| 1 | /* |
| 2 | * Copyright (c) 2023. |
| 3 | * |
| 4 | * This software is free software; |
| 5 | * |
| 6 | * You can redistribute it or modify it under terms of the MIT, Apache License or Zlib license |
| 7 | */ |
| 8 | |
| 9 | //!Miscellaneous stuff |
| 10 | #![allow (dead_code)] |
| 11 | |
| 12 | use alloc::format; |
| 13 | use core::cmp::max; |
| 14 | use core::fmt; |
| 15 | |
| 16 | use zune_core::bytestream::{ZByteReader, ZReaderTrait}; |
| 17 | use zune_core::colorspace::ColorSpace; |
| 18 | use zune_core::log::trace; |
| 19 | |
| 20 | use crate::components::{ComponentID, SampleRatios}; |
| 21 | use crate::errors::DecodeErrors; |
| 22 | use crate::huffman::HuffmanTable; |
| 23 | use crate::JpegDecoder; |
| 24 | |
| 25 | /// Start of baseline DCT Huffman coding |
| 26 | |
| 27 | pub const START_OF_FRAME_BASE: u16 = 0xffc0; |
| 28 | |
| 29 | /// Start of another frame |
| 30 | |
| 31 | pub const START_OF_FRAME_EXT_SEQ: u16 = 0xffc1; |
| 32 | |
| 33 | /// Start of progressive DCT encoding |
| 34 | |
| 35 | pub const START_OF_FRAME_PROG_DCT: u16 = 0xffc2; |
| 36 | |
| 37 | /// Start of Lossless sequential Huffman coding |
| 38 | |
| 39 | pub const START_OF_FRAME_LOS_SEQ: u16 = 0xffc3; |
| 40 | |
| 41 | /// Start of extended sequential DCT arithmetic coding |
| 42 | |
| 43 | pub const START_OF_FRAME_EXT_AR: u16 = 0xffc9; |
| 44 | |
| 45 | /// Start of Progressive DCT arithmetic coding |
| 46 | |
| 47 | pub const START_OF_FRAME_PROG_DCT_AR: u16 = 0xffca; |
| 48 | |
| 49 | /// Start of Lossless sequential Arithmetic coding |
| 50 | |
| 51 | pub const START_OF_FRAME_LOS_SEQ_AR: u16 = 0xffcb; |
| 52 | |
| 53 | /// Undo run length encoding of coefficients by placing them in natural order |
| 54 | #[rustfmt::skip] |
| 55 | pub const UN_ZIGZAG: [usize; 64 + 16] = [ |
| 56 | 0, 1, 8, 16, 9, 2, 3, 10, |
| 57 | 17, 24, 32, 25, 18, 11, 4, 5, |
| 58 | 12, 19, 26, 33, 40, 48, 41, 34, |
| 59 | 27, 20, 13, 6, 7, 14, 21, 28, |
| 60 | 35, 42, 49, 56, 57, 50, 43, 36, |
| 61 | 29, 22, 15, 23, 30, 37, 44, 51, |
| 62 | 58, 59, 52, 45, 38, 31, 39, 46, |
| 63 | 53, 60, 61, 54, 47, 55, 62, 63, |
| 64 | // Prevent overflowing |
| 65 | 63, 63, 63, 63, 63, 63, 63, 63, |
| 66 | 63, 63, 63, 63, 63, 63, 63, 63 |
| 67 | ]; |
| 68 | |
| 69 | /// Align data to a 16 byte boundary |
| 70 | #[repr (align(16))] |
| 71 | #[derive (Clone)] |
| 72 | |
| 73 | pub struct Aligned16<T: ?Sized>(pub T); |
| 74 | |
| 75 | impl<T> Default for Aligned16<T> |
| 76 | where |
| 77 | T: Default |
| 78 | { |
| 79 | fn default() -> Self { |
| 80 | Aligned16(T::default()) |
| 81 | } |
| 82 | } |
| 83 | |
| 84 | /// Align data to a 32 byte boundary |
| 85 | #[repr (align(32))] |
| 86 | #[derive (Clone)] |
| 87 | pub struct Aligned32<T: ?Sized>(pub T); |
| 88 | |
| 89 | impl<T> Default for Aligned32<T> |
| 90 | where |
| 91 | T: Default |
| 92 | { |
| 93 | fn default() -> Self { |
| 94 | Aligned32(T::default()) |
| 95 | } |
| 96 | } |
| 97 | |
| 98 | /// Markers that identify different Start of Image markers |
| 99 | /// They identify the type of encoding and whether the file use lossy(DCT) or |
| 100 | /// lossless compression and whether we use Huffman or arithmetic coding schemes |
| 101 | #[derive (Eq, PartialEq, Copy, Clone)] |
| 102 | #[allow (clippy::upper_case_acronyms)] |
| 103 | pub enum SOFMarkers { |
| 104 | /// Baseline DCT markers |
| 105 | BaselineDct, |
| 106 | /// SOF_1 Extended sequential DCT,Huffman coding |
| 107 | ExtendedSequentialHuffman, |
| 108 | /// Progressive DCT, Huffman coding |
| 109 | ProgressiveDctHuffman, |
| 110 | /// Lossless (sequential), huffman coding, |
| 111 | LosslessHuffman, |
| 112 | /// Extended sequential DEC, arithmetic coding |
| 113 | ExtendedSequentialDctArithmetic, |
| 114 | /// Progressive DCT, arithmetic coding, |
| 115 | ProgressiveDctArithmetic, |
| 116 | /// Lossless ( sequential), arithmetic coding |
| 117 | LosslessArithmetic |
| 118 | } |
| 119 | |
| 120 | impl Default for SOFMarkers { |
| 121 | fn default() -> Self { |
| 122 | Self::BaselineDct |
| 123 | } |
| 124 | } |
| 125 | |
| 126 | impl SOFMarkers { |
| 127 | /// Check if a certain marker is sequential DCT or not |
| 128 | |
| 129 | pub fn is_sequential_dct(self) -> bool { |
| 130 | matches!( |
| 131 | self, |
| 132 | Self::BaselineDct |
| 133 | | Self::ExtendedSequentialHuffman |
| 134 | | Self::ExtendedSequentialDctArithmetic |
| 135 | ) |
| 136 | } |
| 137 | |
| 138 | /// Check if a marker is a Lossles type or not |
| 139 | |
| 140 | pub fn is_lossless(self) -> bool { |
| 141 | matches!(self, Self::LosslessHuffman | Self::LosslessArithmetic) |
| 142 | } |
| 143 | |
| 144 | /// Check whether a marker is a progressive marker or not |
| 145 | |
| 146 | pub fn is_progressive(self) -> bool { |
| 147 | matches!( |
| 148 | self, |
| 149 | Self::ProgressiveDctHuffman | Self::ProgressiveDctArithmetic |
| 150 | ) |
| 151 | } |
| 152 | |
| 153 | /// Create a marker from an integer |
| 154 | |
| 155 | pub fn from_int(int: u16) -> Option<SOFMarkers> { |
| 156 | match int { |
| 157 | START_OF_FRAME_BASE => Some(Self::BaselineDct), |
| 158 | START_OF_FRAME_PROG_DCT => Some(Self::ProgressiveDctHuffman), |
| 159 | START_OF_FRAME_PROG_DCT_AR => Some(Self::ProgressiveDctArithmetic), |
| 160 | START_OF_FRAME_LOS_SEQ => Some(Self::LosslessHuffman), |
| 161 | START_OF_FRAME_LOS_SEQ_AR => Some(Self::LosslessArithmetic), |
| 162 | START_OF_FRAME_EXT_SEQ => Some(Self::ExtendedSequentialHuffman), |
| 163 | START_OF_FRAME_EXT_AR => Some(Self::ExtendedSequentialDctArithmetic), |
| 164 | _ => None |
| 165 | } |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | impl fmt::Debug for SOFMarkers { |
| 170 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 171 | match &self { |
| 172 | Self::BaselineDct => write!(f, "Baseline DCT" ), |
| 173 | Self::ExtendedSequentialHuffman => { |
| 174 | write!(f, "Extended sequential DCT, Huffman Coding" ) |
| 175 | } |
| 176 | Self::ProgressiveDctHuffman => write!(f, "Progressive DCT,Huffman Encoding" ), |
| 177 | Self::LosslessHuffman => write!(f, "Lossless (sequential) Huffman encoding" ), |
| 178 | Self::ExtendedSequentialDctArithmetic => { |
| 179 | write!(f, "Extended sequential DCT, arithmetic coding" ) |
| 180 | } |
| 181 | Self::ProgressiveDctArithmetic => write!(f, "Progressive DCT, arithmetic coding" ), |
| 182 | Self::LosslessArithmetic => write!(f, "Lossless (sequential) arithmetic coding" ) |
| 183 | } |
| 184 | } |
| 185 | } |
| 186 | |
| 187 | /// Read `buf.len()*2` data from the underlying `u8` buffer and convert it into |
| 188 | /// u16, and store it into `buf` |
| 189 | /// |
| 190 | /// # Arguments |
| 191 | /// - reader: A mutable reference to the underlying reader. |
| 192 | /// - buf: A mutable reference to a slice containing u16's |
| 193 | #[inline ] |
| 194 | pub fn read_u16_into<T>(reader: &mut ZByteReader<T>, buf: &mut [u16]) -> Result<(), DecodeErrors> |
| 195 | where |
| 196 | T: ZReaderTrait |
| 197 | { |
| 198 | for i: &mut u16 in buf { |
| 199 | *i = reader.get_u16_be_err()?; |
| 200 | } |
| 201 | |
| 202 | Ok(()) |
| 203 | } |
| 204 | |
| 205 | /// Set up component parameters. |
| 206 | /// |
| 207 | /// This modifies the components in place setting up details needed by other |
| 208 | /// parts fo the decoder. |
| 209 | pub(crate) fn setup_component_params<T: ZReaderTrait>( |
| 210 | img: &mut JpegDecoder<T> |
| 211 | ) -> Result<(), DecodeErrors> { |
| 212 | let img_width = img.width(); |
| 213 | let img_height = img.height(); |
| 214 | |
| 215 | // in case of adobe app14 being present, zero may indicate |
| 216 | // either CMYK if components are 4 or RGB if components are 3, |
| 217 | // see https://docs.oracle.com/javase/6/docs/api/javax/imageio/metadata/doc-files/jpeg_metadata.html |
| 218 | // so since we may not know how many number of components |
| 219 | // we have when decoding app14, we have to defer that check |
| 220 | // until now. |
| 221 | // |
| 222 | // We know adobe app14 was present since it's the only one that can modify |
| 223 | // input colorspace to be CMYK |
| 224 | if img.components.len() == 3 && img.input_colorspace == ColorSpace::CMYK { |
| 225 | img.input_colorspace = ColorSpace::RGB; |
| 226 | } |
| 227 | |
| 228 | for component in &mut img.components { |
| 229 | // compute interleaved image info |
| 230 | // h_max contains the maximum horizontal component |
| 231 | img.h_max = max(img.h_max, component.horizontal_sample); |
| 232 | // v_max contains the maximum vertical component |
| 233 | img.v_max = max(img.v_max, component.vertical_sample); |
| 234 | img.mcu_width = img.h_max * 8; |
| 235 | img.mcu_height = img.v_max * 8; |
| 236 | // Number of MCU's per width |
| 237 | img.mcu_x = (usize::from(img.info.width) + img.mcu_width - 1) / img.mcu_width; |
| 238 | // Number of MCU's per height |
| 239 | img.mcu_y = (usize::from(img.info.height) + img.mcu_height - 1) / img.mcu_height; |
| 240 | |
| 241 | if img.h_max != 1 || img.v_max != 1 { |
| 242 | // interleaved images have horizontal and vertical sampling factors |
| 243 | // not equal to 1. |
| 244 | img.is_interleaved = true; |
| 245 | } |
| 246 | // Extract quantization tables from the arrays into components |
| 247 | let qt_table = *img.qt_tables[component.quantization_table_number as usize] |
| 248 | .as_ref() |
| 249 | .ok_or_else(|| { |
| 250 | DecodeErrors::DqtError(format!( |
| 251 | "No quantization table for component {:?}" , |
| 252 | component.component_id |
| 253 | )) |
| 254 | })?; |
| 255 | |
| 256 | let x = (usize::from(img_width) * component.horizontal_sample + img.h_max - 1) / img.h_max; |
| 257 | let y = (usize::from(img_height) * component.horizontal_sample + img.h_max - 1) / img.v_max; |
| 258 | component.x = x; |
| 259 | component.w2 = img.mcu_x * component.horizontal_sample * 8; |
| 260 | // probably not needed. :) |
| 261 | component.y = y; |
| 262 | component.quantization_table = qt_table; |
| 263 | // initially stride contains its horizontal sub-sampling |
| 264 | component.width_stride *= img.mcu_x * 8; |
| 265 | } |
| 266 | { |
| 267 | // Sampling factors are one thing that suck |
| 268 | // this fixes a specific problem with images like |
| 269 | // |
| 270 | // (2 2) None |
| 271 | // (2 1) H |
| 272 | // (2 1) H |
| 273 | // |
| 274 | // The images exist in the wild, the images are not meant to exist |
| 275 | // but they do, it's just an annoying horizontal sub-sampling that |
| 276 | // I don't know why it exists. |
| 277 | // But it does |
| 278 | // So we try to cope with that. |
| 279 | // I am not sure of how to explain how to fix it, but it involved a debugger |
| 280 | // and to much coke(the legal one) |
| 281 | // |
| 282 | // If this wasn't present, self.upsample_dest would have the wrong length |
| 283 | let mut handle_that_annoying_bug = false; |
| 284 | |
| 285 | if let Some(y_component) = img |
| 286 | .components |
| 287 | .iter() |
| 288 | .find(|c| c.component_id == ComponentID::Y) |
| 289 | { |
| 290 | if y_component.horizontal_sample == 2 || y_component.vertical_sample == 2 { |
| 291 | handle_that_annoying_bug = true; |
| 292 | } |
| 293 | } |
| 294 | if handle_that_annoying_bug { |
| 295 | for comp in &mut img.components { |
| 296 | if (comp.component_id != ComponentID::Y) |
| 297 | && (comp.horizontal_sample != 1 || comp.vertical_sample != 1) |
| 298 | { |
| 299 | comp.fix_an_annoying_bug = 2; |
| 300 | } |
| 301 | } |
| 302 | } |
| 303 | } |
| 304 | |
| 305 | if img.is_mjpeg { |
| 306 | fill_default_mjpeg_tables( |
| 307 | img.is_progressive, |
| 308 | &mut img.dc_huffman_tables, |
| 309 | &mut img.ac_huffman_tables |
| 310 | ); |
| 311 | } |
| 312 | |
| 313 | Ok(()) |
| 314 | } |
| 315 | |
| 316 | ///Calculate number of fill bytes added to the end of a JPEG image |
| 317 | /// to fill the image |
| 318 | /// |
| 319 | /// JPEG usually inserts padding bytes if the image width cannot be evenly divided into |
| 320 | /// 8 , 16 or 32 chunks depending on the sub sampling ratio. So given a sub-sampling ratio, |
| 321 | /// and the actual width, this calculates the padded bytes that were added to the image |
| 322 | /// |
| 323 | /// # Params |
| 324 | /// -actual_width: Actual width of the image |
| 325 | /// -sub_sample: Sub sampling factor of the image |
| 326 | /// |
| 327 | /// # Returns |
| 328 | /// The padded width, this is how long the width is for a particular image |
| 329 | pub fn calculate_padded_width(actual_width: usize, sub_sample: SampleRatios) -> usize { |
| 330 | match sub_sample { |
| 331 | SampleRatios::None | SampleRatios::V => { |
| 332 | // None+V sends one MCU row, so that's a simple calculation |
| 333 | ((actual_width + 7) / 8) * 8 |
| 334 | } |
| 335 | SampleRatios::H | SampleRatios::HV => { |
| 336 | // sends two rows, width can be expanded by up to 15 more bytes |
| 337 | ((actual_width + 15) / 16) * 16 |
| 338 | } |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | // https://www.loc.gov/preservation/digital/formats/fdd/fdd000063.shtml |
| 343 | // "Avery Lee, writing in the rec.video.desktop newsgroup in 2001, commented that "MJPEG, or at |
| 344 | // least the MJPEG in AVIs having the MJPG fourcc, is restricted JPEG with a fixed -- and |
| 345 | // *omitted* -- Huffman table. The JPEG must be YCbCr colorspace, it must be 4:2:2, and it must |
| 346 | // use basic Huffman encoding, not arithmetic or progressive.... You can indeed extract the |
| 347 | // MJPEG frames and decode them with a regular JPEG decoder, but you have to prepend the DHT |
| 348 | // segment to them, or else the decoder won't have any idea how to decompress the data. |
| 349 | // The exact table necessary is given in the OpenDML spec."" |
| 350 | pub fn fill_default_mjpeg_tables( |
| 351 | is_progressive: bool, dc_huffman_tables: &mut [Option<HuffmanTable>], |
| 352 | ac_huffman_tables: &mut [Option<HuffmanTable>] |
| 353 | ) { |
| 354 | // Section K.3.3 |
| 355 | trace!("Filling with default mjpeg tables" ); |
| 356 | |
| 357 | if dc_huffman_tables[0].is_none() { |
| 358 | // Table K.3 |
| 359 | dc_huffman_tables[0] = Some( |
| 360 | HuffmanTable::new_unfilled( |
| 361 | &[ |
| 362 | 0x00, 0x00, 0x01, 0x05, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, |
| 363 | 0x00, 0x00, 0x00, 0x00 |
| 364 | ], |
| 365 | &[ |
| 366 | 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B |
| 367 | ], |
| 368 | true, |
| 369 | is_progressive |
| 370 | ) |
| 371 | .unwrap() |
| 372 | ); |
| 373 | } |
| 374 | if dc_huffman_tables[1].is_none() { |
| 375 | // Table K.4 |
| 376 | dc_huffman_tables[1] = Some( |
| 377 | HuffmanTable::new_unfilled( |
| 378 | &[ |
| 379 | 0x00, 0x00, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, |
| 380 | 0x00, 0x00, 0x00, 0x00 |
| 381 | ], |
| 382 | &[ |
| 383 | 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B |
| 384 | ], |
| 385 | true, |
| 386 | is_progressive |
| 387 | ) |
| 388 | .unwrap() |
| 389 | ); |
| 390 | } |
| 391 | if ac_huffman_tables[0].is_none() { |
| 392 | // Table K.5 |
| 393 | ac_huffman_tables[0] = Some( |
| 394 | HuffmanTable::new_unfilled( |
| 395 | &[ |
| 396 | 0x00, 0x00, 0x02, 0x01, 0x03, 0x03, 0x02, 0x04, 0x03, 0x05, 0x05, 0x04, 0x04, |
| 397 | 0x00, 0x00, 0x01, 0x7D |
| 398 | ], |
| 399 | &[ |
| 400 | 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, |
| 401 | 0x51, 0x61, 0x07, 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xA1, 0x08, 0x23, 0x42, |
| 402 | 0xB1, 0xC1, 0x15, 0x52, 0xD1, 0xF0, 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0A, |
| 403 | 0x16, 0x17, 0x18, 0x19, 0x1A, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x34, 0x35, |
| 404 | 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, |
| 405 | 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, |
| 406 | 0x68, 0x69, 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x83, 0x84, |
| 407 | 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, |
| 408 | 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xB2, 0xB3, |
| 409 | 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, |
| 410 | 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xE1, |
| 411 | 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF1, 0xF2, 0xF3, 0xF4, |
| 412 | 0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA |
| 413 | ], |
| 414 | false, |
| 415 | is_progressive |
| 416 | ) |
| 417 | .unwrap() |
| 418 | ); |
| 419 | } |
| 420 | if ac_huffman_tables[1].is_none() { |
| 421 | // Table K.6 |
| 422 | ac_huffman_tables[1] = Some( |
| 423 | HuffmanTable::new_unfilled( |
| 424 | &[ |
| 425 | 0x00, 0x00, 0x02, 0x01, 0x02, 0x04, 0x04, 0x03, 0x04, 0x07, 0x05, 0x04, 0x04, |
| 426 | 0x00, 0x01, 0x02, 0x77 |
| 427 | ], |
| 428 | &[ |
| 429 | 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, |
| 430 | 0x07, 0x61, 0x71, 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xA1, 0xB1, |
| 431 | 0xC1, 0x09, 0x23, 0x33, 0x52, 0xF0, 0x15, 0x62, 0x72, 0xD1, 0x0A, 0x16, 0x24, |
| 432 | 0x34, 0xE1, 0x25, 0xF1, 0x17, 0x18, 0x19, 0x1A, 0x26, 0x27, 0x28, 0x29, 0x2A, |
| 433 | 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, |
| 434 | 0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, |
| 435 | 0x67, 0x68, 0x69, 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x82, |
| 436 | 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, |
| 437 | 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, |
| 438 | 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3, 0xC4, 0xC5, |
| 439 | 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, |
| 440 | 0xDA, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF2, 0xF3, 0xF4, |
| 441 | 0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA |
| 442 | ], |
| 443 | false, |
| 444 | is_progressive |
| 445 | ) |
| 446 | .unwrap() |
| 447 | ); |
| 448 | } |
| 449 | } |
| 450 | |