1 | use std::cmp; |
2 | |
3 | use super::*; |
4 | |
5 | // Friendly neighborhood axis-aligned rectangle |
6 | #[derive (Debug, Clone, PartialEq, Eq)] |
7 | pub struct AaRect { |
8 | x: i64, |
9 | y: i64, |
10 | width: i64, |
11 | height: i64, |
12 | } |
13 | |
14 | impl AaRect { |
15 | pub fn new((x: i32, y: i32): (i32, i32), (width: u32, height: u32): (u32, u32)) -> Self { |
16 | let (x: i64, y: i64) = (x as i64, y as i64); |
17 | let (width: i64, height: i64) = (width as i64, height as i64); |
18 | AaRect { x, y, width, height } |
19 | } |
20 | |
21 | pub fn contains_point(&self, x: i64, y: i64) -> bool { |
22 | x >= self.x && x <= self.x + self.width && y >= self.y && y <= self.y + self.height |
23 | } |
24 | |
25 | pub fn get_overlapping_area(&self, other: &Self) -> i64 { |
26 | let x_overlap: i64 = cmp::max( |
27 | v1:0, |
28 | v2:cmp::min(self.x + self.width, v2:other.x + other.width) - cmp::max(self.x, v2:other.x), |
29 | ); |
30 | let y_overlap: i64 = cmp::max( |
31 | v1:0, |
32 | v2:cmp::min(self.y + self.height, v2:other.y + other.height) - cmp::max(self.y, v2:other.y), |
33 | ); |
34 | x_overlap * y_overlap |
35 | } |
36 | } |
37 | |
38 | #[derive (Debug, Clone)] |
39 | pub struct FrameExtents { |
40 | pub left: u32, |
41 | pub right: u32, |
42 | pub top: u32, |
43 | pub bottom: u32, |
44 | } |
45 | |
46 | impl FrameExtents { |
47 | pub fn new(left: u32, right: u32, top: u32, bottom: u32) -> Self { |
48 | FrameExtents { left, right, top, bottom } |
49 | } |
50 | |
51 | pub fn from_border(border: u32) -> Self { |
52 | Self::new(left:border, right:border, top:border, bottom:border) |
53 | } |
54 | } |
55 | |
56 | #[derive (Debug, Clone, PartialEq, Eq)] |
57 | pub enum FrameExtentsHeuristicPath { |
58 | Supported, |
59 | UnsupportedNested, |
60 | UnsupportedBordered, |
61 | } |
62 | |
63 | #[derive (Debug, Clone)] |
64 | pub struct FrameExtentsHeuristic { |
65 | pub frame_extents: FrameExtents, |
66 | pub heuristic_path: FrameExtentsHeuristicPath, |
67 | } |
68 | |
69 | impl FrameExtentsHeuristic { |
70 | pub fn inner_pos_to_outer(&self, x: i32, y: i32) -> (i32, i32) { |
71 | use self::FrameExtentsHeuristicPath::*; |
72 | if self.heuristic_path != UnsupportedBordered { |
73 | (x - self.frame_extents.left as i32, y - self.frame_extents.top as i32) |
74 | } else { |
75 | (x, y) |
76 | } |
77 | } |
78 | |
79 | pub fn inner_size_to_outer(&self, width: u32, height: u32) -> (u32, u32) { |
80 | ( |
81 | width.saturating_add( |
82 | self.frame_extents.left.saturating_add(self.frame_extents.right) as _ |
83 | ), |
84 | height.saturating_add( |
85 | self.frame_extents.top.saturating_add(self.frame_extents.bottom) as _ |
86 | ), |
87 | ) |
88 | } |
89 | } |
90 | |
91 | impl XConnection { |
92 | // This is adequate for inner_position |
93 | pub fn translate_coords( |
94 | &self, |
95 | window: xproto::Window, |
96 | root: xproto::Window, |
97 | ) -> Result<xproto::TranslateCoordinatesReply, X11Error> { |
98 | self.xcb_connection().translate_coordinates(window, root, 0, 0)?.reply().map_err(Into::into) |
99 | } |
100 | |
101 | // This is adequate for inner_size |
102 | pub fn get_geometry( |
103 | &self, |
104 | window: xproto::Window, |
105 | ) -> Result<xproto::GetGeometryReply, X11Error> { |
106 | self.xcb_connection().get_geometry(window)?.reply().map_err(Into::into) |
107 | } |
108 | |
109 | fn get_frame_extents(&self, window: xproto::Window) -> Option<FrameExtents> { |
110 | let atoms = self.atoms(); |
111 | let extents_atom = atoms[_NET_FRAME_EXTENTS]; |
112 | |
113 | if !hint_is_supported(extents_atom) { |
114 | return None; |
115 | } |
116 | |
117 | // Of the WMs tested, xmonad, i3, dwm, IceWM (1.3.x and earlier), and blackbox don't |
118 | // support this. As this is part of EWMH (Extended Window Manager Hints), it's likely to |
119 | // be unsupported by many smaller WMs. |
120 | let extents: Option<Vec<u32>> = self |
121 | .get_property(window, extents_atom, xproto::Atom::from(xproto::AtomEnum::CARDINAL)) |
122 | .ok(); |
123 | |
124 | extents.and_then(|extents| { |
125 | if extents.len() >= 4 { |
126 | Some(FrameExtents { |
127 | left: extents[0], |
128 | right: extents[1], |
129 | top: extents[2], |
130 | bottom: extents[3], |
131 | }) |
132 | } else { |
133 | None |
134 | } |
135 | }) |
136 | } |
137 | |
138 | pub fn is_top_level(&self, window: xproto::Window, root: xproto::Window) -> Option<bool> { |
139 | let atoms = self.atoms(); |
140 | let client_list_atom = atoms[_NET_CLIENT_LIST]; |
141 | |
142 | if !hint_is_supported(client_list_atom) { |
143 | return None; |
144 | } |
145 | |
146 | let client_list: Option<Vec<xproto::Window>> = self |
147 | .get_property(root, client_list_atom, xproto::Atom::from(xproto::AtomEnum::WINDOW)) |
148 | .ok(); |
149 | |
150 | client_list.map(|client_list| client_list.contains(&(window as xproto::Window))) |
151 | } |
152 | |
153 | fn get_parent_window(&self, window: xproto::Window) -> Result<xproto::Window, X11Error> { |
154 | let parent = self.xcb_connection().query_tree(window)?.reply()?.parent; |
155 | Ok(parent) |
156 | } |
157 | |
158 | fn climb_hierarchy( |
159 | &self, |
160 | window: xproto::Window, |
161 | root: xproto::Window, |
162 | ) -> Result<xproto::Window, X11Error> { |
163 | let mut outer_window = window; |
164 | loop { |
165 | let candidate = self.get_parent_window(outer_window)?; |
166 | if candidate == root { |
167 | break; |
168 | } |
169 | outer_window = candidate; |
170 | } |
171 | Ok(outer_window) |
172 | } |
173 | |
174 | pub fn get_frame_extents_heuristic( |
175 | &self, |
176 | window: xproto::Window, |
177 | root: xproto::Window, |
178 | ) -> FrameExtentsHeuristic { |
179 | use self::FrameExtentsHeuristicPath::*; |
180 | |
181 | // Position relative to root window. |
182 | // With rare exceptions, this is the position of a nested window. Cases where the window |
183 | // isn't nested are outlined in the comments throughout this function, but in addition to |
184 | // that, fullscreen windows often aren't nested. |
185 | let (inner_y_rel_root, child) = { |
186 | let coords = self |
187 | .translate_coords(window, root) |
188 | .expect("Failed to translate window coordinates" ); |
189 | (coords.dst_y, coords.child) |
190 | }; |
191 | |
192 | let (width, height, border) = { |
193 | let inner_geometry = |
194 | self.get_geometry(window).expect("Failed to get inner window geometry" ); |
195 | (inner_geometry.width, inner_geometry.height, inner_geometry.border_width) |
196 | }; |
197 | |
198 | // The first condition is only false for un-nested windows, but isn't always false for |
199 | // un-nested windows. Mutter/Muffin/Budgie and Marco present a mysterious discrepancy: |
200 | // when y is on the range [0, 2] and if the window has been unfocused since being |
201 | // undecorated (or was undecorated upon construction), the first condition is true, |
202 | // requiring us to rely on the second condition. |
203 | let nested = !(window == child || self.is_top_level(child, root) == Some(true)); |
204 | |
205 | // Hopefully the WM supports EWMH, allowing us to get exact info on the window frames. |
206 | if let Some(mut frame_extents) = self.get_frame_extents(window) { |
207 | // Mutter/Muffin/Budgie and Marco preserve their decorated frame extents when |
208 | // decorations are disabled, but since the window becomes un-nested, it's easy to |
209 | // catch. |
210 | if !nested { |
211 | frame_extents = FrameExtents::new(0, 0, 0, 0); |
212 | } |
213 | |
214 | // The difference between the nested window's position and the outermost window's |
215 | // position is equivalent to the frame size. In most scenarios, this is equivalent to |
216 | // manually climbing the hierarchy as is done in the case below. Here's a list of |
217 | // known discrepancies: |
218 | // * Mutter/Muffin/Budgie gives decorated windows a margin of 9px (only 7px on top) in |
219 | // addition to a 1px semi-transparent border. The margin can be easily observed by |
220 | // using a screenshot tool to get a screenshot of a selected window, and is presumably |
221 | // used for drawing drop shadows. Getting window geometry information via |
222 | // hierarchy-climbing results in this margin being included in both the position and |
223 | // outer size, so a window positioned at (0, 0) would be reported as having a position |
224 | // (-10, -8). |
225 | // * Compiz has a drop shadow margin just like Mutter/Muffin/Budgie, though it's 10px on |
226 | // all sides, and there's no additional border. |
227 | // * Enlightenment otherwise gets a y position equivalent to inner_y_rel_root. Without |
228 | // decorations, there's no difference. This is presumably related to Enlightenment's |
229 | // fairly unique concept of window position; it interprets positions given to |
230 | // XMoveWindow as a client area position rather than a position of the overall window. |
231 | |
232 | FrameExtentsHeuristic { frame_extents, heuristic_path: Supported } |
233 | } else if nested { |
234 | // If the position value we have is for a nested window used as the client area, we'll |
235 | // just climb up the hierarchy and get the geometry of the outermost window we're |
236 | // nested in. |
237 | let outer_window = |
238 | self.climb_hierarchy(window, root).expect("Failed to climb window hierarchy" ); |
239 | let (outer_y, outer_width, outer_height) = { |
240 | let outer_geometry = |
241 | self.get_geometry(outer_window).expect("Failed to get outer window geometry" ); |
242 | (outer_geometry.y, outer_geometry.width, outer_geometry.height) |
243 | }; |
244 | |
245 | // Since we have the geometry of the outermost window and the geometry of the client |
246 | // area, we can figure out what's in between. |
247 | let diff_x = outer_width.saturating_sub(width) as u32; |
248 | let diff_y = outer_height.saturating_sub(height) as u32; |
249 | let offset_y = inner_y_rel_root.saturating_sub(outer_y) as u32; |
250 | |
251 | let left = diff_x / 2; |
252 | let right = left; |
253 | let top = offset_y; |
254 | let bottom = diff_y.saturating_sub(offset_y); |
255 | |
256 | let frame_extents = FrameExtents::new(left, right, top, bottom); |
257 | FrameExtentsHeuristic { frame_extents, heuristic_path: UnsupportedNested } |
258 | } else { |
259 | // This is the case for xmonad and dwm, AKA the only WMs tested that supplied a |
260 | // border value. This is convenient, since we can use it to get an accurate frame. |
261 | let frame_extents = FrameExtents::from_border(border.into()); |
262 | FrameExtentsHeuristic { frame_extents, heuristic_path: UnsupportedBordered } |
263 | } |
264 | } |
265 | } |
266 | |