) and associate with a single address, using [`send`](`UdpSocket::send`) |
23 | /// and [`recv`](`UdpSocket::recv`) to communicate only with that remote address |
24 | /// |
25 | /// This type does not provide a `split` method, because this functionality |
26 | /// can be achieved by instead wrapping the socket in an [`Arc`]. Note that |
27 | /// you do not need a `Mutex` to share the `UdpSocket` — an `Arc<UdpSocket>` |
28 | /// is enough. This is because all of the methods take `&self` instead of |
29 | /// `&mut self`. Once you have wrapped it in an `Arc`, you can call |
30 | /// `.clone()` on the `Arc<UdpSocket>` to get multiple shared handles to the |
31 | /// same socket. An example of such usage can be found further down. |
32 | /// |
33 | /// [`Arc`]: std::sync::Arc |
34 | /// |
35 | /// # Streams |
36 | /// |
37 | /// If you need to listen over UDP and produce a [`Stream`], you can look |
38 | /// at [`UdpFramed`]. |
39 | /// |
40 | /// [`UdpFramed`]: https://docs.rs/tokio-util/latest/tokio_util/udp/struct.UdpFramed.html |
41 | /// [`Stream`]: https://docs.rs/futures/0.3/futures/stream/trait.Stream.html |
42 | /// |
43 | /// # Example: one to many (bind) |
44 | /// |
45 | /// Using `bind` we can create a simple echo server that sends and recv's with many different clients: |
46 | /// ```no_run |
47 | /// use tokio::net::UdpSocket; |
48 | /// use std::io; |
49 | /// |
50 | /// #[tokio::main] |
51 | /// async fn main() -> io::Result<()> { |
52 | /// let sock = UdpSocket::bind("0.0.0.0:8080").await?; |
53 | /// let mut buf = [0; 1024]; |
54 | /// loop { |
55 | /// let (len, addr) = sock.recv_from(&mut buf).await?; |
56 | /// println!("{:?} bytes received from {:?}", len, addr); |
57 | /// |
58 | /// let len = sock.send_to(&buf[..len], addr).await?; |
59 | /// println!("{:?} bytes sent", len); |
60 | /// } |
61 | /// } |
62 | /// ``` |
63 | /// |
64 | /// # Example: one to one (connect) |
65 | /// |
66 | /// Or using `connect` we can echo with a single remote address using `send` and `recv`: |
67 | /// ```no_run |
68 | /// use tokio::net::UdpSocket; |
69 | /// use std::io; |
70 | /// |
71 | /// #[tokio::main] |
72 | /// async fn main() -> io::Result<()> { |
73 | /// let sock = UdpSocket::bind("0.0.0.0:8080").await?; |
74 | /// |
75 | /// let remote_addr = "127.0.0.1:59611"; |
76 | /// sock.connect(remote_addr).await?; |
77 | /// let mut buf = [0; 1024]; |
78 | /// loop { |
79 | /// let len = sock.recv(&mut buf).await?; |
80 | /// println!("{:?} bytes received from {:?}", len, remote_addr); |
81 | /// |
82 | /// let len = sock.send(&buf[..len]).await?; |
83 | /// println!("{:?} bytes sent", len); |
84 | /// } |
85 | /// } |
86 | /// ``` |
87 | /// |
88 | /// # Example: Splitting with `Arc` |
89 | /// |
90 | /// Because `send_to` and `recv_from` take `&self`. It's perfectly alright |
91 | /// to use an `Arc<UdpSocket>` and share the references to multiple tasks. |
92 | /// Here is a similar "echo" example that supports concurrent |
93 | /// sending/receiving: |
94 | /// |
95 | /// ```no_run |
96 | /// use tokio::{net::UdpSocket, sync::mpsc}; |
97 | /// use std::{io, net::SocketAddr, sync::Arc}; |
98 | /// |
99 | /// #[tokio::main] |
100 | /// async fn main() -> io::Result<()> { |
101 | /// let sock = UdpSocket::bind("0.0.0.0:8080".parse::<SocketAddr>().unwrap()).await?; |
102 | /// let r = Arc::new(sock); |
103 | /// let s = r.clone(); |
104 | /// let (tx, mut rx) = mpsc::channel::<(Vec<u8>, SocketAddr)>(1_000); |
105 | /// |
106 | /// tokio::spawn(async move { |
107 | /// while let Some((bytes, addr)) = rx.recv().await { |
108 | /// let len = s.send_to(&bytes, &addr).await.unwrap(); |
109 | /// println!("{:?} bytes sent", len); |
110 | /// } |
111 | /// }); |
112 | /// |
113 | /// let mut buf = [0; 1024]; |
114 | /// loop { |
115 | /// let (len, addr) = r.recv_from(&mut buf).await?; |
116 | /// println!("{:?} bytes received from {:?}", len, addr); |
117 | /// tx.send((buf[..len].to_vec(), addr)).await.unwrap(); |
118 | /// } |
119 | /// } |
120 | /// ``` |
121 | /// |
122 | pub struct UdpSocket { |
123 | io: PollEvented<mio::net::UdpSocket>, |
124 | } |
125 | } |
126 | |
127 | impl UdpSocket { |
128 | /// This function will create a new UDP socket and attempt to bind it to |
129 | /// the `addr` provided. |
130 | /// |
131 | /// Binding with a port number of 0 will request that the OS assigns a port |
132 | /// to this listener. The port allocated can be queried via the `local_addr` |
133 | /// method. |
134 | /// |
135 | /// # Example |
136 | /// |
137 | /// ```no_run |
138 | /// # if cfg!(miri) { return } // No `socket` in miri. |
139 | /// use tokio::net::UdpSocket; |
140 | /// use std::io; |
141 | /// |
142 | /// #[tokio::main] |
143 | /// async fn main() -> io::Result<()> { |
144 | /// let sock = UdpSocket::bind("0.0.0.0:8080" ).await?; |
145 | /// // use `sock` |
146 | /// # let _ = sock; |
147 | /// Ok(()) |
148 | /// } |
149 | /// ``` |
150 | pub async fn bind<A: ToSocketAddrs>(addr: A) -> io::Result<UdpSocket> { |
151 | let addrs = to_socket_addrs(addr).await?; |
152 | let mut last_err = None; |
153 | |
154 | for addr in addrs { |
155 | match UdpSocket::bind_addr(addr) { |
156 | Ok(socket) => return Ok(socket), |
157 | Err(e) => last_err = Some(e), |
158 | } |
159 | } |
160 | |
161 | Err(last_err.unwrap_or_else(|| { |
162 | io::Error::new( |
163 | io::ErrorKind::InvalidInput, |
164 | "could not resolve to any address" , |
165 | ) |
166 | })) |
167 | } |
168 | |
169 | fn bind_addr(addr: SocketAddr) -> io::Result<UdpSocket> { |
170 | let sys = mio::net::UdpSocket::bind(addr)?; |
171 | UdpSocket::new(sys) |
172 | } |
173 | |
174 | #[track_caller ] |
175 | fn new(socket: mio::net::UdpSocket) -> io::Result<UdpSocket> { |
176 | let io = PollEvented::new(socket)?; |
177 | Ok(UdpSocket { io }) |
178 | } |
179 | |
180 | /// Creates new `UdpSocket` from a previously bound `std::net::UdpSocket`. |
181 | /// |
182 | /// This function is intended to be used to wrap a UDP socket from the |
183 | /// standard library in the Tokio equivalent. |
184 | /// |
185 | /// This can be used in conjunction with `socket2`'s `Socket` interface to |
186 | /// configure a socket before it's handed off, such as setting options like |
187 | /// `reuse_address` or binding to multiple addresses. |
188 | /// |
189 | /// # Notes |
190 | /// |
191 | /// The caller is responsible for ensuring that the socket is in |
192 | /// non-blocking mode. Otherwise all I/O operations on the socket |
193 | /// will block the thread, which will cause unexpected behavior. |
194 | /// Non-blocking mode can be set using [`set_nonblocking`]. |
195 | /// |
196 | /// Passing a listener in blocking mode is always erroneous, |
197 | /// and the behavior in that case may change in the future. |
198 | /// For example, it could panic. |
199 | /// |
200 | /// [`set_nonblocking`]: std::net::UdpSocket::set_nonblocking |
201 | /// |
202 | /// # Panics |
203 | /// |
204 | /// This function panics if thread-local runtime is not set. |
205 | /// |
206 | /// The runtime is usually set implicitly when this function is called |
207 | /// from a future driven by a tokio runtime, otherwise runtime can be set |
208 | /// explicitly with [`Runtime::enter`](crate::runtime::Runtime::enter) function. |
209 | /// |
210 | /// # Example |
211 | /// |
212 | /// ```no_run |
213 | /// use tokio::net::UdpSocket; |
214 | /// # use std::{io, net::SocketAddr}; |
215 | /// |
216 | /// # #[tokio::main] |
217 | /// # async fn main() -> io::Result<()> { |
218 | /// let addr = "0.0.0.0:8080" .parse::<SocketAddr>().unwrap(); |
219 | /// let std_sock = std::net::UdpSocket::bind(addr)?; |
220 | /// std_sock.set_nonblocking(true)?; |
221 | /// let sock = UdpSocket::from_std(std_sock)?; |
222 | /// // use `sock` |
223 | /// # Ok(()) |
224 | /// # } |
225 | /// ``` |
226 | #[track_caller ] |
227 | pub fn from_std(socket: net::UdpSocket) -> io::Result<UdpSocket> { |
228 | check_socket_for_blocking(&socket)?; |
229 | |
230 | let io = mio::net::UdpSocket::from_std(socket); |
231 | UdpSocket::new(io) |
232 | } |
233 | |
234 | /// Turns a [`tokio::net::UdpSocket`] into a [`std::net::UdpSocket`]. |
235 | /// |
236 | /// The returned [`std::net::UdpSocket`] will have nonblocking mode set as |
237 | /// `true`. Use [`set_nonblocking`] to change the blocking mode if needed. |
238 | /// |
239 | /// # Examples |
240 | /// |
241 | /// ```rust,no_run |
242 | /// use std::error::Error; |
243 | /// |
244 | /// #[tokio::main] |
245 | /// async fn main() -> Result<(), Box<dyn Error>> { |
246 | /// let tokio_socket = tokio::net::UdpSocket::bind("127.0.0.1:0" ).await?; |
247 | /// let std_socket = tokio_socket.into_std()?; |
248 | /// std_socket.set_nonblocking(false)?; |
249 | /// Ok(()) |
250 | /// } |
251 | /// ``` |
252 | /// |
253 | /// [`tokio::net::UdpSocket`]: UdpSocket |
254 | /// [`std::net::UdpSocket`]: std::net::UdpSocket |
255 | /// [`set_nonblocking`]: fn@std::net::UdpSocket::set_nonblocking |
256 | pub fn into_std(self) -> io::Result<std::net::UdpSocket> { |
257 | #[cfg (unix)] |
258 | { |
259 | use std::os::unix::io::{FromRawFd, IntoRawFd}; |
260 | self.io |
261 | .into_inner() |
262 | .map(IntoRawFd::into_raw_fd) |
263 | .map(|raw_fd| unsafe { std::net::UdpSocket::from_raw_fd(raw_fd) }) |
264 | } |
265 | |
266 | #[cfg (windows)] |
267 | { |
268 | use std::os::windows::io::{FromRawSocket, IntoRawSocket}; |
269 | self.io |
270 | .into_inner() |
271 | .map(|io| io.into_raw_socket()) |
272 | .map(|raw_socket| unsafe { std::net::UdpSocket::from_raw_socket(raw_socket) }) |
273 | } |
274 | } |
275 | |
276 | fn as_socket(&self) -> socket2::SockRef<'_> { |
277 | socket2::SockRef::from(self) |
278 | } |
279 | |
280 | /// Returns the local address that this socket is bound to. |
281 | /// |
282 | /// # Example |
283 | /// |
284 | /// ```no_run |
285 | /// use tokio::net::UdpSocket; |
286 | /// # use std::{io, net::SocketAddr}; |
287 | /// |
288 | /// # #[tokio::main] |
289 | /// # async fn main() -> io::Result<()> { |
290 | /// let addr = "0.0.0.0:8080" .parse::<SocketAddr>().unwrap(); |
291 | /// let sock = UdpSocket::bind(addr).await?; |
292 | /// // the address the socket is bound to |
293 | /// let local_addr = sock.local_addr()?; |
294 | /// # Ok(()) |
295 | /// # } |
296 | /// ``` |
297 | pub fn local_addr(&self) -> io::Result<SocketAddr> { |
298 | self.io.local_addr() |
299 | } |
300 | |
301 | /// Returns the socket address of the remote peer this socket was connected to. |
302 | /// |
303 | /// # Example |
304 | /// |
305 | /// ``` |
306 | /// # if cfg!(miri) { return } // No `socket` in miri. |
307 | /// use tokio::net::UdpSocket; |
308 | /// |
309 | /// # use std::{io, net::SocketAddr}; |
310 | /// # #[tokio::main] |
311 | /// # async fn main() -> io::Result<()> { |
312 | /// let addr = "0.0.0.0:8080" .parse::<SocketAddr>().unwrap(); |
313 | /// let peer = "127.0.0.1:11100" .parse::<SocketAddr>().unwrap(); |
314 | /// let sock = UdpSocket::bind(addr).await?; |
315 | /// sock.connect(peer).await?; |
316 | /// assert_eq!(peer, sock.peer_addr()?); |
317 | /// # Ok(()) |
318 | /// # } |
319 | /// ``` |
320 | pub fn peer_addr(&self) -> io::Result<SocketAddr> { |
321 | self.io.peer_addr() |
322 | } |
323 | |
324 | /// Connects the UDP socket setting the default destination for send() and |
325 | /// limiting packets that are read via `recv` from the address specified in |
326 | /// `addr`. |
327 | /// |
328 | /// # Example |
329 | /// |
330 | /// ```no_run |
331 | /// use tokio::net::UdpSocket; |
332 | /// # use std::{io, net::SocketAddr}; |
333 | /// |
334 | /// # #[tokio::main] |
335 | /// # async fn main() -> io::Result<()> { |
336 | /// let sock = UdpSocket::bind("0.0.0.0:8080" .parse::<SocketAddr>().unwrap()).await?; |
337 | /// |
338 | /// let remote_addr = "127.0.0.1:59600" .parse::<SocketAddr>().unwrap(); |
339 | /// sock.connect(remote_addr).await?; |
340 | /// let mut buf = [0u8; 32]; |
341 | /// // recv from remote_addr |
342 | /// let len = sock.recv(&mut buf).await?; |
343 | /// // send to remote_addr |
344 | /// let _len = sock.send(&buf[..len]).await?; |
345 | /// # Ok(()) |
346 | /// # } |
347 | /// ``` |
348 | pub async fn connect<A: ToSocketAddrs>(&self, addr: A) -> io::Result<()> { |
349 | let addrs = to_socket_addrs(addr).await?; |
350 | let mut last_err = None; |
351 | |
352 | for addr in addrs { |
353 | match self.io.connect(addr) { |
354 | Ok(()) => return Ok(()), |
355 | Err(e) => last_err = Some(e), |
356 | } |
357 | } |
358 | |
359 | Err(last_err.unwrap_or_else(|| { |
360 | io::Error::new( |
361 | io::ErrorKind::InvalidInput, |
362 | "could not resolve to any address" , |
363 | ) |
364 | })) |
365 | } |
366 | |
367 | /// Waits for any of the requested ready states. |
368 | /// |
369 | /// This function is usually paired with `try_recv()` or `try_send()`. It |
370 | /// can be used to concurrently `recv` / `send` to the same socket on a single |
371 | /// task without splitting the socket. |
372 | /// |
373 | /// The function may complete without the socket being ready. This is a |
374 | /// false-positive and attempting an operation will return with |
375 | /// `io::ErrorKind::WouldBlock`. The function can also return with an empty |
376 | /// [`Ready`] set, so you should always check the returned value and possibly |
377 | /// wait again if the requested states are not set. |
378 | /// |
379 | /// # Cancel safety |
380 | /// |
381 | /// This method is cancel safe. Once a readiness event occurs, the method |
382 | /// will continue to return immediately until the readiness event is |
383 | /// consumed by an attempt to read or write that fails with `WouldBlock` or |
384 | /// `Poll::Pending`. |
385 | /// |
386 | /// # Examples |
387 | /// |
388 | /// Concurrently receive from and send to the socket on the same task |
389 | /// without splitting. |
390 | /// |
391 | /// ```no_run |
392 | /// use tokio::io::{self, Interest}; |
393 | /// use tokio::net::UdpSocket; |
394 | /// |
395 | /// #[tokio::main] |
396 | /// async fn main() -> io::Result<()> { |
397 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
398 | /// socket.connect("127.0.0.1:8081" ).await?; |
399 | /// |
400 | /// loop { |
401 | /// let ready = socket.ready(Interest::READABLE | Interest::WRITABLE).await?; |
402 | /// |
403 | /// if ready.is_readable() { |
404 | /// // The buffer is **not** included in the async task and will only exist |
405 | /// // on the stack. |
406 | /// let mut data = [0; 1024]; |
407 | /// match socket.try_recv(&mut data[..]) { |
408 | /// Ok(n) => { |
409 | /// println!("received {:?}" , &data[..n]); |
410 | /// } |
411 | /// // False-positive, continue |
412 | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {} |
413 | /// Err(e) => { |
414 | /// return Err(e); |
415 | /// } |
416 | /// } |
417 | /// } |
418 | /// |
419 | /// if ready.is_writable() { |
420 | /// // Write some data |
421 | /// match socket.try_send(b"hello world" ) { |
422 | /// Ok(n) => { |
423 | /// println!("sent {} bytes" , n); |
424 | /// } |
425 | /// // False-positive, continue |
426 | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {} |
427 | /// Err(e) => { |
428 | /// return Err(e); |
429 | /// } |
430 | /// } |
431 | /// } |
432 | /// } |
433 | /// } |
434 | /// ``` |
435 | pub async fn ready(&self, interest: Interest) -> io::Result<Ready> { |
436 | let event = self.io.registration().readiness(interest).await?; |
437 | Ok(event.ready) |
438 | } |
439 | |
440 | /// Waits for the socket to become writable. |
441 | /// |
442 | /// This function is equivalent to `ready(Interest::WRITABLE)` and is |
443 | /// usually paired with `try_send()` or `try_send_to()`. |
444 | /// |
445 | /// The function may complete without the socket being writable. This is a |
446 | /// false-positive and attempting a `try_send()` will return with |
447 | /// `io::ErrorKind::WouldBlock`. |
448 | /// |
449 | /// # Cancel safety |
450 | /// |
451 | /// This method is cancel safe. Once a readiness event occurs, the method |
452 | /// will continue to return immediately until the readiness event is |
453 | /// consumed by an attempt to write that fails with `WouldBlock` or |
454 | /// `Poll::Pending`. |
455 | /// |
456 | /// # Examples |
457 | /// |
458 | /// ```no_run |
459 | /// use tokio::net::UdpSocket; |
460 | /// use std::io; |
461 | /// |
462 | /// #[tokio::main] |
463 | /// async fn main() -> io::Result<()> { |
464 | /// // Bind socket |
465 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
466 | /// socket.connect("127.0.0.1:8081" ).await?; |
467 | /// |
468 | /// loop { |
469 | /// // Wait for the socket to be writable |
470 | /// socket.writable().await?; |
471 | /// |
472 | /// // Try to send data, this may still fail with `WouldBlock` |
473 | /// // if the readiness event is a false positive. |
474 | /// match socket.try_send(b"hello world" ) { |
475 | /// Ok(n) => { |
476 | /// break; |
477 | /// } |
478 | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { |
479 | /// continue; |
480 | /// } |
481 | /// Err(e) => { |
482 | /// return Err(e); |
483 | /// } |
484 | /// } |
485 | /// } |
486 | /// |
487 | /// Ok(()) |
488 | /// } |
489 | /// ``` |
490 | pub async fn writable(&self) -> io::Result<()> { |
491 | self.ready(Interest::WRITABLE).await?; |
492 | Ok(()) |
493 | } |
494 | |
495 | /// Polls for write/send readiness. |
496 | /// |
497 | /// If the udp stream is not currently ready for sending, this method will |
498 | /// store a clone of the `Waker` from the provided `Context`. When the udp |
499 | /// stream becomes ready for sending, `Waker::wake` will be called on the |
500 | /// waker. |
501 | /// |
502 | /// Note that on multiple calls to `poll_send_ready` or `poll_send`, only |
503 | /// the `Waker` from the `Context` passed to the most recent call is |
504 | /// scheduled to receive a wakeup. (However, `poll_recv_ready` retains a |
505 | /// second, independent waker.) |
506 | /// |
507 | /// This function is intended for cases where creating and pinning a future |
508 | /// via [`writable`] is not feasible. Where possible, using [`writable`] is |
509 | /// preferred, as this supports polling from multiple tasks at once. |
510 | /// |
511 | /// # Return value |
512 | /// |
513 | /// The function returns: |
514 | /// |
515 | /// * `Poll::Pending` if the udp stream is not ready for writing. |
516 | /// * `Poll::Ready(Ok(()))` if the udp stream is ready for writing. |
517 | /// * `Poll::Ready(Err(e))` if an error is encountered. |
518 | /// |
519 | /// # Errors |
520 | /// |
521 | /// This function may encounter any standard I/O error except `WouldBlock`. |
522 | /// |
523 | /// [`writable`]: method@Self::writable |
524 | pub fn poll_send_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> { |
525 | self.io.registration().poll_write_ready(cx).map_ok(|_| ()) |
526 | } |
527 | |
528 | /// Sends data on the socket to the remote address that the socket is |
529 | /// connected to. |
530 | /// |
531 | /// The [`connect`] method will connect this socket to a remote address. |
532 | /// This method will fail if the socket is not connected. |
533 | /// |
534 | /// [`connect`]: method@Self::connect |
535 | /// |
536 | /// # Return |
537 | /// |
538 | /// On success, the number of bytes sent is returned, otherwise, the |
539 | /// encountered error is returned. |
540 | /// |
541 | /// # Cancel safety |
542 | /// |
543 | /// This method is cancel safe. If `send` is used as the event in a |
544 | /// [`tokio::select!`](crate::select) statement and some other branch |
545 | /// completes first, then it is guaranteed that the message was not sent. |
546 | /// |
547 | /// # Examples |
548 | /// |
549 | /// ```no_run |
550 | /// use tokio::io; |
551 | /// use tokio::net::UdpSocket; |
552 | /// |
553 | /// #[tokio::main] |
554 | /// async fn main() -> io::Result<()> { |
555 | /// // Bind socket |
556 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
557 | /// socket.connect("127.0.0.1:8081" ).await?; |
558 | /// |
559 | /// // Send a message |
560 | /// socket.send(b"hello world" ).await?; |
561 | /// |
562 | /// Ok(()) |
563 | /// } |
564 | /// ``` |
565 | pub async fn send(&self, buf: &[u8]) -> io::Result<usize> { |
566 | self.io |
567 | .registration() |
568 | .async_io(Interest::WRITABLE, || self.io.send(buf)) |
569 | .await |
570 | } |
571 | |
572 | /// Attempts to send data on the socket to the remote address to which it |
573 | /// was previously `connect`ed. |
574 | /// |
575 | /// The [`connect`] method will connect this socket to a remote address. |
576 | /// This method will fail if the socket is not connected. |
577 | /// |
578 | /// Note that on multiple calls to a `poll_*` method in the send direction, |
579 | /// only the `Waker` from the `Context` passed to the most recent call will |
580 | /// be scheduled to receive a wakeup. |
581 | /// |
582 | /// # Return value |
583 | /// |
584 | /// The function returns: |
585 | /// |
586 | /// * `Poll::Pending` if the socket is not available to write |
587 | /// * `Poll::Ready(Ok(n))` `n` is the number of bytes sent |
588 | /// * `Poll::Ready(Err(e))` if an error is encountered. |
589 | /// |
590 | /// # Errors |
591 | /// |
592 | /// This function may encounter any standard I/O error except `WouldBlock`. |
593 | /// |
594 | /// [`connect`]: method@Self::connect |
595 | pub fn poll_send(&self, cx: &mut Context<'_>, buf: &[u8]) -> Poll<io::Result<usize>> { |
596 | self.io |
597 | .registration() |
598 | .poll_write_io(cx, || self.io.send(buf)) |
599 | } |
600 | |
601 | /// Tries to send data on the socket to the remote address to which it is |
602 | /// connected. |
603 | /// |
604 | /// When the socket buffer is full, `Err(io::ErrorKind::WouldBlock)` is |
605 | /// returned. This function is usually paired with `writable()`. |
606 | /// |
607 | /// # Returns |
608 | /// |
609 | /// If successful, `Ok(n)` is returned, where `n` is the number of bytes |
610 | /// sent. If the socket is not ready to send data, |
611 | /// `Err(ErrorKind::WouldBlock)` is returned. |
612 | /// |
613 | /// # Examples |
614 | /// |
615 | /// ```no_run |
616 | /// use tokio::net::UdpSocket; |
617 | /// use std::io; |
618 | /// |
619 | /// #[tokio::main] |
620 | /// async fn main() -> io::Result<()> { |
621 | /// // Bind a UDP socket |
622 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
623 | /// |
624 | /// // Connect to a peer |
625 | /// socket.connect("127.0.0.1:8081" ).await?; |
626 | /// |
627 | /// loop { |
628 | /// // Wait for the socket to be writable |
629 | /// socket.writable().await?; |
630 | /// |
631 | /// // Try to send data, this may still fail with `WouldBlock` |
632 | /// // if the readiness event is a false positive. |
633 | /// match socket.try_send(b"hello world" ) { |
634 | /// Ok(n) => { |
635 | /// break; |
636 | /// } |
637 | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { |
638 | /// continue; |
639 | /// } |
640 | /// Err(e) => { |
641 | /// return Err(e); |
642 | /// } |
643 | /// } |
644 | /// } |
645 | /// |
646 | /// Ok(()) |
647 | /// } |
648 | /// ``` |
649 | pub fn try_send(&self, buf: &[u8]) -> io::Result<usize> { |
650 | self.io |
651 | .registration() |
652 | .try_io(Interest::WRITABLE, || self.io.send(buf)) |
653 | } |
654 | |
655 | /// Waits for the socket to become readable. |
656 | /// |
657 | /// This function is equivalent to `ready(Interest::READABLE)` and is usually |
658 | /// paired with `try_recv()`. |
659 | /// |
660 | /// The function may complete without the socket being readable. This is a |
661 | /// false-positive and attempting a `try_recv()` will return with |
662 | /// `io::ErrorKind::WouldBlock`. |
663 | /// |
664 | /// # Cancel safety |
665 | /// |
666 | /// This method is cancel safe. Once a readiness event occurs, the method |
667 | /// will continue to return immediately until the readiness event is |
668 | /// consumed by an attempt to read that fails with `WouldBlock` or |
669 | /// `Poll::Pending`. |
670 | /// |
671 | /// # Examples |
672 | /// |
673 | /// ```no_run |
674 | /// use tokio::net::UdpSocket; |
675 | /// use std::io; |
676 | /// |
677 | /// #[tokio::main] |
678 | /// async fn main() -> io::Result<()> { |
679 | /// // Connect to a peer |
680 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
681 | /// socket.connect("127.0.0.1:8081" ).await?; |
682 | /// |
683 | /// loop { |
684 | /// // Wait for the socket to be readable |
685 | /// socket.readable().await?; |
686 | /// |
687 | /// // The buffer is **not** included in the async task and will |
688 | /// // only exist on the stack. |
689 | /// let mut buf = [0; 1024]; |
690 | /// |
691 | /// // Try to recv data, this may still fail with `WouldBlock` |
692 | /// // if the readiness event is a false positive. |
693 | /// match socket.try_recv(&mut buf) { |
694 | /// Ok(n) => { |
695 | /// println!("GOT {:?}" , &buf[..n]); |
696 | /// break; |
697 | /// } |
698 | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { |
699 | /// continue; |
700 | /// } |
701 | /// Err(e) => { |
702 | /// return Err(e); |
703 | /// } |
704 | /// } |
705 | /// } |
706 | /// |
707 | /// Ok(()) |
708 | /// } |
709 | /// ``` |
710 | pub async fn readable(&self) -> io::Result<()> { |
711 | self.ready(Interest::READABLE).await?; |
712 | Ok(()) |
713 | } |
714 | |
715 | /// Polls for read/receive readiness. |
716 | /// |
717 | /// If the udp stream is not currently ready for receiving, this method will |
718 | /// store a clone of the `Waker` from the provided `Context`. When the udp |
719 | /// socket becomes ready for reading, `Waker::wake` will be called on the |
720 | /// waker. |
721 | /// |
722 | /// Note that on multiple calls to `poll_recv_ready`, `poll_recv` or |
723 | /// `poll_peek`, only the `Waker` from the `Context` passed to the most |
724 | /// recent call is scheduled to receive a wakeup. (However, |
725 | /// `poll_send_ready` retains a second, independent waker.) |
726 | /// |
727 | /// This function is intended for cases where creating and pinning a future |
728 | /// via [`readable`] is not feasible. Where possible, using [`readable`] is |
729 | /// preferred, as this supports polling from multiple tasks at once. |
730 | /// |
731 | /// # Return value |
732 | /// |
733 | /// The function returns: |
734 | /// |
735 | /// * `Poll::Pending` if the udp stream is not ready for reading. |
736 | /// * `Poll::Ready(Ok(()))` if the udp stream is ready for reading. |
737 | /// * `Poll::Ready(Err(e))` if an error is encountered. |
738 | /// |
739 | /// # Errors |
740 | /// |
741 | /// This function may encounter any standard I/O error except `WouldBlock`. |
742 | /// |
743 | /// [`readable`]: method@Self::readable |
744 | pub fn poll_recv_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> { |
745 | self.io.registration().poll_read_ready(cx).map_ok(|_| ()) |
746 | } |
747 | |
748 | /// Receives a single datagram message on the socket from the remote address |
749 | /// to which it is connected. On success, returns the number of bytes read. |
750 | /// |
751 | /// The function must be called with valid byte array `buf` of sufficient |
752 | /// size to hold the message bytes. If a message is too long to fit in the |
753 | /// supplied buffer, excess bytes may be discarded. |
754 | /// |
755 | /// The [`connect`] method will connect this socket to a remote address. |
756 | /// This method will fail if the socket is not connected. |
757 | /// |
758 | /// # Cancel safety |
759 | /// |
760 | /// This method is cancel safe. If `recv` is used as the event in a |
761 | /// [`tokio::select!`](crate::select) statement and some other branch |
762 | /// completes first, it is guaranteed that no messages were received on this |
763 | /// socket. |
764 | /// |
765 | /// [`connect`]: method@Self::connect |
766 | /// |
767 | /// ```no_run |
768 | /// use tokio::net::UdpSocket; |
769 | /// use std::io; |
770 | /// |
771 | /// #[tokio::main] |
772 | /// async fn main() -> io::Result<()> { |
773 | /// // Bind socket |
774 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
775 | /// socket.connect("127.0.0.1:8081" ).await?; |
776 | /// |
777 | /// let mut buf = vec![0; 10]; |
778 | /// let n = socket.recv(&mut buf).await?; |
779 | /// |
780 | /// println!("received {} bytes {:?}" , n, &buf[..n]); |
781 | /// |
782 | /// Ok(()) |
783 | /// } |
784 | /// ``` |
785 | pub async fn recv(&self, buf: &mut [u8]) -> io::Result<usize> { |
786 | self.io |
787 | .registration() |
788 | .async_io(Interest::READABLE, || self.io.recv(buf)) |
789 | .await |
790 | } |
791 | |
792 | /// Attempts to receive a single datagram message on the socket from the remote |
793 | /// address to which it is `connect`ed. |
794 | /// |
795 | /// The [`connect`] method will connect this socket to a remote address. This method |
796 | /// resolves to an error if the socket is not connected. |
797 | /// |
798 | /// Note that on multiple calls to a `poll_*` method in the `recv` direction, only the |
799 | /// `Waker` from the `Context` passed to the most recent call will be scheduled to |
800 | /// receive a wakeup. |
801 | /// |
802 | /// # Return value |
803 | /// |
804 | /// The function returns: |
805 | /// |
806 | /// * `Poll::Pending` if the socket is not ready to read |
807 | /// * `Poll::Ready(Ok(()))` reads data `ReadBuf` if the socket is ready |
808 | /// * `Poll::Ready(Err(e))` if an error is encountered. |
809 | /// |
810 | /// # Errors |
811 | /// |
812 | /// This function may encounter any standard I/O error except `WouldBlock`. |
813 | /// |
814 | /// [`connect`]: method@Self::connect |
815 | pub fn poll_recv(&self, cx: &mut Context<'_>, buf: &mut ReadBuf<'_>) -> Poll<io::Result<()>> { |
816 | #[allow (clippy::blocks_in_conditions)] |
817 | let n = ready!(self.io.registration().poll_read_io(cx, || { |
818 | // Safety: will not read the maybe uninitialized bytes. |
819 | let b = unsafe { |
820 | &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) |
821 | }; |
822 | |
823 | self.io.recv(b) |
824 | }))?; |
825 | |
826 | // Safety: We trust `recv` to have filled up `n` bytes in the buffer. |
827 | unsafe { |
828 | buf.assume_init(n); |
829 | } |
830 | buf.advance(n); |
831 | Poll::Ready(Ok(())) |
832 | } |
833 | |
834 | /// Tries to receive a single datagram message on the socket from the remote |
835 | /// address to which it is connected. On success, returns the number of |
836 | /// bytes read. |
837 | /// |
838 | /// This method must be called with valid byte array `buf` of sufficient size |
839 | /// to hold the message bytes. If a message is too long to fit in the |
840 | /// supplied buffer, excess bytes may be discarded. |
841 | /// |
842 | /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is |
843 | /// returned. This function is usually paired with `readable()`. |
844 | /// |
845 | /// # Examples |
846 | /// |
847 | /// ```no_run |
848 | /// use tokio::net::UdpSocket; |
849 | /// use std::io; |
850 | /// |
851 | /// #[tokio::main] |
852 | /// async fn main() -> io::Result<()> { |
853 | /// // Connect to a peer |
854 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
855 | /// socket.connect("127.0.0.1:8081" ).await?; |
856 | /// |
857 | /// loop { |
858 | /// // Wait for the socket to be readable |
859 | /// socket.readable().await?; |
860 | /// |
861 | /// // The buffer is **not** included in the async task and will |
862 | /// // only exist on the stack. |
863 | /// let mut buf = [0; 1024]; |
864 | /// |
865 | /// // Try to recv data, this may still fail with `WouldBlock` |
866 | /// // if the readiness event is a false positive. |
867 | /// match socket.try_recv(&mut buf) { |
868 | /// Ok(n) => { |
869 | /// println!("GOT {:?}" , &buf[..n]); |
870 | /// break; |
871 | /// } |
872 | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { |
873 | /// continue; |
874 | /// } |
875 | /// Err(e) => { |
876 | /// return Err(e); |
877 | /// } |
878 | /// } |
879 | /// } |
880 | /// |
881 | /// Ok(()) |
882 | /// } |
883 | /// ``` |
884 | pub fn try_recv(&self, buf: &mut [u8]) -> io::Result<usize> { |
885 | self.io |
886 | .registration() |
887 | .try_io(Interest::READABLE, || self.io.recv(buf)) |
888 | } |
889 | |
890 | cfg_io_util! { |
891 | /// Tries to receive data from the stream into the provided buffer, advancing the |
892 | /// buffer's internal cursor, returning how many bytes were read. |
893 | /// |
894 | /// This method must be called with valid byte array `buf` of sufficient size |
895 | /// to hold the message bytes. If a message is too long to fit in the |
896 | /// supplied buffer, excess bytes may be discarded. |
897 | /// |
898 | /// This method can be used even if `buf` is uninitialized. |
899 | /// |
900 | /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is |
901 | /// returned. This function is usually paired with `readable()`. |
902 | /// |
903 | /// # Examples |
904 | /// |
905 | /// ```no_run |
906 | /// use tokio::net::UdpSocket; |
907 | /// use std::io; |
908 | /// |
909 | /// #[tokio::main] |
910 | /// async fn main() -> io::Result<()> { |
911 | /// // Connect to a peer |
912 | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
913 | /// socket.connect("127.0.0.1:8081").await?; |
914 | /// |
915 | /// loop { |
916 | /// // Wait for the socket to be readable |
917 | /// socket.readable().await?; |
918 | /// |
919 | /// let mut buf = Vec::with_capacity(1024); |
920 | /// |
921 | /// // Try to recv data, this may still fail with `WouldBlock` |
922 | /// // if the readiness event is a false positive. |
923 | /// match socket.try_recv_buf(&mut buf) { |
924 | /// Ok(n) => { |
925 | /// println!("GOT {:?}", &buf[..n]); |
926 | /// break; |
927 | /// } |
928 | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { |
929 | /// continue; |
930 | /// } |
931 | /// Err(e) => { |
932 | /// return Err(e); |
933 | /// } |
934 | /// } |
935 | /// } |
936 | /// |
937 | /// Ok(()) |
938 | /// } |
939 | /// ``` |
940 | pub fn try_recv_buf<B: BufMut>(&self, buf: &mut B) -> io::Result<usize> { |
941 | self.io.registration().try_io(Interest::READABLE, || { |
942 | let dst = buf.chunk_mut(); |
943 | let dst = |
944 | unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) }; |
945 | |
946 | let n = (*self.io).recv(dst)?; |
947 | |
948 | // Safety: We trust `UdpSocket::recv` to have filled up `n` bytes in the |
949 | // buffer. |
950 | unsafe { |
951 | buf.advance_mut(n); |
952 | } |
953 | |
954 | Ok(n) |
955 | }) |
956 | } |
957 | |
958 | /// Receives a single datagram message on the socket from the remote address |
959 | /// to which it is connected, advancing the buffer's internal cursor, |
960 | /// returning how many bytes were read. |
961 | /// |
962 | /// This method must be called with valid byte array `buf` of sufficient size |
963 | /// to hold the message bytes. If a message is too long to fit in the |
964 | /// supplied buffer, excess bytes may be discarded. |
965 | /// |
966 | /// This method can be used even if `buf` is uninitialized. |
967 | /// |
968 | /// # Examples |
969 | /// |
970 | /// ```no_run |
971 | /// use tokio::net::UdpSocket; |
972 | /// use std::io; |
973 | /// |
974 | /// #[tokio::main] |
975 | /// async fn main() -> io::Result<()> { |
976 | /// // Connect to a peer |
977 | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
978 | /// socket.connect("127.0.0.1:8081").await?; |
979 | /// |
980 | /// let mut buf = Vec::with_capacity(512); |
981 | /// let len = socket.recv_buf(&mut buf).await?; |
982 | /// |
983 | /// println!("received {} bytes {:?}", len, &buf[..len]); |
984 | /// |
985 | /// Ok(()) |
986 | /// } |
987 | /// ``` |
988 | pub async fn recv_buf<B: BufMut>(&self, buf: &mut B) -> io::Result<usize> { |
989 | self.io.registration().async_io(Interest::READABLE, || { |
990 | let dst = buf.chunk_mut(); |
991 | let dst = |
992 | unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) }; |
993 | |
994 | let n = (*self.io).recv(dst)?; |
995 | |
996 | // Safety: We trust `UdpSocket::recv` to have filled up `n` bytes in the |
997 | // buffer. |
998 | unsafe { |
999 | buf.advance_mut(n); |
1000 | } |
1001 | |
1002 | Ok(n) |
1003 | }).await |
1004 | } |
1005 | |
1006 | /// Tries to receive a single datagram message on the socket. On success, |
1007 | /// returns the number of bytes read and the origin. |
1008 | /// |
1009 | /// This method must be called with valid byte array `buf` of sufficient size |
1010 | /// to hold the message bytes. If a message is too long to fit in the |
1011 | /// supplied buffer, excess bytes may be discarded. |
1012 | /// |
1013 | /// This method can be used even if `buf` is uninitialized. |
1014 | /// |
1015 | /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is |
1016 | /// returned. This function is usually paired with `readable()`. |
1017 | /// |
1018 | /// # Notes |
1019 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1020 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1021 | /// Because UDP is stateless and does not validate the origin of a packet, |
1022 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1023 | /// It is important to be aware of this when designing your application-level protocol. |
1024 | /// |
1025 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1026 | /// |
1027 | /// # Examples |
1028 | /// |
1029 | /// ```no_run |
1030 | /// use tokio::net::UdpSocket; |
1031 | /// use std::io; |
1032 | /// |
1033 | /// #[tokio::main] |
1034 | /// async fn main() -> io::Result<()> { |
1035 | /// // Connect to a peer |
1036 | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
1037 | /// |
1038 | /// loop { |
1039 | /// // Wait for the socket to be readable |
1040 | /// socket.readable().await?; |
1041 | /// |
1042 | /// let mut buf = Vec::with_capacity(1024); |
1043 | /// |
1044 | /// // Try to recv data, this may still fail with `WouldBlock` |
1045 | /// // if the readiness event is a false positive. |
1046 | /// match socket.try_recv_buf_from(&mut buf) { |
1047 | /// Ok((n, _addr)) => { |
1048 | /// println!("GOT {:?}", &buf[..n]); |
1049 | /// break; |
1050 | /// } |
1051 | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { |
1052 | /// continue; |
1053 | /// } |
1054 | /// Err(e) => { |
1055 | /// return Err(e); |
1056 | /// } |
1057 | /// } |
1058 | /// } |
1059 | /// |
1060 | /// Ok(()) |
1061 | /// } |
1062 | /// ``` |
1063 | pub fn try_recv_buf_from<B: BufMut>(&self, buf: &mut B) -> io::Result<(usize, SocketAddr)> { |
1064 | self.io.registration().try_io(Interest::READABLE, || { |
1065 | let dst = buf.chunk_mut(); |
1066 | let dst = |
1067 | unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) }; |
1068 | |
1069 | let (n, addr) = (*self.io).recv_from(dst)?; |
1070 | |
1071 | // Safety: We trust `UdpSocket::recv_from` to have filled up `n` bytes in the |
1072 | // buffer. |
1073 | unsafe { |
1074 | buf.advance_mut(n); |
1075 | } |
1076 | |
1077 | Ok((n, addr)) |
1078 | }) |
1079 | } |
1080 | |
1081 | /// Receives a single datagram message on the socket, advancing the |
1082 | /// buffer's internal cursor, returning how many bytes were read and the origin. |
1083 | /// |
1084 | /// This method must be called with valid byte array `buf` of sufficient size |
1085 | /// to hold the message bytes. If a message is too long to fit in the |
1086 | /// supplied buffer, excess bytes may be discarded. |
1087 | /// |
1088 | /// This method can be used even if `buf` is uninitialized. |
1089 | /// |
1090 | /// # Notes |
1091 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1092 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1093 | /// Because UDP is stateless and does not validate the origin of a packet, |
1094 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1095 | /// It is important to be aware of this when designing your application-level protocol. |
1096 | /// |
1097 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1098 | /// |
1099 | /// # Examples |
1100 | /// |
1101 | /// ```no_run |
1102 | /// use tokio::net::UdpSocket; |
1103 | /// use std::io; |
1104 | /// |
1105 | /// #[tokio::main] |
1106 | /// async fn main() -> io::Result<()> { |
1107 | /// // Connect to a peer |
1108 | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
1109 | /// socket.connect("127.0.0.1:8081").await?; |
1110 | /// |
1111 | /// let mut buf = Vec::with_capacity(512); |
1112 | /// let (len, addr) = socket.recv_buf_from(&mut buf).await?; |
1113 | /// |
1114 | /// println!("received {:?} bytes from {:?}", len, addr); |
1115 | /// |
1116 | /// Ok(()) |
1117 | /// } |
1118 | /// ``` |
1119 | pub async fn recv_buf_from<B: BufMut>(&self, buf: &mut B) -> io::Result<(usize, SocketAddr)> { |
1120 | self.io.registration().async_io(Interest::READABLE, || { |
1121 | let dst = buf.chunk_mut(); |
1122 | let dst = |
1123 | unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) }; |
1124 | |
1125 | let (n, addr) = (*self.io).recv_from(dst)?; |
1126 | |
1127 | // Safety: We trust `UdpSocket::recv_from` to have filled up `n` bytes in the |
1128 | // buffer. |
1129 | unsafe { |
1130 | buf.advance_mut(n); |
1131 | } |
1132 | |
1133 | Ok((n,addr)) |
1134 | }).await |
1135 | } |
1136 | } |
1137 | |
1138 | /// Sends data on the socket to the given address. On success, returns the |
1139 | /// number of bytes written. |
1140 | /// |
1141 | /// Address type can be any implementor of [`ToSocketAddrs`] trait. See its |
1142 | /// documentation for concrete examples. |
1143 | /// |
1144 | /// It is possible for `addr` to yield multiple addresses, but `send_to` |
1145 | /// will only send data to the first address yielded by `addr`. |
1146 | /// |
1147 | /// This will return an error when the IP version of the local socket does |
1148 | /// not match that returned from [`ToSocketAddrs`]. |
1149 | /// |
1150 | /// [`ToSocketAddrs`]: crate::net::ToSocketAddrs |
1151 | /// |
1152 | /// # Cancel safety |
1153 | /// |
1154 | /// This method is cancel safe. If `send_to` is used as the event in a |
1155 | /// [`tokio::select!`](crate::select) statement and some other branch |
1156 | /// completes first, then it is guaranteed that the message was not sent. |
1157 | /// |
1158 | /// # Example |
1159 | /// |
1160 | /// ```no_run |
1161 | /// use tokio::net::UdpSocket; |
1162 | /// use std::io; |
1163 | /// |
1164 | /// #[tokio::main] |
1165 | /// async fn main() -> io::Result<()> { |
1166 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
1167 | /// let len = socket.send_to(b"hello world" , "127.0.0.1:8081" ).await?; |
1168 | /// |
1169 | /// println!("Sent {} bytes" , len); |
1170 | /// |
1171 | /// Ok(()) |
1172 | /// } |
1173 | /// ``` |
1174 | pub async fn send_to<A: ToSocketAddrs>(&self, buf: &[u8], addr: A) -> io::Result<usize> { |
1175 | let mut addrs = to_socket_addrs(addr).await?; |
1176 | |
1177 | match addrs.next() { |
1178 | Some(target) => self.send_to_addr(buf, target).await, |
1179 | None => Err(io::Error::new( |
1180 | io::ErrorKind::InvalidInput, |
1181 | "no addresses to send data to" , |
1182 | )), |
1183 | } |
1184 | } |
1185 | |
1186 | /// Attempts to send data on the socket to a given address. |
1187 | /// |
1188 | /// Note that on multiple calls to a `poll_*` method in the send direction, only the |
1189 | /// `Waker` from the `Context` passed to the most recent call will be scheduled to |
1190 | /// receive a wakeup. |
1191 | /// |
1192 | /// # Return value |
1193 | /// |
1194 | /// The function returns: |
1195 | /// |
1196 | /// * `Poll::Pending` if the socket is not ready to write |
1197 | /// * `Poll::Ready(Ok(n))` `n` is the number of bytes sent. |
1198 | /// * `Poll::Ready(Err(e))` if an error is encountered. |
1199 | /// |
1200 | /// # Errors |
1201 | /// |
1202 | /// This function may encounter any standard I/O error except `WouldBlock`. |
1203 | pub fn poll_send_to( |
1204 | &self, |
1205 | cx: &mut Context<'_>, |
1206 | buf: &[u8], |
1207 | target: SocketAddr, |
1208 | ) -> Poll<io::Result<usize>> { |
1209 | self.io |
1210 | .registration() |
1211 | .poll_write_io(cx, || self.io.send_to(buf, target)) |
1212 | } |
1213 | |
1214 | /// Tries to send data on the socket to the given address, but if the send is |
1215 | /// blocked this will return right away. |
1216 | /// |
1217 | /// This function is usually paired with `writable()`. |
1218 | /// |
1219 | /// # Returns |
1220 | /// |
1221 | /// If successful, returns the number of bytes sent |
1222 | /// |
1223 | /// Users should ensure that when the remote cannot receive, the |
1224 | /// [`ErrorKind::WouldBlock`] is properly handled. An error can also occur |
1225 | /// if the IP version of the socket does not match that of `target`. |
1226 | /// |
1227 | /// [`ErrorKind::WouldBlock`]: std::io::ErrorKind::WouldBlock |
1228 | /// |
1229 | /// # Example |
1230 | /// |
1231 | /// ```no_run |
1232 | /// use tokio::net::UdpSocket; |
1233 | /// use std::error::Error; |
1234 | /// use std::io; |
1235 | /// |
1236 | /// #[tokio::main] |
1237 | /// async fn main() -> Result<(), Box<dyn Error>> { |
1238 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
1239 | /// |
1240 | /// let dst = "127.0.0.1:8081" .parse()?; |
1241 | /// |
1242 | /// loop { |
1243 | /// socket.writable().await?; |
1244 | /// |
1245 | /// match socket.try_send_to(&b"hello world" [..], dst) { |
1246 | /// Ok(sent) => { |
1247 | /// println!("sent {} bytes" , sent); |
1248 | /// break; |
1249 | /// } |
1250 | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { |
1251 | /// // Writable false positive. |
1252 | /// continue; |
1253 | /// } |
1254 | /// Err(e) => return Err(e.into()), |
1255 | /// } |
1256 | /// } |
1257 | /// |
1258 | /// Ok(()) |
1259 | /// } |
1260 | /// ``` |
1261 | pub fn try_send_to(&self, buf: &[u8], target: SocketAddr) -> io::Result<usize> { |
1262 | self.io |
1263 | .registration() |
1264 | .try_io(Interest::WRITABLE, || self.io.send_to(buf, target)) |
1265 | } |
1266 | |
1267 | async fn send_to_addr(&self, buf: &[u8], target: SocketAddr) -> io::Result<usize> { |
1268 | self.io |
1269 | .registration() |
1270 | .async_io(Interest::WRITABLE, || self.io.send_to(buf, target)) |
1271 | .await |
1272 | } |
1273 | |
1274 | /// Receives a single datagram message on the socket. On success, returns |
1275 | /// the number of bytes read and the origin. |
1276 | /// |
1277 | /// The function must be called with valid byte array `buf` of sufficient |
1278 | /// size to hold the message bytes. If a message is too long to fit in the |
1279 | /// supplied buffer, excess bytes may be discarded. |
1280 | /// |
1281 | /// # Cancel safety |
1282 | /// |
1283 | /// This method is cancel safe. If `recv_from` is used as the event in a |
1284 | /// [`tokio::select!`](crate::select) statement and some other branch |
1285 | /// completes first, it is guaranteed that no messages were received on this |
1286 | /// socket. |
1287 | /// |
1288 | /// # Example |
1289 | /// |
1290 | /// ```no_run |
1291 | /// use tokio::net::UdpSocket; |
1292 | /// use std::io; |
1293 | /// |
1294 | /// #[tokio::main] |
1295 | /// async fn main() -> io::Result<()> { |
1296 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
1297 | /// |
1298 | /// let mut buf = vec![0u8; 32]; |
1299 | /// let (len, addr) = socket.recv_from(&mut buf).await?; |
1300 | /// |
1301 | /// println!("received {:?} bytes from {:?}" , len, addr); |
1302 | /// |
1303 | /// Ok(()) |
1304 | /// } |
1305 | /// ``` |
1306 | /// |
1307 | /// # Notes |
1308 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1309 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1310 | /// Because UDP is stateless and does not validate the origin of a packet, |
1311 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1312 | /// It is important to be aware of this when designing your application-level protocol. |
1313 | /// |
1314 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1315 | pub async fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { |
1316 | self.io |
1317 | .registration() |
1318 | .async_io(Interest::READABLE, || self.io.recv_from(buf)) |
1319 | .await |
1320 | } |
1321 | |
1322 | /// Attempts to receive a single datagram on the socket. |
1323 | /// |
1324 | /// Note that on multiple calls to a `poll_*` method in the `recv` direction, only the |
1325 | /// `Waker` from the `Context` passed to the most recent call will be scheduled to |
1326 | /// receive a wakeup. |
1327 | /// |
1328 | /// # Return value |
1329 | /// |
1330 | /// The function returns: |
1331 | /// |
1332 | /// * `Poll::Pending` if the socket is not ready to read |
1333 | /// * `Poll::Ready(Ok(addr))` reads data from `addr` into `ReadBuf` if the socket is ready |
1334 | /// * `Poll::Ready(Err(e))` if an error is encountered. |
1335 | /// |
1336 | /// # Errors |
1337 | /// |
1338 | /// This function may encounter any standard I/O error except `WouldBlock`. |
1339 | /// |
1340 | /// # Notes |
1341 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1342 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1343 | /// Because UDP is stateless and does not validate the origin of a packet, |
1344 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1345 | /// It is important to be aware of this when designing your application-level protocol. |
1346 | /// |
1347 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1348 | pub fn poll_recv_from( |
1349 | &self, |
1350 | cx: &mut Context<'_>, |
1351 | buf: &mut ReadBuf<'_>, |
1352 | ) -> Poll<io::Result<SocketAddr>> { |
1353 | #[allow (clippy::blocks_in_conditions)] |
1354 | let (n, addr) = ready!(self.io.registration().poll_read_io(cx, || { |
1355 | // Safety: will not read the maybe uninitialized bytes. |
1356 | let b = unsafe { |
1357 | &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) |
1358 | }; |
1359 | |
1360 | self.io.recv_from(b) |
1361 | }))?; |
1362 | |
1363 | // Safety: We trust `recv` to have filled up `n` bytes in the buffer. |
1364 | unsafe { |
1365 | buf.assume_init(n); |
1366 | } |
1367 | buf.advance(n); |
1368 | Poll::Ready(Ok(addr)) |
1369 | } |
1370 | |
1371 | /// Tries to receive a single datagram message on the socket. On success, |
1372 | /// returns the number of bytes read and the origin. |
1373 | /// |
1374 | /// This method must be called with valid byte array `buf` of sufficient size |
1375 | /// to hold the message bytes. If a message is too long to fit in the |
1376 | /// supplied buffer, excess bytes may be discarded. |
1377 | /// |
1378 | /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is |
1379 | /// returned. This function is usually paired with `readable()`. |
1380 | /// |
1381 | /// # Notes |
1382 | /// |
1383 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1384 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1385 | /// Because UDP is stateless and does not validate the origin of a packet, |
1386 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1387 | /// It is important to be aware of this when designing your application-level protocol. |
1388 | /// |
1389 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1390 | /// |
1391 | /// # Examples |
1392 | /// |
1393 | /// ```no_run |
1394 | /// use tokio::net::UdpSocket; |
1395 | /// use std::io; |
1396 | /// |
1397 | /// #[tokio::main] |
1398 | /// async fn main() -> io::Result<()> { |
1399 | /// // Connect to a peer |
1400 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
1401 | /// |
1402 | /// loop { |
1403 | /// // Wait for the socket to be readable |
1404 | /// socket.readable().await?; |
1405 | /// |
1406 | /// // The buffer is **not** included in the async task and will |
1407 | /// // only exist on the stack. |
1408 | /// let mut buf = [0; 1024]; |
1409 | /// |
1410 | /// // Try to recv data, this may still fail with `WouldBlock` |
1411 | /// // if the readiness event is a false positive. |
1412 | /// match socket.try_recv_from(&mut buf) { |
1413 | /// Ok((n, _addr)) => { |
1414 | /// println!("GOT {:?}" , &buf[..n]); |
1415 | /// break; |
1416 | /// } |
1417 | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { |
1418 | /// continue; |
1419 | /// } |
1420 | /// Err(e) => { |
1421 | /// return Err(e); |
1422 | /// } |
1423 | /// } |
1424 | /// } |
1425 | /// |
1426 | /// Ok(()) |
1427 | /// } |
1428 | /// ``` |
1429 | pub fn try_recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { |
1430 | self.io |
1431 | .registration() |
1432 | .try_io(Interest::READABLE, || self.io.recv_from(buf)) |
1433 | } |
1434 | |
1435 | /// Tries to read or write from the socket using a user-provided IO operation. |
1436 | /// |
1437 | /// If the socket is ready, the provided closure is called. The closure |
1438 | /// should attempt to perform IO operation on the socket by manually |
1439 | /// calling the appropriate syscall. If the operation fails because the |
1440 | /// socket is not actually ready, then the closure should return a |
1441 | /// `WouldBlock` error and the readiness flag is cleared. The return value |
1442 | /// of the closure is then returned by `try_io`. |
1443 | /// |
1444 | /// If the socket is not ready, then the closure is not called |
1445 | /// and a `WouldBlock` error is returned. |
1446 | /// |
1447 | /// The closure should only return a `WouldBlock` error if it has performed |
1448 | /// an IO operation on the socket that failed due to the socket not being |
1449 | /// ready. Returning a `WouldBlock` error in any other situation will |
1450 | /// incorrectly clear the readiness flag, which can cause the socket to |
1451 | /// behave incorrectly. |
1452 | /// |
1453 | /// The closure should not perform the IO operation using any of the methods |
1454 | /// defined on the Tokio `UdpSocket` type, as this will mess with the |
1455 | /// readiness flag and can cause the socket to behave incorrectly. |
1456 | /// |
1457 | /// This method is not intended to be used with combined interests. |
1458 | /// The closure should perform only one type of IO operation, so it should not |
1459 | /// require more than one ready state. This method may panic or sleep forever |
1460 | /// if it is called with a combined interest. |
1461 | /// |
1462 | /// Usually, [`readable()`], [`writable()`] or [`ready()`] is used with this function. |
1463 | /// |
1464 | /// [`readable()`]: UdpSocket::readable() |
1465 | /// [`writable()`]: UdpSocket::writable() |
1466 | /// [`ready()`]: UdpSocket::ready() |
1467 | pub fn try_io<R>( |
1468 | &self, |
1469 | interest: Interest, |
1470 | f: impl FnOnce() -> io::Result<R>, |
1471 | ) -> io::Result<R> { |
1472 | self.io |
1473 | .registration() |
1474 | .try_io(interest, || self.io.try_io(f)) |
1475 | } |
1476 | |
1477 | /// Reads or writes from the socket using a user-provided IO operation. |
1478 | /// |
1479 | /// The readiness of the socket is awaited and when the socket is ready, |
1480 | /// the provided closure is called. The closure should attempt to perform |
1481 | /// IO operation on the socket by manually calling the appropriate syscall. |
1482 | /// If the operation fails because the socket is not actually ready, |
1483 | /// then the closure should return a `WouldBlock` error. In such case the |
1484 | /// readiness flag is cleared and the socket readiness is awaited again. |
1485 | /// This loop is repeated until the closure returns an `Ok` or an error |
1486 | /// other than `WouldBlock`. |
1487 | /// |
1488 | /// The closure should only return a `WouldBlock` error if it has performed |
1489 | /// an IO operation on the socket that failed due to the socket not being |
1490 | /// ready. Returning a `WouldBlock` error in any other situation will |
1491 | /// incorrectly clear the readiness flag, which can cause the socket to |
1492 | /// behave incorrectly. |
1493 | /// |
1494 | /// The closure should not perform the IO operation using any of the methods |
1495 | /// defined on the Tokio `UdpSocket` type, as this will mess with the |
1496 | /// readiness flag and can cause the socket to behave incorrectly. |
1497 | /// |
1498 | /// This method is not intended to be used with combined interests. |
1499 | /// The closure should perform only one type of IO operation, so it should not |
1500 | /// require more than one ready state. This method may panic or sleep forever |
1501 | /// if it is called with a combined interest. |
1502 | pub async fn async_io<R>( |
1503 | &self, |
1504 | interest: Interest, |
1505 | mut f: impl FnMut() -> io::Result<R>, |
1506 | ) -> io::Result<R> { |
1507 | self.io |
1508 | .registration() |
1509 | .async_io(interest, || self.io.try_io(&mut f)) |
1510 | .await |
1511 | } |
1512 | |
1513 | /// Receives a single datagram from the connected address without removing it from the queue. |
1514 | /// On success, returns the number of bytes read from whence the data came. |
1515 | /// |
1516 | /// # Notes |
1517 | /// |
1518 | /// On Windows, if the data is larger than the buffer specified, the buffer |
1519 | /// is filled with the first part of the data, and `peek_from` returns the error |
1520 | /// `WSAEMSGSIZE(10040)`. The excess data is lost. |
1521 | /// Make sure to always use a sufficiently large buffer to hold the |
1522 | /// maximum UDP packet size, which can be up to 65536 bytes in size. |
1523 | /// |
1524 | /// MacOS will return an error if you pass a zero-sized buffer. |
1525 | /// |
1526 | /// If you're merely interested in learning the sender of the data at the head of the queue, |
1527 | /// try [`peek_sender`]. |
1528 | /// |
1529 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1530 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1531 | /// Because UDP is stateless and does not validate the origin of a packet, |
1532 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1533 | /// It is important to be aware of this when designing your application-level protocol. |
1534 | /// |
1535 | /// # Examples |
1536 | /// |
1537 | /// ```no_run |
1538 | /// use tokio::net::UdpSocket; |
1539 | /// use std::io; |
1540 | /// |
1541 | /// #[tokio::main] |
1542 | /// async fn main() -> io::Result<()> { |
1543 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
1544 | /// |
1545 | /// let mut buf = vec![0u8; 32]; |
1546 | /// let len = socket.peek(&mut buf).await?; |
1547 | /// |
1548 | /// println!("peeked {:?} bytes" , len); |
1549 | /// |
1550 | /// Ok(()) |
1551 | /// } |
1552 | /// ``` |
1553 | /// |
1554 | /// [`peek_sender`]: method@Self::peek_sender |
1555 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1556 | pub async fn peek(&self, buf: &mut [u8]) -> io::Result<usize> { |
1557 | self.io |
1558 | .registration() |
1559 | .async_io(Interest::READABLE, || self.io.peek(buf)) |
1560 | .await |
1561 | } |
1562 | |
1563 | /// Receives data from the connected address, without removing it from the input queue. |
1564 | /// On success, returns the sending address of the datagram. |
1565 | /// |
1566 | /// # Notes |
1567 | /// |
1568 | /// Note that on multiple calls to a `poll_*` method in the `recv` direction, only the |
1569 | /// `Waker` from the `Context` passed to the most recent call will be scheduled to |
1570 | /// receive a wakeup |
1571 | /// |
1572 | /// On Windows, if the data is larger than the buffer specified, the buffer |
1573 | /// is filled with the first part of the data, and peek returns the error |
1574 | /// `WSAEMSGSIZE(10040)`. The excess data is lost. |
1575 | /// Make sure to always use a sufficiently large buffer to hold the |
1576 | /// maximum UDP packet size, which can be up to 65536 bytes in size. |
1577 | /// |
1578 | /// MacOS will return an error if you pass a zero-sized buffer. |
1579 | /// |
1580 | /// If you're merely interested in learning the sender of the data at the head of the queue, |
1581 | /// try [`poll_peek_sender`]. |
1582 | /// |
1583 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1584 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1585 | /// Because UDP is stateless and does not validate the origin of a packet, |
1586 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1587 | /// It is important to be aware of this when designing your application-level protocol. |
1588 | /// |
1589 | /// # Return value |
1590 | /// |
1591 | /// The function returns: |
1592 | /// |
1593 | /// * `Poll::Pending` if the socket is not ready to read |
1594 | /// * `Poll::Ready(Ok(()))` reads data into `ReadBuf` if the socket is ready |
1595 | /// * `Poll::Ready(Err(e))` if an error is encountered. |
1596 | /// |
1597 | /// # Errors |
1598 | /// |
1599 | /// This function may encounter any standard I/O error except `WouldBlock`. |
1600 | /// |
1601 | /// [`poll_peek_sender`]: method@Self::poll_peek_sender |
1602 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1603 | pub fn poll_peek(&self, cx: &mut Context<'_>, buf: &mut ReadBuf<'_>) -> Poll<io::Result<()>> { |
1604 | #[allow (clippy::blocks_in_conditions)] |
1605 | let n = ready!(self.io.registration().poll_read_io(cx, || { |
1606 | // Safety: will not read the maybe uninitialized bytes. |
1607 | let b = unsafe { |
1608 | &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) |
1609 | }; |
1610 | |
1611 | self.io.peek(b) |
1612 | }))?; |
1613 | |
1614 | // Safety: We trust `recv` to have filled up `n` bytes in the buffer. |
1615 | unsafe { |
1616 | buf.assume_init(n); |
1617 | } |
1618 | buf.advance(n); |
1619 | Poll::Ready(Ok(())) |
1620 | } |
1621 | |
1622 | /// Tries to receive data on the connected address without removing it from the input queue. |
1623 | /// On success, returns the number of bytes read. |
1624 | /// |
1625 | /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is |
1626 | /// returned. This function is usually paired with `readable()`. |
1627 | /// |
1628 | /// # Notes |
1629 | /// |
1630 | /// On Windows, if the data is larger than the buffer specified, the buffer |
1631 | /// is filled with the first part of the data, and peek returns the error |
1632 | /// `WSAEMSGSIZE(10040)`. The excess data is lost. |
1633 | /// Make sure to always use a sufficiently large buffer to hold the |
1634 | /// maximum UDP packet size, which can be up to 65536 bytes in size. |
1635 | /// |
1636 | /// MacOS will return an error if you pass a zero-sized buffer. |
1637 | /// |
1638 | /// If you're merely interested in learning the sender of the data at the head of the queue, |
1639 | /// try [`try_peek_sender`]. |
1640 | /// |
1641 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1642 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1643 | /// Because UDP is stateless and does not validate the origin of a packet, |
1644 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1645 | /// It is important to be aware of this when designing your application-level protocol. |
1646 | /// |
1647 | /// [`try_peek_sender`]: method@Self::try_peek_sender |
1648 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1649 | pub fn try_peek(&self, buf: &mut [u8]) -> io::Result<usize> { |
1650 | self.io |
1651 | .registration() |
1652 | .try_io(Interest::READABLE, || self.io.peek(buf)) |
1653 | } |
1654 | |
1655 | /// Receives data from the socket, without removing it from the input queue. |
1656 | /// On success, returns the number of bytes read and the address from whence |
1657 | /// the data came. |
1658 | /// |
1659 | /// # Notes |
1660 | /// |
1661 | /// On Windows, if the data is larger than the buffer specified, the buffer |
1662 | /// is filled with the first part of the data, and `peek_from` returns the error |
1663 | /// `WSAEMSGSIZE(10040)`. The excess data is lost. |
1664 | /// Make sure to always use a sufficiently large buffer to hold the |
1665 | /// maximum UDP packet size, which can be up to 65536 bytes in size. |
1666 | /// |
1667 | /// MacOS will return an error if you pass a zero-sized buffer. |
1668 | /// |
1669 | /// If you're merely interested in learning the sender of the data at the head of the queue, |
1670 | /// try [`peek_sender`]. |
1671 | /// |
1672 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1673 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1674 | /// Because UDP is stateless and does not validate the origin of a packet, |
1675 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1676 | /// It is important to be aware of this when designing your application-level protocol. |
1677 | /// |
1678 | /// # Examples |
1679 | /// |
1680 | /// ```no_run |
1681 | /// use tokio::net::UdpSocket; |
1682 | /// use std::io; |
1683 | /// |
1684 | /// #[tokio::main] |
1685 | /// async fn main() -> io::Result<()> { |
1686 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
1687 | /// |
1688 | /// let mut buf = vec![0u8; 32]; |
1689 | /// let (len, addr) = socket.peek_from(&mut buf).await?; |
1690 | /// |
1691 | /// println!("peeked {:?} bytes from {:?}" , len, addr); |
1692 | /// |
1693 | /// Ok(()) |
1694 | /// } |
1695 | /// ``` |
1696 | /// |
1697 | /// [`peek_sender`]: method@Self::peek_sender |
1698 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1699 | pub async fn peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { |
1700 | self.io |
1701 | .registration() |
1702 | .async_io(Interest::READABLE, || self.io.peek_from(buf)) |
1703 | .await |
1704 | } |
1705 | |
1706 | /// Receives data from the socket, without removing it from the input queue. |
1707 | /// On success, returns the sending address of the datagram. |
1708 | /// |
1709 | /// # Notes |
1710 | /// |
1711 | /// Note that on multiple calls to a `poll_*` method in the `recv` direction, only the |
1712 | /// `Waker` from the `Context` passed to the most recent call will be scheduled to |
1713 | /// receive a wakeup |
1714 | /// |
1715 | /// On Windows, if the data is larger than the buffer specified, the buffer |
1716 | /// is filled with the first part of the data, and peek returns the error |
1717 | /// `WSAEMSGSIZE(10040)`. The excess data is lost. |
1718 | /// Make sure to always use a sufficiently large buffer to hold the |
1719 | /// maximum UDP packet size, which can be up to 65536 bytes in size. |
1720 | /// |
1721 | /// MacOS will return an error if you pass a zero-sized buffer. |
1722 | /// |
1723 | /// If you're merely interested in learning the sender of the data at the head of the queue, |
1724 | /// try [`poll_peek_sender`]. |
1725 | /// |
1726 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1727 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1728 | /// Because UDP is stateless and does not validate the origin of a packet, |
1729 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1730 | /// It is important to be aware of this when designing your application-level protocol. |
1731 | /// |
1732 | /// # Return value |
1733 | /// |
1734 | /// The function returns: |
1735 | /// |
1736 | /// * `Poll::Pending` if the socket is not ready to read |
1737 | /// * `Poll::Ready(Ok(addr))` reads data from `addr` into `ReadBuf` if the socket is ready |
1738 | /// * `Poll::Ready(Err(e))` if an error is encountered. |
1739 | /// |
1740 | /// # Errors |
1741 | /// |
1742 | /// This function may encounter any standard I/O error except `WouldBlock`. |
1743 | /// |
1744 | /// [`poll_peek_sender`]: method@Self::poll_peek_sender |
1745 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1746 | pub fn poll_peek_from( |
1747 | &self, |
1748 | cx: &mut Context<'_>, |
1749 | buf: &mut ReadBuf<'_>, |
1750 | ) -> Poll<io::Result<SocketAddr>> { |
1751 | #[allow (clippy::blocks_in_conditions)] |
1752 | let (n, addr) = ready!(self.io.registration().poll_read_io(cx, || { |
1753 | // Safety: will not read the maybe uninitialized bytes. |
1754 | let b = unsafe { |
1755 | &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) |
1756 | }; |
1757 | |
1758 | self.io.peek_from(b) |
1759 | }))?; |
1760 | |
1761 | // Safety: We trust `recv` to have filled up `n` bytes in the buffer. |
1762 | unsafe { |
1763 | buf.assume_init(n); |
1764 | } |
1765 | buf.advance(n); |
1766 | Poll::Ready(Ok(addr)) |
1767 | } |
1768 | |
1769 | /// Tries to receive data on the socket without removing it from the input queue. |
1770 | /// On success, returns the number of bytes read and the sending address of the |
1771 | /// datagram. |
1772 | /// |
1773 | /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is |
1774 | /// returned. This function is usually paired with `readable()`. |
1775 | /// |
1776 | /// # Notes |
1777 | /// |
1778 | /// On Windows, if the data is larger than the buffer specified, the buffer |
1779 | /// is filled with the first part of the data, and peek returns the error |
1780 | /// `WSAEMSGSIZE(10040)`. The excess data is lost. |
1781 | /// Make sure to always use a sufficiently large buffer to hold the |
1782 | /// maximum UDP packet size, which can be up to 65536 bytes in size. |
1783 | /// |
1784 | /// MacOS will return an error if you pass a zero-sized buffer. |
1785 | /// |
1786 | /// If you're merely interested in learning the sender of the data at the head of the queue, |
1787 | /// try [`try_peek_sender`]. |
1788 | /// |
1789 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1790 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1791 | /// Because UDP is stateless and does not validate the origin of a packet, |
1792 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1793 | /// It is important to be aware of this when designing your application-level protocol. |
1794 | /// |
1795 | /// [`try_peek_sender`]: method@Self::try_peek_sender |
1796 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1797 | pub fn try_peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { |
1798 | self.io |
1799 | .registration() |
1800 | .try_io(Interest::READABLE, || self.io.peek_from(buf)) |
1801 | } |
1802 | |
1803 | /// Retrieve the sender of the data at the head of the input queue, waiting if empty. |
1804 | /// |
1805 | /// This is equivalent to calling [`peek_from`] with a zero-sized buffer, |
1806 | /// but suppresses the `WSAEMSGSIZE` error on Windows and the "invalid argument" error on macOS. |
1807 | /// |
1808 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1809 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1810 | /// Because UDP is stateless and does not validate the origin of a packet, |
1811 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1812 | /// It is important to be aware of this when designing your application-level protocol. |
1813 | /// |
1814 | /// [`peek_from`]: method@Self::peek_from |
1815 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1816 | pub async fn peek_sender(&self) -> io::Result<SocketAddr> { |
1817 | self.io |
1818 | .registration() |
1819 | .async_io(Interest::READABLE, || self.peek_sender_inner()) |
1820 | .await |
1821 | } |
1822 | |
1823 | /// Retrieve the sender of the data at the head of the input queue, |
1824 | /// scheduling a wakeup if empty. |
1825 | /// |
1826 | /// This is equivalent to calling [`poll_peek_from`] with a zero-sized buffer, |
1827 | /// but suppresses the `WSAEMSGSIZE` error on Windows and the "invalid argument" error on macOS. |
1828 | /// |
1829 | /// # Notes |
1830 | /// |
1831 | /// Note that on multiple calls to a `poll_*` method in the `recv` direction, only the |
1832 | /// `Waker` from the `Context` passed to the most recent call will be scheduled to |
1833 | /// receive a wakeup. |
1834 | /// |
1835 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1836 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1837 | /// Because UDP is stateless and does not validate the origin of a packet, |
1838 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1839 | /// It is important to be aware of this when designing your application-level protocol. |
1840 | /// |
1841 | /// [`poll_peek_from`]: method@Self::poll_peek_from |
1842 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1843 | pub fn poll_peek_sender(&self, cx: &mut Context<'_>) -> Poll<io::Result<SocketAddr>> { |
1844 | self.io |
1845 | .registration() |
1846 | .poll_read_io(cx, || self.peek_sender_inner()) |
1847 | } |
1848 | |
1849 | /// Try to retrieve the sender of the data at the head of the input queue. |
1850 | /// |
1851 | /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is |
1852 | /// returned. This function is usually paired with `readable()`. |
1853 | /// |
1854 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
1855 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
1856 | /// Because UDP is stateless and does not validate the origin of a packet, |
1857 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
1858 | /// It is important to be aware of this when designing your application-level protocol. |
1859 | /// |
1860 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
1861 | pub fn try_peek_sender(&self) -> io::Result<SocketAddr> { |
1862 | self.io |
1863 | .registration() |
1864 | .try_io(Interest::READABLE, || self.peek_sender_inner()) |
1865 | } |
1866 | |
1867 | #[inline ] |
1868 | fn peek_sender_inner(&self) -> io::Result<SocketAddr> { |
1869 | self.io.try_io(|| { |
1870 | self.as_socket() |
1871 | .peek_sender()? |
1872 | // May be `None` if the platform doesn't populate the sender for some reason. |
1873 | // In testing, that only occurred on macOS if you pass a zero-sized buffer, |
1874 | // but the implementation of `Socket::peek_sender()` covers that. |
1875 | .as_socket() |
1876 | .ok_or_else(|| io::Error::new(io::ErrorKind::Other, "sender not available" )) |
1877 | }) |
1878 | } |
1879 | |
1880 | /// Gets the value of the `SO_BROADCAST` option for this socket. |
1881 | /// |
1882 | /// For more information about this option, see [`set_broadcast`]. |
1883 | /// |
1884 | /// [`set_broadcast`]: method@Self::set_broadcast |
1885 | pub fn broadcast(&self) -> io::Result<bool> { |
1886 | self.io.broadcast() |
1887 | } |
1888 | |
1889 | /// Sets the value of the `SO_BROADCAST` option for this socket. |
1890 | /// |
1891 | /// When enabled, this socket is allowed to send packets to a broadcast |
1892 | /// address. |
1893 | pub fn set_broadcast(&self, on: bool) -> io::Result<()> { |
1894 | self.io.set_broadcast(on) |
1895 | } |
1896 | |
1897 | /// Gets the value of the `IP_MULTICAST_LOOP` option for this socket. |
1898 | /// |
1899 | /// For more information about this option, see [`set_multicast_loop_v4`]. |
1900 | /// |
1901 | /// [`set_multicast_loop_v4`]: method@Self::set_multicast_loop_v4 |
1902 | pub fn multicast_loop_v4(&self) -> io::Result<bool> { |
1903 | self.io.multicast_loop_v4() |
1904 | } |
1905 | |
1906 | /// Sets the value of the `IP_MULTICAST_LOOP` option for this socket. |
1907 | /// |
1908 | /// If enabled, multicast packets will be looped back to the local socket. |
1909 | /// |
1910 | /// # Note |
1911 | /// |
1912 | /// This may not have any affect on IPv6 sockets. |
1913 | pub fn set_multicast_loop_v4(&self, on: bool) -> io::Result<()> { |
1914 | self.io.set_multicast_loop_v4(on) |
1915 | } |
1916 | |
1917 | /// Gets the value of the `IP_MULTICAST_TTL` option for this socket. |
1918 | /// |
1919 | /// For more information about this option, see [`set_multicast_ttl_v4`]. |
1920 | /// |
1921 | /// [`set_multicast_ttl_v4`]: method@Self::set_multicast_ttl_v4 |
1922 | pub fn multicast_ttl_v4(&self) -> io::Result<u32> { |
1923 | self.io.multicast_ttl_v4() |
1924 | } |
1925 | |
1926 | /// Sets the value of the `IP_MULTICAST_TTL` option for this socket. |
1927 | /// |
1928 | /// Indicates the time-to-live value of outgoing multicast packets for |
1929 | /// this socket. The default value is 1 which means that multicast packets |
1930 | /// don't leave the local network unless explicitly requested. |
1931 | /// |
1932 | /// # Note |
1933 | /// |
1934 | /// This may not have any affect on IPv6 sockets. |
1935 | pub fn set_multicast_ttl_v4(&self, ttl: u32) -> io::Result<()> { |
1936 | self.io.set_multicast_ttl_v4(ttl) |
1937 | } |
1938 | |
1939 | /// Gets the value of the `IPV6_MULTICAST_LOOP` option for this socket. |
1940 | /// |
1941 | /// For more information about this option, see [`set_multicast_loop_v6`]. |
1942 | /// |
1943 | /// [`set_multicast_loop_v6`]: method@Self::set_multicast_loop_v6 |
1944 | pub fn multicast_loop_v6(&self) -> io::Result<bool> { |
1945 | self.io.multicast_loop_v6() |
1946 | } |
1947 | |
1948 | /// Sets the value of the `IPV6_MULTICAST_LOOP` option for this socket. |
1949 | /// |
1950 | /// Controls whether this socket sees the multicast packets it sends itself. |
1951 | /// |
1952 | /// # Note |
1953 | /// |
1954 | /// This may not have any affect on IPv4 sockets. |
1955 | pub fn set_multicast_loop_v6(&self, on: bool) -> io::Result<()> { |
1956 | self.io.set_multicast_loop_v6(on) |
1957 | } |
1958 | |
1959 | /// Gets the value of the `IP_TTL` option for this socket. |
1960 | /// |
1961 | /// For more information about this option, see [`set_ttl`]. |
1962 | /// |
1963 | /// [`set_ttl`]: method@Self::set_ttl |
1964 | /// |
1965 | /// # Examples |
1966 | /// |
1967 | /// ```no_run |
1968 | /// use tokio::net::UdpSocket; |
1969 | /// # use std::io; |
1970 | /// |
1971 | /// # async fn dox() -> io::Result<()> { |
1972 | /// let sock = UdpSocket::bind("127.0.0.1:8080" ).await?; |
1973 | /// |
1974 | /// println!("{:?}" , sock.ttl()?); |
1975 | /// # Ok(()) |
1976 | /// # } |
1977 | /// ``` |
1978 | pub fn ttl(&self) -> io::Result<u32> { |
1979 | self.io.ttl() |
1980 | } |
1981 | |
1982 | /// Sets the value for the `IP_TTL` option on this socket. |
1983 | /// |
1984 | /// This value sets the time-to-live field that is used in every packet sent |
1985 | /// from this socket. |
1986 | /// |
1987 | /// # Examples |
1988 | /// |
1989 | /// ```no_run |
1990 | /// use tokio::net::UdpSocket; |
1991 | /// # use std::io; |
1992 | /// |
1993 | /// # async fn dox() -> io::Result<()> { |
1994 | /// let sock = UdpSocket::bind("127.0.0.1:8080" ).await?; |
1995 | /// sock.set_ttl(60)?; |
1996 | /// |
1997 | /// # Ok(()) |
1998 | /// # } |
1999 | /// ``` |
2000 | pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { |
2001 | self.io.set_ttl(ttl) |
2002 | } |
2003 | |
2004 | /// Gets the value of the `IP_TOS` option for this socket. |
2005 | /// |
2006 | /// For more information about this option, see [`set_tos`]. |
2007 | /// |
2008 | /// **NOTE:** On Windows, `IP_TOS` is only supported on [Windows 8+ or |
2009 | /// Windows Server 2012+.](https://docs.microsoft.com/en-us/windows/win32/winsock/ipproto-ip-socket-options) |
2010 | /// |
2011 | /// [`set_tos`]: Self::set_tos |
2012 | // https://docs.rs/socket2/0.5.3/src/socket2/socket.rs.html#1464 |
2013 | #[cfg (not(any( |
2014 | target_os = "fuchsia" , |
2015 | target_os = "redox" , |
2016 | target_os = "solaris" , |
2017 | target_os = "illumos" , |
2018 | target_os = "haiku" |
2019 | )))] |
2020 | #[cfg_attr ( |
2021 | docsrs, |
2022 | doc(cfg(not(any( |
2023 | target_os = "fuchsia" , |
2024 | target_os = "redox" , |
2025 | target_os = "solaris" , |
2026 | target_os = "illumos" , |
2027 | target_os = "haiku" |
2028 | )))) |
2029 | )] |
2030 | pub fn tos(&self) -> io::Result<u32> { |
2031 | self.as_socket().tos() |
2032 | } |
2033 | |
2034 | /// Sets the value for the `IP_TOS` option on this socket. |
2035 | /// |
2036 | /// This value sets the type-of-service field that is used in every packet |
2037 | /// sent from this socket. |
2038 | /// |
2039 | /// **NOTE:** On Windows, `IP_TOS` is only supported on [Windows 8+ or |
2040 | /// Windows Server 2012+.](https://docs.microsoft.com/en-us/windows/win32/winsock/ipproto-ip-socket-options) |
2041 | // https://docs.rs/socket2/0.5.3/src/socket2/socket.rs.html#1446 |
2042 | #[cfg (not(any( |
2043 | target_os = "fuchsia" , |
2044 | target_os = "redox" , |
2045 | target_os = "solaris" , |
2046 | target_os = "illumos" , |
2047 | target_os = "haiku" |
2048 | )))] |
2049 | #[cfg_attr ( |
2050 | docsrs, |
2051 | doc(cfg(not(any( |
2052 | target_os = "fuchsia" , |
2053 | target_os = "redox" , |
2054 | target_os = "solaris" , |
2055 | target_os = "illumos" , |
2056 | target_os = "haiku" |
2057 | )))) |
2058 | )] |
2059 | pub fn set_tos(&self, tos: u32) -> io::Result<()> { |
2060 | self.as_socket().set_tos(tos) |
2061 | } |
2062 | |
2063 | /// Gets the value for the `SO_BINDTODEVICE` option on this socket |
2064 | /// |
2065 | /// This value gets the socket-bound device's interface name. |
2066 | #[cfg (any(target_os = "android" , target_os = "fuchsia" , target_os = "linux" ,))] |
2067 | #[cfg_attr ( |
2068 | docsrs, |
2069 | doc(cfg(any(target_os = "android" , target_os = "fuchsia" , target_os = "linux" ,))) |
2070 | )] |
2071 | pub fn device(&self) -> io::Result<Option<Vec<u8>>> { |
2072 | self.as_socket().device() |
2073 | } |
2074 | |
2075 | /// Sets the value for the `SO_BINDTODEVICE` option on this socket |
2076 | /// |
2077 | /// If a socket is bound to an interface, only packets received from that |
2078 | /// particular interface are processed by the socket. Note that this only |
2079 | /// works for some socket types, particularly `AF_INET` sockets. |
2080 | /// |
2081 | /// If `interface` is `None` or an empty string it removes the binding. |
2082 | #[cfg (any(target_os = "android" , target_os = "fuchsia" , target_os = "linux" ))] |
2083 | #[cfg_attr ( |
2084 | docsrs, |
2085 | doc(cfg(all(any(target_os = "android" , target_os = "fuchsia" , target_os = "linux" )))) |
2086 | )] |
2087 | pub fn bind_device(&self, interface: Option<&[u8]>) -> io::Result<()> { |
2088 | self.as_socket().bind_device(interface) |
2089 | } |
2090 | |
2091 | /// Executes an operation of the `IP_ADD_MEMBERSHIP` type. |
2092 | /// |
2093 | /// This function specifies a new multicast group for this socket to join. |
2094 | /// The address must be a valid multicast address, and `interface` is the |
2095 | /// address of the local interface with which the system should join the |
2096 | /// multicast group. If it's equal to `INADDR_ANY` then an appropriate |
2097 | /// interface is chosen by the system. |
2098 | pub fn join_multicast_v4(&self, multiaddr: Ipv4Addr, interface: Ipv4Addr) -> io::Result<()> { |
2099 | self.io.join_multicast_v4(&multiaddr, &interface) |
2100 | } |
2101 | |
2102 | /// Executes an operation of the `IPV6_ADD_MEMBERSHIP` type. |
2103 | /// |
2104 | /// This function specifies a new multicast group for this socket to join. |
2105 | /// The address must be a valid multicast address, and `interface` is the |
2106 | /// index of the interface to join/leave (or 0 to indicate any interface). |
2107 | pub fn join_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { |
2108 | self.io.join_multicast_v6(multiaddr, interface) |
2109 | } |
2110 | |
2111 | /// Executes an operation of the `IP_DROP_MEMBERSHIP` type. |
2112 | /// |
2113 | /// For more information about this option, see [`join_multicast_v4`]. |
2114 | /// |
2115 | /// [`join_multicast_v4`]: method@Self::join_multicast_v4 |
2116 | pub fn leave_multicast_v4(&self, multiaddr: Ipv4Addr, interface: Ipv4Addr) -> io::Result<()> { |
2117 | self.io.leave_multicast_v4(&multiaddr, &interface) |
2118 | } |
2119 | |
2120 | /// Executes an operation of the `IPV6_DROP_MEMBERSHIP` type. |
2121 | /// |
2122 | /// For more information about this option, see [`join_multicast_v6`]. |
2123 | /// |
2124 | /// [`join_multicast_v6`]: method@Self::join_multicast_v6 |
2125 | pub fn leave_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { |
2126 | self.io.leave_multicast_v6(multiaddr, interface) |
2127 | } |
2128 | |
2129 | /// Returns the value of the `SO_ERROR` option. |
2130 | /// |
2131 | /// # Examples |
2132 | /// ``` |
2133 | /// # if cfg!(miri) { return } // No `socket` in miri. |
2134 | /// use tokio::net::UdpSocket; |
2135 | /// use std::io; |
2136 | /// |
2137 | /// #[tokio::main] |
2138 | /// async fn main() -> io::Result<()> { |
2139 | /// // Create a socket |
2140 | /// let socket = UdpSocket::bind("0.0.0.0:8080" ).await?; |
2141 | /// |
2142 | /// if let Ok(Some(err)) = socket.take_error() { |
2143 | /// println!("Got error: {:?}" , err); |
2144 | /// } |
2145 | /// |
2146 | /// Ok(()) |
2147 | /// } |
2148 | /// ``` |
2149 | pub fn take_error(&self) -> io::Result<Option<io::Error>> { |
2150 | self.io.take_error() |
2151 | } |
2152 | } |
2153 | |
2154 | impl TryFrom<std::net::UdpSocket> for UdpSocket { |
2155 | type Error = io::Error; |
2156 | |
2157 | /// Consumes stream, returning the tokio I/O object. |
2158 | /// |
2159 | /// This is equivalent to |
2160 | /// [`UdpSocket::from_std(stream)`](UdpSocket::from_std). |
2161 | fn try_from(stream: std::net::UdpSocket) -> Result<Self, Self::Error> { |
2162 | Self::from_std(socket:stream) |
2163 | } |
2164 | } |
2165 | |
2166 | impl fmt::Debug for UdpSocket { |
2167 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
2168 | self.io.fmt(f) |
2169 | } |
2170 | } |
2171 | |
2172 | #[cfg (unix)] |
2173 | mod sys { |
2174 | use super::UdpSocket; |
2175 | use std::os::unix::prelude::*; |
2176 | |
2177 | impl AsRawFd for UdpSocket { |
2178 | fn as_raw_fd(&self) -> RawFd { |
2179 | self.io.as_raw_fd() |
2180 | } |
2181 | } |
2182 | |
2183 | impl AsFd for UdpSocket { |
2184 | fn as_fd(&self) -> BorrowedFd<'_> { |
2185 | unsafe { BorrowedFd::borrow_raw(self.as_raw_fd()) } |
2186 | } |
2187 | } |
2188 | } |
2189 | |
2190 | cfg_windows! { |
2191 | use crate::os::windows::io::{AsRawSocket, RawSocket}; |
2192 | use crate::os::windows::io::{AsSocket, BorrowedSocket}; |
2193 | |
2194 | impl AsRawSocket for UdpSocket { |
2195 | fn as_raw_socket(&self) -> RawSocket { |
2196 | self.io.as_raw_socket() |
2197 | } |
2198 | } |
2199 | |
2200 | impl AsSocket for UdpSocket { |
2201 | fn as_socket(&self) -> BorrowedSocket<'_> { |
2202 | unsafe { BorrowedSocket::borrow_raw(self.as_raw_socket()) } |
2203 | } |
2204 | } |
2205 | } |
2206 | |