| 1 | #![cfg_attr (not(feature = "sync" ), allow(unreachable_pub, dead_code))] |
| 2 | |
| 3 | use crate::sync::batch_semaphore as semaphore; |
| 4 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 5 | use crate::util::trace; |
| 6 | |
| 7 | use std::cell::UnsafeCell; |
| 8 | use std::error::Error; |
| 9 | use std::marker::PhantomData; |
| 10 | use std::ops::{Deref, DerefMut}; |
| 11 | use std::sync::Arc; |
| 12 | use std::{fmt, mem, ptr}; |
| 13 | |
| 14 | /// An asynchronous `Mutex`-like type. |
| 15 | /// |
| 16 | /// This type acts similarly to [`std::sync::Mutex`], with two major |
| 17 | /// differences: [`lock`] is an async method so does not block, and the lock |
| 18 | /// guard is designed to be held across `.await` points. |
| 19 | /// |
| 20 | /// Tokio's Mutex operates on a guaranteed FIFO basis. |
| 21 | /// This means that the order in which tasks call the [`lock`] method is |
| 22 | /// the exact order in which they will acquire the lock. |
| 23 | /// |
| 24 | /// # Which kind of mutex should you use? |
| 25 | /// |
| 26 | /// Contrary to popular belief, it is ok and often preferred to use the ordinary |
| 27 | /// [`Mutex`][std] from the standard library in asynchronous code. |
| 28 | /// |
| 29 | /// The feature that the async mutex offers over the blocking mutex is the |
| 30 | /// ability to keep it locked across an `.await` point. This makes the async |
| 31 | /// mutex more expensive than the blocking mutex, so the blocking mutex should |
| 32 | /// be preferred in the cases where it can be used. The primary use case for the |
| 33 | /// async mutex is to provide shared mutable access to IO resources such as a |
| 34 | /// database connection. If the value behind the mutex is just data, it's |
| 35 | /// usually appropriate to use a blocking mutex such as the one in the standard |
| 36 | /// library or [`parking_lot`]. |
| 37 | /// |
| 38 | /// Note that, although the compiler will not prevent the std `Mutex` from holding |
| 39 | /// its guard across `.await` points in situations where the task is not movable |
| 40 | /// between threads, this virtually never leads to correct concurrent code in |
| 41 | /// practice as it can easily lead to deadlocks. |
| 42 | /// |
| 43 | /// A common pattern is to wrap the `Arc<Mutex<...>>` in a struct that provides |
| 44 | /// non-async methods for performing operations on the data within, and only |
| 45 | /// lock the mutex inside these methods. The [mini-redis] example provides an |
| 46 | /// illustration of this pattern. |
| 47 | /// |
| 48 | /// Additionally, when you _do_ want shared access to an IO resource, it is |
| 49 | /// often better to spawn a task to manage the IO resource, and to use message |
| 50 | /// passing to communicate with that task. |
| 51 | /// |
| 52 | /// [std]: std::sync::Mutex |
| 53 | /// [`parking_lot`]: https://docs.rs/parking_lot |
| 54 | /// [mini-redis]: https://github.com/tokio-rs/mini-redis/blob/master/src/db.rs |
| 55 | /// |
| 56 | /// # Examples: |
| 57 | /// |
| 58 | /// ```rust,no_run |
| 59 | /// use tokio::sync::Mutex; |
| 60 | /// use std::sync::Arc; |
| 61 | /// |
| 62 | /// #[tokio::main] |
| 63 | /// async fn main() { |
| 64 | /// let data1 = Arc::new(Mutex::new(0)); |
| 65 | /// let data2 = Arc::clone(&data1); |
| 66 | /// |
| 67 | /// tokio::spawn(async move { |
| 68 | /// let mut lock = data2.lock().await; |
| 69 | /// *lock += 1; |
| 70 | /// }); |
| 71 | /// |
| 72 | /// let mut lock = data1.lock().await; |
| 73 | /// *lock += 1; |
| 74 | /// } |
| 75 | /// ``` |
| 76 | /// |
| 77 | /// |
| 78 | /// ```rust,no_run |
| 79 | /// use tokio::sync::Mutex; |
| 80 | /// use std::sync::Arc; |
| 81 | /// |
| 82 | /// #[tokio::main] |
| 83 | /// async fn main() { |
| 84 | /// let count = Arc::new(Mutex::new(0)); |
| 85 | /// |
| 86 | /// for i in 0..5 { |
| 87 | /// let my_count = Arc::clone(&count); |
| 88 | /// tokio::spawn(async move { |
| 89 | /// for j in 0..10 { |
| 90 | /// let mut lock = my_count.lock().await; |
| 91 | /// *lock += 1; |
| 92 | /// println!("{} {} {}" , i, j, lock); |
| 93 | /// } |
| 94 | /// }); |
| 95 | /// } |
| 96 | /// |
| 97 | /// loop { |
| 98 | /// if *count.lock().await >= 50 { |
| 99 | /// break; |
| 100 | /// } |
| 101 | /// } |
| 102 | /// println!("Count hit 50." ); |
| 103 | /// } |
| 104 | /// ``` |
| 105 | /// There are a few things of note here to pay attention to in this example. |
| 106 | /// 1. The mutex is wrapped in an [`Arc`] to allow it to be shared across |
| 107 | /// threads. |
| 108 | /// 2. Each spawned task obtains a lock and releases it on every iteration. |
| 109 | /// 3. Mutation of the data protected by the Mutex is done by de-referencing |
| 110 | /// the obtained lock as seen on lines 13 and 20. |
| 111 | /// |
| 112 | /// Tokio's Mutex works in a simple FIFO (first in, first out) style where all |
| 113 | /// calls to [`lock`] complete in the order they were performed. In that way the |
| 114 | /// Mutex is "fair" and predictable in how it distributes the locks to inner |
| 115 | /// data. Locks are released and reacquired after every iteration, so basically, |
| 116 | /// each thread goes to the back of the line after it increments the value once. |
| 117 | /// Note that there's some unpredictability to the timing between when the |
| 118 | /// threads are started, but once they are going they alternate predictably. |
| 119 | /// Finally, since there is only a single valid lock at any given time, there is |
| 120 | /// no possibility of a race condition when mutating the inner value. |
| 121 | /// |
| 122 | /// Note that in contrast to [`std::sync::Mutex`], this implementation does not |
| 123 | /// poison the mutex when a thread holding the [`MutexGuard`] panics. In such a |
| 124 | /// case, the mutex will be unlocked. If the panic is caught, this might leave |
| 125 | /// the data protected by the mutex in an inconsistent state. |
| 126 | /// |
| 127 | /// [`Mutex`]: struct@Mutex |
| 128 | /// [`MutexGuard`]: struct@MutexGuard |
| 129 | /// [`Arc`]: struct@std::sync::Arc |
| 130 | /// [`std::sync::Mutex`]: struct@std::sync::Mutex |
| 131 | /// [`Send`]: trait@std::marker::Send |
| 132 | /// [`lock`]: method@Mutex::lock |
| 133 | pub struct Mutex<T: ?Sized> { |
| 134 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 135 | resource_span: tracing::Span, |
| 136 | s: semaphore::Semaphore, |
| 137 | c: UnsafeCell<T>, |
| 138 | } |
| 139 | |
| 140 | /// A handle to a held `Mutex`. The guard can be held across any `.await` point |
| 141 | /// as it is [`Send`]. |
| 142 | /// |
| 143 | /// As long as you have this guard, you have exclusive access to the underlying |
| 144 | /// `T`. The guard internally borrows the `Mutex`, so the mutex will not be |
| 145 | /// dropped while a guard exists. |
| 146 | /// |
| 147 | /// The lock is automatically released whenever the guard is dropped, at which |
| 148 | /// point `lock` will succeed yet again. |
| 149 | #[clippy::has_significant_drop] |
| 150 | #[must_use = "if unused the Mutex will immediately unlock" ] |
| 151 | pub struct MutexGuard<'a, T: ?Sized> { |
| 152 | // When changing the fields in this struct, make sure to update the |
| 153 | // `skip_drop` method. |
| 154 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 155 | resource_span: tracing::Span, |
| 156 | lock: &'a Mutex<T>, |
| 157 | } |
| 158 | |
| 159 | /// An owned handle to a held `Mutex`. |
| 160 | /// |
| 161 | /// This guard is only available from a `Mutex` that is wrapped in an [`Arc`]. It |
| 162 | /// is identical to `MutexGuard`, except that rather than borrowing the `Mutex`, |
| 163 | /// it clones the `Arc`, incrementing the reference count. This means that |
| 164 | /// unlike `MutexGuard`, it will have the `'static` lifetime. |
| 165 | /// |
| 166 | /// As long as you have this guard, you have exclusive access to the underlying |
| 167 | /// `T`. The guard internally keeps a reference-counted pointer to the original |
| 168 | /// `Mutex`, so even if the lock goes away, the guard remains valid. |
| 169 | /// |
| 170 | /// The lock is automatically released whenever the guard is dropped, at which |
| 171 | /// point `lock` will succeed yet again. |
| 172 | /// |
| 173 | /// [`Arc`]: std::sync::Arc |
| 174 | #[clippy::has_significant_drop] |
| 175 | pub struct OwnedMutexGuard<T: ?Sized> { |
| 176 | // When changing the fields in this struct, make sure to update the |
| 177 | // `skip_drop` method. |
| 178 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 179 | resource_span: tracing::Span, |
| 180 | lock: Arc<Mutex<T>>, |
| 181 | } |
| 182 | |
| 183 | /// A handle to a held `Mutex` that has had a function applied to it via [`MutexGuard::map`]. |
| 184 | /// |
| 185 | /// This can be used to hold a subfield of the protected data. |
| 186 | /// |
| 187 | /// [`MutexGuard::map`]: method@MutexGuard::map |
| 188 | #[clippy::has_significant_drop] |
| 189 | #[must_use = "if unused the Mutex will immediately unlock" ] |
| 190 | pub struct MappedMutexGuard<'a, T: ?Sized> { |
| 191 | // When changing the fields in this struct, make sure to update the |
| 192 | // `skip_drop` method. |
| 193 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 194 | resource_span: tracing::Span, |
| 195 | s: &'a semaphore::Semaphore, |
| 196 | data: *mut T, |
| 197 | // Needed to tell the borrow checker that we are holding a `&mut T` |
| 198 | marker: PhantomData<&'a mut T>, |
| 199 | } |
| 200 | |
| 201 | /// A owned handle to a held `Mutex` that has had a function applied to it via |
| 202 | /// [`OwnedMutexGuard::map`]. |
| 203 | /// |
| 204 | /// This can be used to hold a subfield of the protected data. |
| 205 | /// |
| 206 | /// [`OwnedMutexGuard::map`]: method@OwnedMutexGuard::map |
| 207 | #[clippy::has_significant_drop] |
| 208 | #[must_use = "if unused the Mutex will immediately unlock" ] |
| 209 | pub struct OwnedMappedMutexGuard<T: ?Sized, U: ?Sized = T> { |
| 210 | // When changing the fields in this struct, make sure to update the |
| 211 | // `skip_drop` method. |
| 212 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 213 | resource_span: tracing::Span, |
| 214 | data: *mut U, |
| 215 | lock: Arc<Mutex<T>>, |
| 216 | } |
| 217 | |
| 218 | /// A helper type used when taking apart a `MutexGuard` without running its |
| 219 | /// Drop implementation. |
| 220 | #[allow (dead_code)] // Unused fields are still used in Drop. |
| 221 | struct MutexGuardInner<'a, T: ?Sized> { |
| 222 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 223 | resource_span: tracing::Span, |
| 224 | lock: &'a Mutex<T>, |
| 225 | } |
| 226 | |
| 227 | /// A helper type used when taking apart a `OwnedMutexGuard` without running |
| 228 | /// its Drop implementation. |
| 229 | struct OwnedMutexGuardInner<T: ?Sized> { |
| 230 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 231 | resource_span: tracing::Span, |
| 232 | lock: Arc<Mutex<T>>, |
| 233 | } |
| 234 | |
| 235 | /// A helper type used when taking apart a `MappedMutexGuard` without running |
| 236 | /// its Drop implementation. |
| 237 | #[allow (dead_code)] // Unused fields are still used in Drop. |
| 238 | struct MappedMutexGuardInner<'a, T: ?Sized> { |
| 239 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 240 | resource_span: tracing::Span, |
| 241 | s: &'a semaphore::Semaphore, |
| 242 | data: *mut T, |
| 243 | } |
| 244 | |
| 245 | /// A helper type used when taking apart a `OwnedMappedMutexGuard` without running |
| 246 | /// its Drop implementation. |
| 247 | #[allow (dead_code)] // Unused fields are still used in Drop. |
| 248 | struct OwnedMappedMutexGuardInner<T: ?Sized, U: ?Sized> { |
| 249 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 250 | resource_span: tracing::Span, |
| 251 | data: *mut U, |
| 252 | lock: Arc<Mutex<T>>, |
| 253 | } |
| 254 | |
| 255 | // As long as T: Send, it's fine to send and share Mutex<T> between threads. |
| 256 | // If T was not Send, sending and sharing a Mutex<T> would be bad, since you can |
| 257 | // access T through Mutex<T>. |
| 258 | unsafe impl<T> Send for Mutex<T> where T: ?Sized + Send {} |
| 259 | unsafe impl<T> Sync for Mutex<T> where T: ?Sized + Send {} |
| 260 | unsafe impl<T> Sync for MutexGuard<'_, T> where T: ?Sized + Send + Sync {} |
| 261 | unsafe impl<T> Sync for OwnedMutexGuard<T> where T: ?Sized + Send + Sync {} |
| 262 | unsafe impl<'a, T> Sync for MappedMutexGuard<'a, T> where T: ?Sized + Sync + 'a {} |
| 263 | unsafe impl<'a, T> Send for MappedMutexGuard<'a, T> where T: ?Sized + Send + 'a {} |
| 264 | |
| 265 | unsafe impl<T, U> Sync for OwnedMappedMutexGuard<T, U> |
| 266 | where |
| 267 | T: ?Sized + Send + Sync, |
| 268 | U: ?Sized + Send + Sync, |
| 269 | { |
| 270 | } |
| 271 | unsafe impl<T, U> Send for OwnedMappedMutexGuard<T, U> |
| 272 | where |
| 273 | T: ?Sized + Send, |
| 274 | U: ?Sized + Send, |
| 275 | { |
| 276 | } |
| 277 | |
| 278 | /// Error returned from the [`Mutex::try_lock`], [`RwLock::try_read`] and |
| 279 | /// [`RwLock::try_write`] functions. |
| 280 | /// |
| 281 | /// `Mutex::try_lock` operation will only fail if the mutex is already locked. |
| 282 | /// |
| 283 | /// `RwLock::try_read` operation will only fail if the lock is currently held |
| 284 | /// by an exclusive writer. |
| 285 | /// |
| 286 | /// `RwLock::try_write` operation will only fail if the lock is currently held |
| 287 | /// by any reader or by an exclusive writer. |
| 288 | /// |
| 289 | /// [`Mutex::try_lock`]: Mutex::try_lock |
| 290 | /// [`RwLock::try_read`]: fn@super::RwLock::try_read |
| 291 | /// [`RwLock::try_write`]: fn@super::RwLock::try_write |
| 292 | #[derive (Debug)] |
| 293 | pub struct TryLockError(pub(super) ()); |
| 294 | |
| 295 | impl fmt::Display for TryLockError { |
| 296 | fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 297 | write!(fmt, "operation would block" ) |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | impl Error for TryLockError {} |
| 302 | |
| 303 | #[test ] |
| 304 | #[cfg (not(loom))] |
| 305 | fn bounds() { |
| 306 | fn check_send<T: Send>() {} |
| 307 | fn check_unpin<T: Unpin>() {} |
| 308 | // This has to take a value, since the async fn's return type is unnameable. |
| 309 | fn check_send_sync_val<T: Send + Sync>(_t: T) {} |
| 310 | fn check_send_sync<T: Send + Sync>() {} |
| 311 | fn check_static<T: 'static>() {} |
| 312 | fn check_static_val<T: 'static>(_t: T) {} |
| 313 | |
| 314 | check_send::<MutexGuard<'_, u32>>(); |
| 315 | check_send::<OwnedMutexGuard<u32>>(); |
| 316 | check_unpin::<Mutex<u32>>(); |
| 317 | check_send_sync::<Mutex<u32>>(); |
| 318 | check_static::<OwnedMutexGuard<u32>>(); |
| 319 | |
| 320 | let mutex = Mutex::new(1); |
| 321 | check_send_sync_val(mutex.lock()); |
| 322 | let arc_mutex = Arc::new(Mutex::new(1)); |
| 323 | check_send_sync_val(arc_mutex.clone().lock_owned()); |
| 324 | check_static_val(arc_mutex.lock_owned()); |
| 325 | } |
| 326 | |
| 327 | impl<T: ?Sized> Mutex<T> { |
| 328 | /// Creates a new lock in an unlocked state ready for use. |
| 329 | /// |
| 330 | /// # Examples |
| 331 | /// |
| 332 | /// ``` |
| 333 | /// use tokio::sync::Mutex; |
| 334 | /// |
| 335 | /// let lock = Mutex::new(5); |
| 336 | /// ``` |
| 337 | #[track_caller ] |
| 338 | pub fn new(t: T) -> Self |
| 339 | where |
| 340 | T: Sized, |
| 341 | { |
| 342 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 343 | let resource_span = { |
| 344 | let location = std::panic::Location::caller(); |
| 345 | |
| 346 | tracing::trace_span!( |
| 347 | parent: None, |
| 348 | "runtime.resource" , |
| 349 | concrete_type = "Mutex" , |
| 350 | kind = "Sync" , |
| 351 | loc.file = location.file(), |
| 352 | loc.line = location.line(), |
| 353 | loc.col = location.column(), |
| 354 | ) |
| 355 | }; |
| 356 | |
| 357 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 358 | let s = resource_span.in_scope(|| { |
| 359 | tracing::trace!( |
| 360 | target: "runtime::resource::state_update" , |
| 361 | locked = false, |
| 362 | ); |
| 363 | semaphore::Semaphore::new(1) |
| 364 | }); |
| 365 | |
| 366 | #[cfg (any(not(tokio_unstable), not(feature = "tracing" )))] |
| 367 | let s = semaphore::Semaphore::new(1); |
| 368 | |
| 369 | Self { |
| 370 | c: UnsafeCell::new(t), |
| 371 | s, |
| 372 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 373 | resource_span, |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | /// Creates a new lock in an unlocked state ready for use. |
| 378 | /// |
| 379 | /// When using the `tracing` [unstable feature], a `Mutex` created with |
| 380 | /// `const_new` will not be instrumented. As such, it will not be visible |
| 381 | /// in [`tokio-console`]. Instead, [`Mutex::new`] should be used to create |
| 382 | /// an instrumented object if that is needed. |
| 383 | /// |
| 384 | /// # Examples |
| 385 | /// |
| 386 | /// ``` |
| 387 | /// use tokio::sync::Mutex; |
| 388 | /// |
| 389 | /// static LOCK: Mutex<i32> = Mutex::const_new(5); |
| 390 | /// ``` |
| 391 | /// |
| 392 | /// [`tokio-console`]: https://github.com/tokio-rs/console |
| 393 | /// [unstable feature]: crate#unstable-features |
| 394 | #[cfg (not(all(loom, test)))] |
| 395 | pub const fn const_new(t: T) -> Self |
| 396 | where |
| 397 | T: Sized, |
| 398 | { |
| 399 | Self { |
| 400 | c: UnsafeCell::new(t), |
| 401 | s: semaphore::Semaphore::const_new(1), |
| 402 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 403 | resource_span: tracing::Span::none(), |
| 404 | } |
| 405 | } |
| 406 | |
| 407 | /// Locks this mutex, causing the current task to yield until the lock has |
| 408 | /// been acquired. When the lock has been acquired, function returns a |
| 409 | /// [`MutexGuard`]. |
| 410 | /// |
| 411 | /// If the mutex is available to be acquired immediately, then this call |
| 412 | /// will typically not yield to the runtime. However, this is not guaranteed |
| 413 | /// under all circumstances. |
| 414 | /// |
| 415 | /// # Cancel safety |
| 416 | /// |
| 417 | /// This method uses a queue to fairly distribute locks in the order they |
| 418 | /// were requested. Cancelling a call to `lock` makes you lose your place in |
| 419 | /// the queue. |
| 420 | /// |
| 421 | /// # Examples |
| 422 | /// |
| 423 | /// ``` |
| 424 | /// use tokio::sync::Mutex; |
| 425 | /// |
| 426 | /// #[tokio::main] |
| 427 | /// async fn main() { |
| 428 | /// let mutex = Mutex::new(1); |
| 429 | /// |
| 430 | /// let mut n = mutex.lock().await; |
| 431 | /// *n = 2; |
| 432 | /// } |
| 433 | /// ``` |
| 434 | pub async fn lock(&self) -> MutexGuard<'_, T> { |
| 435 | let acquire_fut = async { |
| 436 | self.acquire().await; |
| 437 | |
| 438 | MutexGuard { |
| 439 | lock: self, |
| 440 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 441 | resource_span: self.resource_span.clone(), |
| 442 | } |
| 443 | }; |
| 444 | |
| 445 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 446 | let acquire_fut = trace::async_op( |
| 447 | move || acquire_fut, |
| 448 | self.resource_span.clone(), |
| 449 | "Mutex::lock" , |
| 450 | "poll" , |
| 451 | false, |
| 452 | ); |
| 453 | |
| 454 | #[allow (clippy::let_and_return)] // this lint triggers when disabling tracing |
| 455 | let guard = acquire_fut.await; |
| 456 | |
| 457 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 458 | self.resource_span.in_scope(|| { |
| 459 | tracing::trace!( |
| 460 | target: "runtime::resource::state_update" , |
| 461 | locked = true, |
| 462 | ); |
| 463 | }); |
| 464 | |
| 465 | guard |
| 466 | } |
| 467 | |
| 468 | /// Blockingly locks this `Mutex`. When the lock has been acquired, function returns a |
| 469 | /// [`MutexGuard`]. |
| 470 | /// |
| 471 | /// This method is intended for use cases where you |
| 472 | /// need to use this mutex in asynchronous code as well as in synchronous code. |
| 473 | /// |
| 474 | /// # Panics |
| 475 | /// |
| 476 | /// This function panics if called within an asynchronous execution context. |
| 477 | /// |
| 478 | /// - If you find yourself in an asynchronous execution context and needing |
| 479 | /// to call some (synchronous) function which performs one of these |
| 480 | /// `blocking_` operations, then consider wrapping that call inside |
| 481 | /// [`spawn_blocking()`][crate::runtime::Handle::spawn_blocking] |
| 482 | /// (or [`block_in_place()`][crate::task::block_in_place]). |
| 483 | /// |
| 484 | /// # Examples |
| 485 | /// |
| 486 | /// ``` |
| 487 | /// use std::sync::Arc; |
| 488 | /// use tokio::sync::Mutex; |
| 489 | /// |
| 490 | /// #[tokio::main] |
| 491 | /// async fn main() { |
| 492 | /// let mutex = Arc::new(Mutex::new(1)); |
| 493 | /// let lock = mutex.lock().await; |
| 494 | /// |
| 495 | /// let mutex1 = Arc::clone(&mutex); |
| 496 | /// let blocking_task = tokio::task::spawn_blocking(move || { |
| 497 | /// // This shall block until the `lock` is released. |
| 498 | /// let mut n = mutex1.blocking_lock(); |
| 499 | /// *n = 2; |
| 500 | /// }); |
| 501 | /// |
| 502 | /// assert_eq!(*lock, 1); |
| 503 | /// // Release the lock. |
| 504 | /// drop(lock); |
| 505 | /// |
| 506 | /// // Await the completion of the blocking task. |
| 507 | /// blocking_task.await.unwrap(); |
| 508 | /// |
| 509 | /// // Assert uncontended. |
| 510 | /// let n = mutex.try_lock().unwrap(); |
| 511 | /// assert_eq!(*n, 2); |
| 512 | /// } |
| 513 | /// |
| 514 | /// ``` |
| 515 | #[track_caller ] |
| 516 | #[cfg (feature = "sync" )] |
| 517 | #[cfg_attr (docsrs, doc(alias = "lock_blocking" ))] |
| 518 | pub fn blocking_lock(&self) -> MutexGuard<'_, T> { |
| 519 | crate::future::block_on(self.lock()) |
| 520 | } |
| 521 | |
| 522 | /// Blockingly locks this `Mutex`. When the lock has been acquired, function returns an |
| 523 | /// [`OwnedMutexGuard`]. |
| 524 | /// |
| 525 | /// This method is identical to [`Mutex::blocking_lock`], except that the returned |
| 526 | /// guard references the `Mutex` with an [`Arc`] rather than by borrowing |
| 527 | /// it. Therefore, the `Mutex` must be wrapped in an `Arc` to call this |
| 528 | /// method, and the guard will live for the `'static` lifetime, as it keeps |
| 529 | /// the `Mutex` alive by holding an `Arc`. |
| 530 | /// |
| 531 | /// # Panics |
| 532 | /// |
| 533 | /// This function panics if called within an asynchronous execution context. |
| 534 | /// |
| 535 | /// - If you find yourself in an asynchronous execution context and needing |
| 536 | /// to call some (synchronous) function which performs one of these |
| 537 | /// `blocking_` operations, then consider wrapping that call inside |
| 538 | /// [`spawn_blocking()`][crate::runtime::Handle::spawn_blocking] |
| 539 | /// (or [`block_in_place()`][crate::task::block_in_place]). |
| 540 | /// |
| 541 | /// # Examples |
| 542 | /// |
| 543 | /// ``` |
| 544 | /// use std::sync::Arc; |
| 545 | /// use tokio::sync::Mutex; |
| 546 | /// |
| 547 | /// #[tokio::main] |
| 548 | /// async fn main() { |
| 549 | /// let mutex = Arc::new(Mutex::new(1)); |
| 550 | /// let lock = mutex.lock().await; |
| 551 | /// |
| 552 | /// let mutex1 = Arc::clone(&mutex); |
| 553 | /// let blocking_task = tokio::task::spawn_blocking(move || { |
| 554 | /// // This shall block until the `lock` is released. |
| 555 | /// let mut n = mutex1.blocking_lock_owned(); |
| 556 | /// *n = 2; |
| 557 | /// }); |
| 558 | /// |
| 559 | /// assert_eq!(*lock, 1); |
| 560 | /// // Release the lock. |
| 561 | /// drop(lock); |
| 562 | /// |
| 563 | /// // Await the completion of the blocking task. |
| 564 | /// blocking_task.await.unwrap(); |
| 565 | /// |
| 566 | /// // Assert uncontended. |
| 567 | /// let n = mutex.try_lock().unwrap(); |
| 568 | /// assert_eq!(*n, 2); |
| 569 | /// } |
| 570 | /// |
| 571 | /// ``` |
| 572 | #[track_caller ] |
| 573 | #[cfg (feature = "sync" )] |
| 574 | pub fn blocking_lock_owned(self: Arc<Self>) -> OwnedMutexGuard<T> { |
| 575 | crate::future::block_on(self.lock_owned()) |
| 576 | } |
| 577 | |
| 578 | /// Locks this mutex, causing the current task to yield until the lock has |
| 579 | /// been acquired. When the lock has been acquired, this returns an |
| 580 | /// [`OwnedMutexGuard`]. |
| 581 | /// |
| 582 | /// If the mutex is available to be acquired immediately, then this call |
| 583 | /// will typically not yield to the runtime. However, this is not guaranteed |
| 584 | /// under all circumstances. |
| 585 | /// |
| 586 | /// This method is identical to [`Mutex::lock`], except that the returned |
| 587 | /// guard references the `Mutex` with an [`Arc`] rather than by borrowing |
| 588 | /// it. Therefore, the `Mutex` must be wrapped in an `Arc` to call this |
| 589 | /// method, and the guard will live for the `'static` lifetime, as it keeps |
| 590 | /// the `Mutex` alive by holding an `Arc`. |
| 591 | /// |
| 592 | /// # Cancel safety |
| 593 | /// |
| 594 | /// This method uses a queue to fairly distribute locks in the order they |
| 595 | /// were requested. Cancelling a call to `lock_owned` makes you lose your |
| 596 | /// place in the queue. |
| 597 | /// |
| 598 | /// # Examples |
| 599 | /// |
| 600 | /// ``` |
| 601 | /// use tokio::sync::Mutex; |
| 602 | /// use std::sync::Arc; |
| 603 | /// |
| 604 | /// #[tokio::main] |
| 605 | /// async fn main() { |
| 606 | /// let mutex = Arc::new(Mutex::new(1)); |
| 607 | /// |
| 608 | /// let mut n = mutex.clone().lock_owned().await; |
| 609 | /// *n = 2; |
| 610 | /// } |
| 611 | /// ``` |
| 612 | /// |
| 613 | /// [`Arc`]: std::sync::Arc |
| 614 | pub async fn lock_owned(self: Arc<Self>) -> OwnedMutexGuard<T> { |
| 615 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 616 | let resource_span = self.resource_span.clone(); |
| 617 | |
| 618 | let acquire_fut = async { |
| 619 | self.acquire().await; |
| 620 | |
| 621 | OwnedMutexGuard { |
| 622 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 623 | resource_span: self.resource_span.clone(), |
| 624 | lock: self, |
| 625 | } |
| 626 | }; |
| 627 | |
| 628 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 629 | let acquire_fut = trace::async_op( |
| 630 | move || acquire_fut, |
| 631 | resource_span, |
| 632 | "Mutex::lock_owned" , |
| 633 | "poll" , |
| 634 | false, |
| 635 | ); |
| 636 | |
| 637 | #[allow (clippy::let_and_return)] // this lint triggers when disabling tracing |
| 638 | let guard = acquire_fut.await; |
| 639 | |
| 640 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 641 | guard.resource_span.in_scope(|| { |
| 642 | tracing::trace!( |
| 643 | target: "runtime::resource::state_update" , |
| 644 | locked = true, |
| 645 | ); |
| 646 | }); |
| 647 | |
| 648 | guard |
| 649 | } |
| 650 | |
| 651 | async fn acquire(&self) { |
| 652 | crate::trace::async_trace_leaf().await; |
| 653 | |
| 654 | self.s.acquire(1).await.unwrap_or_else(|_| { |
| 655 | // The semaphore was closed. but, we never explicitly close it, and |
| 656 | // we own it exclusively, which means that this can never happen. |
| 657 | unreachable!() |
| 658 | }); |
| 659 | } |
| 660 | |
| 661 | /// Attempts to acquire the lock, and returns [`TryLockError`] if the |
| 662 | /// lock is currently held somewhere else. |
| 663 | /// |
| 664 | /// [`TryLockError`]: TryLockError |
| 665 | /// # Examples |
| 666 | /// |
| 667 | /// ``` |
| 668 | /// use tokio::sync::Mutex; |
| 669 | /// # async fn dox() -> Result<(), tokio::sync::TryLockError> { |
| 670 | /// |
| 671 | /// let mutex = Mutex::new(1); |
| 672 | /// |
| 673 | /// let n = mutex.try_lock()?; |
| 674 | /// assert_eq!(*n, 1); |
| 675 | /// # Ok(()) |
| 676 | /// # } |
| 677 | /// ``` |
| 678 | pub fn try_lock(&self) -> Result<MutexGuard<'_, T>, TryLockError> { |
| 679 | match self.s.try_acquire(1) { |
| 680 | Ok(()) => { |
| 681 | let guard = MutexGuard { |
| 682 | lock: self, |
| 683 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 684 | resource_span: self.resource_span.clone(), |
| 685 | }; |
| 686 | |
| 687 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 688 | self.resource_span.in_scope(|| { |
| 689 | tracing::trace!( |
| 690 | target: "runtime::resource::state_update" , |
| 691 | locked = true, |
| 692 | ); |
| 693 | }); |
| 694 | |
| 695 | Ok(guard) |
| 696 | } |
| 697 | Err(_) => Err(TryLockError(())), |
| 698 | } |
| 699 | } |
| 700 | |
| 701 | /// Returns a mutable reference to the underlying data. |
| 702 | /// |
| 703 | /// Since this call borrows the `Mutex` mutably, no actual locking needs to |
| 704 | /// take place -- the mutable borrow statically guarantees no locks exist. |
| 705 | /// |
| 706 | /// # Examples |
| 707 | /// |
| 708 | /// ``` |
| 709 | /// use tokio::sync::Mutex; |
| 710 | /// |
| 711 | /// fn main() { |
| 712 | /// let mut mutex = Mutex::new(1); |
| 713 | /// |
| 714 | /// let n = mutex.get_mut(); |
| 715 | /// *n = 2; |
| 716 | /// } |
| 717 | /// ``` |
| 718 | pub fn get_mut(&mut self) -> &mut T { |
| 719 | unsafe { |
| 720 | // Safety: This is https://github.com/rust-lang/rust/pull/76936 |
| 721 | &mut *self.c.get() |
| 722 | } |
| 723 | } |
| 724 | |
| 725 | /// Attempts to acquire the lock, and returns [`TryLockError`] if the lock |
| 726 | /// is currently held somewhere else. |
| 727 | /// |
| 728 | /// This method is identical to [`Mutex::try_lock`], except that the |
| 729 | /// returned guard references the `Mutex` with an [`Arc`] rather than by |
| 730 | /// borrowing it. Therefore, the `Mutex` must be wrapped in an `Arc` to call |
| 731 | /// this method, and the guard will live for the `'static` lifetime, as it |
| 732 | /// keeps the `Mutex` alive by holding an `Arc`. |
| 733 | /// |
| 734 | /// [`TryLockError`]: TryLockError |
| 735 | /// [`Arc`]: std::sync::Arc |
| 736 | /// # Examples |
| 737 | /// |
| 738 | /// ``` |
| 739 | /// use tokio::sync::Mutex; |
| 740 | /// use std::sync::Arc; |
| 741 | /// # async fn dox() -> Result<(), tokio::sync::TryLockError> { |
| 742 | /// |
| 743 | /// let mutex = Arc::new(Mutex::new(1)); |
| 744 | /// |
| 745 | /// let n = mutex.clone().try_lock_owned()?; |
| 746 | /// assert_eq!(*n, 1); |
| 747 | /// # Ok(()) |
| 748 | /// # } |
| 749 | pub fn try_lock_owned(self: Arc<Self>) -> Result<OwnedMutexGuard<T>, TryLockError> { |
| 750 | match self.s.try_acquire(1) { |
| 751 | Ok(()) => { |
| 752 | let guard = OwnedMutexGuard { |
| 753 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 754 | resource_span: self.resource_span.clone(), |
| 755 | lock: self, |
| 756 | }; |
| 757 | |
| 758 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 759 | guard.resource_span.in_scope(|| { |
| 760 | tracing::trace!( |
| 761 | target: "runtime::resource::state_update" , |
| 762 | locked = true, |
| 763 | ); |
| 764 | }); |
| 765 | |
| 766 | Ok(guard) |
| 767 | } |
| 768 | Err(_) => Err(TryLockError(())), |
| 769 | } |
| 770 | } |
| 771 | |
| 772 | /// Consumes the mutex, returning the underlying data. |
| 773 | /// # Examples |
| 774 | /// |
| 775 | /// ``` |
| 776 | /// use tokio::sync::Mutex; |
| 777 | /// |
| 778 | /// #[tokio::main] |
| 779 | /// async fn main() { |
| 780 | /// let mutex = Mutex::new(1); |
| 781 | /// |
| 782 | /// let n = mutex.into_inner(); |
| 783 | /// assert_eq!(n, 1); |
| 784 | /// } |
| 785 | /// ``` |
| 786 | pub fn into_inner(self) -> T |
| 787 | where |
| 788 | T: Sized, |
| 789 | { |
| 790 | self.c.into_inner() |
| 791 | } |
| 792 | } |
| 793 | |
| 794 | impl<T> From<T> for Mutex<T> { |
| 795 | fn from(s: T) -> Self { |
| 796 | Self::new(s) |
| 797 | } |
| 798 | } |
| 799 | |
| 800 | impl<T> Default for Mutex<T> |
| 801 | where |
| 802 | T: Default, |
| 803 | { |
| 804 | fn default() -> Self { |
| 805 | Self::new(T::default()) |
| 806 | } |
| 807 | } |
| 808 | |
| 809 | impl<T: ?Sized> std::fmt::Debug for Mutex<T> |
| 810 | where |
| 811 | T: std::fmt::Debug, |
| 812 | { |
| 813 | fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { |
| 814 | let mut d: DebugStruct<'_, '_> = f.debug_struct(name:"Mutex" ); |
| 815 | match self.try_lock() { |
| 816 | Ok(inner: MutexGuard<'_, T>) => d.field(name:"data" , &&*inner), |
| 817 | Err(_) => d.field(name:"data" , &format_args!("<locked>" )), |
| 818 | }; |
| 819 | d.finish() |
| 820 | } |
| 821 | } |
| 822 | |
| 823 | // === impl MutexGuard === |
| 824 | |
| 825 | impl<'a, T: ?Sized> MutexGuard<'a, T> { |
| 826 | fn skip_drop(self) -> MutexGuardInner<'a, T> { |
| 827 | let me = mem::ManuallyDrop::new(self); |
| 828 | // SAFETY: This duplicates the `resource_span` and then forgets the |
| 829 | // original. In the end, we have not duplicated or forgotten any values. |
| 830 | MutexGuardInner { |
| 831 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 832 | resource_span: unsafe { std::ptr::read(&me.resource_span) }, |
| 833 | lock: me.lock, |
| 834 | } |
| 835 | } |
| 836 | |
| 837 | /// Makes a new [`MappedMutexGuard`] for a component of the locked data. |
| 838 | /// |
| 839 | /// This operation cannot fail as the [`MutexGuard`] passed in already locked the mutex. |
| 840 | /// |
| 841 | /// This is an associated function that needs to be used as `MutexGuard::map(...)`. A method |
| 842 | /// would interfere with methods of the same name on the contents of the locked data. |
| 843 | /// |
| 844 | /// # Examples |
| 845 | /// |
| 846 | /// ``` |
| 847 | /// use tokio::sync::{Mutex, MutexGuard}; |
| 848 | /// |
| 849 | /// #[derive(Debug, Clone, Copy, PartialEq, Eq)] |
| 850 | /// struct Foo(u32); |
| 851 | /// |
| 852 | /// # #[tokio::main] |
| 853 | /// # async fn main() { |
| 854 | /// let foo = Mutex::new(Foo(1)); |
| 855 | /// |
| 856 | /// { |
| 857 | /// let mut mapped = MutexGuard::map(foo.lock().await, |f| &mut f.0); |
| 858 | /// *mapped = 2; |
| 859 | /// } |
| 860 | /// |
| 861 | /// assert_eq!(Foo(2), *foo.lock().await); |
| 862 | /// # } |
| 863 | /// ``` |
| 864 | /// |
| 865 | /// [`MutexGuard`]: struct@MutexGuard |
| 866 | /// [`MappedMutexGuard`]: struct@MappedMutexGuard |
| 867 | #[inline ] |
| 868 | pub fn map<U, F>(mut this: Self, f: F) -> MappedMutexGuard<'a, U> |
| 869 | where |
| 870 | U: ?Sized, |
| 871 | F: FnOnce(&mut T) -> &mut U, |
| 872 | { |
| 873 | let data = f(&mut *this) as *mut U; |
| 874 | let inner = this.skip_drop(); |
| 875 | MappedMutexGuard { |
| 876 | s: &inner.lock.s, |
| 877 | data, |
| 878 | marker: PhantomData, |
| 879 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 880 | resource_span: inner.resource_span, |
| 881 | } |
| 882 | } |
| 883 | |
| 884 | /// Attempts to make a new [`MappedMutexGuard`] for a component of the locked data. The |
| 885 | /// original guard is returned if the closure returns `None`. |
| 886 | /// |
| 887 | /// This operation cannot fail as the [`MutexGuard`] passed in already locked the mutex. |
| 888 | /// |
| 889 | /// This is an associated function that needs to be used as `MutexGuard::try_map(...)`. A |
| 890 | /// method would interfere with methods of the same name on the contents of the locked data. |
| 891 | /// |
| 892 | /// # Examples |
| 893 | /// |
| 894 | /// ``` |
| 895 | /// use tokio::sync::{Mutex, MutexGuard}; |
| 896 | /// |
| 897 | /// #[derive(Debug, Clone, Copy, PartialEq, Eq)] |
| 898 | /// struct Foo(u32); |
| 899 | /// |
| 900 | /// # #[tokio::main] |
| 901 | /// # async fn main() { |
| 902 | /// let foo = Mutex::new(Foo(1)); |
| 903 | /// |
| 904 | /// { |
| 905 | /// let mut mapped = MutexGuard::try_map(foo.lock().await, |f| Some(&mut f.0)) |
| 906 | /// .expect("should not fail" ); |
| 907 | /// *mapped = 2; |
| 908 | /// } |
| 909 | /// |
| 910 | /// assert_eq!(Foo(2), *foo.lock().await); |
| 911 | /// # } |
| 912 | /// ``` |
| 913 | /// |
| 914 | /// [`MutexGuard`]: struct@MutexGuard |
| 915 | /// [`MappedMutexGuard`]: struct@MappedMutexGuard |
| 916 | #[inline ] |
| 917 | pub fn try_map<U, F>(mut this: Self, f: F) -> Result<MappedMutexGuard<'a, U>, Self> |
| 918 | where |
| 919 | U: ?Sized, |
| 920 | F: FnOnce(&mut T) -> Option<&mut U>, |
| 921 | { |
| 922 | let data = match f(&mut *this) { |
| 923 | Some(data) => data as *mut U, |
| 924 | None => return Err(this), |
| 925 | }; |
| 926 | let inner = this.skip_drop(); |
| 927 | Ok(MappedMutexGuard { |
| 928 | s: &inner.lock.s, |
| 929 | data, |
| 930 | marker: PhantomData, |
| 931 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 932 | resource_span: inner.resource_span, |
| 933 | }) |
| 934 | } |
| 935 | |
| 936 | /// Returns a reference to the original `Mutex`. |
| 937 | /// |
| 938 | /// ``` |
| 939 | /// use tokio::sync::{Mutex, MutexGuard}; |
| 940 | /// |
| 941 | /// async fn unlock_and_relock<'l>(guard: MutexGuard<'l, u32>) -> MutexGuard<'l, u32> { |
| 942 | /// println!("1. contains: {:?}" , *guard); |
| 943 | /// let mutex = MutexGuard::mutex(&guard); |
| 944 | /// drop(guard); |
| 945 | /// let guard = mutex.lock().await; |
| 946 | /// println!("2. contains: {:?}" , *guard); |
| 947 | /// guard |
| 948 | /// } |
| 949 | /// # |
| 950 | /// # #[tokio::main] |
| 951 | /// # async fn main() { |
| 952 | /// # let mutex = Mutex::new(0u32); |
| 953 | /// # let guard = mutex.lock().await; |
| 954 | /// # let _guard = unlock_and_relock(guard).await; |
| 955 | /// # } |
| 956 | /// ``` |
| 957 | #[inline ] |
| 958 | pub fn mutex(this: &Self) -> &'a Mutex<T> { |
| 959 | this.lock |
| 960 | } |
| 961 | } |
| 962 | |
| 963 | impl<T: ?Sized> Drop for MutexGuard<'_, T> { |
| 964 | fn drop(&mut self) { |
| 965 | self.lock.s.release(added:1); |
| 966 | |
| 967 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 968 | self.resource_span.in_scope(|| { |
| 969 | tracing::trace!( |
| 970 | target: "runtime::resource::state_update" , |
| 971 | locked = false, |
| 972 | ); |
| 973 | }); |
| 974 | } |
| 975 | } |
| 976 | |
| 977 | impl<T: ?Sized> Deref for MutexGuard<'_, T> { |
| 978 | type Target = T; |
| 979 | fn deref(&self) -> &Self::Target { |
| 980 | unsafe { &*self.lock.c.get() } |
| 981 | } |
| 982 | } |
| 983 | |
| 984 | impl<T: ?Sized> DerefMut for MutexGuard<'_, T> { |
| 985 | fn deref_mut(&mut self) -> &mut Self::Target { |
| 986 | unsafe { &mut *self.lock.c.get() } |
| 987 | } |
| 988 | } |
| 989 | |
| 990 | impl<T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'_, T> { |
| 991 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 992 | fmt::Debug::fmt(&**self, f) |
| 993 | } |
| 994 | } |
| 995 | |
| 996 | impl<T: ?Sized + fmt::Display> fmt::Display for MutexGuard<'_, T> { |
| 997 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 998 | fmt::Display::fmt(&**self, f) |
| 999 | } |
| 1000 | } |
| 1001 | |
| 1002 | // === impl OwnedMutexGuard === |
| 1003 | |
| 1004 | impl<T: ?Sized> OwnedMutexGuard<T> { |
| 1005 | fn skip_drop(self) -> OwnedMutexGuardInner<T> { |
| 1006 | let me = mem::ManuallyDrop::new(self); |
| 1007 | // SAFETY: This duplicates the values in every field of the guard, then |
| 1008 | // forgets the originals, so in the end no value is duplicated. |
| 1009 | unsafe { |
| 1010 | OwnedMutexGuardInner { |
| 1011 | lock: ptr::read(&me.lock), |
| 1012 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 1013 | resource_span: ptr::read(&me.resource_span), |
| 1014 | } |
| 1015 | } |
| 1016 | } |
| 1017 | |
| 1018 | /// Makes a new [`OwnedMappedMutexGuard`] for a component of the locked data. |
| 1019 | /// |
| 1020 | /// This operation cannot fail as the [`OwnedMutexGuard`] passed in already locked the mutex. |
| 1021 | /// |
| 1022 | /// This is an associated function that needs to be used as `OwnedMutexGuard::map(...)`. A method |
| 1023 | /// would interfere with methods of the same name on the contents of the locked data. |
| 1024 | /// |
| 1025 | /// # Examples |
| 1026 | /// |
| 1027 | /// ``` |
| 1028 | /// use tokio::sync::{Mutex, OwnedMutexGuard}; |
| 1029 | /// use std::sync::Arc; |
| 1030 | /// |
| 1031 | /// #[derive(Debug, Clone, Copy, PartialEq, Eq)] |
| 1032 | /// struct Foo(u32); |
| 1033 | /// |
| 1034 | /// # #[tokio::main] |
| 1035 | /// # async fn main() { |
| 1036 | /// let foo = Arc::new(Mutex::new(Foo(1))); |
| 1037 | /// |
| 1038 | /// { |
| 1039 | /// let mut mapped = OwnedMutexGuard::map(foo.clone().lock_owned().await, |f| &mut f.0); |
| 1040 | /// *mapped = 2; |
| 1041 | /// } |
| 1042 | /// |
| 1043 | /// assert_eq!(Foo(2), *foo.lock().await); |
| 1044 | /// # } |
| 1045 | /// ``` |
| 1046 | /// |
| 1047 | /// [`OwnedMutexGuard`]: struct@OwnedMutexGuard |
| 1048 | /// [`OwnedMappedMutexGuard`]: struct@OwnedMappedMutexGuard |
| 1049 | #[inline ] |
| 1050 | pub fn map<U, F>(mut this: Self, f: F) -> OwnedMappedMutexGuard<T, U> |
| 1051 | where |
| 1052 | U: ?Sized, |
| 1053 | F: FnOnce(&mut T) -> &mut U, |
| 1054 | { |
| 1055 | let data = f(&mut *this) as *mut U; |
| 1056 | let inner = this.skip_drop(); |
| 1057 | OwnedMappedMutexGuard { |
| 1058 | data, |
| 1059 | lock: inner.lock, |
| 1060 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 1061 | resource_span: inner.resource_span, |
| 1062 | } |
| 1063 | } |
| 1064 | |
| 1065 | /// Attempts to make a new [`OwnedMappedMutexGuard`] for a component of the locked data. The |
| 1066 | /// original guard is returned if the closure returns `None`. |
| 1067 | /// |
| 1068 | /// This operation cannot fail as the [`OwnedMutexGuard`] passed in already locked the mutex. |
| 1069 | /// |
| 1070 | /// This is an associated function that needs to be used as `OwnedMutexGuard::try_map(...)`. A |
| 1071 | /// method would interfere with methods of the same name on the contents of the locked data. |
| 1072 | /// |
| 1073 | /// # Examples |
| 1074 | /// |
| 1075 | /// ``` |
| 1076 | /// use tokio::sync::{Mutex, OwnedMutexGuard}; |
| 1077 | /// use std::sync::Arc; |
| 1078 | /// |
| 1079 | /// #[derive(Debug, Clone, Copy, PartialEq, Eq)] |
| 1080 | /// struct Foo(u32); |
| 1081 | /// |
| 1082 | /// # #[tokio::main] |
| 1083 | /// # async fn main() { |
| 1084 | /// let foo = Arc::new(Mutex::new(Foo(1))); |
| 1085 | /// |
| 1086 | /// { |
| 1087 | /// let mut mapped = OwnedMutexGuard::try_map(foo.clone().lock_owned().await, |f| Some(&mut f.0)) |
| 1088 | /// .expect("should not fail" ); |
| 1089 | /// *mapped = 2; |
| 1090 | /// } |
| 1091 | /// |
| 1092 | /// assert_eq!(Foo(2), *foo.lock().await); |
| 1093 | /// # } |
| 1094 | /// ``` |
| 1095 | /// |
| 1096 | /// [`OwnedMutexGuard`]: struct@OwnedMutexGuard |
| 1097 | /// [`OwnedMappedMutexGuard`]: struct@OwnedMappedMutexGuard |
| 1098 | #[inline ] |
| 1099 | pub fn try_map<U, F>(mut this: Self, f: F) -> Result<OwnedMappedMutexGuard<T, U>, Self> |
| 1100 | where |
| 1101 | U: ?Sized, |
| 1102 | F: FnOnce(&mut T) -> Option<&mut U>, |
| 1103 | { |
| 1104 | let data = match f(&mut *this) { |
| 1105 | Some(data) => data as *mut U, |
| 1106 | None => return Err(this), |
| 1107 | }; |
| 1108 | let inner = this.skip_drop(); |
| 1109 | Ok(OwnedMappedMutexGuard { |
| 1110 | data, |
| 1111 | lock: inner.lock, |
| 1112 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 1113 | resource_span: inner.resource_span, |
| 1114 | }) |
| 1115 | } |
| 1116 | |
| 1117 | /// Returns a reference to the original `Arc<Mutex>`. |
| 1118 | /// |
| 1119 | /// ``` |
| 1120 | /// use std::sync::Arc; |
| 1121 | /// use tokio::sync::{Mutex, OwnedMutexGuard}; |
| 1122 | /// |
| 1123 | /// async fn unlock_and_relock(guard: OwnedMutexGuard<u32>) -> OwnedMutexGuard<u32> { |
| 1124 | /// println!("1. contains: {:?}" , *guard); |
| 1125 | /// let mutex: Arc<Mutex<u32>> = OwnedMutexGuard::mutex(&guard).clone(); |
| 1126 | /// drop(guard); |
| 1127 | /// let guard = mutex.lock_owned().await; |
| 1128 | /// println!("2. contains: {:?}" , *guard); |
| 1129 | /// guard |
| 1130 | /// } |
| 1131 | /// # |
| 1132 | /// # #[tokio::main] |
| 1133 | /// # async fn main() { |
| 1134 | /// # let mutex = Arc::new(Mutex::new(0u32)); |
| 1135 | /// # let guard = mutex.lock_owned().await; |
| 1136 | /// # unlock_and_relock(guard).await; |
| 1137 | /// # } |
| 1138 | /// ``` |
| 1139 | #[inline ] |
| 1140 | pub fn mutex(this: &Self) -> &Arc<Mutex<T>> { |
| 1141 | &this.lock |
| 1142 | } |
| 1143 | } |
| 1144 | |
| 1145 | impl<T: ?Sized> Drop for OwnedMutexGuard<T> { |
| 1146 | fn drop(&mut self) { |
| 1147 | self.lock.s.release(added:1); |
| 1148 | |
| 1149 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 1150 | self.resource_span.in_scope(|| { |
| 1151 | tracing::trace!( |
| 1152 | target: "runtime::resource::state_update" , |
| 1153 | locked = false, |
| 1154 | ); |
| 1155 | }); |
| 1156 | } |
| 1157 | } |
| 1158 | |
| 1159 | impl<T: ?Sized> Deref for OwnedMutexGuard<T> { |
| 1160 | type Target = T; |
| 1161 | fn deref(&self) -> &Self::Target { |
| 1162 | unsafe { &*self.lock.c.get() } |
| 1163 | } |
| 1164 | } |
| 1165 | |
| 1166 | impl<T: ?Sized> DerefMut for OwnedMutexGuard<T> { |
| 1167 | fn deref_mut(&mut self) -> &mut Self::Target { |
| 1168 | unsafe { &mut *self.lock.c.get() } |
| 1169 | } |
| 1170 | } |
| 1171 | |
| 1172 | impl<T: ?Sized + fmt::Debug> fmt::Debug for OwnedMutexGuard<T> { |
| 1173 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1174 | fmt::Debug::fmt(&**self, f) |
| 1175 | } |
| 1176 | } |
| 1177 | |
| 1178 | impl<T: ?Sized + fmt::Display> fmt::Display for OwnedMutexGuard<T> { |
| 1179 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1180 | fmt::Display::fmt(&**self, f) |
| 1181 | } |
| 1182 | } |
| 1183 | |
| 1184 | // === impl MappedMutexGuard === |
| 1185 | |
| 1186 | impl<'a, T: ?Sized> MappedMutexGuard<'a, T> { |
| 1187 | fn skip_drop(self) -> MappedMutexGuardInner<'a, T> { |
| 1188 | let me = mem::ManuallyDrop::new(self); |
| 1189 | MappedMutexGuardInner { |
| 1190 | s: me.s, |
| 1191 | data: me.data, |
| 1192 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 1193 | resource_span: unsafe { std::ptr::read(&me.resource_span) }, |
| 1194 | } |
| 1195 | } |
| 1196 | |
| 1197 | /// Makes a new [`MappedMutexGuard`] for a component of the locked data. |
| 1198 | /// |
| 1199 | /// This operation cannot fail as the [`MappedMutexGuard`] passed in already locked the mutex. |
| 1200 | /// |
| 1201 | /// This is an associated function that needs to be used as `MappedMutexGuard::map(...)`. A |
| 1202 | /// method would interfere with methods of the same name on the contents of the locked data. |
| 1203 | /// |
| 1204 | /// [`MappedMutexGuard`]: struct@MappedMutexGuard |
| 1205 | #[inline ] |
| 1206 | pub fn map<U, F>(mut this: Self, f: F) -> MappedMutexGuard<'a, U> |
| 1207 | where |
| 1208 | F: FnOnce(&mut T) -> &mut U, |
| 1209 | { |
| 1210 | let data = f(&mut *this) as *mut U; |
| 1211 | let inner = this.skip_drop(); |
| 1212 | MappedMutexGuard { |
| 1213 | s: inner.s, |
| 1214 | data, |
| 1215 | marker: PhantomData, |
| 1216 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 1217 | resource_span: inner.resource_span, |
| 1218 | } |
| 1219 | } |
| 1220 | |
| 1221 | /// Attempts to make a new [`MappedMutexGuard`] for a component of the locked data. The |
| 1222 | /// original guard is returned if the closure returns `None`. |
| 1223 | /// |
| 1224 | /// This operation cannot fail as the [`MappedMutexGuard`] passed in already locked the mutex. |
| 1225 | /// |
| 1226 | /// This is an associated function that needs to be used as `MappedMutexGuard::try_map(...)`. A |
| 1227 | /// method would interfere with methods of the same name on the contents of the locked data. |
| 1228 | /// |
| 1229 | /// [`MappedMutexGuard`]: struct@MappedMutexGuard |
| 1230 | #[inline ] |
| 1231 | pub fn try_map<U, F>(mut this: Self, f: F) -> Result<MappedMutexGuard<'a, U>, Self> |
| 1232 | where |
| 1233 | F: FnOnce(&mut T) -> Option<&mut U>, |
| 1234 | { |
| 1235 | let data = match f(&mut *this) { |
| 1236 | Some(data) => data as *mut U, |
| 1237 | None => return Err(this), |
| 1238 | }; |
| 1239 | let inner = this.skip_drop(); |
| 1240 | Ok(MappedMutexGuard { |
| 1241 | s: inner.s, |
| 1242 | data, |
| 1243 | marker: PhantomData, |
| 1244 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 1245 | resource_span: inner.resource_span, |
| 1246 | }) |
| 1247 | } |
| 1248 | } |
| 1249 | |
| 1250 | impl<'a, T: ?Sized> Drop for MappedMutexGuard<'a, T> { |
| 1251 | fn drop(&mut self) { |
| 1252 | self.s.release(added:1); |
| 1253 | |
| 1254 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 1255 | self.resource_span.in_scope(|| { |
| 1256 | tracing::trace!( |
| 1257 | target: "runtime::resource::state_update" , |
| 1258 | locked = false, |
| 1259 | ); |
| 1260 | }); |
| 1261 | } |
| 1262 | } |
| 1263 | |
| 1264 | impl<'a, T: ?Sized> Deref for MappedMutexGuard<'a, T> { |
| 1265 | type Target = T; |
| 1266 | fn deref(&self) -> &Self::Target { |
| 1267 | unsafe { &*self.data } |
| 1268 | } |
| 1269 | } |
| 1270 | |
| 1271 | impl<'a, T: ?Sized> DerefMut for MappedMutexGuard<'a, T> { |
| 1272 | fn deref_mut(&mut self) -> &mut Self::Target { |
| 1273 | unsafe { &mut *self.data } |
| 1274 | } |
| 1275 | } |
| 1276 | |
| 1277 | impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for MappedMutexGuard<'a, T> { |
| 1278 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1279 | fmt::Debug::fmt(&**self, f) |
| 1280 | } |
| 1281 | } |
| 1282 | |
| 1283 | impl<'a, T: ?Sized + fmt::Display> fmt::Display for MappedMutexGuard<'a, T> { |
| 1284 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1285 | fmt::Display::fmt(&**self, f) |
| 1286 | } |
| 1287 | } |
| 1288 | |
| 1289 | // === impl OwnedMappedMutexGuard === |
| 1290 | |
| 1291 | impl<T: ?Sized, U: ?Sized> OwnedMappedMutexGuard<T, U> { |
| 1292 | fn skip_drop(self) -> OwnedMappedMutexGuardInner<T, U> { |
| 1293 | let me = mem::ManuallyDrop::new(self); |
| 1294 | // SAFETY: This duplicates the values in every field of the guard, then |
| 1295 | // forgets the originals, so in the end no value is duplicated. |
| 1296 | unsafe { |
| 1297 | OwnedMappedMutexGuardInner { |
| 1298 | data: me.data, |
| 1299 | lock: ptr::read(&me.lock), |
| 1300 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 1301 | resource_span: ptr::read(&me.resource_span), |
| 1302 | } |
| 1303 | } |
| 1304 | } |
| 1305 | |
| 1306 | /// Makes a new [`OwnedMappedMutexGuard`] for a component of the locked data. |
| 1307 | /// |
| 1308 | /// This operation cannot fail as the [`OwnedMappedMutexGuard`] passed in already locked the mutex. |
| 1309 | /// |
| 1310 | /// This is an associated function that needs to be used as `OwnedMappedMutexGuard::map(...)`. A method |
| 1311 | /// would interfere with methods of the same name on the contents of the locked data. |
| 1312 | /// |
| 1313 | /// [`OwnedMappedMutexGuard`]: struct@OwnedMappedMutexGuard |
| 1314 | #[inline ] |
| 1315 | pub fn map<S, F>(mut this: Self, f: F) -> OwnedMappedMutexGuard<T, S> |
| 1316 | where |
| 1317 | F: FnOnce(&mut U) -> &mut S, |
| 1318 | { |
| 1319 | let data = f(&mut *this) as *mut S; |
| 1320 | let inner = this.skip_drop(); |
| 1321 | OwnedMappedMutexGuard { |
| 1322 | data, |
| 1323 | lock: inner.lock, |
| 1324 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 1325 | resource_span: inner.resource_span, |
| 1326 | } |
| 1327 | } |
| 1328 | |
| 1329 | /// Attempts to make a new [`OwnedMappedMutexGuard`] for a component of the locked data. The |
| 1330 | /// original guard is returned if the closure returns `None`. |
| 1331 | /// |
| 1332 | /// This operation cannot fail as the [`OwnedMutexGuard`] passed in already locked the mutex. |
| 1333 | /// |
| 1334 | /// This is an associated function that needs to be used as `OwnedMutexGuard::try_map(...)`. A |
| 1335 | /// method would interfere with methods of the same name on the contents of the locked data. |
| 1336 | /// |
| 1337 | /// [`OwnedMutexGuard`]: struct@OwnedMutexGuard |
| 1338 | /// [`OwnedMappedMutexGuard`]: struct@OwnedMappedMutexGuard |
| 1339 | #[inline ] |
| 1340 | pub fn try_map<S, F>(mut this: Self, f: F) -> Result<OwnedMappedMutexGuard<T, S>, Self> |
| 1341 | where |
| 1342 | F: FnOnce(&mut U) -> Option<&mut S>, |
| 1343 | { |
| 1344 | let data = match f(&mut *this) { |
| 1345 | Some(data) => data as *mut S, |
| 1346 | None => return Err(this), |
| 1347 | }; |
| 1348 | let inner = this.skip_drop(); |
| 1349 | Ok(OwnedMappedMutexGuard { |
| 1350 | data, |
| 1351 | lock: inner.lock, |
| 1352 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 1353 | resource_span: inner.resource_span, |
| 1354 | }) |
| 1355 | } |
| 1356 | } |
| 1357 | |
| 1358 | impl<T: ?Sized, U: ?Sized> Drop for OwnedMappedMutexGuard<T, U> { |
| 1359 | fn drop(&mut self) { |
| 1360 | self.lock.s.release(added:1); |
| 1361 | |
| 1362 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
| 1363 | self.resource_span.in_scope(|| { |
| 1364 | tracing::trace!( |
| 1365 | target: "runtime::resource::state_update" , |
| 1366 | locked = false, |
| 1367 | ); |
| 1368 | }); |
| 1369 | } |
| 1370 | } |
| 1371 | |
| 1372 | impl<T: ?Sized, U: ?Sized> Deref for OwnedMappedMutexGuard<T, U> { |
| 1373 | type Target = U; |
| 1374 | fn deref(&self) -> &Self::Target { |
| 1375 | unsafe { &*self.data } |
| 1376 | } |
| 1377 | } |
| 1378 | |
| 1379 | impl<T: ?Sized, U: ?Sized> DerefMut for OwnedMappedMutexGuard<T, U> { |
| 1380 | fn deref_mut(&mut self) -> &mut Self::Target { |
| 1381 | unsafe { &mut *self.data } |
| 1382 | } |
| 1383 | } |
| 1384 | |
| 1385 | impl<T: ?Sized, U: ?Sized + fmt::Debug> fmt::Debug for OwnedMappedMutexGuard<T, U> { |
| 1386 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1387 | fmt::Debug::fmt(&**self, f) |
| 1388 | } |
| 1389 | } |
| 1390 | |
| 1391 | impl<T: ?Sized, U: ?Sized + fmt::Display> fmt::Display for OwnedMappedMutexGuard<T, U> { |
| 1392 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1393 | fmt::Display::fmt(&**self, f) |
| 1394 | } |
| 1395 | } |
| 1396 | |