| 1 | use crate::io::{Interest, PollEvented, ReadBuf, Ready}; |
| 2 | use crate::net::{to_socket_addrs, ToSocketAddrs}; |
| 3 | use crate::util::check_socket_for_blocking; |
| 4 | |
| 5 | use std::fmt; |
| 6 | use std::io; |
| 7 | use std::net::{self, Ipv4Addr, Ipv6Addr, SocketAddr}; |
| 8 | use std::task::{ready, Context, Poll}; |
| 9 | |
| 10 | cfg_io_util! { |
| 11 | use bytes::BufMut; |
| 12 | } |
| 13 | |
| 14 | cfg_net! { |
| 15 | /// A UDP socket. |
| 16 | /// |
| 17 | /// UDP is "connectionless", unlike TCP. Meaning, regardless of what address you've bound to, a `UdpSocket` |
| 18 | /// is free to communicate with many different remotes. In tokio there are basically two main ways to use `UdpSocket`: |
| 19 | /// |
| 20 | /// * one to many: [`bind`](`UdpSocket::bind`) and use [`send_to`](`UdpSocket::send_to`) |
| 21 | /// and [`recv_from`](`UdpSocket::recv_from`) to communicate with many different addresses |
| 22 | /// * one to one: [`connect`](`UdpSocket::connect`) and associate with a single address, using [`send`](`UdpSocket::send`) |
| 23 | /// and [`recv`](`UdpSocket::recv`) to communicate only with that remote address |
| 24 | /// |
| 25 | /// This type does not provide a `split` method, because this functionality |
| 26 | /// can be achieved by instead wrapping the socket in an [`Arc`]. Note that |
| 27 | /// you do not need a `Mutex` to share the `UdpSocket` — an `Arc<UdpSocket>` |
| 28 | /// is enough. This is because all of the methods take `&self` instead of |
| 29 | /// `&mut self`. Once you have wrapped it in an `Arc`, you can call |
| 30 | /// `.clone()` on the `Arc<UdpSocket>` to get multiple shared handles to the |
| 31 | /// same socket. An example of such usage can be found further down. |
| 32 | /// |
| 33 | /// [`Arc`]: std::sync::Arc |
| 34 | /// |
| 35 | /// # Streams |
| 36 | /// |
| 37 | /// If you need to listen over UDP and produce a [`Stream`], you can look |
| 38 | /// at [`UdpFramed`]. |
| 39 | /// |
| 40 | /// [`UdpFramed`]: https://docs.rs/tokio-util/latest/tokio_util/udp/struct.UdpFramed.html |
| 41 | /// [`Stream`]: https://docs.rs/futures/0.3/futures/stream/trait.Stream.html |
| 42 | /// |
| 43 | /// # Example: one to many (bind) |
| 44 | /// |
| 45 | /// Using `bind` we can create a simple echo server that sends and recv's with many different clients: |
| 46 | /// ```no_run |
| 47 | /// use tokio::net::UdpSocket; |
| 48 | /// use std::io; |
| 49 | /// |
| 50 | /// #[tokio::main] |
| 51 | /// async fn main() -> io::Result<()> { |
| 52 | /// let sock = UdpSocket::bind("0.0.0.0:8080").await?; |
| 53 | /// let mut buf = [0; 1024]; |
| 54 | /// loop { |
| 55 | /// let (len, addr) = sock.recv_from(&mut buf).await?; |
| 56 | /// println!("{:?} bytes received from {:?}", len, addr); |
| 57 | /// |
| 58 | /// let len = sock.send_to(&buf[..len], addr).await?; |
| 59 | /// println!("{:?} bytes sent", len); |
| 60 | /// } |
| 61 | /// } |
| 62 | /// ``` |
| 63 | /// |
| 64 | /// # Example: one to one (connect) |
| 65 | /// |
| 66 | /// Or using `connect` we can echo with a single remote address using `send` and `recv`: |
| 67 | /// ```no_run |
| 68 | /// use tokio::net::UdpSocket; |
| 69 | /// use std::io; |
| 70 | /// |
| 71 | /// #[tokio::main] |
| 72 | /// async fn main() -> io::Result<()> { |
| 73 | /// let sock = UdpSocket::bind("0.0.0.0:8080").await?; |
| 74 | /// |
| 75 | /// let remote_addr = "127.0.0.1:59611"; |
| 76 | /// sock.connect(remote_addr).await?; |
| 77 | /// let mut buf = [0; 1024]; |
| 78 | /// loop { |
| 79 | /// let len = sock.recv(&mut buf).await?; |
| 80 | /// println!("{:?} bytes received from {:?}", len, remote_addr); |
| 81 | /// |
| 82 | /// let len = sock.send(&buf[..len]).await?; |
| 83 | /// println!("{:?} bytes sent", len); |
| 84 | /// } |
| 85 | /// } |
| 86 | /// ``` |
| 87 | /// |
| 88 | /// # Example: Splitting with `Arc` |
| 89 | /// |
| 90 | /// Because `send_to` and `recv_from` take `&self`. It's perfectly alright |
| 91 | /// to use an `Arc<UdpSocket>` and share the references to multiple tasks. |
| 92 | /// Here is a similar "echo" example that supports concurrent |
| 93 | /// sending/receiving: |
| 94 | /// |
| 95 | /// ```no_run |
| 96 | /// use tokio::{net::UdpSocket, sync::mpsc}; |
| 97 | /// use std::{io, net::SocketAddr, sync::Arc}; |
| 98 | /// |
| 99 | /// #[tokio::main] |
| 100 | /// async fn main() -> io::Result<()> { |
| 101 | /// let sock = UdpSocket::bind("0.0.0.0:8080".parse::<SocketAddr>().unwrap()).await?; |
| 102 | /// let r = Arc::new(sock); |
| 103 | /// let s = r.clone(); |
| 104 | /// let (tx, mut rx) = mpsc::channel::<(Vec<u8>, SocketAddr)>(1_000); |
| 105 | /// |
| 106 | /// tokio::spawn(async move { |
| 107 | /// while let Some((bytes, addr)) = rx.recv().await { |
| 108 | /// let len = s.send_to(&bytes, &addr).await.unwrap(); |
| 109 | /// println!("{:?} bytes sent", len); |
| 110 | /// } |
| 111 | /// }); |
| 112 | /// |
| 113 | /// let mut buf = [0; 1024]; |
| 114 | /// loop { |
| 115 | /// let (len, addr) = r.recv_from(&mut buf).await?; |
| 116 | /// println!("{:?} bytes received from {:?}", len, addr); |
| 117 | /// tx.send((buf[..len].to_vec(), addr)).await.unwrap(); |
| 118 | /// } |
| 119 | /// } |
| 120 | /// ``` |
| 121 | /// |
| 122 | pub struct UdpSocket { |
| 123 | io: PollEvented<mio::net::UdpSocket>, |
| 124 | } |
| 125 | } |
| 126 | |
| 127 | impl UdpSocket { |
| 128 | /// This function will create a new UDP socket and attempt to bind it to |
| 129 | /// the `addr` provided. |
| 130 | /// |
| 131 | /// Binding with a port number of 0 will request that the OS assigns a port |
| 132 | /// to this listener. The port allocated can be queried via the `local_addr` |
| 133 | /// method. |
| 134 | /// |
| 135 | /// # Example |
| 136 | /// |
| 137 | /// ```no_run |
| 138 | /// # if cfg!(miri) { return } // No `socket` in miri. |
| 139 | /// use tokio::net::UdpSocket; |
| 140 | /// use std::io; |
| 141 | /// |
| 142 | /// #[tokio::main] |
| 143 | /// async fn main() -> io::Result<()> { |
| 144 | /// let sock = UdpSocket::bind("0.0.0.0:8080" ).await?; |
| 145 | /// // use `sock` |
| 146 | /// # let _ = sock; |
| 147 | /// Ok(()) |
| 148 | /// } |
| 149 | /// ``` |
| 150 | pub async fn bind<A: ToSocketAddrs>(addr: A) -> io::Result<UdpSocket> { |
| 151 | let addrs = to_socket_addrs(addr).await?; |
| 152 | let mut last_err = None; |
| 153 | |
| 154 | for addr in addrs { |
| 155 | match UdpSocket::bind_addr(addr) { |
| 156 | Ok(socket) => return Ok(socket), |
| 157 | Err(e) => last_err = Some(e), |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | Err(last_err.unwrap_or_else(|| { |
| 162 | io::Error::new( |
| 163 | io::ErrorKind::InvalidInput, |
| 164 | "could not resolve to any address" , |
| 165 | ) |
| 166 | })) |
| 167 | } |
| 168 | |
| 169 | fn bind_addr(addr: SocketAddr) -> io::Result<UdpSocket> { |
| 170 | let sys = mio::net::UdpSocket::bind(addr)?; |
| 171 | UdpSocket::new(sys) |
| 172 | } |
| 173 | |
| 174 | #[track_caller ] |
| 175 | fn new(socket: mio::net::UdpSocket) -> io::Result<UdpSocket> { |
| 176 | let io = PollEvented::new(socket)?; |
| 177 | Ok(UdpSocket { io }) |
| 178 | } |
| 179 | |
| 180 | /// Creates new `UdpSocket` from a previously bound `std::net::UdpSocket`. |
| 181 | /// |
| 182 | /// This function is intended to be used to wrap a UDP socket from the |
| 183 | /// standard library in the Tokio equivalent. |
| 184 | /// |
| 185 | /// This can be used in conjunction with `socket2`'s `Socket` interface to |
| 186 | /// configure a socket before it's handed off, such as setting options like |
| 187 | /// `reuse_address` or binding to multiple addresses. |
| 188 | /// |
| 189 | /// # Notes |
| 190 | /// |
| 191 | /// The caller is responsible for ensuring that the socket is in |
| 192 | /// non-blocking mode. Otherwise all I/O operations on the socket |
| 193 | /// will block the thread, which will cause unexpected behavior. |
| 194 | /// Non-blocking mode can be set using [`set_nonblocking`]. |
| 195 | /// |
| 196 | /// Passing a listener in blocking mode is always erroneous, |
| 197 | /// and the behavior in that case may change in the future. |
| 198 | /// For example, it could panic. |
| 199 | /// |
| 200 | /// [`set_nonblocking`]: std::net::UdpSocket::set_nonblocking |
| 201 | /// |
| 202 | /// # Panics |
| 203 | /// |
| 204 | /// This function panics if thread-local runtime is not set. |
| 205 | /// |
| 206 | /// The runtime is usually set implicitly when this function is called |
| 207 | /// from a future driven by a tokio runtime, otherwise runtime can be set |
| 208 | /// explicitly with [`Runtime::enter`](crate::runtime::Runtime::enter) function. |
| 209 | /// |
| 210 | /// # Example |
| 211 | /// |
| 212 | /// ```no_run |
| 213 | /// use tokio::net::UdpSocket; |
| 214 | /// # use std::{io, net::SocketAddr}; |
| 215 | /// |
| 216 | /// # #[tokio::main] |
| 217 | /// # async fn main() -> io::Result<()> { |
| 218 | /// let addr = "0.0.0.0:8080" .parse::<SocketAddr>().unwrap(); |
| 219 | /// let std_sock = std::net::UdpSocket::bind(addr)?; |
| 220 | /// std_sock.set_nonblocking(true)?; |
| 221 | /// let sock = UdpSocket::from_std(std_sock)?; |
| 222 | /// // use `sock` |
| 223 | /// # Ok(()) |
| 224 | /// # } |
| 225 | /// ``` |
| 226 | #[track_caller ] |
| 227 | pub fn from_std(socket: net::UdpSocket) -> io::Result<UdpSocket> { |
| 228 | check_socket_for_blocking(&socket)?; |
| 229 | |
| 230 | let io = mio::net::UdpSocket::from_std(socket); |
| 231 | UdpSocket::new(io) |
| 232 | } |
| 233 | |
| 234 | /// Turns a [`tokio::net::UdpSocket`] into a [`std::net::UdpSocket`]. |
| 235 | /// |
| 236 | /// The returned [`std::net::UdpSocket`] will have nonblocking mode set as |
| 237 | /// `true`. Use [`set_nonblocking`] to change the blocking mode if needed. |
| 238 | /// |
| 239 | /// # Examples |
| 240 | /// |
| 241 | /// ```rust,no_run |
| 242 | /// use std::error::Error; |
| 243 | /// |
| 244 | /// #[tokio::main] |
| 245 | /// async fn main() -> Result<(), Box<dyn Error>> { |
| 246 | /// let tokio_socket = tokio::net::UdpSocket::bind("127.0.0.1:0" ).await?; |
| 247 | /// let std_socket = tokio_socket.into_std()?; |
| 248 | /// std_socket.set_nonblocking(false)?; |
| 249 | /// Ok(()) |
| 250 | /// } |
| 251 | /// ``` |
| 252 | /// |
| 253 | /// [`tokio::net::UdpSocket`]: UdpSocket |
| 254 | /// [`std::net::UdpSocket`]: std::net::UdpSocket |
| 255 | /// [`set_nonblocking`]: fn@std::net::UdpSocket::set_nonblocking |
| 256 | pub fn into_std(self) -> io::Result<std::net::UdpSocket> { |
| 257 | #[cfg (unix)] |
| 258 | { |
| 259 | use std::os::unix::io::{FromRawFd, IntoRawFd}; |
| 260 | self.io |
| 261 | .into_inner() |
| 262 | .map(IntoRawFd::into_raw_fd) |
| 263 | .map(|raw_fd| unsafe { std::net::UdpSocket::from_raw_fd(raw_fd) }) |
| 264 | } |
| 265 | |
| 266 | #[cfg (windows)] |
| 267 | { |
| 268 | use std::os::windows::io::{FromRawSocket, IntoRawSocket}; |
| 269 | self.io |
| 270 | .into_inner() |
| 271 | .map(|io| io.into_raw_socket()) |
| 272 | .map(|raw_socket| unsafe { std::net::UdpSocket::from_raw_socket(raw_socket) }) |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | fn as_socket(&self) -> socket2::SockRef<'_> { |
| 277 | socket2::SockRef::from(self) |
| 278 | } |
| 279 | |
| 280 | /// Returns the local address that this socket is bound to. |
| 281 | /// |
| 282 | /// # Example |
| 283 | /// |
| 284 | /// ```no_run |
| 285 | /// use tokio::net::UdpSocket; |
| 286 | /// # use std::{io, net::SocketAddr}; |
| 287 | /// |
| 288 | /// # #[tokio::main] |
| 289 | /// # async fn main() -> io::Result<()> { |
| 290 | /// let addr = "0.0.0.0:8080" .parse::<SocketAddr>().unwrap(); |
| 291 | /// let sock = UdpSocket::bind(addr).await?; |
| 292 | /// // the address the socket is bound to |
| 293 | /// let local_addr = sock.local_addr()?; |
| 294 | /// # Ok(()) |
| 295 | /// # } |
| 296 | /// ``` |
| 297 | pub fn local_addr(&self) -> io::Result<SocketAddr> { |
| 298 | self.io.local_addr() |
| 299 | } |
| 300 | |
| 301 | /// Returns the socket address of the remote peer this socket was connected to. |
| 302 | /// |
| 303 | /// # Example |
| 304 | /// |
| 305 | /// ``` |
| 306 | /// # if cfg!(miri) { return } // No `socket` in miri. |
| 307 | /// use tokio::net::UdpSocket; |
| 308 | /// |
| 309 | /// # use std::{io, net::SocketAddr}; |
| 310 | /// # #[tokio::main] |
| 311 | /// # async fn main() -> io::Result<()> { |
| 312 | /// let addr = "0.0.0.0:8080" .parse::<SocketAddr>().unwrap(); |
| 313 | /// let peer = "127.0.0.1:11100" .parse::<SocketAddr>().unwrap(); |
| 314 | /// let sock = UdpSocket::bind(addr).await?; |
| 315 | /// sock.connect(peer).await?; |
| 316 | /// assert_eq!(peer, sock.peer_addr()?); |
| 317 | /// # Ok(()) |
| 318 | /// # } |
| 319 | /// ``` |
| 320 | pub fn peer_addr(&self) -> io::Result<SocketAddr> { |
| 321 | self.io.peer_addr() |
| 322 | } |
| 323 | |
| 324 | /// Connects the UDP socket setting the default destination for send() and |
| 325 | /// limiting packets that are read via `recv` from the address specified in |
| 326 | /// `addr`. |
| 327 | /// |
| 328 | /// # Example |
| 329 | /// |
| 330 | /// ```no_run |
| 331 | /// use tokio::net::UdpSocket; |
| 332 | /// # use std::{io, net::SocketAddr}; |
| 333 | /// |
| 334 | /// # #[tokio::main] |
| 335 | /// # async fn main() -> io::Result<()> { |
| 336 | /// let sock = UdpSocket::bind("0.0.0.0:8080" .parse::<SocketAddr>().unwrap()).await?; |
| 337 | /// |
| 338 | /// let remote_addr = "127.0.0.1:59600" .parse::<SocketAddr>().unwrap(); |
| 339 | /// sock.connect(remote_addr).await?; |
| 340 | /// let mut buf = [0u8; 32]; |
| 341 | /// // recv from remote_addr |
| 342 | /// let len = sock.recv(&mut buf).await?; |
| 343 | /// // send to remote_addr |
| 344 | /// let _len = sock.send(&buf[..len]).await?; |
| 345 | /// # Ok(()) |
| 346 | /// # } |
| 347 | /// ``` |
| 348 | pub async fn connect<A: ToSocketAddrs>(&self, addr: A) -> io::Result<()> { |
| 349 | let addrs = to_socket_addrs(addr).await?; |
| 350 | let mut last_err = None; |
| 351 | |
| 352 | for addr in addrs { |
| 353 | match self.io.connect(addr) { |
| 354 | Ok(()) => return Ok(()), |
| 355 | Err(e) => last_err = Some(e), |
| 356 | } |
| 357 | } |
| 358 | |
| 359 | Err(last_err.unwrap_or_else(|| { |
| 360 | io::Error::new( |
| 361 | io::ErrorKind::InvalidInput, |
| 362 | "could not resolve to any address" , |
| 363 | ) |
| 364 | })) |
| 365 | } |
| 366 | |
| 367 | /// Waits for any of the requested ready states. |
| 368 | /// |
| 369 | /// This function is usually paired with `try_recv()` or `try_send()`. It |
| 370 | /// can be used to concurrently `recv` / `send` to the same socket on a single |
| 371 | /// task without splitting the socket. |
| 372 | /// |
| 373 | /// The function may complete without the socket being ready. This is a |
| 374 | /// false-positive and attempting an operation will return with |
| 375 | /// `io::ErrorKind::WouldBlock`. The function can also return with an empty |
| 376 | /// [`Ready`] set, so you should always check the returned value and possibly |
| 377 | /// wait again if the requested states are not set. |
| 378 | /// |
| 379 | /// # Cancel safety |
| 380 | /// |
| 381 | /// This method is cancel safe. Once a readiness event occurs, the method |
| 382 | /// will continue to return immediately until the readiness event is |
| 383 | /// consumed by an attempt to read or write that fails with `WouldBlock` or |
| 384 | /// `Poll::Pending`. |
| 385 | /// |
| 386 | /// # Examples |
| 387 | /// |
| 388 | /// Concurrently receive from and send to the socket on the same task |
| 389 | /// without splitting. |
| 390 | /// |
| 391 | /// ```no_run |
| 392 | /// use tokio::io::{self, Interest}; |
| 393 | /// use tokio::net::UdpSocket; |
| 394 | /// |
| 395 | /// #[tokio::main] |
| 396 | /// async fn main() -> io::Result<()> { |
| 397 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
| 398 | /// socket.connect("127.0.0.1:8081" ).await?; |
| 399 | /// |
| 400 | /// loop { |
| 401 | /// let ready = socket.ready(Interest::READABLE | Interest::WRITABLE).await?; |
| 402 | /// |
| 403 | /// if ready.is_readable() { |
| 404 | /// // The buffer is **not** included in the async task and will only exist |
| 405 | /// // on the stack. |
| 406 | /// let mut data = [0; 1024]; |
| 407 | /// match socket.try_recv(&mut data[..]) { |
| 408 | /// Ok(n) => { |
| 409 | /// println!("received {:?}" , &data[..n]); |
| 410 | /// } |
| 411 | /// // False-positive, continue |
| 412 | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {} |
| 413 | /// Err(e) => { |
| 414 | /// return Err(e); |
| 415 | /// } |
| 416 | /// } |
| 417 | /// } |
| 418 | /// |
| 419 | /// if ready.is_writable() { |
| 420 | /// // Write some data |
| 421 | /// match socket.try_send(b"hello world" ) { |
| 422 | /// Ok(n) => { |
| 423 | /// println!("sent {} bytes" , n); |
| 424 | /// } |
| 425 | /// // False-positive, continue |
| 426 | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {} |
| 427 | /// Err(e) => { |
| 428 | /// return Err(e); |
| 429 | /// } |
| 430 | /// } |
| 431 | /// } |
| 432 | /// } |
| 433 | /// } |
| 434 | /// ``` |
| 435 | pub async fn ready(&self, interest: Interest) -> io::Result<Ready> { |
| 436 | let event = self.io.registration().readiness(interest).await?; |
| 437 | Ok(event.ready) |
| 438 | } |
| 439 | |
| 440 | /// Waits for the socket to become writable. |
| 441 | /// |
| 442 | /// This function is equivalent to `ready(Interest::WRITABLE)` and is |
| 443 | /// usually paired with `try_send()` or `try_send_to()`. |
| 444 | /// |
| 445 | /// The function may complete without the socket being writable. This is a |
| 446 | /// false-positive and attempting a `try_send()` will return with |
| 447 | /// `io::ErrorKind::WouldBlock`. |
| 448 | /// |
| 449 | /// # Cancel safety |
| 450 | /// |
| 451 | /// This method is cancel safe. Once a readiness event occurs, the method |
| 452 | /// will continue to return immediately until the readiness event is |
| 453 | /// consumed by an attempt to write that fails with `WouldBlock` or |
| 454 | /// `Poll::Pending`. |
| 455 | /// |
| 456 | /// # Examples |
| 457 | /// |
| 458 | /// ```no_run |
| 459 | /// use tokio::net::UdpSocket; |
| 460 | /// use std::io; |
| 461 | /// |
| 462 | /// #[tokio::main] |
| 463 | /// async fn main() -> io::Result<()> { |
| 464 | /// // Bind socket |
| 465 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
| 466 | /// socket.connect("127.0.0.1:8081" ).await?; |
| 467 | /// |
| 468 | /// loop { |
| 469 | /// // Wait for the socket to be writable |
| 470 | /// socket.writable().await?; |
| 471 | /// |
| 472 | /// // Try to send data, this may still fail with `WouldBlock` |
| 473 | /// // if the readiness event is a false positive. |
| 474 | /// match socket.try_send(b"hello world" ) { |
| 475 | /// Ok(n) => { |
| 476 | /// break; |
| 477 | /// } |
| 478 | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { |
| 479 | /// continue; |
| 480 | /// } |
| 481 | /// Err(e) => { |
| 482 | /// return Err(e); |
| 483 | /// } |
| 484 | /// } |
| 485 | /// } |
| 486 | /// |
| 487 | /// Ok(()) |
| 488 | /// } |
| 489 | /// ``` |
| 490 | pub async fn writable(&self) -> io::Result<()> { |
| 491 | self.ready(Interest::WRITABLE).await?; |
| 492 | Ok(()) |
| 493 | } |
| 494 | |
| 495 | /// Polls for write/send readiness. |
| 496 | /// |
| 497 | /// If the udp stream is not currently ready for sending, this method will |
| 498 | /// store a clone of the `Waker` from the provided `Context`. When the udp |
| 499 | /// stream becomes ready for sending, `Waker::wake` will be called on the |
| 500 | /// waker. |
| 501 | /// |
| 502 | /// Note that on multiple calls to `poll_send_ready` or `poll_send`, only |
| 503 | /// the `Waker` from the `Context` passed to the most recent call is |
| 504 | /// scheduled to receive a wakeup. (However, `poll_recv_ready` retains a |
| 505 | /// second, independent waker.) |
| 506 | /// |
| 507 | /// This function is intended for cases where creating and pinning a future |
| 508 | /// via [`writable`] is not feasible. Where possible, using [`writable`] is |
| 509 | /// preferred, as this supports polling from multiple tasks at once. |
| 510 | /// |
| 511 | /// # Return value |
| 512 | /// |
| 513 | /// The function returns: |
| 514 | /// |
| 515 | /// * `Poll::Pending` if the udp stream is not ready for writing. |
| 516 | /// * `Poll::Ready(Ok(()))` if the udp stream is ready for writing. |
| 517 | /// * `Poll::Ready(Err(e))` if an error is encountered. |
| 518 | /// |
| 519 | /// # Errors |
| 520 | /// |
| 521 | /// This function may encounter any standard I/O error except `WouldBlock`. |
| 522 | /// |
| 523 | /// [`writable`]: method@Self::writable |
| 524 | pub fn poll_send_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> { |
| 525 | self.io.registration().poll_write_ready(cx).map_ok(|_| ()) |
| 526 | } |
| 527 | |
| 528 | /// Sends data on the socket to the remote address that the socket is |
| 529 | /// connected to. |
| 530 | /// |
| 531 | /// The [`connect`] method will connect this socket to a remote address. |
| 532 | /// This method will fail if the socket is not connected. |
| 533 | /// |
| 534 | /// [`connect`]: method@Self::connect |
| 535 | /// |
| 536 | /// # Return |
| 537 | /// |
| 538 | /// On success, the number of bytes sent is returned, otherwise, the |
| 539 | /// encountered error is returned. |
| 540 | /// |
| 541 | /// # Cancel safety |
| 542 | /// |
| 543 | /// This method is cancel safe. If `send` is used as the event in a |
| 544 | /// [`tokio::select!`](crate::select) statement and some other branch |
| 545 | /// completes first, then it is guaranteed that the message was not sent. |
| 546 | /// |
| 547 | /// # Examples |
| 548 | /// |
| 549 | /// ```no_run |
| 550 | /// use tokio::io; |
| 551 | /// use tokio::net::UdpSocket; |
| 552 | /// |
| 553 | /// #[tokio::main] |
| 554 | /// async fn main() -> io::Result<()> { |
| 555 | /// // Bind socket |
| 556 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
| 557 | /// socket.connect("127.0.0.1:8081" ).await?; |
| 558 | /// |
| 559 | /// // Send a message |
| 560 | /// socket.send(b"hello world" ).await?; |
| 561 | /// |
| 562 | /// Ok(()) |
| 563 | /// } |
| 564 | /// ``` |
| 565 | pub async fn send(&self, buf: &[u8]) -> io::Result<usize> { |
| 566 | self.io |
| 567 | .registration() |
| 568 | .async_io(Interest::WRITABLE, || self.io.send(buf)) |
| 569 | .await |
| 570 | } |
| 571 | |
| 572 | /// Attempts to send data on the socket to the remote address to which it |
| 573 | /// was previously `connect`ed. |
| 574 | /// |
| 575 | /// The [`connect`] method will connect this socket to a remote address. |
| 576 | /// This method will fail if the socket is not connected. |
| 577 | /// |
| 578 | /// Note that on multiple calls to a `poll_*` method in the send direction, |
| 579 | /// only the `Waker` from the `Context` passed to the most recent call will |
| 580 | /// be scheduled to receive a wakeup. |
| 581 | /// |
| 582 | /// # Return value |
| 583 | /// |
| 584 | /// The function returns: |
| 585 | /// |
| 586 | /// * `Poll::Pending` if the socket is not available to write |
| 587 | /// * `Poll::Ready(Ok(n))` `n` is the number of bytes sent |
| 588 | /// * `Poll::Ready(Err(e))` if an error is encountered. |
| 589 | /// |
| 590 | /// # Errors |
| 591 | /// |
| 592 | /// This function may encounter any standard I/O error except `WouldBlock`. |
| 593 | /// |
| 594 | /// [`connect`]: method@Self::connect |
| 595 | pub fn poll_send(&self, cx: &mut Context<'_>, buf: &[u8]) -> Poll<io::Result<usize>> { |
| 596 | self.io |
| 597 | .registration() |
| 598 | .poll_write_io(cx, || self.io.send(buf)) |
| 599 | } |
| 600 | |
| 601 | /// Tries to send data on the socket to the remote address to which it is |
| 602 | /// connected. |
| 603 | /// |
| 604 | /// When the socket buffer is full, `Err(io::ErrorKind::WouldBlock)` is |
| 605 | /// returned. This function is usually paired with `writable()`. |
| 606 | /// |
| 607 | /// # Returns |
| 608 | /// |
| 609 | /// If successful, `Ok(n)` is returned, where `n` is the number of bytes |
| 610 | /// sent. If the socket is not ready to send data, |
| 611 | /// `Err(ErrorKind::WouldBlock)` is returned. |
| 612 | /// |
| 613 | /// # Examples |
| 614 | /// |
| 615 | /// ```no_run |
| 616 | /// use tokio::net::UdpSocket; |
| 617 | /// use std::io; |
| 618 | /// |
| 619 | /// #[tokio::main] |
| 620 | /// async fn main() -> io::Result<()> { |
| 621 | /// // Bind a UDP socket |
| 622 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
| 623 | /// |
| 624 | /// // Connect to a peer |
| 625 | /// socket.connect("127.0.0.1:8081" ).await?; |
| 626 | /// |
| 627 | /// loop { |
| 628 | /// // Wait for the socket to be writable |
| 629 | /// socket.writable().await?; |
| 630 | /// |
| 631 | /// // Try to send data, this may still fail with `WouldBlock` |
| 632 | /// // if the readiness event is a false positive. |
| 633 | /// match socket.try_send(b"hello world" ) { |
| 634 | /// Ok(n) => { |
| 635 | /// break; |
| 636 | /// } |
| 637 | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { |
| 638 | /// continue; |
| 639 | /// } |
| 640 | /// Err(e) => { |
| 641 | /// return Err(e); |
| 642 | /// } |
| 643 | /// } |
| 644 | /// } |
| 645 | /// |
| 646 | /// Ok(()) |
| 647 | /// } |
| 648 | /// ``` |
| 649 | pub fn try_send(&self, buf: &[u8]) -> io::Result<usize> { |
| 650 | self.io |
| 651 | .registration() |
| 652 | .try_io(Interest::WRITABLE, || self.io.send(buf)) |
| 653 | } |
| 654 | |
| 655 | /// Waits for the socket to become readable. |
| 656 | /// |
| 657 | /// This function is equivalent to `ready(Interest::READABLE)` and is usually |
| 658 | /// paired with `try_recv()`. |
| 659 | /// |
| 660 | /// The function may complete without the socket being readable. This is a |
| 661 | /// false-positive and attempting a `try_recv()` will return with |
| 662 | /// `io::ErrorKind::WouldBlock`. |
| 663 | /// |
| 664 | /// # Cancel safety |
| 665 | /// |
| 666 | /// This method is cancel safe. Once a readiness event occurs, the method |
| 667 | /// will continue to return immediately until the readiness event is |
| 668 | /// consumed by an attempt to read that fails with `WouldBlock` or |
| 669 | /// `Poll::Pending`. |
| 670 | /// |
| 671 | /// # Examples |
| 672 | /// |
| 673 | /// ```no_run |
| 674 | /// use tokio::net::UdpSocket; |
| 675 | /// use std::io; |
| 676 | /// |
| 677 | /// #[tokio::main] |
| 678 | /// async fn main() -> io::Result<()> { |
| 679 | /// // Connect to a peer |
| 680 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
| 681 | /// socket.connect("127.0.0.1:8081" ).await?; |
| 682 | /// |
| 683 | /// loop { |
| 684 | /// // Wait for the socket to be readable |
| 685 | /// socket.readable().await?; |
| 686 | /// |
| 687 | /// // The buffer is **not** included in the async task and will |
| 688 | /// // only exist on the stack. |
| 689 | /// let mut buf = [0; 1024]; |
| 690 | /// |
| 691 | /// // Try to recv data, this may still fail with `WouldBlock` |
| 692 | /// // if the readiness event is a false positive. |
| 693 | /// match socket.try_recv(&mut buf) { |
| 694 | /// Ok(n) => { |
| 695 | /// println!("GOT {:?}" , &buf[..n]); |
| 696 | /// break; |
| 697 | /// } |
| 698 | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { |
| 699 | /// continue; |
| 700 | /// } |
| 701 | /// Err(e) => { |
| 702 | /// return Err(e); |
| 703 | /// } |
| 704 | /// } |
| 705 | /// } |
| 706 | /// |
| 707 | /// Ok(()) |
| 708 | /// } |
| 709 | /// ``` |
| 710 | pub async fn readable(&self) -> io::Result<()> { |
| 711 | self.ready(Interest::READABLE).await?; |
| 712 | Ok(()) |
| 713 | } |
| 714 | |
| 715 | /// Polls for read/receive readiness. |
| 716 | /// |
| 717 | /// If the udp stream is not currently ready for receiving, this method will |
| 718 | /// store a clone of the `Waker` from the provided `Context`. When the udp |
| 719 | /// socket becomes ready for reading, `Waker::wake` will be called on the |
| 720 | /// waker. |
| 721 | /// |
| 722 | /// Note that on multiple calls to `poll_recv_ready`, `poll_recv` or |
| 723 | /// `poll_peek`, only the `Waker` from the `Context` passed to the most |
| 724 | /// recent call is scheduled to receive a wakeup. (However, |
| 725 | /// `poll_send_ready` retains a second, independent waker.) |
| 726 | /// |
| 727 | /// This function is intended for cases where creating and pinning a future |
| 728 | /// via [`readable`] is not feasible. Where possible, using [`readable`] is |
| 729 | /// preferred, as this supports polling from multiple tasks at once. |
| 730 | /// |
| 731 | /// # Return value |
| 732 | /// |
| 733 | /// The function returns: |
| 734 | /// |
| 735 | /// * `Poll::Pending` if the udp stream is not ready for reading. |
| 736 | /// * `Poll::Ready(Ok(()))` if the udp stream is ready for reading. |
| 737 | /// * `Poll::Ready(Err(e))` if an error is encountered. |
| 738 | /// |
| 739 | /// # Errors |
| 740 | /// |
| 741 | /// This function may encounter any standard I/O error except `WouldBlock`. |
| 742 | /// |
| 743 | /// [`readable`]: method@Self::readable |
| 744 | pub fn poll_recv_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> { |
| 745 | self.io.registration().poll_read_ready(cx).map_ok(|_| ()) |
| 746 | } |
| 747 | |
| 748 | /// Receives a single datagram message on the socket from the remote address |
| 749 | /// to which it is connected. On success, returns the number of bytes read. |
| 750 | /// |
| 751 | /// The function must be called with valid byte array `buf` of sufficient |
| 752 | /// size to hold the message bytes. If a message is too long to fit in the |
| 753 | /// supplied buffer, excess bytes may be discarded. |
| 754 | /// |
| 755 | /// The [`connect`] method will connect this socket to a remote address. |
| 756 | /// This method will fail if the socket is not connected. |
| 757 | /// |
| 758 | /// # Cancel safety |
| 759 | /// |
| 760 | /// This method is cancel safe. If `recv` is used as the event in a |
| 761 | /// [`tokio::select!`](crate::select) statement and some other branch |
| 762 | /// completes first, it is guaranteed that no messages were received on this |
| 763 | /// socket. |
| 764 | /// |
| 765 | /// [`connect`]: method@Self::connect |
| 766 | /// |
| 767 | /// ```no_run |
| 768 | /// use tokio::net::UdpSocket; |
| 769 | /// use std::io; |
| 770 | /// |
| 771 | /// #[tokio::main] |
| 772 | /// async fn main() -> io::Result<()> { |
| 773 | /// // Bind socket |
| 774 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
| 775 | /// socket.connect("127.0.0.1:8081" ).await?; |
| 776 | /// |
| 777 | /// let mut buf = vec![0; 10]; |
| 778 | /// let n = socket.recv(&mut buf).await?; |
| 779 | /// |
| 780 | /// println!("received {} bytes {:?}" , n, &buf[..n]); |
| 781 | /// |
| 782 | /// Ok(()) |
| 783 | /// } |
| 784 | /// ``` |
| 785 | pub async fn recv(&self, buf: &mut [u8]) -> io::Result<usize> { |
| 786 | self.io |
| 787 | .registration() |
| 788 | .async_io(Interest::READABLE, || self.io.recv(buf)) |
| 789 | .await |
| 790 | } |
| 791 | |
| 792 | /// Attempts to receive a single datagram message on the socket from the remote |
| 793 | /// address to which it is `connect`ed. |
| 794 | /// |
| 795 | /// The [`connect`] method will connect this socket to a remote address. This method |
| 796 | /// resolves to an error if the socket is not connected. |
| 797 | /// |
| 798 | /// Note that on multiple calls to a `poll_*` method in the `recv` direction, only the |
| 799 | /// `Waker` from the `Context` passed to the most recent call will be scheduled to |
| 800 | /// receive a wakeup. |
| 801 | /// |
| 802 | /// # Return value |
| 803 | /// |
| 804 | /// The function returns: |
| 805 | /// |
| 806 | /// * `Poll::Pending` if the socket is not ready to read |
| 807 | /// * `Poll::Ready(Ok(()))` reads data `ReadBuf` if the socket is ready |
| 808 | /// * `Poll::Ready(Err(e))` if an error is encountered. |
| 809 | /// |
| 810 | /// # Errors |
| 811 | /// |
| 812 | /// This function may encounter any standard I/O error except `WouldBlock`. |
| 813 | /// |
| 814 | /// [`connect`]: method@Self::connect |
| 815 | pub fn poll_recv(&self, cx: &mut Context<'_>, buf: &mut ReadBuf<'_>) -> Poll<io::Result<()>> { |
| 816 | #[allow (clippy::blocks_in_conditions)] |
| 817 | let n = ready!(self.io.registration().poll_read_io(cx, || { |
| 818 | // Safety: will not read the maybe uninitialized bytes. |
| 819 | let b = unsafe { |
| 820 | &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) |
| 821 | }; |
| 822 | |
| 823 | self.io.recv(b) |
| 824 | }))?; |
| 825 | |
| 826 | // Safety: We trust `recv` to have filled up `n` bytes in the buffer. |
| 827 | unsafe { |
| 828 | buf.assume_init(n); |
| 829 | } |
| 830 | buf.advance(n); |
| 831 | Poll::Ready(Ok(())) |
| 832 | } |
| 833 | |
| 834 | /// Tries to receive a single datagram message on the socket from the remote |
| 835 | /// address to which it is connected. On success, returns the number of |
| 836 | /// bytes read. |
| 837 | /// |
| 838 | /// This method must be called with valid byte array `buf` of sufficient size |
| 839 | /// to hold the message bytes. If a message is too long to fit in the |
| 840 | /// supplied buffer, excess bytes may be discarded. |
| 841 | /// |
| 842 | /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is |
| 843 | /// returned. This function is usually paired with `readable()`. |
| 844 | /// |
| 845 | /// # Examples |
| 846 | /// |
| 847 | /// ```no_run |
| 848 | /// use tokio::net::UdpSocket; |
| 849 | /// use std::io; |
| 850 | /// |
| 851 | /// #[tokio::main] |
| 852 | /// async fn main() -> io::Result<()> { |
| 853 | /// // Connect to a peer |
| 854 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
| 855 | /// socket.connect("127.0.0.1:8081" ).await?; |
| 856 | /// |
| 857 | /// loop { |
| 858 | /// // Wait for the socket to be readable |
| 859 | /// socket.readable().await?; |
| 860 | /// |
| 861 | /// // The buffer is **not** included in the async task and will |
| 862 | /// // only exist on the stack. |
| 863 | /// let mut buf = [0; 1024]; |
| 864 | /// |
| 865 | /// // Try to recv data, this may still fail with `WouldBlock` |
| 866 | /// // if the readiness event is a false positive. |
| 867 | /// match socket.try_recv(&mut buf) { |
| 868 | /// Ok(n) => { |
| 869 | /// println!("GOT {:?}" , &buf[..n]); |
| 870 | /// break; |
| 871 | /// } |
| 872 | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { |
| 873 | /// continue; |
| 874 | /// } |
| 875 | /// Err(e) => { |
| 876 | /// return Err(e); |
| 877 | /// } |
| 878 | /// } |
| 879 | /// } |
| 880 | /// |
| 881 | /// Ok(()) |
| 882 | /// } |
| 883 | /// ``` |
| 884 | pub fn try_recv(&self, buf: &mut [u8]) -> io::Result<usize> { |
| 885 | self.io |
| 886 | .registration() |
| 887 | .try_io(Interest::READABLE, || self.io.recv(buf)) |
| 888 | } |
| 889 | |
| 890 | cfg_io_util! { |
| 891 | /// Tries to receive data from the stream into the provided buffer, advancing the |
| 892 | /// buffer's internal cursor, returning how many bytes were read. |
| 893 | /// |
| 894 | /// This method must be called with valid byte array `buf` of sufficient size |
| 895 | /// to hold the message bytes. If a message is too long to fit in the |
| 896 | /// supplied buffer, excess bytes may be discarded. |
| 897 | /// |
| 898 | /// This method can be used even if `buf` is uninitialized. |
| 899 | /// |
| 900 | /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is |
| 901 | /// returned. This function is usually paired with `readable()`. |
| 902 | /// |
| 903 | /// # Examples |
| 904 | /// |
| 905 | /// ```no_run |
| 906 | /// use tokio::net::UdpSocket; |
| 907 | /// use std::io; |
| 908 | /// |
| 909 | /// #[tokio::main] |
| 910 | /// async fn main() -> io::Result<()> { |
| 911 | /// // Connect to a peer |
| 912 | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
| 913 | /// socket.connect("127.0.0.1:8081").await?; |
| 914 | /// |
| 915 | /// loop { |
| 916 | /// // Wait for the socket to be readable |
| 917 | /// socket.readable().await?; |
| 918 | /// |
| 919 | /// let mut buf = Vec::with_capacity(1024); |
| 920 | /// |
| 921 | /// // Try to recv data, this may still fail with `WouldBlock` |
| 922 | /// // if the readiness event is a false positive. |
| 923 | /// match socket.try_recv_buf(&mut buf) { |
| 924 | /// Ok(n) => { |
| 925 | /// println!("GOT {:?}", &buf[..n]); |
| 926 | /// break; |
| 927 | /// } |
| 928 | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { |
| 929 | /// continue; |
| 930 | /// } |
| 931 | /// Err(e) => { |
| 932 | /// return Err(e); |
| 933 | /// } |
| 934 | /// } |
| 935 | /// } |
| 936 | /// |
| 937 | /// Ok(()) |
| 938 | /// } |
| 939 | /// ``` |
| 940 | pub fn try_recv_buf<B: BufMut>(&self, buf: &mut B) -> io::Result<usize> { |
| 941 | self.io.registration().try_io(Interest::READABLE, || { |
| 942 | let dst = buf.chunk_mut(); |
| 943 | let dst = |
| 944 | unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) }; |
| 945 | |
| 946 | let n = (*self.io).recv(dst)?; |
| 947 | |
| 948 | // Safety: We trust `UdpSocket::recv` to have filled up `n` bytes in the |
| 949 | // buffer. |
| 950 | unsafe { |
| 951 | buf.advance_mut(n); |
| 952 | } |
| 953 | |
| 954 | Ok(n) |
| 955 | }) |
| 956 | } |
| 957 | |
| 958 | /// Receives a single datagram message on the socket from the remote address |
| 959 | /// to which it is connected, advancing the buffer's internal cursor, |
| 960 | /// returning how many bytes were read. |
| 961 | /// |
| 962 | /// This method must be called with valid byte array `buf` of sufficient size |
| 963 | /// to hold the message bytes. If a message is too long to fit in the |
| 964 | /// supplied buffer, excess bytes may be discarded. |
| 965 | /// |
| 966 | /// This method can be used even if `buf` is uninitialized. |
| 967 | /// |
| 968 | /// # Examples |
| 969 | /// |
| 970 | /// ```no_run |
| 971 | /// use tokio::net::UdpSocket; |
| 972 | /// use std::io; |
| 973 | /// |
| 974 | /// #[tokio::main] |
| 975 | /// async fn main() -> io::Result<()> { |
| 976 | /// // Connect to a peer |
| 977 | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
| 978 | /// socket.connect("127.0.0.1:8081").await?; |
| 979 | /// |
| 980 | /// let mut buf = Vec::with_capacity(512); |
| 981 | /// let len = socket.recv_buf(&mut buf).await?; |
| 982 | /// |
| 983 | /// println!("received {} bytes {:?}", len, &buf[..len]); |
| 984 | /// |
| 985 | /// Ok(()) |
| 986 | /// } |
| 987 | /// ``` |
| 988 | pub async fn recv_buf<B: BufMut>(&self, buf: &mut B) -> io::Result<usize> { |
| 989 | self.io.registration().async_io(Interest::READABLE, || { |
| 990 | let dst = buf.chunk_mut(); |
| 991 | let dst = |
| 992 | unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) }; |
| 993 | |
| 994 | let n = (*self.io).recv(dst)?; |
| 995 | |
| 996 | // Safety: We trust `UdpSocket::recv` to have filled up `n` bytes in the |
| 997 | // buffer. |
| 998 | unsafe { |
| 999 | buf.advance_mut(n); |
| 1000 | } |
| 1001 | |
| 1002 | Ok(n) |
| 1003 | }).await |
| 1004 | } |
| 1005 | |
| 1006 | /// Tries to receive a single datagram message on the socket. On success, |
| 1007 | /// returns the number of bytes read and the origin. |
| 1008 | /// |
| 1009 | /// This method must be called with valid byte array `buf` of sufficient size |
| 1010 | /// to hold the message bytes. If a message is too long to fit in the |
| 1011 | /// supplied buffer, excess bytes may be discarded. |
| 1012 | /// |
| 1013 | /// This method can be used even if `buf` is uninitialized. |
| 1014 | /// |
| 1015 | /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is |
| 1016 | /// returned. This function is usually paired with `readable()`. |
| 1017 | /// |
| 1018 | /// # Notes |
| 1019 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
| 1020 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
| 1021 | /// Because UDP is stateless and does not validate the origin of a packet, |
| 1022 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
| 1023 | /// It is important to be aware of this when designing your application-level protocol. |
| 1024 | /// |
| 1025 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
| 1026 | /// |
| 1027 | /// # Examples |
| 1028 | /// |
| 1029 | /// ```no_run |
| 1030 | /// use tokio::net::UdpSocket; |
| 1031 | /// use std::io; |
| 1032 | /// |
| 1033 | /// #[tokio::main] |
| 1034 | /// async fn main() -> io::Result<()> { |
| 1035 | /// // Connect to a peer |
| 1036 | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
| 1037 | /// |
| 1038 | /// loop { |
| 1039 | /// // Wait for the socket to be readable |
| 1040 | /// socket.readable().await?; |
| 1041 | /// |
| 1042 | /// let mut buf = Vec::with_capacity(1024); |
| 1043 | /// |
| 1044 | /// // Try to recv data, this may still fail with `WouldBlock` |
| 1045 | /// // if the readiness event is a false positive. |
| 1046 | /// match socket.try_recv_buf_from(&mut buf) { |
| 1047 | /// Ok((n, _addr)) => { |
| 1048 | /// println!("GOT {:?}", &buf[..n]); |
| 1049 | /// break; |
| 1050 | /// } |
| 1051 | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { |
| 1052 | /// continue; |
| 1053 | /// } |
| 1054 | /// Err(e) => { |
| 1055 | /// return Err(e); |
| 1056 | /// } |
| 1057 | /// } |
| 1058 | /// } |
| 1059 | /// |
| 1060 | /// Ok(()) |
| 1061 | /// } |
| 1062 | /// ``` |
| 1063 | pub fn try_recv_buf_from<B: BufMut>(&self, buf: &mut B) -> io::Result<(usize, SocketAddr)> { |
| 1064 | self.io.registration().try_io(Interest::READABLE, || { |
| 1065 | let dst = buf.chunk_mut(); |
| 1066 | let dst = |
| 1067 | unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) }; |
| 1068 | |
| 1069 | let (n, addr) = (*self.io).recv_from(dst)?; |
| 1070 | |
| 1071 | // Safety: We trust `UdpSocket::recv_from` to have filled up `n` bytes in the |
| 1072 | // buffer. |
| 1073 | unsafe { |
| 1074 | buf.advance_mut(n); |
| 1075 | } |
| 1076 | |
| 1077 | Ok((n, addr)) |
| 1078 | }) |
| 1079 | } |
| 1080 | |
| 1081 | /// Receives a single datagram message on the socket, advancing the |
| 1082 | /// buffer's internal cursor, returning how many bytes were read and the origin. |
| 1083 | /// |
| 1084 | /// This method must be called with valid byte array `buf` of sufficient size |
| 1085 | /// to hold the message bytes. If a message is too long to fit in the |
| 1086 | /// supplied buffer, excess bytes may be discarded. |
| 1087 | /// |
| 1088 | /// This method can be used even if `buf` is uninitialized. |
| 1089 | /// |
| 1090 | /// # Notes |
| 1091 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
| 1092 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
| 1093 | /// Because UDP is stateless and does not validate the origin of a packet, |
| 1094 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
| 1095 | /// It is important to be aware of this when designing your application-level protocol. |
| 1096 | /// |
| 1097 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
| 1098 | /// |
| 1099 | /// # Examples |
| 1100 | /// |
| 1101 | /// ```no_run |
| 1102 | /// use tokio::net::UdpSocket; |
| 1103 | /// use std::io; |
| 1104 | /// |
| 1105 | /// #[tokio::main] |
| 1106 | /// async fn main() -> io::Result<()> { |
| 1107 | /// // Connect to a peer |
| 1108 | /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; |
| 1109 | /// socket.connect("127.0.0.1:8081").await?; |
| 1110 | /// |
| 1111 | /// let mut buf = Vec::with_capacity(512); |
| 1112 | /// let (len, addr) = socket.recv_buf_from(&mut buf).await?; |
| 1113 | /// |
| 1114 | /// println!("received {:?} bytes from {:?}", len, addr); |
| 1115 | /// |
| 1116 | /// Ok(()) |
| 1117 | /// } |
| 1118 | /// ``` |
| 1119 | pub async fn recv_buf_from<B: BufMut>(&self, buf: &mut B) -> io::Result<(usize, SocketAddr)> { |
| 1120 | self.io.registration().async_io(Interest::READABLE, || { |
| 1121 | let dst = buf.chunk_mut(); |
| 1122 | let dst = |
| 1123 | unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) }; |
| 1124 | |
| 1125 | let (n, addr) = (*self.io).recv_from(dst)?; |
| 1126 | |
| 1127 | // Safety: We trust `UdpSocket::recv_from` to have filled up `n` bytes in the |
| 1128 | // buffer. |
| 1129 | unsafe { |
| 1130 | buf.advance_mut(n); |
| 1131 | } |
| 1132 | |
| 1133 | Ok((n,addr)) |
| 1134 | }).await |
| 1135 | } |
| 1136 | } |
| 1137 | |
| 1138 | /// Sends data on the socket to the given address. On success, returns the |
| 1139 | /// number of bytes written. |
| 1140 | /// |
| 1141 | /// Address type can be any implementor of [`ToSocketAddrs`] trait. See its |
| 1142 | /// documentation for concrete examples. |
| 1143 | /// |
| 1144 | /// It is possible for `addr` to yield multiple addresses, but `send_to` |
| 1145 | /// will only send data to the first address yielded by `addr`. |
| 1146 | /// |
| 1147 | /// This will return an error when the IP version of the local socket does |
| 1148 | /// not match that returned from [`ToSocketAddrs`]. |
| 1149 | /// |
| 1150 | /// [`ToSocketAddrs`]: crate::net::ToSocketAddrs |
| 1151 | /// |
| 1152 | /// # Cancel safety |
| 1153 | /// |
| 1154 | /// This method is cancel safe. If `send_to` is used as the event in a |
| 1155 | /// [`tokio::select!`](crate::select) statement and some other branch |
| 1156 | /// completes first, then it is guaranteed that the message was not sent. |
| 1157 | /// |
| 1158 | /// # Example |
| 1159 | /// |
| 1160 | /// ```no_run |
| 1161 | /// use tokio::net::UdpSocket; |
| 1162 | /// use std::io; |
| 1163 | /// |
| 1164 | /// #[tokio::main] |
| 1165 | /// async fn main() -> io::Result<()> { |
| 1166 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
| 1167 | /// let len = socket.send_to(b"hello world" , "127.0.0.1:8081" ).await?; |
| 1168 | /// |
| 1169 | /// println!("Sent {} bytes" , len); |
| 1170 | /// |
| 1171 | /// Ok(()) |
| 1172 | /// } |
| 1173 | /// ``` |
| 1174 | pub async fn send_to<A: ToSocketAddrs>(&self, buf: &[u8], addr: A) -> io::Result<usize> { |
| 1175 | let mut addrs = to_socket_addrs(addr).await?; |
| 1176 | |
| 1177 | match addrs.next() { |
| 1178 | Some(target) => self.send_to_addr(buf, target).await, |
| 1179 | None => Err(io::Error::new( |
| 1180 | io::ErrorKind::InvalidInput, |
| 1181 | "no addresses to send data to" , |
| 1182 | )), |
| 1183 | } |
| 1184 | } |
| 1185 | |
| 1186 | /// Attempts to send data on the socket to a given address. |
| 1187 | /// |
| 1188 | /// Note that on multiple calls to a `poll_*` method in the send direction, only the |
| 1189 | /// `Waker` from the `Context` passed to the most recent call will be scheduled to |
| 1190 | /// receive a wakeup. |
| 1191 | /// |
| 1192 | /// # Return value |
| 1193 | /// |
| 1194 | /// The function returns: |
| 1195 | /// |
| 1196 | /// * `Poll::Pending` if the socket is not ready to write |
| 1197 | /// * `Poll::Ready(Ok(n))` `n` is the number of bytes sent. |
| 1198 | /// * `Poll::Ready(Err(e))` if an error is encountered. |
| 1199 | /// |
| 1200 | /// # Errors |
| 1201 | /// |
| 1202 | /// This function may encounter any standard I/O error except `WouldBlock`. |
| 1203 | pub fn poll_send_to( |
| 1204 | &self, |
| 1205 | cx: &mut Context<'_>, |
| 1206 | buf: &[u8], |
| 1207 | target: SocketAddr, |
| 1208 | ) -> Poll<io::Result<usize>> { |
| 1209 | self.io |
| 1210 | .registration() |
| 1211 | .poll_write_io(cx, || self.io.send_to(buf, target)) |
| 1212 | } |
| 1213 | |
| 1214 | /// Tries to send data on the socket to the given address, but if the send is |
| 1215 | /// blocked this will return right away. |
| 1216 | /// |
| 1217 | /// This function is usually paired with `writable()`. |
| 1218 | /// |
| 1219 | /// # Returns |
| 1220 | /// |
| 1221 | /// If successful, returns the number of bytes sent |
| 1222 | /// |
| 1223 | /// Users should ensure that when the remote cannot receive, the |
| 1224 | /// [`ErrorKind::WouldBlock`] is properly handled. An error can also occur |
| 1225 | /// if the IP version of the socket does not match that of `target`. |
| 1226 | /// |
| 1227 | /// [`ErrorKind::WouldBlock`]: std::io::ErrorKind::WouldBlock |
| 1228 | /// |
| 1229 | /// # Example |
| 1230 | /// |
| 1231 | /// ```no_run |
| 1232 | /// use tokio::net::UdpSocket; |
| 1233 | /// use std::error::Error; |
| 1234 | /// use std::io; |
| 1235 | /// |
| 1236 | /// #[tokio::main] |
| 1237 | /// async fn main() -> Result<(), Box<dyn Error>> { |
| 1238 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
| 1239 | /// |
| 1240 | /// let dst = "127.0.0.1:8081" .parse()?; |
| 1241 | /// |
| 1242 | /// loop { |
| 1243 | /// socket.writable().await?; |
| 1244 | /// |
| 1245 | /// match socket.try_send_to(&b"hello world" [..], dst) { |
| 1246 | /// Ok(sent) => { |
| 1247 | /// println!("sent {} bytes" , sent); |
| 1248 | /// break; |
| 1249 | /// } |
| 1250 | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { |
| 1251 | /// // Writable false positive. |
| 1252 | /// continue; |
| 1253 | /// } |
| 1254 | /// Err(e) => return Err(e.into()), |
| 1255 | /// } |
| 1256 | /// } |
| 1257 | /// |
| 1258 | /// Ok(()) |
| 1259 | /// } |
| 1260 | /// ``` |
| 1261 | pub fn try_send_to(&self, buf: &[u8], target: SocketAddr) -> io::Result<usize> { |
| 1262 | self.io |
| 1263 | .registration() |
| 1264 | .try_io(Interest::WRITABLE, || self.io.send_to(buf, target)) |
| 1265 | } |
| 1266 | |
| 1267 | async fn send_to_addr(&self, buf: &[u8], target: SocketAddr) -> io::Result<usize> { |
| 1268 | self.io |
| 1269 | .registration() |
| 1270 | .async_io(Interest::WRITABLE, || self.io.send_to(buf, target)) |
| 1271 | .await |
| 1272 | } |
| 1273 | |
| 1274 | /// Receives a single datagram message on the socket. On success, returns |
| 1275 | /// the number of bytes read and the origin. |
| 1276 | /// |
| 1277 | /// The function must be called with valid byte array `buf` of sufficient |
| 1278 | /// size to hold the message bytes. If a message is too long to fit in the |
| 1279 | /// supplied buffer, excess bytes may be discarded. |
| 1280 | /// |
| 1281 | /// # Cancel safety |
| 1282 | /// |
| 1283 | /// This method is cancel safe. If `recv_from` is used as the event in a |
| 1284 | /// [`tokio::select!`](crate::select) statement and some other branch |
| 1285 | /// completes first, it is guaranteed that no messages were received on this |
| 1286 | /// socket. |
| 1287 | /// |
| 1288 | /// # Example |
| 1289 | /// |
| 1290 | /// ```no_run |
| 1291 | /// use tokio::net::UdpSocket; |
| 1292 | /// use std::io; |
| 1293 | /// |
| 1294 | /// #[tokio::main] |
| 1295 | /// async fn main() -> io::Result<()> { |
| 1296 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
| 1297 | /// |
| 1298 | /// let mut buf = vec![0u8; 32]; |
| 1299 | /// let (len, addr) = socket.recv_from(&mut buf).await?; |
| 1300 | /// |
| 1301 | /// println!("received {:?} bytes from {:?}" , len, addr); |
| 1302 | /// |
| 1303 | /// Ok(()) |
| 1304 | /// } |
| 1305 | /// ``` |
| 1306 | /// |
| 1307 | /// # Notes |
| 1308 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
| 1309 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
| 1310 | /// Because UDP is stateless and does not validate the origin of a packet, |
| 1311 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
| 1312 | /// It is important to be aware of this when designing your application-level protocol. |
| 1313 | /// |
| 1314 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
| 1315 | pub async fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { |
| 1316 | self.io |
| 1317 | .registration() |
| 1318 | .async_io(Interest::READABLE, || self.io.recv_from(buf)) |
| 1319 | .await |
| 1320 | } |
| 1321 | |
| 1322 | /// Attempts to receive a single datagram on the socket. |
| 1323 | /// |
| 1324 | /// Note that on multiple calls to a `poll_*` method in the `recv` direction, only the |
| 1325 | /// `Waker` from the `Context` passed to the most recent call will be scheduled to |
| 1326 | /// receive a wakeup. |
| 1327 | /// |
| 1328 | /// # Return value |
| 1329 | /// |
| 1330 | /// The function returns: |
| 1331 | /// |
| 1332 | /// * `Poll::Pending` if the socket is not ready to read |
| 1333 | /// * `Poll::Ready(Ok(addr))` reads data from `addr` into `ReadBuf` if the socket is ready |
| 1334 | /// * `Poll::Ready(Err(e))` if an error is encountered. |
| 1335 | /// |
| 1336 | /// # Errors |
| 1337 | /// |
| 1338 | /// This function may encounter any standard I/O error except `WouldBlock`. |
| 1339 | /// |
| 1340 | /// # Notes |
| 1341 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
| 1342 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
| 1343 | /// Because UDP is stateless and does not validate the origin of a packet, |
| 1344 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
| 1345 | /// It is important to be aware of this when designing your application-level protocol. |
| 1346 | /// |
| 1347 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
| 1348 | pub fn poll_recv_from( |
| 1349 | &self, |
| 1350 | cx: &mut Context<'_>, |
| 1351 | buf: &mut ReadBuf<'_>, |
| 1352 | ) -> Poll<io::Result<SocketAddr>> { |
| 1353 | #[allow (clippy::blocks_in_conditions)] |
| 1354 | let (n, addr) = ready!(self.io.registration().poll_read_io(cx, || { |
| 1355 | // Safety: will not read the maybe uninitialized bytes. |
| 1356 | let b = unsafe { |
| 1357 | &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) |
| 1358 | }; |
| 1359 | |
| 1360 | self.io.recv_from(b) |
| 1361 | }))?; |
| 1362 | |
| 1363 | // Safety: We trust `recv` to have filled up `n` bytes in the buffer. |
| 1364 | unsafe { |
| 1365 | buf.assume_init(n); |
| 1366 | } |
| 1367 | buf.advance(n); |
| 1368 | Poll::Ready(Ok(addr)) |
| 1369 | } |
| 1370 | |
| 1371 | /// Tries to receive a single datagram message on the socket. On success, |
| 1372 | /// returns the number of bytes read and the origin. |
| 1373 | /// |
| 1374 | /// This method must be called with valid byte array `buf` of sufficient size |
| 1375 | /// to hold the message bytes. If a message is too long to fit in the |
| 1376 | /// supplied buffer, excess bytes may be discarded. |
| 1377 | /// |
| 1378 | /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is |
| 1379 | /// returned. This function is usually paired with `readable()`. |
| 1380 | /// |
| 1381 | /// # Notes |
| 1382 | /// |
| 1383 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
| 1384 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
| 1385 | /// Because UDP is stateless and does not validate the origin of a packet, |
| 1386 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
| 1387 | /// It is important to be aware of this when designing your application-level protocol. |
| 1388 | /// |
| 1389 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
| 1390 | /// |
| 1391 | /// # Examples |
| 1392 | /// |
| 1393 | /// ```no_run |
| 1394 | /// use tokio::net::UdpSocket; |
| 1395 | /// use std::io; |
| 1396 | /// |
| 1397 | /// #[tokio::main] |
| 1398 | /// async fn main() -> io::Result<()> { |
| 1399 | /// // Connect to a peer |
| 1400 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
| 1401 | /// |
| 1402 | /// loop { |
| 1403 | /// // Wait for the socket to be readable |
| 1404 | /// socket.readable().await?; |
| 1405 | /// |
| 1406 | /// // The buffer is **not** included in the async task and will |
| 1407 | /// // only exist on the stack. |
| 1408 | /// let mut buf = [0; 1024]; |
| 1409 | /// |
| 1410 | /// // Try to recv data, this may still fail with `WouldBlock` |
| 1411 | /// // if the readiness event is a false positive. |
| 1412 | /// match socket.try_recv_from(&mut buf) { |
| 1413 | /// Ok((n, _addr)) => { |
| 1414 | /// println!("GOT {:?}" , &buf[..n]); |
| 1415 | /// break; |
| 1416 | /// } |
| 1417 | /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { |
| 1418 | /// continue; |
| 1419 | /// } |
| 1420 | /// Err(e) => { |
| 1421 | /// return Err(e); |
| 1422 | /// } |
| 1423 | /// } |
| 1424 | /// } |
| 1425 | /// |
| 1426 | /// Ok(()) |
| 1427 | /// } |
| 1428 | /// ``` |
| 1429 | pub fn try_recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { |
| 1430 | self.io |
| 1431 | .registration() |
| 1432 | .try_io(Interest::READABLE, || self.io.recv_from(buf)) |
| 1433 | } |
| 1434 | |
| 1435 | /// Tries to read or write from the socket using a user-provided IO operation. |
| 1436 | /// |
| 1437 | /// If the socket is ready, the provided closure is called. The closure |
| 1438 | /// should attempt to perform IO operation on the socket by manually |
| 1439 | /// calling the appropriate syscall. If the operation fails because the |
| 1440 | /// socket is not actually ready, then the closure should return a |
| 1441 | /// `WouldBlock` error and the readiness flag is cleared. The return value |
| 1442 | /// of the closure is then returned by `try_io`. |
| 1443 | /// |
| 1444 | /// If the socket is not ready, then the closure is not called |
| 1445 | /// and a `WouldBlock` error is returned. |
| 1446 | /// |
| 1447 | /// The closure should only return a `WouldBlock` error if it has performed |
| 1448 | /// an IO operation on the socket that failed due to the socket not being |
| 1449 | /// ready. Returning a `WouldBlock` error in any other situation will |
| 1450 | /// incorrectly clear the readiness flag, which can cause the socket to |
| 1451 | /// behave incorrectly. |
| 1452 | /// |
| 1453 | /// The closure should not perform the IO operation using any of the methods |
| 1454 | /// defined on the Tokio `UdpSocket` type, as this will mess with the |
| 1455 | /// readiness flag and can cause the socket to behave incorrectly. |
| 1456 | /// |
| 1457 | /// This method is not intended to be used with combined interests. |
| 1458 | /// The closure should perform only one type of IO operation, so it should not |
| 1459 | /// require more than one ready state. This method may panic or sleep forever |
| 1460 | /// if it is called with a combined interest. |
| 1461 | /// |
| 1462 | /// Usually, [`readable()`], [`writable()`] or [`ready()`] is used with this function. |
| 1463 | /// |
| 1464 | /// [`readable()`]: UdpSocket::readable() |
| 1465 | /// [`writable()`]: UdpSocket::writable() |
| 1466 | /// [`ready()`]: UdpSocket::ready() |
| 1467 | pub fn try_io<R>( |
| 1468 | &self, |
| 1469 | interest: Interest, |
| 1470 | f: impl FnOnce() -> io::Result<R>, |
| 1471 | ) -> io::Result<R> { |
| 1472 | self.io |
| 1473 | .registration() |
| 1474 | .try_io(interest, || self.io.try_io(f)) |
| 1475 | } |
| 1476 | |
| 1477 | /// Reads or writes from the socket using a user-provided IO operation. |
| 1478 | /// |
| 1479 | /// The readiness of the socket is awaited and when the socket is ready, |
| 1480 | /// the provided closure is called. The closure should attempt to perform |
| 1481 | /// IO operation on the socket by manually calling the appropriate syscall. |
| 1482 | /// If the operation fails because the socket is not actually ready, |
| 1483 | /// then the closure should return a `WouldBlock` error. In such case the |
| 1484 | /// readiness flag is cleared and the socket readiness is awaited again. |
| 1485 | /// This loop is repeated until the closure returns an `Ok` or an error |
| 1486 | /// other than `WouldBlock`. |
| 1487 | /// |
| 1488 | /// The closure should only return a `WouldBlock` error if it has performed |
| 1489 | /// an IO operation on the socket that failed due to the socket not being |
| 1490 | /// ready. Returning a `WouldBlock` error in any other situation will |
| 1491 | /// incorrectly clear the readiness flag, which can cause the socket to |
| 1492 | /// behave incorrectly. |
| 1493 | /// |
| 1494 | /// The closure should not perform the IO operation using any of the methods |
| 1495 | /// defined on the Tokio `UdpSocket` type, as this will mess with the |
| 1496 | /// readiness flag and can cause the socket to behave incorrectly. |
| 1497 | /// |
| 1498 | /// This method is not intended to be used with combined interests. |
| 1499 | /// The closure should perform only one type of IO operation, so it should not |
| 1500 | /// require more than one ready state. This method may panic or sleep forever |
| 1501 | /// if it is called with a combined interest. |
| 1502 | pub async fn async_io<R>( |
| 1503 | &self, |
| 1504 | interest: Interest, |
| 1505 | mut f: impl FnMut() -> io::Result<R>, |
| 1506 | ) -> io::Result<R> { |
| 1507 | self.io |
| 1508 | .registration() |
| 1509 | .async_io(interest, || self.io.try_io(&mut f)) |
| 1510 | .await |
| 1511 | } |
| 1512 | |
| 1513 | /// Receives a single datagram from the connected address without removing it from the queue. |
| 1514 | /// On success, returns the number of bytes read from whence the data came. |
| 1515 | /// |
| 1516 | /// # Notes |
| 1517 | /// |
| 1518 | /// On Windows, if the data is larger than the buffer specified, the buffer |
| 1519 | /// is filled with the first part of the data, and `peek_from` returns the error |
| 1520 | /// `WSAEMSGSIZE(10040)`. The excess data is lost. |
| 1521 | /// Make sure to always use a sufficiently large buffer to hold the |
| 1522 | /// maximum UDP packet size, which can be up to 65536 bytes in size. |
| 1523 | /// |
| 1524 | /// MacOS will return an error if you pass a zero-sized buffer. |
| 1525 | /// |
| 1526 | /// If you're merely interested in learning the sender of the data at the head of the queue, |
| 1527 | /// try [`peek_sender`]. |
| 1528 | /// |
| 1529 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
| 1530 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
| 1531 | /// Because UDP is stateless and does not validate the origin of a packet, |
| 1532 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
| 1533 | /// It is important to be aware of this when designing your application-level protocol. |
| 1534 | /// |
| 1535 | /// # Examples |
| 1536 | /// |
| 1537 | /// ```no_run |
| 1538 | /// use tokio::net::UdpSocket; |
| 1539 | /// use std::io; |
| 1540 | /// |
| 1541 | /// #[tokio::main] |
| 1542 | /// async fn main() -> io::Result<()> { |
| 1543 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
| 1544 | /// |
| 1545 | /// let mut buf = vec![0u8; 32]; |
| 1546 | /// let len = socket.peek(&mut buf).await?; |
| 1547 | /// |
| 1548 | /// println!("peeked {:?} bytes" , len); |
| 1549 | /// |
| 1550 | /// Ok(()) |
| 1551 | /// } |
| 1552 | /// ``` |
| 1553 | /// |
| 1554 | /// [`peek_sender`]: method@Self::peek_sender |
| 1555 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
| 1556 | pub async fn peek(&self, buf: &mut [u8]) -> io::Result<usize> { |
| 1557 | self.io |
| 1558 | .registration() |
| 1559 | .async_io(Interest::READABLE, || self.io.peek(buf)) |
| 1560 | .await |
| 1561 | } |
| 1562 | |
| 1563 | /// Receives data from the connected address, without removing it from the input queue. |
| 1564 | /// On success, returns the sending address of the datagram. |
| 1565 | /// |
| 1566 | /// # Notes |
| 1567 | /// |
| 1568 | /// Note that on multiple calls to a `poll_*` method in the `recv` direction, only the |
| 1569 | /// `Waker` from the `Context` passed to the most recent call will be scheduled to |
| 1570 | /// receive a wakeup |
| 1571 | /// |
| 1572 | /// On Windows, if the data is larger than the buffer specified, the buffer |
| 1573 | /// is filled with the first part of the data, and peek returns the error |
| 1574 | /// `WSAEMSGSIZE(10040)`. The excess data is lost. |
| 1575 | /// Make sure to always use a sufficiently large buffer to hold the |
| 1576 | /// maximum UDP packet size, which can be up to 65536 bytes in size. |
| 1577 | /// |
| 1578 | /// MacOS will return an error if you pass a zero-sized buffer. |
| 1579 | /// |
| 1580 | /// If you're merely interested in learning the sender of the data at the head of the queue, |
| 1581 | /// try [`poll_peek_sender`]. |
| 1582 | /// |
| 1583 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
| 1584 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
| 1585 | /// Because UDP is stateless and does not validate the origin of a packet, |
| 1586 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
| 1587 | /// It is important to be aware of this when designing your application-level protocol. |
| 1588 | /// |
| 1589 | /// # Return value |
| 1590 | /// |
| 1591 | /// The function returns: |
| 1592 | /// |
| 1593 | /// * `Poll::Pending` if the socket is not ready to read |
| 1594 | /// * `Poll::Ready(Ok(()))` reads data into `ReadBuf` if the socket is ready |
| 1595 | /// * `Poll::Ready(Err(e))` if an error is encountered. |
| 1596 | /// |
| 1597 | /// # Errors |
| 1598 | /// |
| 1599 | /// This function may encounter any standard I/O error except `WouldBlock`. |
| 1600 | /// |
| 1601 | /// [`poll_peek_sender`]: method@Self::poll_peek_sender |
| 1602 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
| 1603 | pub fn poll_peek(&self, cx: &mut Context<'_>, buf: &mut ReadBuf<'_>) -> Poll<io::Result<()>> { |
| 1604 | #[allow (clippy::blocks_in_conditions)] |
| 1605 | let n = ready!(self.io.registration().poll_read_io(cx, || { |
| 1606 | // Safety: will not read the maybe uninitialized bytes. |
| 1607 | let b = unsafe { |
| 1608 | &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) |
| 1609 | }; |
| 1610 | |
| 1611 | self.io.peek(b) |
| 1612 | }))?; |
| 1613 | |
| 1614 | // Safety: We trust `recv` to have filled up `n` bytes in the buffer. |
| 1615 | unsafe { |
| 1616 | buf.assume_init(n); |
| 1617 | } |
| 1618 | buf.advance(n); |
| 1619 | Poll::Ready(Ok(())) |
| 1620 | } |
| 1621 | |
| 1622 | /// Tries to receive data on the connected address without removing it from the input queue. |
| 1623 | /// On success, returns the number of bytes read. |
| 1624 | /// |
| 1625 | /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is |
| 1626 | /// returned. This function is usually paired with `readable()`. |
| 1627 | /// |
| 1628 | /// # Notes |
| 1629 | /// |
| 1630 | /// On Windows, if the data is larger than the buffer specified, the buffer |
| 1631 | /// is filled with the first part of the data, and peek returns the error |
| 1632 | /// `WSAEMSGSIZE(10040)`. The excess data is lost. |
| 1633 | /// Make sure to always use a sufficiently large buffer to hold the |
| 1634 | /// maximum UDP packet size, which can be up to 65536 bytes in size. |
| 1635 | /// |
| 1636 | /// MacOS will return an error if you pass a zero-sized buffer. |
| 1637 | /// |
| 1638 | /// If you're merely interested in learning the sender of the data at the head of the queue, |
| 1639 | /// try [`try_peek_sender`]. |
| 1640 | /// |
| 1641 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
| 1642 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
| 1643 | /// Because UDP is stateless and does not validate the origin of a packet, |
| 1644 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
| 1645 | /// It is important to be aware of this when designing your application-level protocol. |
| 1646 | /// |
| 1647 | /// [`try_peek_sender`]: method@Self::try_peek_sender |
| 1648 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
| 1649 | pub fn try_peek(&self, buf: &mut [u8]) -> io::Result<usize> { |
| 1650 | self.io |
| 1651 | .registration() |
| 1652 | .try_io(Interest::READABLE, || self.io.peek(buf)) |
| 1653 | } |
| 1654 | |
| 1655 | /// Receives data from the socket, without removing it from the input queue. |
| 1656 | /// On success, returns the number of bytes read and the address from whence |
| 1657 | /// the data came. |
| 1658 | /// |
| 1659 | /// # Notes |
| 1660 | /// |
| 1661 | /// On Windows, if the data is larger than the buffer specified, the buffer |
| 1662 | /// is filled with the first part of the data, and `peek_from` returns the error |
| 1663 | /// `WSAEMSGSIZE(10040)`. The excess data is lost. |
| 1664 | /// Make sure to always use a sufficiently large buffer to hold the |
| 1665 | /// maximum UDP packet size, which can be up to 65536 bytes in size. |
| 1666 | /// |
| 1667 | /// MacOS will return an error if you pass a zero-sized buffer. |
| 1668 | /// |
| 1669 | /// If you're merely interested in learning the sender of the data at the head of the queue, |
| 1670 | /// try [`peek_sender`]. |
| 1671 | /// |
| 1672 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
| 1673 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
| 1674 | /// Because UDP is stateless and does not validate the origin of a packet, |
| 1675 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
| 1676 | /// It is important to be aware of this when designing your application-level protocol. |
| 1677 | /// |
| 1678 | /// # Examples |
| 1679 | /// |
| 1680 | /// ```no_run |
| 1681 | /// use tokio::net::UdpSocket; |
| 1682 | /// use std::io; |
| 1683 | /// |
| 1684 | /// #[tokio::main] |
| 1685 | /// async fn main() -> io::Result<()> { |
| 1686 | /// let socket = UdpSocket::bind("127.0.0.1:8080" ).await?; |
| 1687 | /// |
| 1688 | /// let mut buf = vec![0u8; 32]; |
| 1689 | /// let (len, addr) = socket.peek_from(&mut buf).await?; |
| 1690 | /// |
| 1691 | /// println!("peeked {:?} bytes from {:?}" , len, addr); |
| 1692 | /// |
| 1693 | /// Ok(()) |
| 1694 | /// } |
| 1695 | /// ``` |
| 1696 | /// |
| 1697 | /// [`peek_sender`]: method@Self::peek_sender |
| 1698 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
| 1699 | pub async fn peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { |
| 1700 | self.io |
| 1701 | .registration() |
| 1702 | .async_io(Interest::READABLE, || self.io.peek_from(buf)) |
| 1703 | .await |
| 1704 | } |
| 1705 | |
| 1706 | /// Receives data from the socket, without removing it from the input queue. |
| 1707 | /// On success, returns the sending address of the datagram. |
| 1708 | /// |
| 1709 | /// # Notes |
| 1710 | /// |
| 1711 | /// Note that on multiple calls to a `poll_*` method in the `recv` direction, only the |
| 1712 | /// `Waker` from the `Context` passed to the most recent call will be scheduled to |
| 1713 | /// receive a wakeup |
| 1714 | /// |
| 1715 | /// On Windows, if the data is larger than the buffer specified, the buffer |
| 1716 | /// is filled with the first part of the data, and peek returns the error |
| 1717 | /// `WSAEMSGSIZE(10040)`. The excess data is lost. |
| 1718 | /// Make sure to always use a sufficiently large buffer to hold the |
| 1719 | /// maximum UDP packet size, which can be up to 65536 bytes in size. |
| 1720 | /// |
| 1721 | /// MacOS will return an error if you pass a zero-sized buffer. |
| 1722 | /// |
| 1723 | /// If you're merely interested in learning the sender of the data at the head of the queue, |
| 1724 | /// try [`poll_peek_sender`]. |
| 1725 | /// |
| 1726 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
| 1727 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
| 1728 | /// Because UDP is stateless and does not validate the origin of a packet, |
| 1729 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
| 1730 | /// It is important to be aware of this when designing your application-level protocol. |
| 1731 | /// |
| 1732 | /// # Return value |
| 1733 | /// |
| 1734 | /// The function returns: |
| 1735 | /// |
| 1736 | /// * `Poll::Pending` if the socket is not ready to read |
| 1737 | /// * `Poll::Ready(Ok(addr))` reads data from `addr` into `ReadBuf` if the socket is ready |
| 1738 | /// * `Poll::Ready(Err(e))` if an error is encountered. |
| 1739 | /// |
| 1740 | /// # Errors |
| 1741 | /// |
| 1742 | /// This function may encounter any standard I/O error except `WouldBlock`. |
| 1743 | /// |
| 1744 | /// [`poll_peek_sender`]: method@Self::poll_peek_sender |
| 1745 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
| 1746 | pub fn poll_peek_from( |
| 1747 | &self, |
| 1748 | cx: &mut Context<'_>, |
| 1749 | buf: &mut ReadBuf<'_>, |
| 1750 | ) -> Poll<io::Result<SocketAddr>> { |
| 1751 | #[allow (clippy::blocks_in_conditions)] |
| 1752 | let (n, addr) = ready!(self.io.registration().poll_read_io(cx, || { |
| 1753 | // Safety: will not read the maybe uninitialized bytes. |
| 1754 | let b = unsafe { |
| 1755 | &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) |
| 1756 | }; |
| 1757 | |
| 1758 | self.io.peek_from(b) |
| 1759 | }))?; |
| 1760 | |
| 1761 | // Safety: We trust `recv` to have filled up `n` bytes in the buffer. |
| 1762 | unsafe { |
| 1763 | buf.assume_init(n); |
| 1764 | } |
| 1765 | buf.advance(n); |
| 1766 | Poll::Ready(Ok(addr)) |
| 1767 | } |
| 1768 | |
| 1769 | /// Tries to receive data on the socket without removing it from the input queue. |
| 1770 | /// On success, returns the number of bytes read and the sending address of the |
| 1771 | /// datagram. |
| 1772 | /// |
| 1773 | /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is |
| 1774 | /// returned. This function is usually paired with `readable()`. |
| 1775 | /// |
| 1776 | /// # Notes |
| 1777 | /// |
| 1778 | /// On Windows, if the data is larger than the buffer specified, the buffer |
| 1779 | /// is filled with the first part of the data, and peek returns the error |
| 1780 | /// `WSAEMSGSIZE(10040)`. The excess data is lost. |
| 1781 | /// Make sure to always use a sufficiently large buffer to hold the |
| 1782 | /// maximum UDP packet size, which can be up to 65536 bytes in size. |
| 1783 | /// |
| 1784 | /// MacOS will return an error if you pass a zero-sized buffer. |
| 1785 | /// |
| 1786 | /// If you're merely interested in learning the sender of the data at the head of the queue, |
| 1787 | /// try [`try_peek_sender`]. |
| 1788 | /// |
| 1789 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
| 1790 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
| 1791 | /// Because UDP is stateless and does not validate the origin of a packet, |
| 1792 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
| 1793 | /// It is important to be aware of this when designing your application-level protocol. |
| 1794 | /// |
| 1795 | /// [`try_peek_sender`]: method@Self::try_peek_sender |
| 1796 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
| 1797 | pub fn try_peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { |
| 1798 | self.io |
| 1799 | .registration() |
| 1800 | .try_io(Interest::READABLE, || self.io.peek_from(buf)) |
| 1801 | } |
| 1802 | |
| 1803 | /// Retrieve the sender of the data at the head of the input queue, waiting if empty. |
| 1804 | /// |
| 1805 | /// This is equivalent to calling [`peek_from`] with a zero-sized buffer, |
| 1806 | /// but suppresses the `WSAEMSGSIZE` error on Windows and the "invalid argument" error on macOS. |
| 1807 | /// |
| 1808 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
| 1809 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
| 1810 | /// Because UDP is stateless and does not validate the origin of a packet, |
| 1811 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
| 1812 | /// It is important to be aware of this when designing your application-level protocol. |
| 1813 | /// |
| 1814 | /// [`peek_from`]: method@Self::peek_from |
| 1815 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
| 1816 | pub async fn peek_sender(&self) -> io::Result<SocketAddr> { |
| 1817 | self.io |
| 1818 | .registration() |
| 1819 | .async_io(Interest::READABLE, || self.peek_sender_inner()) |
| 1820 | .await |
| 1821 | } |
| 1822 | |
| 1823 | /// Retrieve the sender of the data at the head of the input queue, |
| 1824 | /// scheduling a wakeup if empty. |
| 1825 | /// |
| 1826 | /// This is equivalent to calling [`poll_peek_from`] with a zero-sized buffer, |
| 1827 | /// but suppresses the `WSAEMSGSIZE` error on Windows and the "invalid argument" error on macOS. |
| 1828 | /// |
| 1829 | /// # Notes |
| 1830 | /// |
| 1831 | /// Note that on multiple calls to a `poll_*` method in the `recv` direction, only the |
| 1832 | /// `Waker` from the `Context` passed to the most recent call will be scheduled to |
| 1833 | /// receive a wakeup. |
| 1834 | /// |
| 1835 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
| 1836 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
| 1837 | /// Because UDP is stateless and does not validate the origin of a packet, |
| 1838 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
| 1839 | /// It is important to be aware of this when designing your application-level protocol. |
| 1840 | /// |
| 1841 | /// [`poll_peek_from`]: method@Self::poll_peek_from |
| 1842 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
| 1843 | pub fn poll_peek_sender(&self, cx: &mut Context<'_>) -> Poll<io::Result<SocketAddr>> { |
| 1844 | self.io |
| 1845 | .registration() |
| 1846 | .poll_read_io(cx, || self.peek_sender_inner()) |
| 1847 | } |
| 1848 | |
| 1849 | /// Try to retrieve the sender of the data at the head of the input queue. |
| 1850 | /// |
| 1851 | /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is |
| 1852 | /// returned. This function is usually paired with `readable()`. |
| 1853 | /// |
| 1854 | /// Note that the socket address **cannot** be implicitly trusted, because it is relatively |
| 1855 | /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack]. |
| 1856 | /// Because UDP is stateless and does not validate the origin of a packet, |
| 1857 | /// the attacker does not need to be able to intercept traffic in order to interfere. |
| 1858 | /// It is important to be aware of this when designing your application-level protocol. |
| 1859 | /// |
| 1860 | /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection |
| 1861 | pub fn try_peek_sender(&self) -> io::Result<SocketAddr> { |
| 1862 | self.io |
| 1863 | .registration() |
| 1864 | .try_io(Interest::READABLE, || self.peek_sender_inner()) |
| 1865 | } |
| 1866 | |
| 1867 | #[inline ] |
| 1868 | fn peek_sender_inner(&self) -> io::Result<SocketAddr> { |
| 1869 | self.io.try_io(|| { |
| 1870 | self.as_socket() |
| 1871 | .peek_sender()? |
| 1872 | // May be `None` if the platform doesn't populate the sender for some reason. |
| 1873 | // In testing, that only occurred on macOS if you pass a zero-sized buffer, |
| 1874 | // but the implementation of `Socket::peek_sender()` covers that. |
| 1875 | .as_socket() |
| 1876 | .ok_or_else(|| io::Error::new(io::ErrorKind::Other, "sender not available" )) |
| 1877 | }) |
| 1878 | } |
| 1879 | |
| 1880 | /// Gets the value of the `SO_BROADCAST` option for this socket. |
| 1881 | /// |
| 1882 | /// For more information about this option, see [`set_broadcast`]. |
| 1883 | /// |
| 1884 | /// [`set_broadcast`]: method@Self::set_broadcast |
| 1885 | pub fn broadcast(&self) -> io::Result<bool> { |
| 1886 | self.io.broadcast() |
| 1887 | } |
| 1888 | |
| 1889 | /// Sets the value of the `SO_BROADCAST` option for this socket. |
| 1890 | /// |
| 1891 | /// When enabled, this socket is allowed to send packets to a broadcast |
| 1892 | /// address. |
| 1893 | pub fn set_broadcast(&self, on: bool) -> io::Result<()> { |
| 1894 | self.io.set_broadcast(on) |
| 1895 | } |
| 1896 | |
| 1897 | /// Gets the value of the `IP_MULTICAST_LOOP` option for this socket. |
| 1898 | /// |
| 1899 | /// For more information about this option, see [`set_multicast_loop_v4`]. |
| 1900 | /// |
| 1901 | /// [`set_multicast_loop_v4`]: method@Self::set_multicast_loop_v4 |
| 1902 | pub fn multicast_loop_v4(&self) -> io::Result<bool> { |
| 1903 | self.io.multicast_loop_v4() |
| 1904 | } |
| 1905 | |
| 1906 | /// Sets the value of the `IP_MULTICAST_LOOP` option for this socket. |
| 1907 | /// |
| 1908 | /// If enabled, multicast packets will be looped back to the local socket. |
| 1909 | /// |
| 1910 | /// # Note |
| 1911 | /// |
| 1912 | /// This may not have any affect on IPv6 sockets. |
| 1913 | pub fn set_multicast_loop_v4(&self, on: bool) -> io::Result<()> { |
| 1914 | self.io.set_multicast_loop_v4(on) |
| 1915 | } |
| 1916 | |
| 1917 | /// Gets the value of the `IP_MULTICAST_TTL` option for this socket. |
| 1918 | /// |
| 1919 | /// For more information about this option, see [`set_multicast_ttl_v4`]. |
| 1920 | /// |
| 1921 | /// [`set_multicast_ttl_v4`]: method@Self::set_multicast_ttl_v4 |
| 1922 | pub fn multicast_ttl_v4(&self) -> io::Result<u32> { |
| 1923 | self.io.multicast_ttl_v4() |
| 1924 | } |
| 1925 | |
| 1926 | /// Sets the value of the `IP_MULTICAST_TTL` option for this socket. |
| 1927 | /// |
| 1928 | /// Indicates the time-to-live value of outgoing multicast packets for |
| 1929 | /// this socket. The default value is 1 which means that multicast packets |
| 1930 | /// don't leave the local network unless explicitly requested. |
| 1931 | /// |
| 1932 | /// # Note |
| 1933 | /// |
| 1934 | /// This may not have any affect on IPv6 sockets. |
| 1935 | pub fn set_multicast_ttl_v4(&self, ttl: u32) -> io::Result<()> { |
| 1936 | self.io.set_multicast_ttl_v4(ttl) |
| 1937 | } |
| 1938 | |
| 1939 | /// Gets the value of the `IPV6_MULTICAST_LOOP` option for this socket. |
| 1940 | /// |
| 1941 | /// For more information about this option, see [`set_multicast_loop_v6`]. |
| 1942 | /// |
| 1943 | /// [`set_multicast_loop_v6`]: method@Self::set_multicast_loop_v6 |
| 1944 | pub fn multicast_loop_v6(&self) -> io::Result<bool> { |
| 1945 | self.io.multicast_loop_v6() |
| 1946 | } |
| 1947 | |
| 1948 | /// Sets the value of the `IPV6_MULTICAST_LOOP` option for this socket. |
| 1949 | /// |
| 1950 | /// Controls whether this socket sees the multicast packets it sends itself. |
| 1951 | /// |
| 1952 | /// # Note |
| 1953 | /// |
| 1954 | /// This may not have any affect on IPv4 sockets. |
| 1955 | pub fn set_multicast_loop_v6(&self, on: bool) -> io::Result<()> { |
| 1956 | self.io.set_multicast_loop_v6(on) |
| 1957 | } |
| 1958 | |
| 1959 | /// Gets the value of the `IP_TTL` option for this socket. |
| 1960 | /// |
| 1961 | /// For more information about this option, see [`set_ttl`]. |
| 1962 | /// |
| 1963 | /// [`set_ttl`]: method@Self::set_ttl |
| 1964 | /// |
| 1965 | /// # Examples |
| 1966 | /// |
| 1967 | /// ```no_run |
| 1968 | /// use tokio::net::UdpSocket; |
| 1969 | /// # use std::io; |
| 1970 | /// |
| 1971 | /// # async fn dox() -> io::Result<()> { |
| 1972 | /// let sock = UdpSocket::bind("127.0.0.1:8080" ).await?; |
| 1973 | /// |
| 1974 | /// println!("{:?}" , sock.ttl()?); |
| 1975 | /// # Ok(()) |
| 1976 | /// # } |
| 1977 | /// ``` |
| 1978 | pub fn ttl(&self) -> io::Result<u32> { |
| 1979 | self.io.ttl() |
| 1980 | } |
| 1981 | |
| 1982 | /// Sets the value for the `IP_TTL` option on this socket. |
| 1983 | /// |
| 1984 | /// This value sets the time-to-live field that is used in every packet sent |
| 1985 | /// from this socket. |
| 1986 | /// |
| 1987 | /// # Examples |
| 1988 | /// |
| 1989 | /// ```no_run |
| 1990 | /// use tokio::net::UdpSocket; |
| 1991 | /// # use std::io; |
| 1992 | /// |
| 1993 | /// # async fn dox() -> io::Result<()> { |
| 1994 | /// let sock = UdpSocket::bind("127.0.0.1:8080" ).await?; |
| 1995 | /// sock.set_ttl(60)?; |
| 1996 | /// |
| 1997 | /// # Ok(()) |
| 1998 | /// # } |
| 1999 | /// ``` |
| 2000 | pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { |
| 2001 | self.io.set_ttl(ttl) |
| 2002 | } |
| 2003 | |
| 2004 | /// Gets the value of the `IP_TOS` option for this socket. |
| 2005 | /// |
| 2006 | /// For more information about this option, see [`set_tos`]. |
| 2007 | /// |
| 2008 | /// **NOTE:** On Windows, `IP_TOS` is only supported on [Windows 8+ or |
| 2009 | /// Windows Server 2012+.](https://docs.microsoft.com/en-us/windows/win32/winsock/ipproto-ip-socket-options) |
| 2010 | /// |
| 2011 | /// [`set_tos`]: Self::set_tos |
| 2012 | // https://docs.rs/socket2/0.5.3/src/socket2/socket.rs.html#1464 |
| 2013 | #[cfg (not(any( |
| 2014 | target_os = "fuchsia" , |
| 2015 | target_os = "redox" , |
| 2016 | target_os = "solaris" , |
| 2017 | target_os = "illumos" , |
| 2018 | target_os = "haiku" |
| 2019 | )))] |
| 2020 | #[cfg_attr ( |
| 2021 | docsrs, |
| 2022 | doc(cfg(not(any( |
| 2023 | target_os = "fuchsia" , |
| 2024 | target_os = "redox" , |
| 2025 | target_os = "solaris" , |
| 2026 | target_os = "illumos" , |
| 2027 | target_os = "haiku" |
| 2028 | )))) |
| 2029 | )] |
| 2030 | pub fn tos(&self) -> io::Result<u32> { |
| 2031 | self.as_socket().tos() |
| 2032 | } |
| 2033 | |
| 2034 | /// Sets the value for the `IP_TOS` option on this socket. |
| 2035 | /// |
| 2036 | /// This value sets the type-of-service field that is used in every packet |
| 2037 | /// sent from this socket. |
| 2038 | /// |
| 2039 | /// **NOTE:** On Windows, `IP_TOS` is only supported on [Windows 8+ or |
| 2040 | /// Windows Server 2012+.](https://docs.microsoft.com/en-us/windows/win32/winsock/ipproto-ip-socket-options) |
| 2041 | // https://docs.rs/socket2/0.5.3/src/socket2/socket.rs.html#1446 |
| 2042 | #[cfg (not(any( |
| 2043 | target_os = "fuchsia" , |
| 2044 | target_os = "redox" , |
| 2045 | target_os = "solaris" , |
| 2046 | target_os = "illumos" , |
| 2047 | target_os = "haiku" |
| 2048 | )))] |
| 2049 | #[cfg_attr ( |
| 2050 | docsrs, |
| 2051 | doc(cfg(not(any( |
| 2052 | target_os = "fuchsia" , |
| 2053 | target_os = "redox" , |
| 2054 | target_os = "solaris" , |
| 2055 | target_os = "illumos" , |
| 2056 | target_os = "haiku" |
| 2057 | )))) |
| 2058 | )] |
| 2059 | pub fn set_tos(&self, tos: u32) -> io::Result<()> { |
| 2060 | self.as_socket().set_tos(tos) |
| 2061 | } |
| 2062 | |
| 2063 | /// Gets the value for the `SO_BINDTODEVICE` option on this socket |
| 2064 | /// |
| 2065 | /// This value gets the socket-bound device's interface name. |
| 2066 | #[cfg (any(target_os = "android" , target_os = "fuchsia" , target_os = "linux" ,))] |
| 2067 | #[cfg_attr ( |
| 2068 | docsrs, |
| 2069 | doc(cfg(any(target_os = "android" , target_os = "fuchsia" , target_os = "linux" ,))) |
| 2070 | )] |
| 2071 | pub fn device(&self) -> io::Result<Option<Vec<u8>>> { |
| 2072 | self.as_socket().device() |
| 2073 | } |
| 2074 | |
| 2075 | /// Sets the value for the `SO_BINDTODEVICE` option on this socket |
| 2076 | /// |
| 2077 | /// If a socket is bound to an interface, only packets received from that |
| 2078 | /// particular interface are processed by the socket. Note that this only |
| 2079 | /// works for some socket types, particularly `AF_INET` sockets. |
| 2080 | /// |
| 2081 | /// If `interface` is `None` or an empty string it removes the binding. |
| 2082 | #[cfg (any(target_os = "android" , target_os = "fuchsia" , target_os = "linux" ))] |
| 2083 | #[cfg_attr ( |
| 2084 | docsrs, |
| 2085 | doc(cfg(all(any(target_os = "android" , target_os = "fuchsia" , target_os = "linux" )))) |
| 2086 | )] |
| 2087 | pub fn bind_device(&self, interface: Option<&[u8]>) -> io::Result<()> { |
| 2088 | self.as_socket().bind_device(interface) |
| 2089 | } |
| 2090 | |
| 2091 | /// Executes an operation of the `IP_ADD_MEMBERSHIP` type. |
| 2092 | /// |
| 2093 | /// This function specifies a new multicast group for this socket to join. |
| 2094 | /// The address must be a valid multicast address, and `interface` is the |
| 2095 | /// address of the local interface with which the system should join the |
| 2096 | /// multicast group. If it's equal to `INADDR_ANY` then an appropriate |
| 2097 | /// interface is chosen by the system. |
| 2098 | pub fn join_multicast_v4(&self, multiaddr: Ipv4Addr, interface: Ipv4Addr) -> io::Result<()> { |
| 2099 | self.io.join_multicast_v4(&multiaddr, &interface) |
| 2100 | } |
| 2101 | |
| 2102 | /// Executes an operation of the `IPV6_ADD_MEMBERSHIP` type. |
| 2103 | /// |
| 2104 | /// This function specifies a new multicast group for this socket to join. |
| 2105 | /// The address must be a valid multicast address, and `interface` is the |
| 2106 | /// index of the interface to join/leave (or 0 to indicate any interface). |
| 2107 | pub fn join_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { |
| 2108 | self.io.join_multicast_v6(multiaddr, interface) |
| 2109 | } |
| 2110 | |
| 2111 | /// Executes an operation of the `IP_DROP_MEMBERSHIP` type. |
| 2112 | /// |
| 2113 | /// For more information about this option, see [`join_multicast_v4`]. |
| 2114 | /// |
| 2115 | /// [`join_multicast_v4`]: method@Self::join_multicast_v4 |
| 2116 | pub fn leave_multicast_v4(&self, multiaddr: Ipv4Addr, interface: Ipv4Addr) -> io::Result<()> { |
| 2117 | self.io.leave_multicast_v4(&multiaddr, &interface) |
| 2118 | } |
| 2119 | |
| 2120 | /// Executes an operation of the `IPV6_DROP_MEMBERSHIP` type. |
| 2121 | /// |
| 2122 | /// For more information about this option, see [`join_multicast_v6`]. |
| 2123 | /// |
| 2124 | /// [`join_multicast_v6`]: method@Self::join_multicast_v6 |
| 2125 | pub fn leave_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { |
| 2126 | self.io.leave_multicast_v6(multiaddr, interface) |
| 2127 | } |
| 2128 | |
| 2129 | /// Returns the value of the `SO_ERROR` option. |
| 2130 | /// |
| 2131 | /// # Examples |
| 2132 | /// ``` |
| 2133 | /// # if cfg!(miri) { return } // No `socket` in miri. |
| 2134 | /// use tokio::net::UdpSocket; |
| 2135 | /// use std::io; |
| 2136 | /// |
| 2137 | /// #[tokio::main] |
| 2138 | /// async fn main() -> io::Result<()> { |
| 2139 | /// // Create a socket |
| 2140 | /// let socket = UdpSocket::bind("0.0.0.0:8080" ).await?; |
| 2141 | /// |
| 2142 | /// if let Ok(Some(err)) = socket.take_error() { |
| 2143 | /// println!("Got error: {:?}" , err); |
| 2144 | /// } |
| 2145 | /// |
| 2146 | /// Ok(()) |
| 2147 | /// } |
| 2148 | /// ``` |
| 2149 | pub fn take_error(&self) -> io::Result<Option<io::Error>> { |
| 2150 | self.io.take_error() |
| 2151 | } |
| 2152 | } |
| 2153 | |
| 2154 | impl TryFrom<std::net::UdpSocket> for UdpSocket { |
| 2155 | type Error = io::Error; |
| 2156 | |
| 2157 | /// Consumes stream, returning the tokio I/O object. |
| 2158 | /// |
| 2159 | /// This is equivalent to |
| 2160 | /// [`UdpSocket::from_std(stream)`](UdpSocket::from_std). |
| 2161 | fn try_from(stream: std::net::UdpSocket) -> Result<Self, Self::Error> { |
| 2162 | Self::from_std(socket:stream) |
| 2163 | } |
| 2164 | } |
| 2165 | |
| 2166 | impl fmt::Debug for UdpSocket { |
| 2167 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 2168 | self.io.fmt(f) |
| 2169 | } |
| 2170 | } |
| 2171 | |
| 2172 | #[cfg (unix)] |
| 2173 | mod sys { |
| 2174 | use super::UdpSocket; |
| 2175 | use std::os::unix::prelude::*; |
| 2176 | |
| 2177 | impl AsRawFd for UdpSocket { |
| 2178 | fn as_raw_fd(&self) -> RawFd { |
| 2179 | self.io.as_raw_fd() |
| 2180 | } |
| 2181 | } |
| 2182 | |
| 2183 | impl AsFd for UdpSocket { |
| 2184 | fn as_fd(&self) -> BorrowedFd<'_> { |
| 2185 | unsafe { BorrowedFd::borrow_raw(self.as_raw_fd()) } |
| 2186 | } |
| 2187 | } |
| 2188 | } |
| 2189 | |
| 2190 | cfg_windows! { |
| 2191 | use crate::os::windows::io::{AsRawSocket, RawSocket}; |
| 2192 | use crate::os::windows::io::{AsSocket, BorrowedSocket}; |
| 2193 | |
| 2194 | impl AsRawSocket for UdpSocket { |
| 2195 | fn as_raw_socket(&self) -> RawSocket { |
| 2196 | self.io.as_raw_socket() |
| 2197 | } |
| 2198 | } |
| 2199 | |
| 2200 | impl AsSocket for UdpSocket { |
| 2201 | fn as_socket(&self) -> BorrowedSocket<'_> { |
| 2202 | unsafe { BorrowedSocket::borrow_raw(self.as_raw_socket()) } |
| 2203 | } |
| 2204 | } |
| 2205 | } |
| 2206 | |